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In Friz et al. [Precise asymptotics for robust stochastic volatility models. Ann. Appl. Probab, 2021,
31(2), 896–940], we introduce a new methodology to analyze large classes of (classical and rough)
stochastic volatility models, with special regard to short-time and small-noise formulae for option
prices, using the framework [Bayer et al., A regularity structure for rough volatility. Math. Finance,
2020, 30(3), 782–832]. We investigate here the fine structure of this expansion in large deviations
and moderate deviations regimes, together with consequences for implied volatility. We discuss
computational aspects relevant for the practical application of these formulas. We specialize such
expansions to prototypical rough volatility examples and discuss numerical evidence.

Keywords: Rough volatility; European option pricing; Implied volatility; Small-time asymptotics;
Rough paths; Regularity structures; Karhunen–Loeve

JEL Classifications: 91G20, 91G60, 60L30, 60L90, 60H30, 60F10, 60G22, 60G18

1. Introduction

In Friz et al. (2021), precise short-time asymptotics were
established for call and put option prices under stochas-
tic volatility, under a set of abstract conditions satisfied
by most classical and rough volatility (RoughVol) models.
These results are refinements of large deviation statements,
providing the higher-order, algebraic term in an asymptotic
expression, known as Laplace expansion. For RoughVol mod-
els, short-dated large deviation pricing is due to Forde and
Zhang (2017), as is the induced implied volatility expan-
sion (FZ expansion), which can be seen as a “rough” BBF
(Berestycki–Busca–Florent Berestycki et al. 2004) formula.
Our precise asymptotics provide a mechanism to compute
refined implied volatility expansions, for log-strike kt =
xt1/2−H , of the form

σ 2
BS(t, kt) = �2(x) + t2H a(x) + o(t2H ) as t ↓ 0, (1)

where the zero-order �(x) term corresponds to the rough BBF
formula in Forde and Zhang (2017). The next-order term is
seen of order t2H and hence increasingly important for small
Hurst parameter H, the basic premise of RoughVol model-
ing. Inclusion of this term hinges on an accurate evaluation
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of a. In this paper, we assume that the volatility process is
of the form σ(Ŵt, t2H), where Ŵ is the Riemann–Liouville
fractional Brownian motion (fBM) given by the self-similar
Gaussian Volterra process in (A3). It has Hurst exponent
H ∈ (0, 1/2] and it is ρ-correlated with the Brownian driving
the asset.

The functions �(x) and a(x) do not have explicit expres-
sions and we discuss how to compute them numerically. Fol-
lowing Forde and Zhang (2017), �(x) can be computed using
the Ritz method. Moreover, we propose a method for comput-
ing a(x) based on a Karhunen–Loeve (KL) decomposition of
the Brownian motions. (This entails a numerical approxima-
tion to an infinite-dimensional Carleman–Fredholm determi-
nant.)

We also derive near-the-money (meaning, as x → 0) expan-
sions of �(x) and of the term structure a(x) which can
alternatively be used for numerics (and have the advan-
tage of being explicit functions of model parameters). From
these asymptotics, we derive consequences for at-the-money
(ATM) implied skew and curvature. We also refine some
moderate deviation asymptotics for call prices and implied
volatilities, cf. (Friz et al. 2017, Bayer et al. 2019, Gulisas-
hvili 2020, Jacquier and Pannier 2020).

Being able to evaluate �(x) and a(x) allows us to test
the accuracy of the short-time asymptotics in practice. We
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do so with a numerical case study of the rough Bergomi
(rBergomi) model. To exploit our general framework, we look
at a volatility given by

σ(Ŵt, t2H) = σ0 exp

(
η

2
Ŵt − θη2

4
t2H

)
, (2)

so that for θ = 1 we get the rBergomi model considered in
Bayer et al. (2016) and Bennedsen et al. (2017) with constant
forward variance, for θ = 0 the rBergomi version in Bayer
et al. (2019) and Forde and Zhang (2017). Note, however,
that (2) is a genuine rBergomi model for any value of θ , as
discussed in Remark 4.1. We compare our approximation to
the FZ expansion from Forde and Zhang (2017) and to the
Edgeworth asymptotics in El Euch et al. (2019). We consider
how smiles vary as θ varies in (2) and as expiry t increases.
We discuss and test the volatility term structure and its slope
ATM, and observe how the term a(x)t2H improves the asymp-
totics as H decreases. We observe the same feature when we
implement the moderate deviation asymptotics for implied
volatility, where for H small the inclusion of the term structure
correction a(0)t2H significantly improves on the numerical
results presented in Bayer et al. (2019).

Proofs rely on stochastic Taylor expansions, rate func-
tion representations in Forde and Zhang (2017) and Bayer
et al. (2019) and on the local analysis on the Wiener space
introduced in Friz et al. (2021) and Bayer et al. (2020). The
classical Gao–Lee results (Gao and Lee 2014) are used to go
from option prices to implied volatility asymptotics both in
large and moderate deviation regimes.

Rough Volatility. It has been shown in recent years that
RoughVol models provide great fits to observed volatility
surfaces (Bayer et al. 2016) capturing fundamental stylized
facts of implied volatility in a parsimonious way. Specif-
ically, this class of models can reproduce the steep short
end of the smile, displaying exploding implied skew (Alòs
et al. 2007, Fukasawa 2011, 2017), and they are the only
models consistent with the power law of the skew (Bayer et
al. 2016, Lee 2005) not admitting arbitrage (Fukasawa 2021).
RoughVol is also supported by statistical and time series
analysis (Gatheral et al. 2018, Fukasawa et al. 2019, Benned-
sen et al. 2021) and by market microstructure considera-
tions (El Euch et al. 2018). Many authors have even argued
that H ≈ 0, such as to be consistent with a skew explosion
close to t−1/2 (Bayer et al. 2016, 2021). One main aspect
of RoughVol is non-Markovianity. This is a serious compli-
cation when it comes to pricing, as Monte Carlo methods
become more expensive and PDE methods are not avail-
able. For this reason, efficient simulation schemes have been
proposed (Bayer et al. 2020, Bennedsen et al. 2017, McCrick-
erd and Pakkanen 2018). Fourier-based methods are avail-
able for the rough Heston model (El Euch and Rosen-
baum 2019). Deep and machine learning approaches have
also recently been discussed in Bayer et al. (2019) and
Goudenège et al. (2020). Small maturity approximations
are used in this context to obtain starting points for cal-
ibration procedures, which are then based on numerical
evaluations.

Asymptotic option pricing. Classical motivation for
(semi-closed form) asymptotic pricing includes fast calibra-
tion and a quantitative understanding of the impact of model
parameters on relevant quantities such as implied skew and
curvature/convexity along the moneyness dimension or slope
along the term-structure dimension. Explicit expressions for
such quantities (that follow in this setting from our expan-
sion) and their shape characteristics are also used to choose
the most appropriate model to be fitted to data (Ait-Sahalia et
al. 2020), leave alone being the origin of some widely used
parametrisations of the volatility surface. An interesting, if
recent, addition to this list comes from a machine learning per-
spective: the form of an expansion such as (1) may be viewed
as expert knowledge, which significantly narrows the learning
task to finer information such as the error in that expansions; it
is equally conceivable to learn a = a(x) and other components
in the expansion.

Under Markovian stochastic volatility, expansion (2) is
analogous, e.g. to the result derived in Forde et al. (2012) for
the Heston model. There, the term structure is a(x)t (due to the
diffusive scaling of the volatility), whereas here the correction
term is a(x)t2H (due to the rough scaling of the volatility).
Similar expansions are derived also in Osajima (2015), for
more general Markovian models, and (formally) in Medvedev
and Scaillet (2003) and Medvedev and Scaillet (2007) for
Markov stochastic volatility models with jumps.

In recent years several authors have studied the short-time
behavior of RoughVol models. Theoretical results on short-
time skew and curvature are given in Fukasawa (2017) and
Alòs and León (2017). A second-order short-time expansion
is given in El Euch et al. (2019) for general (rough) stochas-
tic volatility models. In Jacquier et al. (2018), the pathwise
large deviation behavior under rBergomi dynamics is stud-
ied. Pathwise large and moderate deviation principles for
(possibly rough) Gaussian stochastic volatility models are
established in Gulisashvili (2020) and Gulisashvili (2020),
together with asymptotic results at the central limit (Edge-
worth) regime. For the rough Heston model, the recent work
(Forde et al. 2020) provides call expansions of the same
type as ours, involving the energy function and the first-
order algebraic term, at the same large deviations regime
kt = xt1/2−H . (The rigid infinite-dimensional affine structure
which underlies (Forde et al. 2020) is not available for rBer-
gomi type models as considered in this work.) As already
mentioned, our work builds on the large deviations prin-
ciple proved in Forde and Zhang (2017) for models with
volatility σ(Ŵt), and on Bayer et al. (2019), where the at-
the-money behavior of the Forde–Zhang rate function is used
to prove moderate deviation principles and implied volatil-
ity asymptotics for the same type of models. The theoretical
foundations of the present paper are given in Friz et al.
(2021).

In Section 2, we explain our RoughVol setting. In Section 3,
we state and comment our results. In Section 4 we discuss and
implement our results in the case of the rBergomi model. In
Section 5, we show how � and a can be computed using Ritz
method and KL decomposition. We collect all the proofs in
Section 6.
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2. Preliminaries on rough volatility

We consider the following RoughVol model, with H ∈
(0, 1/2], normalized to rate r = 0 and S0 = 1

dSt

St
= σ(Ŵt, t2H )d(ρWt + ρW t), (3)

where W , W are independent Brownian motions (BM) and
ρ ∈ (−1, 1), ρ2 + ρ2 = 1. We also write W̃ = ρW + ρW .
Moreover, Ŵ = (Ŵt)t≥0 is a Gaussian Volterra process of the
form

Ŵt = (K ∗ Ẇ)t =
∫ t

0
K(t, s) dWs, (4)

for a kernel K(t, s) such that Ŵ is self-similar with exponent
H ∈ (0, 1/2], meaning

Law(Ŵε2t : t ≤ t) = ε2H Law(Ŵt : t ≤ t), for some t > 0.
(5)

The BM W drives the stochastic “rough” volatility, mean-
ing (with abusive notation) that σ(t, ω) = σ(Ŵt, t2H ), where
σ(x, y) is a smooth deterministic real-valued function. We
denote σ ′(x, y) = ∂xσ(x, y), σ ′′(x, y) = ∂xxσ(x, y), σ̇ (x, y) =
∂yσ(x, y). We also denote σ0 = σ(0, 0) > 0 the spot volatility
and

σ ′
0 = σ ′(0, 0), σ ′′

0 = σ ′′(0, 0), σ̇0 = σ̇ (0, 0), (6)

the derivatives of the volatility function at the initial condi-
tion. We consider a dependence in t2H in σ(·), because this is
the scaling of the variance of the fBm at time t. For this reason,
this is the scaling of the time-dependent term in the rBergomi
model, and also the scaling such that we observe a dependence
in σ̇0 in our precise asymptotics. We apply the abstract results
proved in Friz et al. (2021) for K(t, s) = const × (t − s)H−1/2.
However, we expect these approximations to hold in greater
generality: the same type of expansions should hold for other
kernels such that Ŵ in (4) satisfies (5). Self-similarity is
equivalent to the fact that K can be written in the following
form

K(t, s) = (t − s)H−1/2fK(s/t), (7)

for a suitable function fK (see Jost 2007, Lemma 2.4), so that
all such kernels can be seen as a perturbation of (t − s)H−1/2.
Two classical processes of this form are the Mandelbrot–
Van Ness and the Riemann–Liouville fBMs (see Appendix).
Without loss of generality, we also assume K(t, s) = 0 for
t < s.

A similar setting has been considered in Forde and
Zhang (2017) and Bayer et al. (2019). The main difference
in the structure of the model is that here we allow for a
direct dependence on time in σ(t, ω) = σ(Ŵt, t2H), whereas
in Forde and Zhang (2017) and Bayer et al. (2019) the volatil-
ity function depends only on the fBM, so σ(t, ω) = σ(Ŵt).
As mentioned in the introduction, assuming that the volatil-
ity is a deterministic function only of the fBM rules out the
rBergomi model σ(Ŵt, t2H) = σ0 exp(ηŴt/2 − η2t2H/4), see
Bayer et al. (2016) and Bennedsen et al. (2017), from the anal-
ysis, so a modified version of rBergomi is considered in Bayer
et al. (2019). We discuss in detail both versions of this model

in Section 4. With a volatility function σ(Ŵt, t2H), one can
write the dynamics of the log-price X = log S as

Xt =
∫ t

0
σ
(
Ŵs, s2H

)
d(ρW + ρW)s − 1

2

∫ t

0
σ 2(Ŵs, s2H)ds.

(8)
In this case, a LDP holds, writing ε̂ = ε2H , for

X
ε

1 =
∫ 1

0
σ
(̂
εŴt, ε̂

2t2H
)
ε̂d(ρW + ρW)t

− 1

2
ε̂ε

∫ 1

0
σ 2

(̂
εŴt, ε̂

2t2H
)

dt, (9)

with speed ε̂2 and rate function


(x) := inf

{
1
2‖h, h‖2

H1 :
∫ 1

0
σ
(̂
h, 0

)
d
(
ρh + ρh

) = x

}
≡ 1

2‖hx, h
x‖2

H1 , (10)

where ĥt = (K ∗ ḣ)t and ‖ · ‖H1 is the Cameron–Martin norm.
The existence of a minimizer above is obtained from a stan-
dard compactness argument. Through the space-time scaling
t = ε2 and the fact that, in law, X

ε

1 = ε̂
ε
Xε2 , this small-noise

LDP translates to a short-time LDP. This result was proved
for σ(Ŵt, t2H) = σ(Ŵt) in Forde and Zhang (2017) and then
extended to possible dependence in t2H in Friz et al. (2021,
Section 7.3). In general, when looking only at large (or mod-
erate) deviations, the t2H -dependence in σ(·) does not affect
the analysis, and the large (or moderate) deviations behav-
ior is the same one would get with volatility σ(Ŵt, 0). In
Friz et al. (2021), we consider a general asymptotic setting,
obtaining for generic stochastic volatility models (includ-
ing RoughVol ones) precise asymptotics that refine such
large deviations asymptotics. For such refinement, this t2H -
dependence actually affects the asymptotics. In the present
paper, we provide computationally relevant results that allow
for the practical usage of such refined pricing asymptotics
and discuss their consequences on the Black–Scholes implied
volatility.

3. Results

We consider call and put prices under model (8), i.e.

c(t, k) = E[(exp Xt − exp k)+], p(t, k)

= E[(exp k − exp Xt)
+],

where k is the log-strike (or log-moneyness). In Friz et
al. (2021, Theorem 1.1) we obtain precise small-noise price
expansions for generic (classical and rough) volatility dynam-
ics. As in the classical Brownian case, such small-noise results
can be translated into short-time results writing t = ε2. In
this paper, we focus on the short-time setting. We write ∼
for asymptotic equivalence, ft ∼ gt if ft/gt → 1 as t → 0,
and “ ≈ ” for “is close to” in informal terms. We also write
σ 2

x = 2
(x)/
′(x)2.
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Assumption 3.1 Throughout the paper, we assume K in (4)
is of the form

K(t, s) = const × (t − s)H−1/2.

In short-time, Friz et al. (2021, Theorem 1.1) reads as
follows:

Theorem 3.2 Let H ∈ (0, 1/2] and kt = xt1/2−H . Assume
that a LDP holds for c, p above, and the existence of 1+

moments for exp Xt. Then , for x > 0 small enough, the rate
function 
 = 
(x) is continuously differentiable at x and

c(t, kt) ∼ exp

(
−
(x)

t2H

)
t1/2+2H A(x)

(
′(x))2σx

√
2π

as t ↓ 0,

for some function A(x) with A(x) → 1 as x ↓ 0. Similarly, for
x < 0, close enough to 0, we have

p(t, kt) ∼ exp

(
−
(x)

t2H

)
t1/2+2H A(x)

(
′(x))2σx

√
2π

as t ↓ 0,

for some function A(x) with A(x) → 1 as x ↑ 0. Moreover,
such A can be expressed as

A(x) =
{

E
[

exp(
′(x)�x
2)
]
, if H < 1/2,

exE
[

exp(
′(x)�x
2)
]
, if H = 1/2,

(11)

where �x
2 is a certain quadratic Wiener functional (specified

in Friz et al. (2021, Equation (7.4)), see also (36) below).

Remark 3.3 The fact that x > 0 above has to be taken small
enough is in order for the minimizer (hx, h

x
) in (10) to be

unique and non-degenerate. The latter means, in a nutshell,
that the Hessian of I(h, h) := 1

2‖h, h‖2
H1 is strictly positive

when restricted to those (h, h) such that
∫ 1

0 σ( ĥ, 0 )d(ρh +
ρh) = x, and is equivalent to the finiteness of A(x) defined
above.

We write Kf (t) = ∫ t
0 K(t, s)f (s)ds, K2f (t) = ∫ t

0 K2(t, s)f (s)
ds and 〈·, ·〉 for the inner product in L2[0, 1]. We also denote
K the adjoint of K in L2[0, 1] so that K1(u) = ∫ 1

u K(t, u)dt.
Fully explicit expressions are computable in the case of the
Riemann–Liouville fBM (Appendix) and in particular in the
case of standard BM (this is the classical case of Markovian
stochastic volatility). We denote

CK,ρ = 〈K21, 1〉
2

− 3

2
〈(K1)2, 1〉

+ ρ2

(
17

2
〈K1, 1〉2 − 3

2
〈(K1)2, 1〉 − 3〈K1, K1〉

)
,

CK,ρ = 〈K21, 1〉
2

− 3

2
ρ2〈(K1)2, 1〉.

Lemma 3.4 Fine structure of A For H ∈ (0, 1/2], the follow-
ing expansion holds for A(x) as x → 0 :

A(x) = 1 − x
ρσ ′

0〈K1, 1〉
σ 2

0

+ x2

(
(σ ′

0)
2

σ 4
0

CK,ρ + σ ′′
0

σ 3
0

CK,ρ + σ̇0

(2H + 1)σ 3
0

)

+
(

x

2
+ x2

8

)
1{H=1/2} + O(x3). (12)

As a consequence of Theorem 3.2 the following expansion
holds for the Black–Scholes implied volatility (by a stan-
dard application of Gao and Lee (2014), detailed in Friz et
al. (2021, Appendix D)).

Corollary 3.5 Asymptotic smile and term structure at the
large deviations regime

Writing kt = xt1/2−H , we have the following expansion, for
x ∈ R \ {0} such that Theorem 3.2 holds:

σ 2
BS(t, kt) = �2(x) + t2H a(x) + o(t2H ) as t ↓ 0, (13)

where

�(x) = |x|√
2
(x)

(14)

and

a(x) =

⎧⎪⎪⎨⎪⎪⎩
x2

2
(x)2
log

(
2A(x)
(x)


′(x)x

)
if H < 1/2,

x2

2
(x)2
log

(
2A(x)
(x)


′(x)x exp(x/2)

)
if H = 1/2.

(15)

Remark 3.6 In general, from a LDP for call prices fol-
lows the celebrated BBF formula for implied volatility
(Berestycki–Busca–Florent Berestycki et al. 2004, see also
Pham Pham 2010 for a derivation). Under RoughVol pricing
with σ(ω, t) = σ(Ŵt), this has been extended in Forde and
Zhang (2017) to

σ 2
BS(t, kt) ∼ x2

2
(x)
, (16)

holding for fixed x, in short-time, with kt = xt1/2−H . Thanks to
the A-term in (12), we can extend this approximation, adding
the term structure t2H a(x). Note that the expansions hold for
H ∈ (0, 1/2], but for H = 1/2 their functional form is differ-
ent, as some additional terms appear in A(x) and in the term
structure of the Black–Scholes implied volatility a(x).

We denote now

DK,ρ = 〈K21, 1〉 − 〈(K1)2, 1〉
+ ρ2

(
3〈K1, 1〉2 − 〈(K1)2, 1〉 − 2〈K1, K1〉),

DK,ρ = 〈K21, 1〉 − ρ2〈(K1)2, 1〉.
(17)

The short-time implied volatility coefficients in the previous
statement can be expanded as follows near-the-money.

Theorem 3.7 At-the-money expansion of the coefficients
For x → 0, the � coefficient has the following expansion:

�(x) = σ0 + x�′(0) + x2 �′′(0)

2
+ O(x3), (18)

where

�′(0) = ρσ ′
0〈K1, 1〉
σ0

,
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�′′(0)

2
= (σ ′

0)
2

σ 3
0

{
−3ρ2〈K1, 1〉2 + ρ2

2
〈(K1)2, 1〉

+ 1

2
〈(K1)2, 1〉 + ρ2〈K1, K1〉

}
+ σ ′′

0

σ 2
0

ρ2

2
〈(K1)2, 1〉.

The term structure coefficient, at the first order in x at 0, is

a(x) = a0 + O(x), (19)

with

a0 = (σ ′
0)

2DK,ρ + σ0σ
′′
0 DK,ρ + σ0σ̇0

H + 1/2

+ ρσ ′
0σ

2
0 〈K1, 1〉1{H=1/2} .

Remark 3.8 From definition (14)–(15) and from the fact that

 is quadratic in x we see that (19) implies a relation between
A and 
 for x → 0.

Remark 3.9 Implied variance expansion (13) reads as fol-
lows on implied volatility

σBS(t, kt) ≈ |x|√
2
(x)

+ t2H a(x)

|x|

√

(x)

2
. (20)

In order to implement these expansions, one can use the
methods discussed in Section 5, computing numerically the
rate function 
(x) and �(x) using FZ expansion, and then
computing a(x) using KL. However, this last step can be
computationally expensive, since a large number of basis
functions are needed for the KL decomposition to be accurate,
for H close to 0. As an alternative, one can use approximation

σBS(t, kt) ≈ �(x) + t2H a0

2σ0
= |x|√

2
(x)
+ t2H a0

2σ0
, (21)

for implied volatility, which follows from implied vari-
ance expansion (13) and (19). If the rate function can-
not be computed, we can use (18) to expand the implied
volatility as

σBS(t, kt) ≈ �(0) + �′(0)x + �′′(0)

2
x2 + t2H a0

2σ0
. (22)

In particular, we get the following explicit expansion for the
ATM term structure:

σBS(t, 0) = σ0 + t2H a0

2σ0
+ o(t2H ). (23)

Remark 3.10 The term structure of implied volatility From
the expansion of the ATM term structure (23) we also see,
in the short end, that σ 2

BS(t, 0) is increasing in t if a0 > 0
and decreasing if a0 < 0. This may be compared with a
large body of literature concerning monotonicity properties
of the term structure of implied volatility, see e.g. (Camara et
al. 2011, Guo et al. 2014, Krylova et al. 2009, Vasquez 2017).

Corollary 3.11 Skew and curvature at the large deviation
regime

Let kt = xt1/2−H , for x ∈ R \ {0}. Then, if H < 1/2, for
t ↓ 0

σBS(t, kt) − σBS(t, −kt)

2kt
∼ �(x) − �(−x)

2x
tH−1/2. (24)

σBS(t, kt) + σBS(t, −kt) − 2σBS(t, 0)

k2
t

∼ �(x) + �(−x) − 2�(0)

x2
t2H−1. (25)

Remark 3.12 The quantities in the rhs of the equivalences
converge as x ↓ 0 to �′(0), �′′(0) given in Theorem 3.7. The
quantities in the lhs of the equivalences are finite difference
approximations of ATM implied volatility skew ∂kσBS(t, 0)

and curvature ∂kkσBS(t, 0). Such finite differences are relevant
because only a finite number of prices are observable on real
markets. They give skew and curvature at the large deviation
regime, a result that complements (Fukasawa 2017, El Euch et
al. 2019) (skew and curvature at central limit regime), Bayer
et al. (2019) (skew at moderate deviation regime), Forde et
al. (2020) (skew and curvature at large deviations regime
for rough Heston), Alòs and León (2017) (true skew and
curvature).

From these formulas, we also infer the sign of implied skew
and of implied curvature (convexity). Indeed, if σ0, σ ′

0 �= 0, it
is clear that sgn(�′(0)) = sgn(ρ) and that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�′′(0) = 0 iff

ρ2 = 〈(K1)2, 1〉
6〈K1, 1〉2 − 〈(K1)2, 1〉

−2〈K1, K1〉 − σ ′′
0 σ0

(σ ′
0)

2 〈(K1)2, 1〉

,

�′′(0) < 0 iff

ρ2 >
〈(K1)2, 1〉

6〈K1, 1〉2 − 〈(K1)2, 1〉
−2〈K1, K1〉 − σ ′′

0 σ0

(σ ′
0)

2 〈(K1)2, 1〉

> 0,

�′′(0) > 0 otherwise.

(26)

Theorem 3.13 Moderate deviations Assume that 
 is i ∈ N

times continuously differentiable. Let H ∈ (0, 1/2), β > 0
and n ∈ N such that β ∈ ( 2H

n+1 , 2H
n ]. Set kt = xt1/2−H+β . Then

c(t, kt) ∼ exp

(
−

n∑
i=2


(i)(0)

i!
xitiβ−2H

)
t1/2+2H−2β σ 3

0

x2
√

2π
.

Moreover

σ 2
BS(t, kt) =

n−2∑
j=0

(−1)j2jσ
2(j+1)

0

(
n∑

i=3


(i)(0)

i!
xi−2t(i−2)β

)j

+ o(t2H−2β). (27)

Remark 3.14 An implied volatility expansion similar to (27)
was proved in Bayer et al. (2019), in the case σ(t, ω) =
σ(Ŵt), for β ∈ [ 2H

n+1 , 2H
n ), with remainder of order max

(t2H−2β−ε, t(n−1)β). The derivatives of the rate function were
computed until 
′′′(0), here we also computed 
(4)(0) (cf.
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Lemma 6.1). This allows us to use the second-order moderate
deviation (instead of first order as in Bayer et al. 2019)

σ(t, kt) = �(0) + �′(0)xtβ + �′′(0)

2
x2t2β + o(t2H−2β).

Moreover, even if it does not show up in the asymptotics, the
term structure can be incorporated as follows

σ(t, kt) ≈ �(0) + �′(0)xtβ + �′′(0)

2
x2t2β + a0

2σ0
t2H ,

and this provides a sensible improvement in the implementa-
tion of such short-time result (cf. figure 5).

4. A case study: the rough Bergomi model

4.1. The rough Bergomi model

Introduced in Bayer et al. (2016), as a modification of the
classical Bergomi model where the exponential ( Ornstein–
Uhlenbeck) kernel is replaced by a power-law kernel, the
rBergomi model provides great fits of empirical implied
volatility surfaces with a very small number of parametres. In
such model, the volatility is given by the “Wick” exponential
of a Riemann–Liouville fBM

σ(t, ω) = σ0 exp

(
η

2
Ŵt − η2

4
t2H

)
. (28)

In the most general framework (Bayer et al. 2016), the con-
stant σ 2

0 is replaced by the forward variance curve, which is
a function of time observable on the market (so it plays the
role of an initial condition, cf. also Remark 4.1). The specific
volatility in (28) did not fit in the framework of Forde and
Zhang (2017) and Bayer et al. (2019), as in these papers the
volatility is assumed to be σ(Ŵt). For this reason, in Bayer
et al. (2019), the following version of the rBergomi model is
considered

σ(t, ω) = σ0 exp
(η

2
Ŵt

)
. (29)

In this work we consider (2), a version of the rBergomi model
with one additional parameter θ ∈ R, that includes both the
previous ones (for θ = 0, 1). The volatility function in (3) is

σ(x, y) = σ0 exp

(
η

2
x − θη2

4
y

)
. (30)

The interpretation of the parameters is the following: σ0 is the
spot volatility and η represents the volatility of volatility. The
parameters of the driving noise are the Hurst exponent H of
Ŵ and the correlation parameter ρ between the BM W̃ driving
the asset and W in (4). We can interpret the newly introduced
θ parameter as a damping coefficient of the volatility.

Remark 4.1 Note that the forward variance curve model
ξt(u) = E[σ 2(Ŵu, u2H )|Ft] (and Ft filtration generated by W )
induced by (30) and (2), is a genuine rBergomi model for
any value of θ , with different values of θ corresponding to

different specifications of the initial variance curve. More
precisely, for fixed θ ,

ξ0(u) = E[σ 2(Ŵu, u2H )] = σ 2
0 exp

(
(1 − θ)η2

2
u2H

)
.

Coming now to short-time pricing, Lemma 6.1 holds for
the general model in (2), so that we are able to compare our
asymptotics with large or moderate deviations results for the
different versions of rBergomi in Bayer et al. (2019), Forde
and Zhang (2017) and Jacquier et al. (2018). However, in
Corollary 3.5, �2(x) is not affected by the value of θ , but the
term structure a(x) is.

From the volatility function (30) we get

σ0 = σ0, σ ′
0 = σ0η

2
, σ ′′

0 = σ0η
2

4
, σ̇0 = −θη2

4
σ0,

so all constants can be simplified. In particular condition (26)
for the convexity of the short-time smile (with σ0, η �= 0)

simplifies to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�′′(0) = 0 iff

ρ2 = 〈(K1)2, 1〉
6〈K1, 1〉2 − 2〈(K1)2, 1〉 − 2〈K1, K1〉 ,

�′′(0) < 0 iff

ρ2 >
〈(K1)2, 1〉

6〈K1, 1〉2 − 2〈(K1)2, 1〉 − 2〈K1, K1〉 > 0,

�′′(0) > 0 otherwise.

(note the dependence only on H, through K, and ρ). On cali-
brated parameters (for example in Bayer et al. 2016) we have
that the condition for vanishing second derivative is almost
satisfied. This means that the short-time ATM curvature is
very close to 0, and indeed observed smiles are almost linear
ATM.

All the constants in previous expansions depend on the
kernel K. For the Riemann–Liouville kernel (A4) the K-
functionals involved are explicit, given in (A5).

4.2. Implementation of rough Bergomi

Our goal in this section is to compare expansion (20) with
other known implied volatility expansions under RoughVol.
We consider:

• Implied volatility from Monte Carlo pricing, using
the hybrid scheme for rBergomi in Bennedsen
et al. (2017) with κ = 2 (note that a slight mod-
ification of the implementation is necessary for
θ �= 1).

• Our implied volatility expansion, where the term
structure coefficient a(x) is computed using KL, so
that we have (20), or where a(x) is expanded at 0,
so that we have (21).

• The FZ expansion (16). In Forde and Zhang (2017),
Forde and Zhang show that this asymptotics holds
for volatilities of type σ(t, ω) = σ(Ŵt), with no
direct dependence on t, so this applies to (30)
for θ = 0. However, as we have shown in Friz
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Figure 1. Implied volatility smile approximations for the rBergomi model with parameters θ = 1, σ0 = 0.2, η = 1.5, ρ = −0.7, H = 0.3,
for expiry t = 0.05, 0.2. The Monte Carlo price is computed via the hybrid scheme for rBergomi in Bennedsen et al. (2017) with κ = 2,
with 109 simulations and 500 time steps of length t/500. The rate function is computed using the Ritz method in Section 5.1 with N = 8
Haar basis functions, the coefficient a(x) is computed using the Karhunen–Loeve decomposition with N = 300 Haar basis functions (KL).
We also compare with a(x) expanded at 0 (a(x) ≈ a(0)).

et al. (2021, Section 7.3), the same large devi-
ation behavior holds when θ �= 0. Therefore, the
FZ expansion gives the same asymptotic smile,
independently of the choice of θ .

• Expansion (21), with ATM expansion of � as
in (22) (so, rate function is expanded as well). In
case θ = 1, one can check that this approxima-
tion is consistent with the expansion in El Euch et
al. (2019, Section 5), that we refer to as “EFGR
expansion”. These two mathematical results ar dif-
ferent, since log-strikes are in our case (large
deviation regime) kt = xt1/2−H and in El Euch et
al. (2019) (central limit regime) kt = xt1/2. How-
ever, when plotting for finite k and t the approx-
imate implied volatility, the two curves are the
same.

We first use the numerical methods detailed in next
Section 5 to compute �(x) and a(x). In figure 1, we dis-
play implied volatility smiles in the rBergomi model with
θ = 1, for varying t, where the rate function is computed
using the Ritz method in Section 5.1 and the coefficient a(x)
is computed using the KL decomposition from Section 5.3.
For comparison, we also use approximation a(x) ≈ a0, and
show (21). We notice that both implementations perform well,
and the use of KL decomposition gives a better approximation
of the right wing. On several simulations, this improvement
of KL over expansion a(x) ≈ a0 is more evident when taking
θ = 1, less when θ = 0.

Practically, implementation of the KL formula requires
to approximate the infinite product (38), and we observed
that for smaller values of H the convergence of this prod-
uct was much slower, requiring a prohibitively large number
of basis functions, which is why we present these results
for H = 0.3. We leave the numerically efficient implemen-
tation of the KL decomposition method for small values of
H as a topic for future research. In what follows we will

consider the approximation a(x) ≈ a(0), which is faster while
still producing accurate smiles.

First, in figure 2, we show implied volatilities under
model (2), with realistic parameters (close to the calibrated
parameter to the SPX volatility on February 4, 2010, see
Bayer et al. 2016), varying θ from 0 to 1. We note how our
approximation is general enough to be applicable for any θ ,
improving previous asymptotics in all cases. We also note
a slight deterioration of the quality of the approximation in
the right wing as θ → 1, that could be improved using KL to
compute a(x).

Then, instead of varying θ , we fix θ = 0 and show in
figure 3 the comparison with the same approximations as
before, when the expiry t increases. We see how our expan-
sion lifts the FZ expansion, improving the approximation
of the Monte Carlo price. The difference between the two
approximations is due to the term structure correction a0t2H .
Clearly, the effect of this correction becomes more evident as
t increases. On a number of numerical experiments, it is also
clear that this correction becomes more and more important as
H → 0, not surprisingly since t2H is larger, for small t, when
H vanishes.

Now we check how our approximations behave as time
increases. To do so, in figure 4, we show the ATM term struc-
ture of implied volatility, comparing ATM implied volatilities
computed using Monte Carlo simulations and expansion (23),
for rBergomi with θ = 0 and θ = 1. We do so for parameters
as in figures 2 and 3, with H = 0.3, and for a different choice
of parameters with H = 0.1 and a smaller volatility of volatil-
ity η, as in Bayer et al. (2019, Section 4). The value of η and
H affect the quality of the approximation, which is less accu-
rate for H very close to 0 and η > 1. On the other hand, as we
show in figure 4, for H = 0.3 and η > 1 or H very close to 0
and η < 1 the short-time approximation is very good. This is
consistent with the considerations on the interplay of H and
η in El Euch et al. (2019, Page 505). We also see how the
term structure is increasing in case θ = 0 and decreasing in
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Figure 2. Implied volatility smile approximation for the rBergomi model with parameters σ0 = 0.15, η = 1.8, ρ = −0.78, H = 0.07, for
expiry t = 0.05. The Monte Carlo price is computed via the hybrid scheme for rBergomi in Bennedsen et al. (2017) with κ = 2, with 109

simulations and 500 time steps. The rate function is computed using the Ritz method with N = 9 Fourier basis functions.

Figure 3. Implied volatility smile approximation for the rBergomi model with parameters θ = 0, σ0 = 0.15, η = 1.8, ρ = −0.78, H = 0.07,
for expiry t = 0.01, 0.05, 0.2. The Monte Carlo price is computed via the hybrid scheme for rBergomi in Bennedsen et al. (2017) with
κ = 2, with 109 simulations and 500 time steps of length t/500. The rate function is computed using the Ritz method with N = 9 Fourier
basis functions.

case θ = 1. This is always the case: a0 in (19) is always pos-
itive for θ = 0, always negative for θ = 1 (cf. Remark 3.10).
Also note that if the coefficient σ0 were taken non-constant,
the slope of the term structure would also be affected.

Finally, as in Remark 3.14, we consider moderate devia-
tions. Figure 5 is as in Bayer et al. (2019, Figure 1), the “very
rough” case H = 0.1 (which was the most problematic case
in Bayer et al. (2019)). We are plotting, with kt = xt1/2−H+β ,
where β = 0.06, the Monte Carlo implied volatility and its
approximation

σ(t, kt) ≈ �(0) + �′(0)xtβ + �′′(0)

2
x2t2β + a0

2σ0
t2H ,

considering terms up to the first order moderate deviation tβ ,
then up to the second-order moderate deviation t2β , and finally
considering also the term structure t2H . We see how the term
structure term improves the moderate deviation pricing. This

also explains why, in Bayer et al. (2019), the moderate devia-
tion pricing gets worse as H ↓ 0, since the distance of such
price from the real (Monte Carlo) one is of order t2H . We
also see that using the second order moderate deviation actu-
ally does not improve much, and this follows from the fact
that the curvature is almost 0 with such choice of parameters
(cf. Remark 3.14). As for the term structure, the accuracy of
the approximation formula based on moderate deviations gets
worse as η increases, for fixed H.

Remark 4.2 As mentioned above, Monte Carlo pricing is
implemented using the hybrid scheme, which introduces a
bias in the volatility process, while this process could be
simulated exactly. However, in extensive simulations we find
that the exact simulation scheme is more unstable for very
short maturities, even with a 109 trajectories and 500 time
steps. This is most likely due to the singularity of the ker-
nel at 0, which is what the hybrid scheme takes care of. On
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Figure 4. Term structure of volatility for the rBergomi model with parameters σ0 = 0.15, η = 1.8, ρ = −0.78, H = 0.3 (above) and with
parameters σ0 = 0.2557, η = 0.2928, ρ = −0.7571, H = 0.1 (below). We plot ATM implied volatility as expiration time increases. We con-
sider shorter expiries in the case of rougher trajectories (smaller Hurst parameter H ; however, in this case we also take a smaller vol-of-vol
parameter η). The Monte Carlo prices are computed via the hybrid scheme in Bennedsen et al. (2017) with κ = 2, with 109 simulations and
500 time steps.

Figure 5. Moderate deviation with β = 0.06 and x = 0.4
(time varying log-strike kt = xt1/2−H+β ) of implied volatility
in rBergomi model with σ0 = 0.2557, η = 0.2928, ρ = −0.7571,
H = 0.1, θ = 0. Simulation parameters: 108 simulation paths, 500
time steps. Time interval [0, 0.1].

the other hand, with such a large number of paths and fine
discretisation, for larger maturities the two schemes display
no visible difference. Following these considerations, we used
for our figures Monte Carlo prices simulated via the hybrid
scheme in Bennedsen et al. (2017).

Remark 4.3 In Forde and Zhang (2017, Section 4.5) asymp-
totics for model (3) with volatility driven by a Mandelbrot–
Van Ness fBm (A2) are implemented. Without being com-
pletely rigorous, we have applied our expansion also in this
case. We computed the K-functional numerically, as in this
case no explicit formulas are available. Also in this case the

term a0t2H lifts the smile, which gets closer to the real (Monte
Carlo) implied volatility, for small |x|, with respect to the sole
FZ expansion.

5. Computing the coefficients via projections

5.1. Computing �(x) using the Ritz method

In order to use (20), the first challenge is the computa-
tion of the rate function. A numerical approximation to 


can be obtained as described in Gelfand and Fomin (2000,
Section 40), using the Ritz method, as is done in Forde
and Zhang (2017). Natural choices for the orthonormal basis
(ONB) {ei}i≥1 of H1 are the Fourier basis,

ė1(s) = 1, ė2n(s) =
√

2 cos(2πns),

ė2n+1(s) =
√

2 sin(2πns), for n ∈ N \ {0}, (31)

or the Haar basis,

ė1(s) = 1,

ė2k+l(s) = 2k/2

(
1[

2l−2
2k+1 , 2l−1

2k+1

](s) − 1[
2l−1
2k+1 , 2l

2k+1

](s)
)

for k ≥ 0,

1 ≤ l ≤ 2k . (32)

We consider functions h ∈ H1 with h(0) = 0 so that

ḣ(s) =
N∑

n=1

anėn(s),
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for N ∈ N fixed. Then we minimize


(x) = (x − ρG(h))2

2ρ2F(h)
+ 〈ḣ, ḣ〉

2
,

with

F(h) = 〈σ 2(̂h, 0), 1〉, G(h) = 〈σ (̂h, 0), ḣ〉, (33)

over the Fourier coefficients (an)n. This representation of the
energy function is also taken from Forde and Zhang (2017)
(see notation in Bayer et al. 2019, Proposition 5.1). The min-
imizing value for 
(x) is therefore our approximation for
the energy and the corresponding function ĥx is the approx-
imate most likely path for the fBm W H associated with final
condition x.

5.2. A stochastic Taylor development

The following stochastic Taylor expansion is sketched in
Friz et al. (2021, Section 7.2) for σ(ω, t) = σ(W H

t ). As dis-
cussed in Section 2 and Friz et al. (2021, Section 7.3),
our expansions can actually be carried out in the more
general setting σ(ω, t) = σ(W H

t , t2H ). Under such volatil-
ity dynamics, the (rescaled) log-price process is as in (9).
As in Friz et al. (2021, Section 7.2), we can shift the
dynamics via ε̂(W , W) �→ (̂εW + h, ε̂W + h), and apply Gir-
sanov theorem in order to center Brownian fluctuations
in the minimizer. Then, a stochastic Taylor expansion
gives

∫ 1

0
σ
(̂
εŴt + ĥt, ε̂

2t2H
)

d [̂εW̃ + h̃]t

− ε ε̂

2

∫ 1

0
σ 2

(̂
εŴt + ĥt, ε̂

2t2H
)

dt

≡ g0 + ε̂g1(ω) + ε̂2g2(ω) + r3(ω),

where r3(ω) is small† , with

g1 =
∫ 1

0
σ ′(̂hx

s , 0)Ŵsd̃hx
s +

∫ 1

0
σ (̂hx

s , 0)dW̃s, (34)

† The precise control of this remainder is detailed in Friz et al. (2021)
and requires the sophisticated mathematical framework of regular-
ity structures, that we do not intend to introduce in this paper.
The interested reader is referred to Bayer et al. (2020) and Friz et
al. (2021).

(cf. Friz et al. 2021, Section 7.2) and

g2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∫ 1

0
σ ′′(̂hx

s , 0)Ŵ 2
s d̃hx

s

+
∫ 1

0
σ ′(̂hx

s , 0)ŴsdW̃s

+
∫ 1

0
σ̇ (̂hx

s , 0)s2H d̃hx
s if H < 1/2,

1
2

∫ 1

0
σ ′′(̂hx

s , 0)Ŵ 2
s d̃hx

s

+
∫ 1

0
σ ′(̂hx

s , 0)ŴsdW̃s

+
∫ 1

0
σ̇ (̂hx

s , 0)s2H d̃hx
s

− 1
2

∫ 1

0
σ 2(̂hx

s , 0)ds if H = 1/2.

(35)

The following formula for �2 follows as Friz et al. 2021,
Equation 7.5

�2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∫ 1

0
σ ′′(̂hx

s , 0)V̂ 2
s d̃hx

s

+
∫ 1

0
σ ′(̂hx

s , 0)V̂sdṼs,

+
∫ 1

0
σ̇ (̂hx

s , 0)s2H d̃hx
s if H < 1/2,

1
2

∫ 1

0
σ ′′(̂hx

s , 0)V̂ 2
s d̃hx

s

+
∫ 1

0
σ ′(̂hx

s , 0)V̂sdṼs

+
∫ 1

0
σ̇ (̂hx

s , 0)s2H d̃hx
s

− 1
2

∫ 1

0
σ 2(̂hx

s , 0)ds if H = 1/2.

(36)

where we write

vt = E[Wtg1]/E[g2
1], vt = E[W tg1]/E[g2

1],

ṽt = ρvt + ρvt, v̂ = Kv̇

and

Ṽt = W̃t − ṽtg1, V̂t = Ŵt − g1̂vt.

5.3. Computing a(x) using Karhunen–Loeve
decomposition

Assume we are given hx computed by the Ritz method. Note
then that h

x
is obtained from hx via the following formula

ḣ
x
(s) = x − ρG(hx)

ρF(hx)
σ (̂hx(s)), (37)

with G(h), F(h) as in (33), as can be seen by optimizing over h
for fixed h in the definition (10) of the rate function. Then we
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assume a Karhunen–Loeve (KL) decomposition of (W , W):

W =
∑

i

γiei, W =
∑

i

γiei,

where {ei}i is the ONB in (31) or (32) and γi, γ i are i.i.d.
standard Gaussians. This implies

Ŵ =
∑

i

γîei,

with êi(t) = (K ∗ ėi)t. This yields

g1 =
∑

i

giγi + giγi,

where

gi =
∫ 1

0
σ ′(̂hx

s , 0)êi(s)d̃hx(s) + ρ

∫ 1

0
σ (̂hx

s , 0)dei(s),

gi = ρ

∫ 1

0
σ (̂hx

s , 0)dei(s).

In particular

σ 2
x =

∑
i

g2
i + gi

2.

Note then that

v(t) =
∑

i

giei(t)/σ
2
x , v(t) =

∑
i

giei(t)/σ
2
x ,

v̂(t) =
∑

i

gîei(t)/σ
2
x ,

We then can write all the terms in �2 as follows. We denote

αij =
∫ 1

0
σ ′′(̂hx

s , 0)êi(s)êj(s)d̃hx
s , βij =

∫ 1

0
σ ′(̂hx

s , 0)êidej,

δij = 1i=j and g̃i = ρgi + ρgi. Now, expanding (36) with some
long but standard computations we get to

�2 =
∑

ij

(γiγj − δij)η0;ij + γiγjη1;ij + (γiγj − δij)η2;ij

+ C =: �
(2)
2 + C,

where

η0;ij = 1

2
αij − 1

σ 2
x

gi

∑
k

gkαjk + 1

2σ 4
x

gigj

(∑
kl

gkglαkl

)

+ ρβij − 1

σ 2
x

gi

∑
k

g̃kβjk

− ρ

σ 2
x

gi

∑
k

gkβkj + 1

σ 4
x

gigj

⎛⎝∑
k,l

gk g̃lβkl

⎞⎠
η1;ij = ρβij − 1

σ 2
x

gj

∑
k

gkαik + 1

2σ 4
x

gigj

⎛⎝∑
k,l

gkglαk,l

⎞⎠

− 1

σ 2
x

gj

∑
k

g̃kβik − ρ

σ 2
x

gi

∑
k

gkβkj

− ρ

σ 2
x

gj

∑
k

gkβki + 1

σ 4
x

gigj

(∑
k

∑
l

gk g̃lβkl

)

η2;ij = 1

2σ 4
x

gigj

⎛⎝∑
k,l

gkglαk,l

⎞⎠ − ρ

σ 2
x

gi

∑
k

gkβkj

+ 1

σ 4
x

gigj

⎛⎝∑
k,l

gk g̃lβk,l

⎞⎠
and

C =
∫ 1

0
σ̇ (̂hx

s , 0)s2H d̃hx
s + 1

2

∑
i

αii − 1

2σ 2
x

∑
i,k

gigkαik

− 1

σ 2
x

∑
i,k

gĩgkβik .

Recall that one has

A(x) = e
′(x)C
E exp(
′(x)�(2)

2 ),

where


′(x) = sgn(x)

√
2
(x)

σ 2
x

,

and since �
(2)
2 is an element of the homogeneous Wiener

chaos of order 2, the expectation above can be computed
as the Carleman–Fredholm determinant det2(I − 2M )−1/2,
where M is the symmetric matrix

M = 
′(x)
( 1

2 (η0 + ηt
0) η1

(η1)
t 1

2 (η2 + ηt
2)

)
.

Namely one has

E exp(
′(x)�(2)
2 ) = �k≥0(1 − 2λk)

−1/2e−λk (38)

where (λk)k are the eigenvalues of M (note that the fact that
all λk < 1/2 comes from the non-degeneracy assumption).
This formula is a simple integral computation if M is diag-
onal, and the general case follows by diagonalization, cf e.g.
Inahama (2013, Remark 5.5) or Janson (1997, p.78).

Of course, in practice we consider approximations W N , W
N

obtained by truncating the sums to only keep indices i ≤ N ,
where N is fixed, so that all the sums above are then replaced
by finite sums. One also needs to compute numerically the
integrals appearing in the definition of the coefficients g, α,
β. We have found the Haar basis to be more convenient than
the Fourier basis for this purpose since the êi’s have explicit
expressions in that case.

6. Proofs

6.1. Energy expansion

Lemma 6.1 Fourth order energy expansion Consider a
stochastic volatility model following dynamics (3) and the
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associated energy function in (10). Let 
(x) be the energy
function in (10). Then


(x) = 
′′(0)

2
x2 + 
′′′(0)

3!
x3 + 
(4)(0)

4!
x4 + O(x5)

where


′′(0) = 1

σ 2
0

, 
′′′(0) = −6
ρσ ′

0

σ 4
0

〈K1, 1〉, (39)

and


(4)(0) = 12
(σ ′

0)
2

σ 6
0

{
9ρ2〈K1, 1〉2 − ρ2〈(K1)2, 1〉

− 〈(K1)2, 1〉 − 2ρ2〈K1, K1〉}
− 12

σ ′′
0

σ 5
0

ρ2〈(K1)2, 1〉.

Remark 6.2 In this lemma we expand the rate function 
(x),
which has been studied first in Forde and Zhang (2017). The
second- and third-order terms in (39) have been computed in
Bayer et al. (2019, Theorem 3.4). In both these papers, the
volatility function is supposed to be σ(W H

t ), but adding the
dependence σ(W H

t , t2H) does not change the large deviations
behavior, meaning that the rate function is the same as the one
of the model given by σ(W H

t , 0).

Proof We have the following development for the minimizer
hx

· in (10), for x → 0:

hx
t = αtx + βt

x2

2
+ γt

x3

6
+ O(x4), (40)

with

αt = ρ

σ0
t,

βt = 2
σ ′

0

σ 3
0

[ρ2〈K1, 1[0,t]〉 + 〈K1[0,t], 1〉 − 3ρ2t〈K1, 1〉],

where α, β have been also computed in Bayer et al. (2019).
We make here the ansatz that the expansion goes on one more
order with γ , that we do not actually need to compute. The
existence of such γ follows from the smoothness of σ(·, ·)
(cf. Friz et al. 2021 and Bayer et al. 2019, Section 5.2). We
can compute, using 〈K(K1), 1〉 = 〈K1, K1〉 and 〈K(K1), 1〉 =
〈(K1)2, 1〉,

Kβ̇ = 2
σ ′

0

σ 3
0

[ρ2K(K1) + K(K1) − 3ρ2〈K1, 1〉K1],

〈Kβ̇, 1〉 = 2
σ ′

0

σ 3
0

[ρ2〈K1, K1〉 + 〈(K1)2, 1〉 − 3ρ2〈K1, 1〉2],

〈K1, β̇〉 = 2
σ ′

0

σ 3
0

[ρ2〈(K1)2, 1〉 + 〈K1, K1〉 − 3ρ2〈K1, 1〉2].

We also have

σ (̂hx
s , 0) = σ0 + x

σ ′
0

σ0
ρK1(s)

+
(

σ ′′
0

σ 2
0

ρ2(K1)2(s) + σ ′
0Kβ̇(s)

)
x2

2
+ O(x3).

(41)

We use now (33) and compute

F(hx) = σ 2
0 + x2ρσ ′

0〈K1, 1〉

+ x2

{((
σ ′

0

σ0

)2

+ σ ′′
0

σ0

)
ρ2〈(K1)2, 1〉

+ σ0σ
′
0〈Kβ̇, 1〉

}
+ O(x3),

G(hx) = ρx + x2

(
σ ′

0

σ 2
0

ρ2〈K1, 1〉 + σ0

2
β1

)
+ x3

(
σ0

6
γ1 + σ ′′

0

2σ 3
0

ρ3〈(K1)2, 1〉

+ ρ
(σ ′

0)
2

σ 4
0

[
(ρ2 + 1)〈K1, K1〉 + ρ2〈(K1)2, 1〉

+ 〈(K1)2, 1〉 − 6ρ2〈K1, 1〉2]) + O(x3), (42)

from which we get

x − ρG(hx) = (1 − ρ2)x − x2ρ
σ ′

0

σ 2
0

(1 − ρ2)〈K1, 1〉

− x3ρ

(
σ0

6
γ1 + σ ′′

0

2σ 3
0

ρ3〈(K1)2, 1〉

+ ρ
(σ ′

0)
2

σ 4
0

[
(ρ2 + 1)〈K1, K1〉

+ ρ2〈(K1)2, 1〉 + 〈(K1)2, 1〉
− 6ρ2〈K1, 1〉2

]) + O(x3),

1

F(hx)
= 1

σ 2
0

− x2ρ
σ ′

0

σ 4
0

〈K1, 1〉

− x2

{
σ ′′

0

σ 5
0

ρ2〈(K1)2, 1〉

+
(

σ ′
0

σ 3
0

)2 (
ρ2〈(K1)2, 1〉 + 2〈(K1)2, 1〉

+ 2ρ2〈K1, K1〉 − 10ρ2〈K1, 1〉2) }
+ O(x3),

(x − ρG(hx))2

1 − ρ2
= (1 − ρ2)x2 − x32ρ

σ ′
0

σ 2
0

(1 − ρ2)〈K1, 1〉

+ x4

[
ρ2 (σ ′

0)
2

σ 4
0

(1 + 11ρ2)〈K1, 1〉2

− σ ′′
0

σ 3
0

ρ4〈(K1)2, 1〉 − ρσ0

3
γ1 − 2ρ2 (σ ′

0)
2

σ 4
0

× [
(ρ2 + 1)〈K1, K1〉 + ρ2〈(K1)2, 1〉

+ 〈(K1)2, 1〉]) ] + O(x5),
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(x − ρG(hx))2

2(1 − ρ2)F(hx)
= (. . . )x2 + (. . . )x3 − x4 ρ

6σ0
γ1

+ x4

{
−ρ2

2

σ ′′
0

σ 5
0

〈(K1)2, 1〉

− 2ρ2 (σ ′
0)

2

σ 6
0

〈K1, K1〉

− (σ ′
0)

2

σ 6
0

ρ4 + ρ2

2
〈(K1)2, 1〉

− (σ ′
0)

2

σ 6
0

〈(K1)2, 1〉

+ (σ ′
0)

2

σ 6
0

3

2
ρ2(5 − ρ2)〈K1, 1〉2

}
+ O(x5).

We also have, from (40)

〈ḣx, ḣx〉 = · · · + x4

(
ρ

3σ0
γ1 +

(
σ ′

0

σ 3
0

)2 [
ρ4〈(K1)2, 1〉

+ 〈(K1)2, 1〉 + 2ρ2〈K1, K1〉 + 3ρ4〈K1, 1〉2

− 6ρ2〈K1, 1〉〈K1, 1〉]) + O(x5).

Now we write, from Bayer et al. (2019, Proposition 5.1),


(x) = (x − ρG(hx))2

2ρ2F(hx)
+ 〈ḣx, ḣx〉

2

and use the expansions above for the two summands. The
fourth-order expansion of 
(x) follows. �

6.2. Proof of Lemma 3.4

Let us take x �= 0.
STEP 1: We first need to expand h

x
t in (10), for small x (an

expansion of hx was computed in Bayer et al. 2019). We write

�1(W , W) = X1 (43)

for the Itô map associated with the RoughVol model (8). Com-
puting the Frechet derivative of �1 with respect to the second
component at h = (h, h) in the direction f we get (cf. (34))

〈D�1(h), (0, f )〉 = 〈D2�1(h), f 〉 = d

dδ
�1(h, h + δf )

= ρ

∫ 1

0
σ (̂h, 0) df . (44)

From the first order optimality condition (Friz et al. 2021,
Appendix B), we get that for hx minimizer and any f in the
Cameron–Martin space H1,

〈hx
t , ft〉H1 = 
′(x)〈D�1, f〉.

Let f be the second component of f. Using (44) we get∫ 1

0
ḣ

x

t ḟtdt = 〈hx
t , ft〉H1 = 
′(x)〈D2�1, f 〉

= ρ
′(x)
∫ 1

0
σ (̂hx

t , 0)ḟtdt.

Now, from (39) we derive that, for x → 0,


′(x) = x

σ 2
0

− 3x2 ρσ ′
0

σ 4
0

〈K1, 1〉 + O(x3). (45)

We get

h
x
t = x

ρ

σ0
t + O(x2).

We also have

hx
t = x

ρ

σ0
t + O(x2), h̃x

t = ρhx
t + ρh

x
t = x

t

σ0
+ O(x2),

ĥx
t = (Kḣx)t = x

ρ

σ0
K1(t), (46)

and

σ (̂hx, 0) = σ0 + x
ρσ ′

0

σ0
K1 + O(x2),

σ ′(̂hx, 0) = σ ′
0 + x

ρσ ′′
0

σ0
K1 + O(x2), σ̇ (̂hx, 0) = σ̇0 + O(x).

STEP 2: We recall here, from Friz et al. (2021), the definition
of some quantities needed to compute A(x). Let g1 be as
in (34) and let us write σ 2

x = Var(g1) for its variance. We
recall, again from Friz et al. (2021, Equation (6.3)), σ 2

x =
2
(x)/
′(x)2, from which we get

σ 2
x = σ 2

0 + 4ρσ ′
0〈K1, 1〉x + O(x2). (47)

From (34) we define and compute

vt = E[Wtg1]

E[g2
1]

= 1

σ 2
x

(
ρ

∫ t

0
σ (̂hx

s , 0)ds +
∫ 1

0
σ ′(̂hx

s , 0)K1[0,t](s)d̃hx
s

)
,

vt = E[W tg1]

E[g2
1]

= 1

σ 2
x

ρ

∫ t

0
σ (̂hx

s , 0)ds.

(48)
(Note that v, v are in the Cameron–Martin space). From (11)
we have that A(x) in Theorem 3.2 is

A(x) = E
[
exp(
′(x)�2)

]
,

where �2 is given in (36).
STEP 3: We can expand now such quantity, for x → 0 and

we get

A(x) = 1 + x
′′(0)E
[
�0

2

]
+ x2

(

′′′(0)E

[
�0

2

] + 
′′(0)2E
[
(�0

2)
2
]

2

+ 
′′(0)E
[
∂x

∣∣
x=0�2

] ) + O(x3), (49)
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where �0
2 denotes �2|x=0. The statement of the theorem

follows from the computation of the quantities in (49).
STEP 4: We compute

v̇t = 1

σ 2
x

(
ρσ (̂hx

t , 0) +
∫ 1

t
σ ′(̂hx

s , 0)K(s, t)d̃hx
s

)
,

and we obtain, also using (48),

σ 2
x vt = ρσ0t + x

σ ′
0

σ0

(
ρ2〈K1, 1[0,t]〉 + 〈K1[0,t], 1〉) + O(x2),

σ 2
x ṽt = σ0t + x

σ ′
0

σ0
ρ
(〈K1, 1[0,t]〉 + 〈K1[0,t], 1〉) + O(x2),

σ 2
x v̂t = ρσ0K1(t) + x

σ ′
0

σ0

(
ρ2K(K1)(t) + K(K1)(t)

) + O(x2),

(50)
where we have used 〈K1[0,t], 1〉 = ∫ t

0 K1(u) du. We have

σ 4
x v̂td̃vt = ρσ 2

0 K1(t)dt + xσ ′
0

(
ρ2K(K1)(t) + K(K1)(t)

+ ρ2K1(t)
(
K1(t) + K1(t)

))
dt.

Putting together the previous expressions and using 〈K(K1),
1〉 = 〈K1, K1〉 and 〈K(K1), 1〉 = 〈(K1)2, 1〉 we get

σ 4
x

∫ 1

0
v̂td̃vt = ρσ 2

0 〈K1, 1〉 + xσ ′
0

(
ρ2〈(K1)2, 1〉

+ 〈(K1)2, 1〉 + 2ρ2〈K1, K1〉) + O(x2),

σ 4
x

∫ 1

0
K1(t)̂vtd̃vt = ρσ 2

0 〈(K1)2, 1〉 + O(x),

σ 4
x

∫ 1

0
v̂2

t dt = ρ2σ 2
0 〈(K1)2, 1〉 + O(x).

(51)
This implies, together with (47),

∂x

(
σ 2

x

∫ 1

0
v̂td̃vt

)
= σ ′

0

σ 2
0

(
2ρ2〈K1, K1〉 + ρ2〈(K1)2, 1〉

+ 〈(K1)2, 1〉 − 4ρ2〈K1, 1〉2) . (52)

We can now compute

E
∫ 1

0
(V̂sdṼs) = E

∫ 1

0
ŴsdW̃s + E[g2

1]
∫ 1

0
v̂sd̃vs

− E

[
g1

(∫ 1

0
Ŵsd̃vs + v̂sdW̃s

)]
,

where

E

[
g1

∫ 1

0
Ŵsd̃vs

]
=

∫ 1

0

∫ s

0
K(s, u)dE

[
g1Wu

]
d̃vs = σ 2

x

∫ 1

0
v̂sd̃vs,

E
[
g1

∫ 1

0
v̂sdW̃s

] =
∫ 1

0
v̂sdE

[
g1W̃s

] = σ 2
x

∫ 1

0
v̂sd̃vs,

so that

E
∫ 1

0

(
V̂sdṼs

) = −σ 2
x

∫ 1

0
v̂sd̃vs.

We also compute∫ 1

0
E[V̂ 2

s ]ds = 〈K21, 1〉 − σ 2
x

∫ 1

0
v̂2

s ds,∫ 1

0
K1(s)E[V̂sdṼs] = −σ 2

x

∫ 1

0
K1(s)̂vsd̃vs,

and all these quantities can be expanded in x using (51). Now
we use (36) to write, in the case H < 1/2

E�0
2 = σ ′

0E
∫ 1

0
V̂ 0

s dṼ 0
s = −ρσ ′

0〈K1, 1〉. (53)

Moreover, using (46),

∂x

∣∣
x=0

∫ 1

0
σ̇ (̂hx

s , 0)s2H d̃hx
s = σ̇0

(2H + 1)σ0
.

Now, also using (36) and (51) we get

∂xE�2

∣∣
x=0 = σ ′′

0

2σ0

∫ 1

0
E[(V̂ 0

s )2]ds

+ ρ
σ ′′

0

σ0

∫ 1

0
K1(s)E[V̂ 0

s dṼ 0
s ]

+ σ ′
0

∫ 1

0
∂xE[V̂sdṼs]

∣∣
x=0 + σ̇0

(2H + 1)σ0

= σ ′′
0

σ0

( 〈K21, 1〉
2

− 3

2
ρ2〈(K1)2, 1〉

)
−

(
σ ′

0

σ0

)2 (
2ρ2〈K1, K1〉

+ ρ2〈(K1)2, 1〉 + 〈(K1)2, 1〉 − 4ρ2〈K1, 1〉2)
+ σ̇0

(2H + 1)σ0
.

STEP 5: We need now to compute

E[(�0
2)

2] = (σ ′
0)

2E

(∫ 1

0
V̂ 0

s dṼ 0
s

)2

,

where (using definitions and (50))

V̂ 0
s = Ŵs − ρK1(s)W̃1 and dṼ 0

s = dW̃s − W̃1ds.

We can rewrite∫ 1

0
V̂ 0

s dsW̃1 = ρ

∫ 1

0
K1(u)W̃udBu

+
∫ 1

0

(
ρ
(
K1(u) − 2〈K1, 1〉)W̃u

+
∫ u

0
K1(s) dWs

)
dW̃u.
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and, differentiating the product
∫ 1

0 K1(u)dW̃u, W̃1∫ 1

0
V̂ 0

s dṼ 0
s

= −ρ

∫ 1

0
K1(u)W̃udBu

+
∫ 1

0

(
V̂ 0

u −
∫ u

0
K1(s) dWs

+ ρ
(
2〈K1, 1〉 − K1(u)

)
W̃u

)
dW̃u

= −ρ

∫ 1

0
K1(u)W̃udBu − ρ

∫ 1

0
K1(u) du

+
∫ 1

0

(
Ŵu −

∫ u

0
K1(s) dWs

+ ρ
(
2〈K1, 1〉 − K1(u) − K1(u)

)
W̃u

− ρ

∫ u

0
K1(s)dW̃s

)
dW̃u

with W̃ independent of B. Therefore, by Itô isometry,

E

[(∫ 1

0
V̂ 0

s dṼ 0
s

)2
]

= ρ2
∫ 1

0
K1(u)2udu + ρ2

(∫ 1

0
K1(u) du

)2

+ E
∫ 1

0

(
Ŵu −

∫ u

0
K1(s) dWs + ρ

(
2〈K1, 1〉

−K1(u) − K1(u)
)
W̃u − ρ

∫ u

0
K1(s)dW̃s

)2

du.

We can apply again Itô isometry to compute the last expecta-
tions, and

E

[(∫ 1

0
V̂ 0

s dṼ 0
s

)2
]

= ρ2
∫ 1

0

∫ u

0

(
K(u, s) − K1(s) + 2〈K1, 1〉 − K1(u)

− K1(u) − K1(s)
)2

ds du

+ ρ2

(∫ 1

0
K1(u) du

)2

+ ρ2
∫ 1

0

∫ u

0
(K(u, s) − K1(s))2ds du

+ ρ2
∫ 1

0
K1(u)2udu.

At this point it is a (long) calculus excercise (noting 〈K1, 1〉 =
〈K1, 1〉) to show that

E

[(∫ 1

0
V̂ 0

s dṼ 0
s

)2
]

= ρ2(3〈K1, 1〉2 − 〈(K1)2, 1〉 − 2〈K1, K1〉)
+ 〈K21, 1〉 − 〈(K1)2, 1〉 (54)

STEP 6: Substituting in (49) we get

A(x) = 1 − x
ρσ ′

0

σ 2
0

〈K1, 1〉 + x2

{
(σ ′

0)
2

σ 4
0

(
3ρ2〈K1, 1〉2 + 1

2
E

[(∫ 1

0
V̂ 0

s dṼ 0
s

)2
])

+σ ′′
0

σ 3
0

( 〈K21, 1〉
2

− 3

2
ρ2〈(K1)2, 1〉

)
− (σ ′

0)
2

σ 4
0

(
2ρ2〈K1, K1〉 + ρ2〈(K1)2, 1〉 + 〈(K1)2, 1〉

−4ρ2〈K1, 1〉2
) + σ̇0

(2H + 1)σ 3
0

}
+ O(x3)

= 1 − x
ρσ ′

0

σ 2
0

〈K1, 1〉 + x2

{
(σ ′

0)
2

σ 4
0

( 〈K21, 1〉
2

− 3

2
〈(K1)2, 1〉

+ρ2

(
17

2
〈K1, 1〉2 − 3

2
〈(K1)2, 1〉 − 3〈K1, K1〉

))
+σ ′′

0

σ 3
0

( 〈K21, 1〉
2

− 3

2
ρ2〈(K1)2, 1〉

)
+ σ̇0

(2H + 1)σ 3
0

}
+ O(x3)

and we get Theorem 12.
STEP 7: When H = 1/2, �2 in (36) has an additional

summand. Let us write

�̃2 = 1

2

∫ 1

0
σ ′′(̂hx

s , 0)V̂ 2
s d̃hx

s +
∫ 1

0
σ ′(̂hx

s , 0)V̂sdṼs

+
∫ 1

0
σ̇ (̂hx

s , 0)d̃hx
s ,

so that �̃2 has the same expression as �2 in the rough case
H < 1/2. For H = 1/2 we can write

�2 = �̃2 − 1

2

∫ 1

0
σ 2(̂hx

s , 0)ds, (55)

so that

�0
2 = �̃0

2 − σ 2
0

2
(56)

and, using (41)

∂x

∣∣
x=0�2 = ∂x

∣∣
x=0�̃2 − σ ′

0ρ〈K1, 1〉 (57)

Now, A(x) in Theorem 3.2 is

A(x) = exE
[
exp(
′(x)�2)

]
with �2 as above. Expanding in x we find

A(x) = 1 + x(
′′(0)E[�0
2] + 1)
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+ x2

(

′′′(0)E[�0

2] + E
[
(
′′(0)�0

2 + 1)2
]

2

+
′′(0)E
[
∂x

∣∣
x=0�2

] ) + O(x3)

= 1 + x
′′(0)E[�̃0
2]

+ x2

(

′′′(0)E[�̃0

2] + 
′′(0)2E[(�̃0
2)

2]

2

+
′′(0)E[∂x

∣∣
x=0�̃2]

)
+ x

2
+ x2

8
+ O(x3) (58)

(we have used (39) and (53)).

6.3. Proof of Theorem 3.7

A Taylor expansion gives

�(x) = x√
2
(x)

= 1√

′′(0)

(
1 − 
′′′(0)

6
′′(0)
x

+
′′′(0)2 − 
′′(0)
(4)(0)

24
′′(0)2
x2

)
+ O(x3).

The explicit expressions for the three terms now follow
from Lemma 6.1. Let us compute a(x). The rate function is
quadratic and 
(0) = 
′(0) = 0. Then, using Taylor devel-
opments of 
 and x → 1

1+x we get

2
(x)

x
′(x)
= 1 − x

6


′′′(0)


′′(0)
+ x2

12

{(

′′′(0)


′′(0)

)2

− 
(4)(0)


′′(0)

}
+ O(x3) = 1 +

√

′′(0)

(
x�′(0) + x2�′′(0)

)
+ O(x3)

From Lemma 6.1,

2
(x)

x
′(x)
= 1 + x

ρσ ′
0〈K1, 1〉
σ 2

0

+ x2
√


′′(0)�′′(0) + O(x3)

and, with A(x) given in Lemma 12, we have when H < 1/2

2A(x)
(x)

x
′(x)
= 1 + x2a0 + O(x3)

with

a0 = (σ ′
0)

2

σ 4
0

CK,ρ + σ ′′
0

σ 3
0

CK,ρ + σ̇0

(2H + 1)σ 3
0

+
√


′′(0)v′′(0)

− ρ2(σ ′
0)

2〈K1, 1〉2

σ 4
0

= (σ ′
0)

2

σ 4
0

DK,ρ

2
+ σ ′′

0

σ 3
0

DK,ρ

2
+ σ̇0

(2H + 1)σ 3
0

,

with DK,ρ , DK,ρ , defined in (17). Now, as a consequence of
Lemma 6.1, we have

x2

2
(x)2
∼ 2


′′(0)2x2
= 2σ 4

0

x2

and the expansion of a(x) follows. When H = 1/2,

2A(x)
(x)

x
′(x) exp(x/2)
= 1 + x2a0 + O(x3)

with

a0 = (σ ′
0)

2

σ 4
0

DK,ρ

2
+ σ ′′

0

σ 3
0

DK,ρ

2
+ σ̇0

(2H + 1)σ 3
0

+ ρσ ′
0

2σ 2
0

〈K1, 1〉.

We conclude as in the case H < 1/2.

6.4. Proof of Theorem 3.13

The call asymptotics is a corollary of Theorem 3.2, taking into
consideration that


(xt) =
n∑

i=2


(i)(0)

i!
xitiβ + O(t(n+1)β)

and that O(t(n+1)β−2H ) → 0 under β ∈ ( 2H
n+1 , 2H

n ]. Recall


′′(0) = σ−2
0 and the first statement follows.

Let us write α = 2H − 2β, δ = 1/2 + 2H − 2β, γ =
1/2 − H + β and M(t, x) = ∑n

i=3

(i)(0)

i! xitiβ−2H . We intend
to apply (Gao and Lee 2014, Corollary 7.1, Equation (7.2)),
where G−(k, u) denotes

√
2(

√
u + k − √

u) and V denotes√
tσBS . To do so, we notice that

G2
−(k, u) = k2

2u
+ o

(
k2

u2

)
(59)

when k ↓ 0 and u → ∞. In the notation of Gao and
Lee (2014), we have

Lt = − log c(t, kt),

and G will be computed for u = Lt − 3
2 log Lt + log( kt

4
√

π
), so

let us compute

Lt − 3

2
log Lt + log

(
kt

4
√

π

)
= x2

2σ 2
0 tα

+ M(t, x) − log
σ 3

0

x2
√

2π
− δ log t − 3

2
log Lt

+ log

(
kt

4
√

π

)
+ o(1)

and take care of the logarithmic terms in t. For t ↓ 0,

− δ log t − 3

2
log Lt + log

(
kt

4
√

π

)
=

(
−δ + 3

2
α + γ

)
log t − 3

2
log

(
x2

2σ 2
0

)
+ log

(
x

4
√

π

)
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+ o(1)

= −3

2
log

(
x2

2σ 2
0

)
+ log

(
x

4
√

π

)
+ o(1)

So

Lt − 3

2
log Lt + log

(
x

4
√

π

)
= x2

2σ 2
0 tα

+ M(t, x) + o(1) (60)

Equations (59) and (60) tell us that

1

t
G2

−

(
kt, Lt − 3

2
log Lt + log

(
kt

4
√

π

))
= σ 2

0
1

1 + 2σ 2
0 M(t,x)

x2 tα + o(tα)
+ o(tα) (61)

The proof now boils down to writing the development of
this factor using the Taylor developement of 1

1+u , with u =
2σ 2

0 M(t, x)tα/x2 + o(tα). We have, for j ∈ N,

uj =
(

2σ 2
0 M(t, x)

x2
tα
)j

+ o(tα)

using M(t, x)p−1tjα = o(tα) for j ≥ p ≥ 1. Also notice un−1 =
O((M(t, x)tα)n−1) = o(tα) because β ∈ ( 2H

n+1 , 2H
n ]. We have

1

1 + u
=

n−2∑
j=0

(−1)juj + O(un−1)

=
n−2∑
j=0

(−1)j

(
2σ 2

0 M(t, x)

x2
tα
)j

+ o(tα) (62)

So from (61) and (62)

1

t
G2

−(kt, Lt − 3

2
log Lt + log

(
kt

4
√

π

)
)

=
n−2∑
j=0

(−1)j2jσ
2(j+1)

0

(M(t, x)

x2
tα
)j

+ o(tα) (63)

We apply now (Gao and Lee 2014, Corollary 7.1, Equation
(7.2)): ∣∣∣∣1

t
G2

−(kt, Lt − 3

2
log Lt + log(

kt

4
√

π
)) − σ 2

BS(kt)

∣∣∣∣
= o

(
k2

t

tL2
t

)
= o

(
tα
)

and obtain expansion (27).
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Appendix: Fractional Brownian motion

The fBM is a “rough” continuous-time Gaussian process in that,
depending on a parameter H ∈ (0, 1), its trajectories are locally
Hölder continuous of any order strictly less than H. Unlike classi-
cal BM, the increments of fBm are not independent if H �= 1/2. The
fBM was introduced for the first time by Mandelbrot and Van Ness in
Mandelbrot and Van Ness (1968) as the following stochastic integral,
for t ≥ 0:

ZH
t = cH

[∫ t

−∞
(t − s)H−1/2dZs −

∫ 0

−∞
(−s)H−1/2dZs

]
,

where Z is a BM and cH = (
∫ ∞

0 [(1 + s)1/2−H − s1/2−H ]2ds +
1

2H )1/2. Such process is Gaussian with covariance

E[ZH
t ZH

s ] = 1

2
(|t|2H + |s|2H − |t − s|2H ). (A1)

It can also be represented as a Volterra integral on the interval [0, t]:

ZH
t =

∫ t

0
KH (s, t) dBs, (A2)

with KH as in Nualart (2006) or Forde and Zhang (2017,
Section 3.1)). One can consider the following variant of fBM, known
as Riemann–Liouville process (Mandelbrot and Van Ness 1968),
introduced in 1953 by Lévy. This process is also represented as
Volterra integral as

B̂H
t =

∫ t

0
K(t, s) dBs, (A3)

with a simpler kernel

K(t, s) =
√

2H(t − s)H−1/2, for H ∈ (0, 1). (A4)

It is still self-similar, but stationarity of increments does not hold.
Moreover, the covariance structure is more complicated than (A1).
It can be expressed using hypergeometric functions (see Bayer
et al. 2019, Lemma 4.1). The K-functionals that we find in our
expansion can be computed in this case as

〈K1, 1〉 =
√

2H

(H + 1/2)(H + 3/2)

〈K21, 1〉 = 1

2H + 1

〈(K1)2, 1〉 = 〈(K1)2, 1〉 = H

(H + 1)(H + 1/2)2

〈K1, K1〉 = 2H

(H + 1/2)2 β(H + 3/2, H + 3/2)

(A5)

where β is the beta function. In the case, K ≡ 1 the fBM driving the
volatility is actually a BM and we are back to the classical setting of
a diffusive Markovian volatility. In this case, our expansions can be
compared e.g. to Medvedev and Scaillet (2003, 2007).
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