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AbstratModeling several ompetitive leaders and followers ating in an eletriitymarket leads to oupled systems of mathematial programs with equilibriumonstraints, alled equilibrium problems with equilibrium onstraints (EPECs).We onsider a simpli�ed model for ompetition in eletriity markets underunertainty of demand in an eletriity network as a (stohasti) multi-leader-follower game. First order neessary onditions are developed for the orre-sponding stohasti EPEC based on a result of Outrata [17℄. For applying thegeneral result an expliit representation of the o-derivative of the normal onemapping to a polyhedron is derived (Proposition 3.2). Later the o-derivativeformula is used for verifying onstraint quali�ations and for identifying M-stationary solutions of the stohasti EPEC if the demand is represented by a�nite number of senarios.1 IntrodutionIn [17℄, J. Outrata formulated �rst order neessary onditions for the followingequilibrium problem with equilibrium onstraints (EPEC):
min

{

fi

(

xi, z
)

|0 ∈ F (x, z) + NU(z)
}

(i = 1, . . . , N). (EPEC)Here, the xi ∈ Rn refer to deisions taken by N players (e.g., market ompetitors),whose objetive funtions fi do not only depend on their own deisions xi butalso on some parameter z whih might represent an exterior deision (e.g., in aleader-follower system). All deisions together are linked by a generalized equation
0 ∈ F (x, z)+NU(z) whih ould model some equilibrium onstraint or the solution ofa parameter-dependent optimization problem. It is assumed, that U is some losedonvex set and NU refers to its normal one. In priniple, (EPEC) is nothing else buta oupled system of mathematial programs with equilibrium onstraints (MPECs),where eah single MPEC desribes the optimization problem solved by the individualplayers given the deision of the other players. The vetor (x̄1, . . . , x̄N , z̄

) is delaredto be a solution to (EPEC), if for i = 1, . . . , N the vetors (x̄i, z̄) are solutions tothe MPEC
min

{

fi (y, z)
∣

∣0 ∈ F (x̄1, . . . , x̄i−1, y, x̄i+1x̄N , z̄) + NU(z̄)
}

,i.e., non of the players an improve his deision given the deisions of his ompetitors.As pointed out in [17℄, these MPECs are typially nononvex even under onvexity1



assumptions on the data fi, F, U . Therefore it makes sense to identify possiblesolutions by means of �rst order neessary onditions. In [17℄, it was proposed to doso by using Mordukhovih's o-derivative D∗ of multifuntions (see [15℄) as a basitool. For reent extensions of these ideas (e.g., to stability issues in the ontext ofquasi-variational inequalities), we refer to [16℄ (see also [15℄). We ite the followingTheorem from [17℄, slightly adapted to the purposes of our paper:Theorem 1.1 Let (x̄, z̄) be a solution to (EPEC). If, for all i = 1, . . . , N , themultifuntions
u 7→

{(

xi, z
) ∣

∣u ∈ F (x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄N , z) + NU(z)
}are polyhedral or satisfy the onstraint quali�ation

0 = (∇xiF (x̄, z̄))T
v

0 ∈ (∇zF (x̄, z̄))T
v + D∗NU(z̄,−F (x̄, z̄))(v)

}

=⇒ v = 0,then, for all i = 1, . . . , N , there exist v̄i suh that
0 = ∇xifi (x̄, z̄) + (∇xiF (x̄, z̄))T

v̄i (1)
0 ∈ ∇zfi (x̄, z̄) + (∇zF (x̄, z̄))T

v̄i + D∗NU(z̄,−F (x̄, z̄))(v̄i). (2)We shall adopt from [17℄ the name M (ordukhovih)- stationary point for any (x̄, z̄)satisfying (1) and (2). The main di�ulty in the veri�ation of both the onstraintquali�ation and the optimality onditions (1) and (2) is the omputation of the o-derivative D∗NU to the normal one mapping assoiated with U . Expliit formulaeready to use an be found in [2℄ and [18℄ for the ases of U being a nonnegativeorthant or a retangle. On the other hand, many pratial appliations like eletri-ity spot market modeling lead to sets U whih are general polyhedra. The purposeof this note is threefold: �rst, it is intended to apply the ideas presented so farto a simpli�ed model of eletriity markets under an independent system operatorregime similar to [4℄ and [11℄. Seond, and subordinate to this aim, an expliitformula for D∗NU is derived for general polyhedra U . Third, the whole problem isput into a stohasti framework whih is of muh interest due to unertainties ineletriity demands. For disrete distributions, a haraterizing system of relationsfor identifying M-stationary solutions is provided and suh solutions are expliitlyalulated for a simple example.Sine eletriity prodution and trading deisions of smaller power �rms (followers)do not in�uene market pries, eletriity portfolio optimization models for suh�rms may be developed without regarding their market interations. Inputs of port-folio optimization models are stohasti prie and demand proesses in the relevanttime horizon (see, e.g., [3℄). To extend stohasti portfolio optimization models to�rms having market power (leaders), the use of modi�ed market pries is suggested,e.g., in [1℄. 2



To investigate the behavior of power �rms in deregulated eletriity markets, game-theoreti models are employed (see, e.g., [7, 8, 28℄). Suh models have to inorporatethe spei� features of eletriity markets, namely, the transmission network and thebidding of prie-quantity pairs of eah generator in the network. When modelingsingle-leader-follower games one arrives at mathematial programs with equilibriumonstraints (MPECs). Presently, theory and numerial methods for MPECs is welldeveloped. We refer to the monographs [14, 19, 5℄, the survey [12℄ and to [25, 6℄.Extensions to stohasti MPECs (SMPECs) an be found in [26, 27℄ and appliationsto eletriity markets are disussed, e.g., in [9, 21℄.The modeling of multi-leader-follower games leads to oupled systems of MPECsor equilibrium problems with equilibrium onstraints (EPECs). In reent years,muh e�ort has been direted to the theory of suh games [20℄ and to numeri-al methods [13℄ based on nonlinear programming and nonlinear omplementarity(re)formulations. Furthermore, EPEC models for eletriity markets with gener-ators and ustomers loated on a network have been developed and analyzed in[11, 10, 22℄. A stohasti EPEC (SEPEC) modeling an eletriity market underdemand unertainty is studied in [4℄.2 A simpli�ed model for ompetition in eletriityspot marketsIn the following, we onsider a model for ompetition in eletriity spot marketswhih is a simpli�ed for the purpose of our analysis version of models presented in[4℄ and [11℄. We assume that some eletriity network is represented by an orientedgraph, whose m edges orrespond to transmission lines and whose N nodes referto plaes at whih a demand for eletriity is observed and at whih eletriity isgenerated. Negleting, for the sake of simpliity, transmission losses, the satisfationof demand may be modeled as
q + By ≥ d. (3)Here, d ∈ RN refers to the vetor of demands at eah node, q ∈ RN is the vetorof eletriity generated at the same nodes and y ∈ Rm represents the oriented �owvetor of eletriity along the edges of the graph. B is the inidene matrix of theeletriity network. Typially, q and y are simply bounded by

0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ,where the inequality signs are to be understood omponent-wise. Generators bid aost funtion to an independent system operator (ISO):
ci(qi) = αiqi + βiq

2
i (i = 1, . . .N).These may di�er from the true ost funtions

Ci(qi) = γiqi + δiq
2
i (i = 1, . . . N).3



Throughout the paper, we shall assume that βi > 0 for i = 1, . . . , N , thus aeptingthe idea that ost funtions are typially onvex and leaving aside the purely linearase. More general ost funtions were allowed in [4℄. Here, we restrit ourselves tothe quadrati ase as onsidered in [11℄. The ISO determines a vetor of generatedeletriity satisfying the onstraints above and minimizing the overall osts:
min
q,y

{

N
∑

i=1

ci(qi) |(q, y) ∈ G

}

, (4)where
G :=

{

(q, y) ∈ RN+m
∣

∣ q + By ≥ d, 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

.Note that, by onvexity, an optimal solution q∗ of (4) is haraterized as a solutionto the generalized equation
0 ∈

(

α + 2 [diag β] q
0

)

+ NG(q, y). (5)Here, [diag β] denotes the diagonal matrix omposed of diagonal entries βi. With q∗being an optimal solution to (4), the learing prie harged by generator i amountsto the derivative of its bid ost funtion at q∗i (see [11℄):
πi = αi + 2βiq

∗
i .Thus, generator i's pro�t alulates as

(αi − γi) q∗i + (2βi − δi) (q∗i )
2
.Therefore, given some �xed bid oe�ients (ᾱj , β̄j

) of the remaining ompetitors
j 6= i, generator i solves the following mathematial program with equilibrium on-straints (MPEC):

max
αi,βi,q,y

{

(αi − γi) qi + (2βi − δi) q2
i

∣

∣

∣

∣

0 ∈

(

θ(αi, βi, q)
0

)

+ NG(q, y)

}

, (6)where
θ(αi, βi, q) := (ᾱ1, . . . , ᾱi−1, αi, ᾱi+1, . . . , ᾱN)

+2
[

diag
(

β̄1, . . . , β̄i−1, βi, β̄i+1, . . . , β̄N

)]

q(ompare (5)). Sine all ompetitors solve a similar MPEC given the deisions ofthe remaining ones, the oupled system of MPECs
min

αi,βi,q,y

{

(γi − αi) qi + (δi − 2βi) q2
i

∣

∣

∣

∣

0 ∈

(

α + 2 [diag β] q
0

)

+ NG(q, y)

} (7)
(i = 1, . . . , N)4



is alled an EPEC (equilibrium problem with equilibrium onstraints). This EPECfalls into the general lass of type (EPEC) presented in the introdution. Indeed, inour spei� model, one has to put xi := (αi, βi), z := (q, y), U := G as well as
fi (αi, βi, q, y) = (γi − αi) qi + (δi − 2βi) q2

i

F (α, β, q, y) =

(

α + 2 [diag β] q
0

)

. (8)Speializing Theorem 1.1 from the introdution to our setting, we obtain:Theorem 2.1 Let (ᾱ, β̄, q̄, ȳ
) be a solution to (7). If, for all i = 1, . . . , N , themultifuntions

u 7→
{

(αi, βi, q, y)
∣

∣u ∈ F (ᾱ1, β̄1, . . . , ᾱi−1, β̄i−1, αi, βi, ᾱi+1, β̄i+1, . . . , ᾱN , β̄N , q, y)

+NG(q, y)} (9)are polyhedral or satisfy the onstraint quali�ation
0 =

(

∇(αi,βi)F
(

ᾱ, β̄, q̄, ȳ
))T

v

0 ∈
(

∇(q,y)F
(

ᾱ, β̄, q̄, ȳ
))T

v + D∗NG((q̄, ȳ) ,−F
(

ᾱ, β̄, q̄, ȳ
)

)(v)

}

=⇒ v = 0,(10)then, for all i = 1, . . . , N , there exist v̄i suh that
0 = ∇(αi,βi)fi

(

ᾱ, β̄, q̄, ȳ
)

+
(

∇(αi,βi)F
(

ᾱ, β̄, q̄, ȳ
))T

v̄i (11)
0 ∈ ∇(αi,βi)fi

(

ᾱ, β̄, q̄, ȳ
)

+
(

∇(αi,βi)F
(

ᾱ, β̄, q̄, ȳ
))T

v̄i (12)
+D∗NG(q̄, ȳ,−F

(

ᾱ, β̄, q̄, ȳ
)

)(v̄i).One observes that the di�ult part both in the veri�ation of the onstraint qual-i�ation and in the appliation of the �rst order neessary ondition onsists inalulating the o-derivative D∗NG. This is the aim of the following setion.3 On the o-derivative of the normal one mappingto a polyhedronThis setion is devoted to the derivation of an expliit formula for the o-derivativeof the normal one mapping to a polyhedron. Before addressing this topi, we reallthe de�nition of the Mordukhovih normal one (also alled limiting normal one)and the the indued o-derivative (see [15℄):De�nition 3.1 Let S ⊆ Rn be an arbitrary set and x̄ ∈ cl S. Then, the Mor-dukhovih normal one to S at x̄ is de�ned by
NS (x̄) := Limsupx→x̄,x∈S [TS (x)]∗ ,5



where [TS (x)]∗ refers to the negative polar of the ontingent one TS (x) to S at x and'Limsup' denotes the upper limit in the sense of Kuratowski-Painlevé onvergene.For a multifuntion Φ : Rn
⇉ Rp, onsider a point of its graph: (x, y) ∈ gph Φ. TheMordukhovih normal one indues the following o-derivative D∗Φ (x, y) : Rp

⇉ Rnof Φ at (x, y):
D∗Φ (x, y) (y∗) = {x∗ ∈ Rn| (x∗,−y∗) ∈ Ngph Φ (x, y)} ∀y∗ ∈ Rp.Now, we onsider a polyhedron C := {x ∈ Rn|Ax ≤ b}, where b ∈ Rm and A is amatrix of order (m, n). Let (x0, v0) ∈ gph NC . As C is onvex, the Mordukhovihnormal one NC redues to the normal one in the sense of onvex analysis here. Inpartiular x0 ∈ C and v0 ∈ NC (x0). With ai and bi referring to the rows of A andomponents of b, respetively, let

I := {i ∈ {1, . . . , m}|
〈

ai, x
0
〉

= bi}be the set of ative indies at x0. Sine v0 ∈ NC (x0), there exits λi ≥ 0 for i ∈ I,suh that
v0 =

∑

i∈I

λiai. (13)We introdue the following subset of I:
J := {i ∈ I|λi > 0}.Finally, for eah index subset I ′ ⊆ I, we introdue the losed one

FI′ = {h ∈ Rn| 〈ai, h〉 ≤ 0 (i ∈ I\I ′)}, 〈ai, h〉 = 0 (i ∈ I ′)} (14)as well as the harateristi index set
χ(I ′) := {j ∈ I| 〈aj , h〉 = 0 ∀h ∈ FI′}. (15)Proposition 3.2 With the notation introdued above, one has that

Ngph NC

(

x0, v0
)

=
⋃

J⊆I1⊆I2⊆I

PI1,I2 × QI1,I2,where
PI1,I2 = con {ai|i ∈ χ (I2) \I1} + span {ai|i ∈ I1}

QI1,I2 = {h ∈ Rn| 〈ai, h〉 = 0 (i ∈ I1) , 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \I1)}.Here, con and span refer to the onvex oni and linear hull, respetively.
6



Proof. First note, that the set gph NC is no longer onvex although the polyhedron
C is so. As a onsequene, the Mordukhovih normal one Ngph NC

(x0, v0) to this setevaluated at the point (x0, v0) needs not be onvex either. Aording to a well-knownresult by Donthev and Rokafellar ([2, Proof of Theorem 2℄), one has that
Ngph NC

(

x0, v0
)

=
⋃

Fj⊆Fi

(Fi − Fj)
∗ × (Fi − Fj) , (16)where the Fi are the losed faes of the one

K0 := TC

(

x0
)

∩ {v0}⊥and TC denotes the tangent one to C in the sense of onvex analysis. As in De�ni-tion 3.1, we use an asterisk for denoting the negative polar (or dual) one. Combiningthe well-known representation
TC

(

x0
)

= {h ∈ Rn| 〈ai, h〉 ≤ 0 (i ∈ I)},with (13) and the de�nition of the index set J , one immediately derives that
K0 = {h ∈ Rn| 〈ai, h〉 ≤ 0 (i ∈ I\J) , 〈ai, h〉 = 0 (i ∈ J)}.Now, any losed fae of K0 is given by a one FI′ as introdued in (14) and with I ′being an arbitrary index set with J ⊆ I ′ ⊆ I. Clearly, the impliation

I1 ⊆ I2 =⇒ FI2 ⊆ FI1holds true for all index sets I1, I2 suh that J ⊆ I1, I2 ⊆ I. While the reverseimpliation annot be derived in general, one may easily show the following for thesame index sets:
FI2 ⊆ FI1 =⇒ FI2 = FI1∪I2.In other words, there exists an index set I3, suh that FI2 = FI3 ⊆ FI1 and I1 ⊆ I3.Summarizing, any pair of index sets I1, I2 with J ⊆ I1 ⊆ I2 ⊆ I indues a pairof losed faes of K0 suh that one is a subset of the other, and, onversely, anysuh pair of losed faes of K0 an be represented by a pair of index sets I1, I2 with

J ⊆ I1 ⊆ I2 ⊆ I. Consequently, we may rewrite (16) as
Ngph NC

(

x0, v0
)

=
⋃

J⊆I1⊆I2⊆I

(FI1 − FI2)
∗ × (FI1 − FI2) . (17)We laim that

FI1 − FI2 = QI1,I2 ∀I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I, (18)where QI1,I2 is de�ned in the statement of the proposition. Reall that, by thevery de�nition of χ in (15), one always has that I2 ⊆ χ (I2) ⊆ I. Now, given any
h ∈ FI1 − FI2, one has h = h1 − h2 for some h1 ∈ FI1 and h2 ∈ FI2. The inlusion
I1 ⊆ I2 along with (14) then implies that
〈ai, h1〉 = 〈ai, h2〉 = 0 (i ∈ I1) ; 〈ai, h1〉 ≤ 0 (i ∈ I\I1) 〈ai, h2〉 = 0 (i ∈ I2) .7



By (15), we have that 〈ai, h2〉 = 0 for all i ∈ χ (I2). Moreover, 〈ai, h1〉 ≤ 0 for all
i ∈ χ (I2) \I1. Altogether, this establishes the inlusion '⊆' of (18).For the reverse inlusion, let h ∈ QI1,I2 be arbitrary. In ase that χ (I2) = I, itfollows form the de�nition of QI1,I2 that h ∈ FI1 ⊆ FI1 − FI2 (due to 0 ∈ FI2).Hene, we may assume now that χ (I2) $ I. By (15), we have

χ (I2) = {j ∈ I| 〈aj , h
′〉 = 0 ∀h′ ∈ FI2}.As a onsequene, for all j ∈ I\χ (I2) there exists some hj ∈ FI2 suh that 〈aj, hj〉 <

0. We put
h∗ :=

∑

j∈I\χ(I2)

hj .Note that h∗ is well-de�ned by I\χ (I2) 6= ∅. Clearly, h∗ ∈ FI2 and
〈ai, h

∗〉 = 〈ai, hi〉 +
∑

j∈I\χ(I2)
j 6=i

〈ai, hj〉 < 0by de�nition of hi and by 〈ai, hj〉 ≤ 0 for all j ∈ I\χ (I2) (reall that hj ∈ FI2). Thisallows to de�ne
t := max

{

0, max
i∈I\χ(I2)

{

−
〈ai, h〉

〈ai, h∗〉

}}

≥ 0.Finally, put h̄ := h + th∗. Due to h ∈ QI1,I2 and h∗ ∈ FI2, we have that
〈ai, h〉 = 0 (i ∈ I1) ; 〈ai, h

∗〉 = 0 (i ∈ χ (I2)) ; 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \I1) .Consequently, realling that I1 ⊆ I2 ⊆ χ (I2), it follows that 〈ai, h̄
〉

= 0 for all i ∈ I1and 〈ai, h̄
〉

≤ 0 for all i ∈ χ (I2) \I1. We laim that
〈

ai, h̄
〉

= 〈ai, h〉 + t 〈ai, h
∗〉 ≤ 0 ∀i ∈ I\χ (I2) .Indeed, the inequality is obvious if 〈ai, h〉 ≤ 0, beause of t ≥ 0 and 〈ai, h

∗〉 < 0. If
〈ai, h〉 > 0, then the same inequality follows from

t ≥ −
〈ai, h〉

〈ai, h∗〉by de�nition of t. Summarizing the previous relations, one arrives at h̄ ∈ FI1 .Therefore, h = h̄− th∗ ∈ FI1 −FI2 , where we used that th∗ ∈ FI2 due to t ≥ 0. This�nishes the proof of (18).Evidently, PI1,I2 = Q∗
I1,I2

for PI1,I2 as de�ned in the statement of the proposition.Consequently, the proposition is proved upon referring to (18) and (17).Remark 3.3 If, the vetors {ai |i ∈ I } happen to be linearly independent, then
χ(I ′) = I ′ for all I ′ ⊆ I and the de�nitions of PI1,I2 and QI1,I2 in Proposition3.2 simplify aordingly. 8



Corollary 3.4 In the setting of Proposition 3.2, one has the following:
D∗NC

(

x0, v0
)

(s) ⊆ con {ai|i ∈ χ
(

Ia(s) ∪ Ib(s)
)

\Ia(s)} + span {ai|i ∈ Ia(s)}if 〈ai, s〉 = 0 ∀i ∈ J and 〈ai, s〉 ≥ 0 ∀i ∈ χ(J)\Jand
D∗NC

(

x0, v0
)

(s) = ∅ otherwise.Here,
Ia(s) := {i ∈ I| 〈ai, s〉 = 0}, Ib(s) := {i ∈ I| 〈ai, s〉 > 0}.Proof. From the de�nition of the o-derivative and from Proposition 3.2, it followsthat

D∗NC

(

x0, v0
)

(s) = {r| (r,−s) ∈ Ngph NC

(

x0, v0
)

}

= {r|∃I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I, r ∈ PI1,I2,−s ∈ QI1,I2}. (19)SineQI1,I2 ⊆ QJ,J for all I1, I2 with J ⊆ I1 ⊆ I2 ⊆ I, it follows thatD∗NC (x0, v0) (s)is non-empty only if −s ∈ QJ,J whih means, by de�nition, that 〈ai, s〉 = 0 for all
i ∈ J and 〈ai, s〉 ≥ 0 for all i ∈ χ(J)\J . This proves the seond statement of theorollary. We show that

QIa(s),Ia(s)∪Ib(s) ⊆ QI1,I2 ∀I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I ∀s : −s ∈ QI1,I2. (20)Indeed, the de�nitions of the respetive index sets yield that I1 ⊆ Ia(s) and
χ(I2) ⊆ Ia(s) ∪ Ib(s) ⊆ χ(Ia(s) ∪ Ib(s)).Now, if h ∈ QIa(s),Ia(s)∪Ib(s), then

〈ai, h〉 = 0 ∀i ∈ Ia(s), 〈ai, h〉 ≤ 0 ∀i ∈ χ
(

Ia(s) ∪ Ib(s)
)

\Ia(s).It follows that
〈ai, h〉 = 0 ∀i ∈ I1, 〈ai, h〉 ≤ 0 ∀i ∈ χ(I2)\I

a(s).Due to
χ(I2)\I1 ⊆ (χ(I2)\I

a(s)) ∪ (Ia(s)\I1) ,one arrives that 〈ai, h〉 ≤ 0 ∀i ∈ χ(I2)\I1, whene h ∈ QI1,I2. This establishes(20). Realling that PI1,I2 = Q∗
I1,I2

, it results from (20) that
PI1,I2 = Q∗

I1,I2
⊆ Q∗

Ia(s),Ia(s)∪Ib(s) = PIa(s),Ia(s)∪Ib(s).Now, we may ontinue (19) as
D∗NC

(

x0, v0
)

(s) ⊆ PIa(s),Ia(s)∪Ib(s),whih proves the �rst statement of the orollary.The following simpli�ation of Corollary 3.4 is possible under the assumption oflinear independene: 9



Corollary 3.5 If the {ai |i ∈ I } are linearly independent, then Corollary 3.4 sim-pli�es to
D∗NC

(

x0, v0
)

(s) = con {ai|i ∈ Ib(s)} + span {ai|i ∈ Ia(s)}if 〈ai, s〉 = 0 ∀i ∈ J,and
D∗NC

(

x0, v0
)

(s) = ∅ otherwise.Proof. In view of Remark 3.3, we have that χ(J) = J and, by Ia(s) ∩ Ib(s) = ∅,that
χ
(

Ia(s) ∪ Ib(s)
)

\Ia(s) =
(

Ia(s) ∪ Ib(s)
)

\Ia(s) = Ib(s). (21)Then, Corollary 3.4 yields the assertion of the proposition with the �rst identityreplaed by an inlusion. To prove the reverse inlusion, let
r ∈ con {ai|i ∈ Ib(s)} + span {ai|i ∈ Ia(s)}be arbitrary. Then, by de�nition and due to (21), r ∈ PIa(s),Ia(s)∪Ib(s). Exploiting(21) one more, the de�nitions of Ia(s) and Ib(s) provide that −s ∈ QIa(s),Ia(s)∪Ib(s).Consequently, r ∈ D∗NC (x0, v0) (s) by de�nition of D∗NC . This �nishes the proof.

Another simpli�ation of Corollary 3.4 an be obtained without linear independene,but under the assumption of strit omplementarity (i.e., λi > 0 for all i ∈ I in (13)):Corollary 3.6 If J = I, then
D∗NC

(

x0, v0
)

(s) =

{

span {ai|i ∈ I} if 〈ai, s〉 = 0 ∀i ∈ I

∅ otherwise .Proof. The seond ase follows immediately from Corollary 3.4 and from J = I.Now, in the �rst ase, one has 〈ai, s〉 = 0 for all i ∈ J , hene J ⊆ Ia(s) ⊆ I.Consequently, Ia(s) = I and Ib(s) = ∅. Then,
D∗NC

(

x0, v0
)

(s) ⊆ span {ai|i ∈ I}by virtue of Corollary 3.4. For the reverse inlusion, let r ∈ span {ai|i ∈ I} bearbitrary. Observing that χ(I) = I, one has r ∈ PI,I and −s ∈ QI,I . Therefore, r ∈
D∗NC (x0, v0) (s) by de�nition of D∗NC and by Proposition 3.2.Corollary 3.6 shows that the oni part in the representation of the o-derivativeomes into play only if strit omplementarity is violated. For later purpose, wegive a slightly more handy formulation of Corollary 3.6:10



Corollary 3.7 If J = I, then
r ∈ D∗NC

(

x0, v0
)

(s) ⇐⇒ s ∈ ker AI and r ∈ im AT
I .Here, AI refers to the matrix whose row vetors are the ai for i ∈ I.

4 Appliation to the eletriity market modelIn this setion, we illustrate the results of the previous setion by applying them tospeial instanes of the eletriity market model. We onsider the EPEC (7). Forthe simpliity of the presentation, we restrit our onsiderations to so-alled interiorsolutions. By this we mean a solution (ᾱ, β̄, q̄, ȳ
) of (7) satisfying

ᾱi, β̄i > 0, 0 < q̄i < q̂i, −ŷi < ȳi < ŷi (i = 1, . . . , N) . (22)Reall that (ᾱ, β̄, q̄, ȳ
) being a solution of (EPEC) impliitly entails that (q̄, ȳ) ∈

G. The positivity of the bidding oe�ients ᾱi, β̄i is a very natural assumption.The remaining relations haraterize a solution, where no generator and no �ow ofeletriity reahes its simple lower and upper bounds.4.1 Veri�ation of the onstraint quali�ationAs one an see from the onrete shape of F in (8), this mapping is bilinear in theouple (β, q) of variables. Thus, it fails to be polyhedral and, in order to apply the�rst order neessary onditions of Theorem 2.1, one �rst has to verify the onstraintquali�ation of that same theorem.Lemma 4.1 If the inidene matrix B of the eletriity network has rank m (i.e.,the network is ayli), then any interior solution to (6) satis�es the onstraintquali�ation of Theorem 2.1.Proof. We ignore the equation in (10) and observe that, using the partition
v = (va, vb), the inlusion in (10) may be written as

−

(

2 [diag β] va

0

)

∈ D∗NG((q̄, ȳ) ,−F
(

ᾱ, β̄, q̄, ȳ
)

)(v). (23)Now, (q̄, ȳ) ∈ G implies that q̄ + Bȳ ≥ d. If any inequality in this system werestrit, then one ould stritly derease the ost funtion ci(qi) in (4). This is beause
ᾱi, β̄i > 0 (see (22)) and so ci is stritly inreasing. Then, however, (q̄, ȳ) ould notbe a solution of (4). Consequently, q̄ + Bȳ = d and so I = {1, . . . , N} for the set ofative indies de�ned in Setion 3 (note that the other inequalities de�ning G are11



non-binding due to assumption (22)). It follows that for some λ ∈ RN
+ , (5) may betransformed into

(

ᾱ + 2
[

diag β̄
]

q̄

0

)

=

(

λ

BT λ

)

. (24)By (22), omparison of the �rst omponents yields that λi > 0 for all i ∈ {1, . . . , N}.Hene, J = I for the index set introdued below (13). This allows to apply Corollary3.7. We note that the matrix AI ourring in this orollary oinides in our onretesetting with the matrix − (I |B ) desribing the inequality system q̄ + Bȳ ≥ d whihwas atually shown to be ative in eah of its omponents. The minus-sign is due tothe fat that the polyhedron C in setion 3 is desribed by means of '≤'- inequalities.Applying now Corollary 3.7 to (23) one obtains the relations
va + Bvb = 0;

(

2
[

diag β̄
]

va

0

)

=

(

µ

BT µ

) (25)for a ertain multiplier vetor µ ∈ RN . Combination of the two omponents in theseond equation provides
BT
[

diag β̄
]

Bvb = 0.Sine β̄i > 0 for all i = 1, . . . , N aording to (22) and B has rank m by assumption,it follows that the (m, m)- matrix BT
[

diag β̄
]

B has rank m too. Hene, vb = 0 and,referring to the �rst equation of (25), va = 0, and so v = 0, as was to be shown.We do not ontinue here to derive the �rst order neessary onditions from Theorem2.1 beause it turns out that these do not uniquely identify a stationary solution.Rather a ontinuum of suh solutions is obtained. This is onsistent with a orre-sponding observation in [11℄ related to simultaneous bidding of linear and quadratiost oe�ients. We shall rather follow the idea in [11℄ to onsider partial biddingof say linear ost oe�ients in order to identify solutions. Before doing so, wegeneralize our setting by allowing the demands di in (3) to be random.4.2 Formulation of a stohasti equilibrium problem underequilibrium onstraints (SEPEC)Sine every player i ∈ {1, . . . , N} does not know the demands dj at least for j 6= i,but hopefully has aess to historial data, it is natural to assume that d is a randomvetor on some probability spae (Ω,F , P) whose probability distribution is known(approximately). This assumption leads to a polyhedral-valued multifuntion Gde�ned on Ω with values in RN+m given by
G(ω) :=

{

(q, y) ∈ RN+m
∣

∣ q + By ≥ d(ω), 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

.Hene, the pair (q, y) of generation and �ow has to be onsidered as a RN+m-valuedrandom vetor on (Ω,F , P) and the ISO has to minimize the expeted overall osts,12



i.e.,
min
q,y

{

E

(

N
∑

i=1

ci(qi(ω))

)∣

∣

∣

∣

∣

(q(ω), y(ω)) ∈ G(ω), P-a.s.} . (26)Furthermore, the EPEC (7) now beomes the following stohasti equilibrium prob-lem with equilibrium onstraints (SEPEC)
min

αi,βi,q(·),y(·)

{

E
(

(γi − αi) qi(ω) + (δi − 2βi) q2
i (ω)

)

∣

∣

∣

∣

0 ∈

(

α + 2 [diag β] q(ω)
0

) (27)
+NG(ω)(q(ω), y(ω)), P-a.s.} (i = 1, . . . , N),where the pairs (αi, βi), i = 1, . . . , N , are deterministi and have to be determinedbefore the realization of the demand, and the pairs (qi(·), yi(·)) i = 1, . . . , N , arestohasti. In the terminology of two-stage stohasti programming with reourse,the ost oe�ients (αi, βi) are �rst-stage deisions, while (qi(·), yi(·)) are seond-stage or reourse deisions.Notie that the stohasti EPEC (27) is well de�ned if G(ω) 6= ∅ holds P-a.s.This fat is a onsequene of the measurability of the set-valued mapping G (e.g.,[23, Theorem 14.36℄). Due to measurable seletion theorems (see, e.g., [23, Corol-lary 14.6℄) there exists a measurable funtion (q(·), y(·)) : Ω → RN+m suh that

(q(ω), y(ω)) ∈ G(ω), P-a.s. The expetations exist sine q is bounded by q̂.The stohasti EPEC (27) orresponds to a oupled system of (spei�) stohastiMPECs. Theoretial aspets of stohasti MPECs and their solution by samplingmethods are studied in [26, 27℄. Existene and stability results for solutions andnumerial methods for stohasti EPECs are widely open.4.3 Identi�ation of M-stationary solutions for disrete ran-dom demands and partial bidding of linear oe�ientsAssume that the probability distribution of d is disrete with �nite support anddenote by d(1), . . . , d(K) ∈ RN the K di�erent senarios of d. The senarios indue
K di�erent polyhedra of senario-dependent generation and transmission onstraints
Gk :=

{

(q, y) ∈ RN+m
∣

∣q + By ≥ d(k), 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

(k = 1, . . . , K).Aording to the remarks at the end of Setion 4.1, we suppose now the quadratibid oe�ients to be known, hene, β = δ, and only the linear bid oe�ients to besubjet of optimization. The generalized equation (5) now has to be established foreah senario k as follows:
0 ∈

(

α + 2 [diag δ] q(k)

0

)

+ NGk
(q(k), y(k)) k = 1, . . . , K. (28)13



Aordingly, generator i's pro�t under senario k equals
(αi − γi) q

(k)∗
i + δi

(

q
(k)∗
i

)2

,where q(k)∗ is a solution of (28). Then, in order that every generator maximizes itsexpeted pro�t, the underlying SEPEC beomes
min

{

fi (αi, q, y)
∣

∣0 ∈ F (k)(α, q, y) + NGk
(q(k), y(k)) (k = 1, . . . , K)

}

(i = 1, . . . , N), (SEPEC)where q =
(

q(1), . . . , q(K)
), y =

(

y(1), . . . , y(K)
) and

fi (αi, q, y) =
K
∑

k=1

pk

[

(γi − αi) q
(k)
i − δi

(

q
(k)
i

)2
]

(i = 1, . . . , N),

F (k) (α, q, y) =

(

α + 2 [diag δ] q(k)

0

)

(k = 1, . . . , K).Here, the pk are the probabilities for the demand senarios d(k), so in partiular theyful�ll the relations
K
∑

k=1

pk = 1, pk ≥ 0 (k = 1, . . . , K).In order to apply Theorem 2.1, we rewrite (SEPEC) as a usual EPEC. To this aimwe put
F :=

(

F (1), . . . , F (K)
)

, G := G1 × · · · × GK .Owing to the alulus rule
NG (q, y) = NG1(q

(1), y(1)) × · · · × NGK
(q(K), y(K)),(SEPEC) boils down to (EPEC) as presented in Setion 2. Sine F is a linear map-ping, the multifuntion (9) is polyhedral and we may diretly apply the neessaryoptimality onditions of Theorem 2.1 without heking the onstraint quali�ation.As in Setion 4.1, we shall be interested in so-alled interior solutions for the ease ofpresentations. Owing to the senario harater of parts of the solution, we have tomake this onept more preise: A solution (ᾱ, q̄, ȳ) of (7) with the data spei�edabove is alled an interior solution, if it satis�es

ᾱi > 0, 0 < q̄
(k)
i < q̂i, −ŷi < ȳ

(k)
i < ŷi (i = 1, . . . , N ; k = 1, . . . , K) . (29)Realling, that partial derivative just with respet to αi rather than with respet to

(αi, βi) have to be onsidered now, we deal with
∇αi

fi (αi, q, y) = −
K
∑

k=1

pkq
(k)
i

[∇αi
F (α, q, y)]T =

((

eT
i , 0
)

|. . .|
(

eT
i , 0
))

,14



where ei denotes the i-th standard unit vetor in RN . Then, writing the i-th multi-plier in the neessary optimality onditions as
v̄i =

(

v̄
(1)
i , . . . , v̄

(K)
i

)

,the �rst equation (11) beomes
K
∑

k=1

pkq̄
(k)
i =

K
∑

k=1

v̄
(k)
ii . (30)Next, repeating (senario-wise) the same argumentation as the one leading to (24),and taking into aount that β = δ, one veri�es the existene of λ(k) ∈ RN

+ , suhthat
(

ᾱ + 2 [diag δ] q̄(k)

0

)

=

(

λ(k)

BT λ(k)

)

(k = 1, . . . , K).This may be ondensed to the relations
BT (ᾱ + 2 [diag δ] q̄(k)) = 0 (k = 1, . . . , K). (31)When desribing the polyhedron G introdued above as an inequality system of thetype Ax ≤ b as required in Setion 3, one would have to put

A :=







Ã 0. . .
0 Ã






, Ã :=













−I −B

−I 0
I 0
0 −I

0 I













,

x :=
(

q(1), y(1), · · · , q(K), y(K)
)T

,

b :=
(

−d(1), 0, q̂,−ŷ, ŷ, · · · ,−d(K), 0, q̂,−ŷ, ŷ
)T

.On the other hand, looking for interior solutions aording to (29), only the inequal-ities of the type q(k) +By(k) ≥ d(k) are binding (ompare disussion in the beginningof the proof of Lemma 4.1). Hene,
q(k) + By(k) = d(k) (k = 1, . . . , K) (32)and the matrix AI introdued in Corollary 3.7 has the shape

AI =







(−I |−B ) 0. . .
0 (−I |−B )






.Then, with the partition v̄

(k)
i = ([v̄

(k)
i ]a, [v̄

(k)
i ]b), the �rst statement of Corollary 3.7allows to extrat the following two onditions from the inlusion (12):

[v̄
(k)
i ]a + B[v̄

(k)
i ]b = 0 (i = 1, . . . , N ; k = 1, . . . , K). (33)15



Moreover,
∇yfi = 0

∇qfi = (∇q(1)fi, . . . ,∇q(K)fi) (i = 1, . . . , N), where
∇q(k)fi(αi, q, y) = (0, . . . , 0, pk[γi − αi − 2δiq

(k)
i ], 0, . . . , 0)and

∇yF = 0

∇qF (α, q, y)T v̄i =





2[diag δ][v̄
(1)
i ]a

. . .

2[diag δ][v̄
(K)
i ]a



 (i = 1, . . . , N).Thus, the seond statement of Corollary 3.7 together with the inlusion (12) yieldsthe existene of multipliers µ(k) ∈ Rn suh that
(

w
(k)
i

0

)

=

(

µ(k)

BT µ(k)

)

(k = 1, . . . , K; i = 1, . . . , N), where
w

(k)
i := (2δ1v̄

(k)
i1 , . . . , 2δi−1v̄

(k)
i,i−1, 2δiv̄

(k)
ii + pk[γi − ᾱi − 2δiq̄

(k)
i ],

2δi+1v̄
(k)
i,i+1, . . . , 2δN v̄

(k)
iN )T .In brief,

BT w
(k)
i = 0 (k = 1, . . . , K; i = 1, . . . , N). (34)Summarizing, M-stationary solutions of (SEPEC) are haraterized by the relations(30), (31), (32), (33) and (34).4.4 Expliit alulation of M-stationary solutions for a smallexampleFinally, we want to illustrate the results of the previous setion by expliitly al-ulating the solution of (SEPEC) for the smallest meaningful example, namely anetwork onsisting of N = 2 nodes whih are linked by one single ar (m = 1). Inthis ase, the inidene matrix simply beomes

B =

(

1
−1

)

.First, (30) may be shortly written as
Eq̄i =

K
∑

k=1

v̄
(k)
ii (i = 1, 2), (35)where 'E' refers to the expeted value. With the onrete shape of B, (31) takes theform

ᾱ1 + 2δ1q̄
(k)
1 = ᾱ2 + 2δ2q̄

(k)
2 (k = 1, . . . , K). (36)16



Summing up all these equations upon multiplying them by the probabilities pk, onearrives at
ᾱ1 + 2δ1Eq̄1 = ᾱ2 + 2δ2Eq̄2. (37)Next, we derive from (34) the equations

2δ1v̄
(k)
11 + pk[γ1 − ᾱ1 − 2δ1q̄

(k)
1 ] = 2δ2v̄

(k)
12

2δ2v̄
(k)
22 + pk[γ2 − ᾱ2 − 2δ2q̄

(k)
2 ] = 2δ1v̄

(k)
21

}

(k = 1, . . . , K). (38)Summing up over k the upper equations, we get
2δ1

K
∑

k=1

v̄
(k)
11 + γ1 − ᾱ1 − 2δ1Eq̄1 = 2δ2

K
∑

k=1

v̄
(k)
12 .Taking into aount (35), this redues to

γ1 − ᾱ1 = 2δ2

K
∑

k=1

v̄
(k)
12 . (39)Furthermore, (33) yields

v̄
(k)
11 = −v̄

(k)
12 , v̄

(k)
21 = −v̄

(k)
22 (k = 1, . . . , K). (40)Combining the �rst of these relations with (39) and (35), we obtain

γ1 − ᾱ1 + 2δ2Eq̄1 = 0. (41)Similarly, the orresponding seond relations in (38) and (40) allow to derive that
γ2 − ᾱ2 + 2δ1Eq̄2 = 0. (42)Finally, reading the omponents of (32) with the onrete shape of B gives

q̄
(k)
1 + ȳ(k) = d

(k)
1 ; q̄

(k)
2 − ȳ(k) = d

(k)
2 (k = 1, . . . , K). (43)Adding both equations leads to

q̄
(k)
1 + q̄

(k)
2 = d

(k)
1 + d

(k)
2 (k = 1, . . . , K). (44)Summation over k entails that Eq̄1 +Eq̄2 = Ed1 +Ed2. Now, this last equation alongwith (37), (41) and (42) onstitutes a system of four linear equations in the fourunknowns ᾱ1, ᾱ2, Eq̄1 and Eq̄2, whih is easily resolved for its solution

ᾱ1 = γ1 + δ2

(

Ed1 + Ed2 +
γ2 − γ1

2 (δ1 + δ2)

)

ᾱ2 = γ2 + δ1

(

Ed1 + Ed2 +
γ1 − γ2

2 (δ1 + δ2)

)

Eq̄1 =
1

2
(Ed1 + Ed2) +

γ2 − γ1

4 (δ1 + δ2)

Eq̄2 =
1

2
(Ed1 + Ed2) +

γ1 − γ2

4 (δ1 + δ2)
.17



With these ᾱ1 and ᾱ2 one may ombine (44) and (36) in order to identify thesenario-dependent amounts of eletriity generation of both ompetitors:
q̄
(k)
1 =

1
2
(γ2 − γ1) + (δ1 − δ2) (Ed1 + Ed2) + 2δ2

(

d
(k)
1 + d

(k)
2

)

2 (δ1 + δ2)
(k = 1, . . . , K)

q̄
(k)
2 =

1
2
(γ1 − γ2) + (δ2 − δ1) (Ed1 + Ed2) + 2δ1

(

d
(k)
1 + d

(k)
2

)

2 (δ1 + δ2)
(k = 1, . . . , K) .Next, using either of the two equations in (43), we may resolve for the senario-dependent amount of eletriity sent from node 2 to node 1:

ȳ(k) =
1

2
(γ1 − γ2) + (δ2 − δ1) (Ed1 + Ed2) + 2δ1d

(k)
1 − 2δ2d

(k)
2 (k = 1, . . . , K) .The expeted value of this �ow alulates as

Eȳ =
1

2
(γ1 − γ2) + (δ1 + δ2) (Ed1 − Ed2) .Finally, we determine the expeted pro�ts Eπi of both ompeting generators:

Eπ1 =

K
∑

k=1

pk

[

(ᾱ1 − γ1) q̄
(k)
1 + δ1

(

q̄
(k)
1

)2
]

= (ᾱ1 − γ1) Eq̄1 + δ1E (q̄1)
2

Eπ2 = (ᾱ2 − γ2) Eq̄2 + δ2E (q̄2)
2
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