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ABSTRACT Anomaly detection modeled as a one-class classification is an essential task for tool condition
monitoring (TCM) when only the normal data are available. To confront with the real-world settings, it is
crucial to take the different operating conditions, e.g., rotation speed, into account when approaching TCM
solutions. This work mainly addresses issues related to multi-operating-condition TCM models, namely
the varying discriminability of sensory features with different operating conditions; the overlap between
normal and anomalous data; and the complex structure of input data. A feature selection scheme is proposed
in which the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is presented as a
tool to aid the multi-objective selection of sensory features. In addition, four anomaly detection approaches
based on Self-Organizing Map (SOM) are studied. To examine the stability of the four approaches, they are
applied on different single-operating-condition models. Further, to examine their robustness when dealing
with complex data structures, they are applied onmulti-operating-conditionmodels. The experimental results
using the NASAMillingData Set showed that all the studied anomaly detection approaches achieved a higher
assessment accuracy with our feature selection scheme as compared to the Principal Component Analysis
(PCA), Laplacian Score (LS), and extended LS in which we added a final step to the original LS method in
order to eliminate redundant features.

INDEX TERMS Anomaly detection, condition monitoring, feature selection, one-class classification,
predictive maintenance, self-organizing feature maps, TOPSIS.

I. INTRODUCTION
Milling is one of the popular operations in the manufacturing
industry. It can be used to manufacture different geometric
components, e.g., flat surfaces, grooves, threads, etc. The
health state of the milling tool has a significant influence on
the quality of milling processes as well as the availability
of the production line [1]. The tool wear is a natural result
of the thermal-force coupling effect that the tool encounters
during machining [2]. A worn tool adversely affects the
surface finish and dimension accuracy of the finished prod-
ucts, leading to reworking or scrapping the workpiece [3],
which in turn causes time and financial losses [4]. Moreover,
the tool wear could eventually lead to the tool breakage
which is considered the major cause of the unscheduled
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machine downtime. Handling the tool wear problem using the
schedule-based maintenance strategy, i.e., preventive mainte-
nance, could cause the tool to be replaced even when it is still
in a good condition, leading to an inefficient use of the avail-
able resources and an increase in the overall costs. On the
other hand, predictivemaintenance is based onmonitoring the
actual condition of the system, and making the maintenance
plan accordingly. Hence, tool condition monitoring (TCM)
allows for replacing the tool in a timely manner, and thus,
achieving the joint objective of maximizing the tool usage
and avoiding the consequences of using a worn tool. It is
estimated that an effective TCM system could reduce costs
by 10-40% [1].

The proliferation of sensors and the advancements in the
machine learning areamakes it possible to develop automated
TCM systems, which in turn enables the realization of smart
manufacturing. Automated TCM systems involve deploying
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sensors to measure variables that are sensitive to the tool
condition. When the traditional machine learning methods
are implemented for TCM, features are extracted first from
the raw sensor signals, and then a few representative features
are selected to train the machine learning model. On the
other hand, most of the approaches based on Deep Learn-
ing (DL) do not involve feature extraction/selection processes
as the deep model can extract features automatically from the
raw data [5].

The TCM task is handled in some researches, e.g., [6],
[7], as a multi-class classification problem where different
classes corresponding to different tool conditions are used
to label the run-to-failure data, then the labeled data are
used to train the supervised learning model. A relevant issue
to the multi-class classification is when the training normal
samples are far more than the abnormal ones. To this end,
some classification approaches were shown to be resistant
to the imbalance class problem, e.g., the Self Organizing
Map (SOM)-based classifier employed in [8], and the hybrid
approach proposed in [9] that combines the extended Kalman
filter and cost-sensitive extreme learning machine. Intu-
itively, the availability of labeled run-to-failure data allows
for learning the different data patterns associated with the
normal and worn tools [4]. However, considering the fact
that performing machining using a worn tool will generate
poor quality products and that it is time consuming to acquire
labeled data on the shop floor, using aworn toolmerely for the
sake of collecting measurements could lead to a considerable
waste of resources and time. Therefore, relying only on the
normal data can represent an efficient and easily applicable
implementation of the predictive maintenance [4], [10].

Anomaly detection is one of the essential elements of pre-
dictive maintenance. It is usually modeled as a one-class clas-
sification problem which is particularly useful when only the
normal behavior of the system is known, and no knowledge of
the abnormal behavior is available. Data-driven reconstruc-
tion methods can be employed to build a model represent-
ing normal data, e.g., SOM [11], Generative Probabilistic
Adversarial Autoencoder (GPAA) [12], Generative Adversar-
ial Network (GAN) [4], archetypal analysis [13]. Thesemeth-
ods are based on projecting the training data onto another
data space with the aim of minimizing the reconstruction
errors [13]. An unknown sample is then assessed as normal
or anomalous based on a health indicator that is derived from
the built model [12], [13]. Data-driven statistical methods
can also be implemented, e.g., the authors in [14] combined
Re-weighted Minimum Covariance Determinant (RMCD)
estimator and Hidden Markov Model (HMM) to perform a
two-step anomaly detection. Furthermore, anomaly detection
can be realized through the Discord Detection (DS) tech-
nique. For instance, the authors in [15] proposed a novel
computational approach to identify discords in multivari-
ate time-series data. In addition to detecting the abnor-
mal behavior of a system, anomaly detection can also be
implemented with other predictive maintenance tasks, e.g.,

to improve the estimation accuracy of the remaining useful
life [16].

Regarding the existing researches that addressed the
anomaly detection task, little attention has been paid to han-
dle the problem under different operating conditions of the
milling tool, e.g., rotation speed, depth of cut, etc. Consider-
ing the real-world settings, the same tool is subject to different
operating conditions during its lifetime [17]. A built TCM
model will not perform as expected when applied to data
taken under different operating conditions from those of the
training data, as it is experimentally shown in [8]. Hence,
the learning model that fits data under different operating
conditions will show robustness on the shop floor where
different, non-stationary operating conditions exist [6], [18].
Even though the operating conditions cannot be indicative
of the system condition, their significant role in the predic-
tive maintenance stems from the fact that they influence the
system degradation rate [17], [19] as well as the variables
that are used to monitor the system health [17], [20]. Three
main issues arise when building a multi-operating-condition
model, i.e., a model that is trained to represent data from
different operating conditions.

1) The ability to distinguish between normal and anoma-
lous data based on a specific sensory feature varies
with different operating conditions, as experimentally
shown in [8].

2) The likelihood of overlapping between normal and
anomalous data increases when dealing with multi-
operating-condition data. Since the sensor signals carry
the combined effect of the system health and the oper-
ating conditions, similar sensor patterns could be gen-
erated under different health conditions, which makes
the anomaly detection even more challenging [20].

3) The data structure under different operating conditions
is highly complex. This is due to the fact that the data
variation is not only driven by the system dynamics
caused by the tool wear progression, but also by the
different operating conditions. This could lead some
anomaly detection approaches to fail to achieve a sat-
isfactory diagnosis accuracy.

Handling the aforementioned issues using only the normal
data makes it even more challenging. In [4] and [12], a multi-
operating-condition model is built and tested for the purpose
of anomaly detection. However, they are both based on DL
approaches that can automatically perform the feature extrac-
tion/selection processes, which does not allow the researchers
to know the specific sensory features that led to the results
achieved. On the other hand, most of the existing unsuper-
vised feature selection approaches, e.g., [21], consider only
the case when the data are taken from one set of operating
conditions.

This paper aims to present a rigorous, interpretable frame-
work for the anomaly detection for milling tools under differ-
ent operating conditions. SOM is chosen as the data-driven
learning approach. SOM is an unsupervised neural network
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that allows for mapping high-dimensional input data onto
a low-dimensional grid of neurons. It does not have high
demands in terms of the required memory and computa-
tions [22], which facilitates its implementation on an edge
device, and achieving a real-time tool monitoring. Further-
more, it does not need large training data to generalize [23],
and it has the merits of interpretability and understandabil-
ity [24]. SOM has been employed in various predictive main-
tenance applications, including anomaly detection [11], fault
classification [25], and remaining useful life estimation [26].

The contribution of this paper can be summarized as
follows.

1) A feature selection scheme is proposed to tackle the
first two aforementioned issues associated with the
multi-operating-condition models. The scheme aims to
select the sensory features whose discrimination ability
is independent of the operating conditions being used,
while reducing the overlap between normal and anoma-
lous data of different operating conditions. In this
scheme, a discrimination metric that exists in the lit-
erature is used in two forms that are tailored for
the problem at hand, and the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS)
is employed to rank the sensory features. TOPSIS
has been utilized in multitude of areas, including
business, energy management, chemical engineering,
manufacturing [27], mobile communications [28]. Its
manufacturing-related applications include the selec-
tion of the best lubricant, tool insert, and machining
parameters, among others [29]. To the best of our
knowledge, it has not been used yet for the selection of
sensory features in the area of predictive maintenance.
We show in this paper that TOPSIS could be used as a
tool to aid the multi-objective feature selection.

2) An investigation and analytical study of four different
SOM-based anomaly detection approaches are con-
ducted in this paper using the NASA Milling Data
Set [30]. The powerful ability of SOM to represent data
of complex structures is already well-known. However,
the built-upon-SOM anomaly detection approaches are
yet to be investigated under different operating condi-
tions. In order to examine the stability and robustness
of the studied approaches, they are applied on different
single-operating-condition models as well as multi-
operating-condition models.

The remainder of the paper is organized as follows. Related
works are reviewed in Section II. The main workflow and
assumptions are described in Section III. Our feature selec-
tion scheme is presented in Section IV. The background about
SOM as well as the studied SOM-based anomaly detection
approaches are presented in Section V. Section VI encom-
passes the implementation details, including the experimen-
tal data, the implemented scenarios, the conducted feature
extraction/selection processes, as well as the different results
and discussion. Finally, the paper is concluded and the future
directions are presented in Section VII.

II. RELATED WORKS
Performing diagnosis tasks under different operating condi-
tions is considered in some researches, yet it is rarely inves-
tigated and reviewed thoroughly. Due to the lack of related
works, and in order to present the most relevant insights to
the problem at hand, the literature review in this section is
not only confined to the anomaly detection for milling tools.
Concerning the researches that considered different operating
conditions in the diagnosis tasks, three main approaches can
be distinguished in the literature.

1) The first approach is based on building separate single-
operating-condition models, i.e., each model fits data
under only one set of operating conditions. This
approach is used in some works, e.g., [18], [31], [32],
to examine the generalization ability of a specific diag-
nosis approach when applied to different data sets
belonging to different sets of operating conditions. It is
also adopted in some researches, e.g., [33], to avoid
the complexity of setting a decision boundary that is
associated with the multi-operating-condition models.

2) The second approach is based on building a multi-
operating-condition model, i.e., mixed data from dif-
ferent operating conditions are used to train and test
the model. The robustness of a specific model can be
reflected in its ability to achieve a satisfactory system
diagnosis under different operating conditions [6], [18].
Research examples that fall under this category
include [4], [6], [7], [18].

3) The third approach is based on building several multi-
operating-condition models so that each model fits
only data with specific sets of operating conditions.
To realize this, clustering of the operating conditions
is performed first, and then a general model is built for
the data corresponding to each cluster. This approach
is used in [34] and [20] to perform an anomaly detec-
tion for aircraft engines and wind turbines, respec-
tively. In [34], the effect of the operating conditions is
removed first from the original data, and then a SOM
model is trained by the residuals. In [20], an anomaly
detection model based on isolation forest is built for
each cluster of the operating conditions. However,
since the formed clusters of operating conditions might
need to be validated by an expert [20], the third
approach is not considered any further in this paper.

The first approach that involves building separate single-
operating-condition models poses no special challenges,
at least from the individual model point of view. On the
other hand, several challenges arise when building a
multi-operating-condition model as discussed in Section I.
The effect of incorporating multiple operating conditions on
the assessment accuracy of the model can be found in the
researches that applied both the first and second aforemen-
tioned approaches, as in [18] and [12]. The authors in [18]
used a Sparse Auto Encoder (SAE) for feature fusion, and
a Deep Belief Network (DBN) for classifying bearing faults.
Three separate models are built for 3 different bearing speeds,
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and one general model is built for the mixed data. The accu-
racy of the general model was about 6% less than the average
accuracy of the separate models. In [12], GPAAwas proposed
for anomaly detection tasks. The accuracy of GPAA model
under 2 sets of operating conditions was about 5% less than
that of the single-operating-condition model.

Most of the existing multi-operating-condition TCMmod-
els are performed through a supervised multi-class classifica-
tion. In [7], the Principal Component Analysis (PCA) is used
for feature reduction, and a support vector machine-based
classifier is employed to diagnose the tool under 4 operating
conditions. In [6], a correlation-based feature selection is
performed, and different machine learning approaches and
ensemble methods are tested to classify the tool state under
8 operating conditions. In both [7] and [6], machining param-
eters, e.g., speed rotation, are used along with the sensory
features to feed the learning model. The approach presented
in [19] is based on removing the component related to the
operating conditions from the original spindle current signal,
and then feeding the residuals to the Deep Convolutional
Neural Network (DCNN) that in turn classifies different tool
states. In [35], four model coefficients of the cutting force sig-
nal are shown to be independent of the operating conditions
while being correlated with the tool wear. However, both the
approaches in [19] and [35] are based on particular sensor
signals, which limits their applicability with other sensor
types.

The authors in [13] developed an anomaly detection
mechanism through a non-convex archetypal analysis. The
suitability of this approach for non-convex data makes
it promising for the data taken under different operating
conditions.

Regarding the anomaly detection-based TCM, most of
the researches consider only one set of operating condi-
tions, such as [10] in which DCNN is employed. On the
other hand, the authors in [4] applied a DL anomaly detec-
tion model based on GAN to detect anomalous tool states
under 9 different operating conditions. However, most of the
DL-based approaches rely on the inherent capability of the
deep networks to automatically perform the tasks of feature
extraction/selection, which does not allow for knowing the
particular sensory features that contributed to obtaining the
results achieved. Moreover, DL methods usually need large
training data, long training time, and high computational
demands, which could limit their applicability in the indus-
trial applications.

As mentioned in Section I, SOM is selected as the learning
approach in this paper. Several SOM-based anomaly detec-
tion approaches exist in the literature, e.g., [11], [34], [36].
They mainly differ in the health indicator, distance measure,
and threshold-setting technique. Examining the ability of
TCM approaches to maintain a consistent performance under
different operating conditions is essential to ensure a reli-
able TCM in the real-world manufacturing settings. In [37],
a comparative evaluation of different SOM-based anomaly
detection approaches was performed. However, the data sets

that were used are non-time series data. Moreover, the effect
of the different operating conditions are not considered in the
evaluation. Therefore, the literature still lacks an investiga-
tion and an in-depth study of different SOM-based anomaly
detection approaches under different operating conditions.
To fill this gap, we perform a comprehensive compari-
son of different SOM-based approaches, with the aim of
examining their stability when applied to different single-
operating-condition models, as well as their robustness when
applied to multi-operating-condition models. Since the effec-
tiveness of anomaly detection is not only related to the applied
approach but also to the feature samples that are used to train
SOM, it is of great importance to select the most signifi-
cant sensory features with regard to the task at hand. Most
of the feature selection schemes proposed in the literature
are designed based on data from only one set of operating
conditions, e.g., [21]. Furthermore, the most commonly used
feature reduction/selection techniques, e.g., PCA [7], Lapla-
cian Score (LS) [38], are based on underlying assumptions
regarding what would lead to good results, e.g., the criterion
for PCA is the data variance, and it is the locality preserving
power for LS, which might not be consistent with multi-
operating-condition data. In Section IV, a feature selection
scheme which utilizes multi-operating-condition normal data
is proposed.

III. THE MAIN WORKFLOW AND SYSTEM DESCRIPTION
As mentioned previously, the main focus of this work
is on addressing the issues related to building a multi-
operating-condition SOM model that can be employed for
anomaly detection for milling tools based on a one-class
classification. In this work, the tool is regarded as normal
when its health condition still allows for carrying out accurate
machining and generating good quality products. Otherwise,
it is considered worn and should be replaced.

FIGURE 1. The main workflow of the offline and online procedures
performed in this paper for TCM; dashed lines represent the outcome of
the offline procedure that will be used in the online one.

The main workflow of the TCM performed in this paper
is divided into offline and online procedures, as depicted
in Fig. 1. The offline procedure encompasses the different
processes and decisions that are needed to build the SOM
model as well as to derive the required parameters for the
anomaly detection. Only the normal data corresponding to
the normal tool are used in this procedure. First, features
are extracted from the preprocessed raw sensor signals.

90014 VOLUME 9, 2021



M. Assafo, P. Langendörfer: TOPSIS-Assisted Feature Selection Scheme and SOM-Based Anomaly Detection

Second, the most significant features are determined based
on our proposed feature selection scheme that will be pre-
sented in Section IV. The selected features are then used to
build the SOM model, and finally anomaly detection-related
parameters are derived from the trained SOM. The offline
procedure outcome, represented by the selected features,
the trained SOM, and the parameters for the anomaly detec-
tion approach, will be used in the online procedure where
data from both the normal and worn tool are presented, and
an assessment of the tool condition is made at last.

Since we aim to build a multi-operating-condition SOM
model, normal data observed under different operating con-
ditions are needed to train the model. In the next paragraph,
we clarify the major assumptions and notions needed for our
subsequent analysis.

Let {casei}, i = 1, . . . ,L, be a set of experimental cases
where each case represents observations taken during the
milling process under a specific set of operating conditions,
e.g., rotation speed, depth of cut, etc. Each observation com-
prises a time stamp and the sensor signals recorded during
the observation period. For each case, the observations are
stored in time order as the milling machine is running, and
cover the portion of the tool lifetime when the tool is still
normal, i.e., starting from when the tool is new up to a
certain point of its lifetime. Hence, the observations under
each case do not constitute run-to-failure data but rather
degradation data. Furthermore, the available normal data are
not labeled with respect to the exact tool state. It should
be noted that the number of observations might not be the
same for all the cases, as fewer observations are expected
for the cases in which the tool wear progresses faster. Let
{Ff }, f = 1, . . . ,N , be a set of the extracted features,
e.g., mean, variance, etc., from each of the recorded sensor
signals.

IV. OUR FEATURE SELECTION SCHEME FOR
MULTI-OPERATING-CONDITION MODELS
Feature selection aims to reduce the dimension of the fea-
ture sample that will be an input to the learning model by
selecting the most significant features among the extracted
ones, while excluding irrelevant and redundant features. This
is not only crucial to reduce the computation and stor-
age demands, but also to not degrade the learning model
performance [39].

The aim of our proposed scheme is to select the features
with the highest discrimination ability under different oper-
ating conditions while eliminating redundant features. The
scheme can be described briefly in the following steps:

1) Calculating the discriminability indicators of all the
extracted sensory features.

2) Using TOPSIS to rank the features based on their cal-
culated discriminability indicators.

3) Eliminating the redundant features based on the
inter-feature Pearson’s correlation.

4) Selecting the top n features of the remaining ranked
features.

A. CALCULATING THE DISCRIMINABILITY INDICATORS
The significance of each extracted feature is examined on the
basis of its discrimination ability with respect to different pat-
terns of data. The Statistical Overlap Factor (SOF) presented
in [40] is employed for this purpose. SOF is used to measure
the ability of a given feature to discriminate between two
different classes. For this, labeled data are needed to identify
the two classes. SOF is given as in (1) [40].

SOF =

∣∣∣∣ µ1 − µ2

(σ1 + σ2) /2

∣∣∣∣ (1)

where µ1 and σ1 are respectively the mean and standard
deviation of the feature samples corresponding to the first
class, µ2 and σ2 are respectively the mean and standard
deviation of the feature samples corresponding to the second
class. However, since the focus of this work is on dealing
with unlabeled normal data, we will make a coarse division
of the normal data under each case, casei, so that SOF can be
implemented.

Recall that the observations representing the normal data
are stored in time order, the observations under each case
can be divided into two groups— the first group contains
the first 70% of the total observations, whereas the second
one includes the remaining 30% of the observations. It can
be considered that the tool will be noticeably more degraded
over the second group as compared to the first one. As such,
the first group is more representative of the healthy state
of the tool, whereas the second group is more representative
of the degraded state. Such a division could help to exploit
the known normal data to make a rough estimation of the fea-
ture behavior over the unknown anomalous data. Therefore,
the SOF metric will be used in this paper within the same
class, i.e., normal state, but with the two aforementioned data
groups representing the healthy and degraded states.

Since the model will be trained by data from different
operating conditions, it is important to measure the discrim-
inability of the feature not only within the data of the same
set of operating conditions but also with the different ones.
As such, two SOF-based discriminability indicators of the
feature f are used in our scheme proposed in this section,
namely intra-case SOF and inter-case SOF.
• Intra-case SOF, denoted by SOF if (intra): It measures the
ability of the feature f to separate between the healthy
and degraded states under the intended case, casei.

• Inter-case SOF, denoted by SOF if (inter): It measures
the ability of the feature f to separate between the
healthy state under the intended case, casei, and the
degraded states under the other cases, {casej}, j =
1, . . . ,K ; casej ∈ {casei}; j6=i, whose operating condi-
tions are different from those of the intended case, casei.

SOF (intra-case) and SOF (inter-case) under the casei are
calculated by (2) and (3), respectively.

SOF if (intra) =

∣∣∣∣∣∣ µif 1 − µ
i
f 2(

σ if 1 + σ
i
f 2

)
/2

∣∣∣∣∣∣ (2)
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SOF if (inter) =
1
K

K∑
j=1

∣∣∣∣∣∣ µif 1 − µ
j
f 2(

σ if 1 + σ
j
f 2

)
/2

∣∣∣∣∣∣ ; j 6= i (3)

where µif 1 and σ if 1 are respectively the mean and standard
deviation of feature f ’s samples corresponding to the healthy
state under the casei, whereas µif 2 and σ if 2 are respectively
the mean and standard deviation of feature f ’s samples cor-
responding to the degraded state under the casei. Similarly,
µ
j
f 2 and σ

j
f 2 are respectively the mean and standard deviation

of feature f ’s samples corresponding to the degraded state
under the casej. The equation (3) represents the average of
the individual SOF values calculated for the intended case,
casei, and all the cases, {casej}, that have different operating
conditions than those of the intended case, casei. Fig. 2
illustrates the concept of intra-case SOF and inter-case SOF
for feature f under casei.

FIGURE 2. The concept of intra-case SOF and inter-case SOF used in our
proposed feature selection scheme to assess the discriminability of the
sensory feature f with the multi-operating-condition data; the operating
conditions of casei and casej are different.

Given that the significance of a specific feature varies with
different operating conditions [8] and the aim here is to use
the same learningmodel for the different operating conditions
incorporated in building the model, it is critical to take all
these operating conditions into account when selecting the
features. To realize this, for each feature f , the value of each of
the two discriminability indicators will be calculated first for
the individual cases, and then an average over the total cases
will be calculated. Hence, the final discriminability indicators
for the feature f are represented by (4) and (5).

SOFf (intra) =
1
L

L∑
i=1

SOF if (intra) (4)

SOFf (inter) =
1
L

L∑
i=1

SOF if (inter) (5)

where L is the number of all the cases represented by the TCM
model, as mentioned in Section III.

B. RANKING SENSORY FEATURES BASED ON TOPSIS
TOPSIS is one of the multi-criteria decision-making meth-
ods. It is characterized by being simple, logical and compu-
tationally efficient, and is considered one of the best ranking

methods [41]. It is based on an organized procedure that ranks
the alternatives with respect to some attributes (criteria) in
such a way that the best alternative would have the smallest
distance from the ideal solution and the largest distance from
the non-ideal solution [42].

In the following paragraphs, the ranking procedure of TOP-
SIS will be reviewed first, and then our idea to apply TOPSIS
for ranking sensory features is presented.

Let {Af }, f = 1, . . . ,N , represents a set of alterna-
tives. Each alternative is characterized by a set of attributes,
{Cc}, c = 1, . . . ,M . The extent to which the attribute Cc
contributes to ranking the alternatives is determined by its
weight wc, where the attributes’ weights are fed to TOPSIS
algorithm and

∑
c wc = 1. The value xfc represents the

attribute Cc corresponding to the alternative Af . The decision
matrix D contains all the values of xfc, as in (6).

D =

x11 . . . x1M
...

. . .
...

xN1 . . . xNM

 (6)

The ranking procedure of TOPSIS involves the following
steps [42]:

Step 1. Normalizing the elements of the decision matrix D
with respect to each attribute Cc. This step accounts for the
different units and scales among the different attributes.

rfc =
xfc√∑N
f=1 x

2
fc

; f = 1, . . . ,N ; c = 1, . . . ,M (7)

Step 2. Constructing the weighted normalized matrix by
multiplying each normalized value rfc with its corresponding
weight wc.

vfc = rfc × wc; f = 1, . . . ,N ; c = 1, . . . ,M (8)

Step 3. Determining the positive ideal solution (S+) and the
negative ideal solution (S−) with respect to all the attributes.

S+ = {v+1 , . . . , v
+

M }

=

{(
max
f
vfc|c ∈ C ′

)
,

(
min
f
vfc|c ∈ C ′′

)}
(9)

S− = {v−1 , . . . , v
−

M }

=

{(
min
f
vfc|c ∈ C ′

)
,

(
max
f
vfc|c ∈ C ′′

)}
(10)

whereC ′ represents the set of benefit attributes (the larger the
better), and C ′′ represents the cost attributes (the smaller the
better).

Step 4. Calculating the distances d+f and d−f that separate
each alternative from S+ and S−, respectively.

d+f =

√√√√ M∑
c=1

(
vfc − v

+
c
)2
; f = 1, . . . ,N (11)

d−f =

√√√√ M∑
c=1

(
vfc − v

−
c
)2
; f = 1, . . . ,N (12)
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Step 5. Calculating the relative closeness (Q+f ) of each
alternative to the ideal solution. This value represents the
score of the alternative Af .

Q+f =
d−f

d−f + d
+

f

; f = 1, . . . ,N (13)

Step 6. Ranking the alternatives in descending order based
on Q+f . The best alternative would be the one with the
highest Q+f .

The attributes’ weights play a significant role in ranking
the alternatives. Weight determination can be broadly classi-
fied into two categories: subjective weighting and objective
weighting. In the former, the importance of the attributes are
determined by the decisionmaker, e.g., expert, based on some
factors, such as knowledge, preference, perception of the
problem, design constraints [43], etc. Whereas in the latter,
the weights are determined based on the information provided
by the decisionmatrix. Entropymethod, which assigns higher
weights to the attributes that carry more diverse information
among the alternatives [43], is one of themost widely adopted
objective weighting methods.

In our TOPSIS-assisted feature selection scheme, each sen-
sory feature represents an alternative Af . The attributes that
characterize each feature are SOFf (intra) and SOFf (inter)
which are calculated using (4) and (5), respectively. Hence,
N represents the total number of the extracted sensory fea-
tures, and the number of the attributes, i.e., M in (6)–(12),
is equal to 2. It should be noted that both of the uti-
lized attributes are benefit attributes. As for determining the
attributes’ weights, the objective weightingwas not employed
in this paper due to the fact that, in the considered system,
only normal data are available in the offline procedure in
which the feature selection scheme is performed (see Fig. 1).
Since the feature attributes were computed based only on the
normal data but the ultimate goal is to distinguish between
normal and anomalous data, the attributes in the decision
matrix do not fully reflect the feature behavior over all the
states of interest (normal and worn tool states). Therefore,
performing a fine tuning of the weights based on these
values might lead to selecting suboptimal features when it
comes to the online procedure in which both normal and
anomalous data are presented. In light of that, a compromise
decision would be to give an equal importance to the two
attributes since, for multi-operating-condition models, it is
crucial for the selected features to have good discriminabil-
ity properties regarding data of the same-and-different oper-
ating conditions, i.e., SOFf (intra) and SOFf (inter). Thus,
w = [0.5, 0.5] is considered in this work. Unlike the typ-
ical TOPSIS-based decision making applications in which
only the best alternative is selected, e.g., selecting the best
material, or in which the rank of top alternatives is mean-
ingful for the further decisions, e.g., ranking companies, our
TOPSIS-assisted feature selection scheme selects the top n
ranked features after eliminating redundant features, as it
will be shown in the next step of our scheme. Moreover,

the rank order of the eventually selected features carries no
significance when it comes to feeding them to the learning
model.

C. ELIMINATING THE REDUNDANT FEATURES
Unlike the features that carry no relevant information to
the task at hand, the redundant features might be informa-
tive. However, they carry no unique information, and hence
they are not considered indispensable [39]. It is a common
practice in the literature to utilize the inter-feature Pearson’s
correlation to examine the redundancy among the extracted
features [44]–[47].

To remove the redundant features, we adopted the proce-
dure presented in [44] in which the redundant feature elim-
ination is carried out iteratively. The main principle of this
procedure is that each higher ranked feature will eliminate
the lower ranked features with which it has a correlation
exceeding a specific threshold. First, the highest ranked fea-
ture starts eliminating the strongly correlated features with
it. Next, the highest ranked feature among the remaining
features is determined, and the same elimination process is
performed. The same procedure is iterated until no feature is
remaining.

Since multi-operating-condition models are considered in
our work, the inter-feature correlation is examined over all
the cases. The inter-feature correlation between the features
Fa and Fb under casei is denoted by Riab, and is calculated
through the Pearson’s correlation coefficient as in (14) [48].

Riab =

∑
s

(
yis − ȳi

) (
zis − z̄i

)
√∑

s

(
yis − ȳi

)2√∑
s

(
zis − z̄i

)2 (14)

where yis and zis are the feature samples corresponding to
the features Fa and Fb, respectively. ȳi and z̄i are the mean
values of feature samples for Fa and Fb, respectively. Riab
is within the range of [-1,1]. The correlation direction (posi-
tive or negative) is not important for examining redundancy
among features, but rather, the correlation strength expressed
by the absolute value whose range is [0,1] [47]. The overall
correlation strength between the featuresFa andFb is denoted
by Rab and is calculated as in (15).

Rab =
1
L

L∑
i=1

∣∣∣Riab∣∣∣ (15)

where L is the number of the total cases. The greater Rab
the stronger the correlation between the two examined fea-
tures. Similarly to [46], feature elimination occurs when Rab
exceeds 0.8.

After eliminating the redundant features, the top n features
among the remaining ranked features are selected. n can be
regarded as an optimization parameter since the optimum
number of the selected features is related to the number of
training samples as well as the overall complexity of the task
performed by the learning model. Fig. 3 shows a flowchart
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FIGURE 3. The flowchart of our feature selection scheme for the
multi-operating-condition models.

illustrating our feature selection scheme proposed in this
paper.

V. SOM-BASED ANOMALY DETECTION
A. BACKGROUND ABOUT SOM
SOM, also known as Kohonen maps, is an unsupervised
learning neural network that maps high-dimensional input
data onto a lower-dimensional, usually a 2-dimensional,
grid of neurons. This mapping has the special property
of preserving the topology of the input space, meaning
that the input vectors that are closely spaced in the input
space will be mapped onto closely spaced neurons in the
grid [49]. This organized 2D-representation is particularly
useful for analyzing and visualizing high-dimensional data.
The topology-preserving aspect is what distinguishes SOM
from other clustering techniques, e.g., k-means [22].

Each neuron is characterized by its position in the grid as
well as its weight vector in the input space. The former is used
to determine the spatial relationship between the different
map neurons, and the latter is used to measure the distance,
usually the Euclidean distance, between the input vector and
the neuron. The neuron grid can be rectangular, hexagonal,
etc. [49].

There are two main training algorithms for SOM, namely
the sequential learning algorithm and the batch learning algo-
rithm. In the former, one input vector is presented to the
SOM at a time, whereas in the latter, all the input vectors are
presented to the SOM at once [50].

For the sequential learning, when an input vector, x(t),
is presented to SOM, the Euclidean distances between x(t)
and the weight vectors of all the map neurons are calculated.
The neuron that has the smallest distance from the input
vector is called the winner or the Best Matching Unit (BMU),

and its distance to the input vector is called the Minimum
Quantization Error (MQE) [36]. Hence, if c is the index of
the winner, it is determined as in (16) [50].

c = arg min
i
{||x(t)− mi(t)| |} (16)

wheremi(t) is the current weight vector of the neuron i. ||.|| is
the Euclidean distance. The BMU and its neuron neighbors in
the grid will update their weight vectors so that they get closer
to the input vector in the input space, as in (17) [51].

mi(t + 1) = mi(t)+ α(t)hci(t)[x(t)− mi(t)] (17)

where mi(t + 1) is the updated weight vector of the neuron i,
α(t) is the learning rate at the time t , hci(t) is the neighborhood
function centered at the BMU, neuron c, and is commonly
chosen as in (18) [51].

hci(t) = exp
(
−
sqrtdis(c, i)
2σ 2

c (t)

)
(18)

where sqrtdis(c, i) is the square of the distance between the
neuron i and neuron c in the grid, σc(t) represents the neigh-
borhood radius associated with the winning neuron c at the
time t . Both α(t) and σc(t) are monotonically decreasing
functions with respect to t [51].

The overall training comprises two learning phases: the
initial phase and fine tuning phase. The topology-preserving
mapping is achieved roughly in the initial phase where rela-
tively large values of both the learning rate and neighborhood
function are used. During the fine tuning phase, small values
of learning rate and neighborhood function are used to enable
the neurons to converge based on their corresponding input
vectors, and thus the distribution of the input vectors is also
learned in this phase [21].

The training in the batch learning algorithm is also itera-
tive. However, all the training samples are fed to the SOM
at once. The batch learning is advisable for practical applica-
tions as it converges faster and does not involve the learning
rate parameter [50]. The BMUs corresponding to the input
vectors are identified as in (16). The weight vectors are
updated as in (19).

mi(t + 1) =

∑T
j=1 hci(t)xj∑T
j=1 hci(t)

(19)

where T is the number of the training samples, and hci(t) is
the value of the neighborhood function for the neuron i when
the input vector is xj [51].
The number of SOM neurons has a significant impact

on the representation quality and implementation efficiency.
Too few neurons might cause different input patterns to be
represented by the same neuron. Too many neurons, on the
other hand, might cause similar input patterns to get separated
on the map [23], and it also increases the computational
burden [51]. It is a common practice in the literature to
set the grid size based on (20) and (21) to avoid the two
aforementioned scenarios [51].

U ≈ 5
√
T (20)
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u1
u2
≈

√
e1
e2

(21)

where U is the number of grid neurons, and T is the number
of training samples. u1 and u2 are respectively the numbers of
rows and columns of the grid. e1 and e2 are respectively the
largest and second largest eigenvalues of the training data’s
covariance matrix.

B. THE STUDIED ANOMALY DETECTION APPROACHES
SOM-based anomaly detection approaches usually involve
three major steps. First, the map neurons are trained by the
normal data. Second, the values of the employed health indi-
cator are calculated for the training data. Third, a threshold is
drawn from the calculated health indicator values. The health
indicator serves as a similarity measure between the test
samples and the normal data represented by the built model.
Therefore, the test samples that generate health indicator
values exceeding the threshold are regarded as anomalous.

Four SOM-based anomaly detection approaches are inves-
tigated in this paper, namely the traditional approach which is
employed in many researches, e.g., [11], [52]; the approach
proposed in [34]; the approach proposed in [36]; and a
hybrid approach of the last two approaches. These approaches
differ mainly in the employed health indicator and the
threshold-setting technique.

In the traditional approach, the health indicator is theMQE.
After training SOM, the threshold is set to be a quantile
of 0.99 of all the MQEs corresponding to the training sam-
ples. If the MQE corresponding to a test sample exceeds the
defined threshold, then the sample is assessed as anomalous.
One reason behind setting the quantile to the value of 0.99,
and not 1, is to consider the fact that the real-world training
samples are affected by some factors, e.g., noise. Hence,
setting the threshold to the maximum MQE generated by the
training samples might adversely affect the anomaly detec-
tion rate [11].

The approach presented in [34] is the same as the tradi-
tional one, except that the threshold applied to the MQE val-
ues is set locally per neuron instead of globally. The threshold
associated with a particular neuron is set to be the quantile
of 0.99 of the MQEs corresponding to only the training sam-
ples for which that neuron was the BMU. Therefore, when a
test sample is to be assessed, the MQE will be compared with
the particular threshold associated with its BMU.

The approach in [36] differs from the traditional approach
in the health indicator. First, for a given input sample, the K
nearest neighbors (KNNs) among the map neurons are deter-
mined based on their corresponding quantization errors gen-
erated for that input sample. Next, the health indicator is
calculated as the distance between the input sample and the
centroid of the KNNs. Similarly to the traditional approach,
the threshold is set globally, i.e., a quantile of 0.99 of the total
generated health indicators by the training samples is set as
the anomaly threshold. The aim of this approach is to tackle
the false anomaly detection caused by the noisy training sam-
ples. Previous solutions suggested taking the health indicator

as the average of all the quantization errors corresponding to
all the map neurons. However, such solutions are not suitable
when the map neurons are non-convex. Hence, the approach
proposed in [36] aimed to present a compromise solution
through considering only the KNNs to the input sample when
calculating the health indicator. In this paper, the value of K
is set to 3, as in [36].

In order to make the study of the different approaches more
comprehensive, we also consider a hybrid approach of the two
last above approaches. Thus, the health indicator is the same
as in [36], i.e., the distance of the input sample from the
centroid of the KNNs, whereas the anomaly threshold for that
health indicator is set locally per neuron as in [34].

TABLE 1. The studied SOM-based anomaly detection approaches.

For simplicity, in the subsequent sections of this paper,
the four approaches are respectively referred to as MQE-G,
MQE-L, KNN-G, and KNN-L, where G and L refer to
the global and local thresholds, respectively. It should be
noted that for MQE-L; KNN-G; and KNN-L, after training
SOM, only the neurons that became BMU at least once are
considered in the processes involved in the corresponding
approach. Table 1 summarizes the most important aspects of
the four aforementioned approaches.

VI. IMPLEMENTATION DETAILS
A. EXPERIMENTAL DATA
The publicly available NASAMilling Data Set [30] is used in
this paper. It represents several runs from a milling machine
under various operating conditions. The operating condi-
tions are chosen in accordance with industrial applicability
and manufacturer’s recommendations. They encompass two
values of the depth of cut: 0.75mm and 1.5mm, two val-
ues of the feed rates: 0.25mm/rev and 0.5mm/rev, and two
workpiece materials: cast iron and steel. A cutting speed
of 826 rev/min is used for all the experiments. The combina-
tion of these operating conditions results in 8 different cases.
However, the experiments with the same operating conditions
are repeated a second time using another set of inserts, leading
to a total of 16 cases in this data set. Each case includes many
observations taken from many runs of the milling machine.
Table 2 lists the different operating conditions and the number
of runs for each of the 16 cases. The case indexed ‘6’ is not
considered in this paper as it only has one observation. All the
remaining cases include run-to-failure data, where themilling
process starts with a new tool and continues until the tool
reaches its limit, and sometimes beyond. The observations
under each case are provided with themachining time, the run
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number, and 6 sensor signals with 9000 samples each. In addi-
tion, the majority of observations are provided with the flank
wear (VB) that were measured with the help of a microscope
after the corresponding runs. As in [53], we calculated the
missing flank wear values through interpolation using the
available values corresponding to the intended case. Recall
that our work only deals with unlabeled data with respect to
the exact tool state (See Section III), the flank wear values
are only used in this paper to split the run-to-failure data
under each case of the NASA Milling Data Set into normal
and anomalous data. The tool wear can be divided into three
stages [32]: the initial worn state, the normal worn state, and
the severe worn state. In the last stage, the tool wear exceeds
0.3mm. Hence, in this paper, the tool is considered worn
when its flank wear value exceeds 0.3mm. Otherwise, it is
considered normal. As such, the total NASAMilling Data Set
is divided into normal data and anomalous data.

TABLE 2. The main parameters of the NASA milling data set.

The sensor signals include the AC spindle motor cur-
rent, DC spindle motor current, table Acoustic Emission
(AE), spindle AE, table vibration, and spindle vibration.
Fig. 4 shows an example of the six sensor signals for one
run. Excluding the DC spindle motor current, we consider
only five sensor signals in this paper. In addition, out of
the 9000 samples for each sensor signal, we only consider
4096 samples in the middle. This is to exclude the samples
corresponding to the entry cut and exit cut, as in [3]. More
details about this data set can be found in [30].

B. IMPLEMENTED SCENARIOS
In order to perform a comprehensive evaluation of the differ-
ent anomaly detection approaches, we consider two extreme
scenarios with respect to the diversity of the operating condi-
tion sets included in the individual models. The models in the
first scenario include only one set of the operating conditions,
whereas all the 8 operating conditions are included in the
second-scenario models. More specifically,

1) In the first scenario, single-operating-condition models
are built. The data under the cases of identical operating

FIGURE 4. Sensor signals for one run of the NASA milling data set.

conditions, e.g., the cases {1,9} (see Table 2), are com-
bined to constitute the data set for the corresponding
model. Since the NASAMilling Data Set encompasses
8 different sets of operating conditions, 8 single-
operating-condition models are built and tested for this
scenario. The main aim here is to examine the stability
of the approaches over the aforementioned 8 models.

2) In the second scenario, multi-operating-conditionmod-
els are built and tested, with each of them encompass-
ing 8 sets of operating conditions. Hence, the whole
NASA Milling Data Set, except the data of case 6,
is used for this scenario. For all the built models,
we will study the effect of incorporating the numerical
machining parameters, i.e., feed rate and depth of cut,
to the selected sensory feature set. Moreover, our pro-
posed feature selection scheme will be compared with
PCA and LS in this scenario.

The hexagonal shape is chosen for the two-dimensional
SOMgrid and the batch algorithm is applied for learning, as it
is recommended in [50]. For each validation run, the training
and test samples are normalized based on the corresponding
training samples to fall within the range [0,1]. The SOM
grid size is also configured based on the training samples
using (20) and (21). After the completion of each training run
of SOM, the four anomaly detection approaches are applied
in order to derive the corresponding anomaly indicators and
thresholds. Finally, the corresponding test samples are fed to
SOM and assessed as normal or anomalous.

For all the SOM models, the training data contain only
normal data, whereas the test data include both normal and
anomalous data. A 10-fold cross validation is implemented
for each model. Similarly to [6], this procedure is repeated
10 times using 10 different partition seeds, leading to 100 val-
idation runs for each evaluated SOM model. Hence, each
result obtained in this work is the average of its corresponding
values over the 100 runs.

The different anomaly detection approaches are evalu-
ated on the basis of the following performance indicators:
accuracy [45], anomaly detection rate (recall) [34], false
alarm rate [34], and F1-score [45] which are expressed
in (22)–(25), respectively. The precision indicator that is
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needed for calculating F1-score is expressed in (26) [45].

Accuracy=
TP+TN

TP+TN+FP+FN
(22)

Anomaly Detection Rate (Recall) =
TP

TP+ FN
(23)

False Alarm Rate =
FP

TP+ FP
(24)

F1-score= 2×
Recall×Precision
Recall+Precision

(25)

Precision =
TP

TP+ FP
(26)

where TP (True Positive) and TN (True Negative) represent
the test samples that are correctly assessed as anomalous
and normal, respectively. FP (False Positive) and FN (False
Negative) represent the test samples that are wrongly assessed
as anomalous and normal, respectively.

C. THE CONDUCTED FEATURE EXTRACTION/SELECTION
PROCESSES
The sensor signals recorded during each milling run are
divided into non-overlapping segments of 1024 samples.
Therefore, each observation will consist of 4 segments; with-
out including the entry and exit cut. The sensory features
are then extracted from each segment. There exist a variety
of feature extraction methods in the literature, among which
wavelet transform emerged as one of the most powerful
feature extraction methods for the predictive maintenance.
This is due to the fact that the wavelets are localized in both
the time and frequency domains, which allows for extracting
distinctive features from the non-stationary sensor signals.
In this paper, three different signal analysis methods are
performed for feature extraction, namely:

1) Time-domain statistical analysis in which the following
seven features are extracted from each segment: mean,
variance, skewness, kurtosis, impulse factor, crest fac-
tor, and Root Mean Square (RMS). The equations for
these features can be found in [7].

2) Multi-resolution analysis using a non-decimated dis-
crete wavelet transform. It is a common practice in
the literature to extract statistical features from the dis-
crete wavelet transform coefficients [32]. In our work,
a 6-level decomposition of each segment is performed
using each of the following mother wavelet functions:
db1, db2, and db3. Each decomposition results in 6
details, D1, D2, . . . , D6; and one approximation, A6.
Each of the resultant approximations and details is used
to extract the following four statistical features: mean,
variance, skewness, and kurtosis.

3) Time-frequency analysis using continuous wavelet
transform. The bump wavelet is used for this trans-
form. The resultant scalogram for each segment is used
to compute the mean peak frequency. First, the peak
frequency is determined for each time instance, where

the peak frequency is the frequency with the maximum
power. Next, the mean peak frequency is calculated as
the average of the peak frequencies determined at all
the time instances.

Table 3 shows the number of extracted features per sen-
sor for each of the feature extraction methods. Since the
same features are extracted from the five sensors, a total
of 460 (92 × 5) sensory features are extracted.

TABLE 3. Number of extracted features per sensor.

FIGURE 5. TOPSIS scores of all the extracted sensory features. (a) Feature
scores for the individual sensors. (b) Ranked scores.

The extracted features undergo the processes involved in
our feature selection scheme (see Section IV). The two cri-
teria of each feature are calculated based on (4) and (5).
The TOPSIS is then implemented to rank the features. It is
worth inspecting the scores of the total features extracted
from all the sensors before eliminating any feature or sensor.
Fig. 5 shows the TOPSIS scores of the total features extracted
from the five sensors. As it is depicted in Fig. 5a, among all
the sensors, the table AE sensor and the AC spindle motor
current sensor have the highest scored features. In addition,
for all the sensors, the low scored features tend to be more
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than the high scored features. This is to be expected since it
would be difficult to maintain a good discrimination ability
over the 8 operating conditions considered in the evaluation
criteria of the features. Fig. 5b illustrates the ranked TOPSIS
scores. It can be noticed that some features have identical
scores. Such features are most likely to be strongly correlated.
This explains the importance of the third step in our feature
selection scheme in which redundant features are eliminated.

Deploying five sensors on the machine center could not be
practical in real-world implementations, especially when the
sensors are mounted near the machining area. Since finding
the optimal multi-sensor configuration is out of the scope of
this paper, wewill only select two sensors to enable the sensor
fusion. The AE table sensor and the AC spindle motor current
sensor are selected since, among all the other sensors, they
have the features with the highest TOPSIS scores. Hence,
these two sensors are the only sensors that will be considered
in the rest of the paper.

Concerning the feature selection in the first scenario
that corresponds to the single-operating-condition models,
the feature selection will be performed separately for each
model. It should be noted that the second criterion in our
proposed scheme, i.e., the criterion related to the inter-case
SOF, is not relevant in this scenario since the data of a specific
model share the same operating conditions. This is equivalent
to setting the criteria weights tow = [1, 0] (see Section IV-B).
When calculating the first criterion through (4), only the
cases that share the intended set of operating conditions are
included. As for the feature selection in the second scenario
that corresponds to themulti-operating-conditionmodels, our
proposed feature selection scheme is implemented exactly as
described in Section IV. In both scenarios, the number of the
selected sensory features for each model is set to 5. Table 4
lists the selected five features based on our proposed feature
selection scheme for the multi-operating-condition models.

TABLE 4. The features selected by our scheme for the
multi-operating-condition models.

D. EXPERIMENTAL RESULTS AND DISCUSSION
This section starts with the results obtained in the first imple-
mentation scenario, and then proceeds with the second sce-
nario where the multi-operating-conditionmodels are applied
and our proposed feature selection scheme is compared with
PCA and LS.

1) THE FIRST-SCENARIO RESULTS AND DISCUSSION
As mentioned previously, 8 single-operating-condition SOM
models are built for the first scenario. Table 5 lists all the

performance indicators of the studied anomaly detection
approaches for these models, whereas Fig. 6 only shows
the accuracies of the approaches. As illustrated in Fig. 6,
the approaches with global thresholds, MQE-G and KNN-G,
show a less stable accuracy compared toMQE-L andKNN-L.
In particular, the accuracy of KNN-G fluctuates consider-
ably over the individual models. It reached as low as 13.3%
(for the cases{7,13}) and as high as about 97% (for the
three case sets{4,10}, {5,16}, {15}). Clearly, obtaining these
two extreme accuracies from the same approach emphasizes
the significance of evaluating the TCM models on different
operating conditions. The reason for this fluctuation could be
attributed to the fact that the health indicator used in KNN-G
is based on the 3 nearest neurons to the input sample, which
makes the performance of this approach highly sensitive to
the training data structure which is in turn reflected by the
map neuron distribution in the feature space. If the 3 neurons
are close enough to each other, their centroid would still lie
in the feature space representing the normal data. Otherwise,
the centroid could fall in an abnormal area. The more scat-
tered the clusters of the training samples are, the more sever
this effect would be, which in turn leads to a higher global
threshold for the health indicator, and thus, a higher proba-
bility that an anomalous sample would be wrongly assessed
as normal. This can be verified in Table 5 where the anomaly
detection rate achieved by KNN-G is considerably lower than
those achieved by the other three approaches for the same
aforementioned cases. As for KNN-L, since the thresholds
are set separately for the map neurons, the influence of the
data structure will be limited to the training samples lying
in the vicinity of the intended neuron. This explains why the
performance of KNN-L is substantially more stable than the
KNN-G even though they both use the same health indicator.
The influence of the data structure is reduced even more for
MQE-L as it is not only based on local thresholds but also
the health indicator, i.e., MQE, is based only on one neuron,
meaning that the only relevant training samples are those
mapped to the intended neuron.

FIGURE 6. The accuracies of the studied SOM-based anomaly detection
approaches for the single-operating-condition models.

The improved accuracy that can be attained when using
local thresholds instead of global ones can be vividly seen
for the case sets {7,13},{8,14}. The accuracies achieved by
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TABLE 5. Performance indicators of the studied SOM-based approaches for the single-operating-condition models.

MQE-L for these case sets are 92.1% and 92.8% respectively,
which correspond to an outperformance of 11.6% and 28.5%
over MQE-G which achieved 80.5% and 64.3%. Similarly,
the accuracies achieved by KNN-L for these case sets are
88.8% and 91.1% respectively, which are by 75.5% and
46.5% higher than those achieved with KNN-G (the accura-
cies for KNN-G are 13.3% and 44.6%). The difference in the
anomaly detection rate is the reason behind these consider-
able differences in the accuracy between the aforementioned
counterpart approaches, as it can be seen in Table 5.

On the other hand, for some cases, e.g., {5,16},
the approaches with global thresholds achieved a higher accu-
racy than the approaches with local thresholds, primarily
due to an outperformance in the false alarm rate indicator.
These cases are likely to correspond to when the distribu-
tion of the SOM neurons in the feature space is relatively
even, i.e., their density in the different areas are relatively
similar. In such cases, the availability of more data samples
when the threshold is set globally compared to when it is
set locally helps to achieve a higher precision in anomaly
detection. However, when a better accuracy is achieved by
the global thresholds, the maximum difference compared to
that achieved by the local thresholds reached 7.3% for the
MQE approaches (for the cases {3,11}), and 5% for the
KNN approaches (for the cases {5,16}). These differences
can be neglected when compared to the cases in which the
local thresholds outperformed the global ones with differ-
ences of up to 28.5% for the MQE-based approaches and
up to 75.5% for the KNN-based approaches, as mentioned
previously.

It can be seen that for the case sets {4,10}, {5,16},
and {15}, the accuracies achieved by KNN-G and KNN-L
outperform those achieved by MQE-G and MQE-L, respec-
tively. In general, if the three neighbors in the KNN
approaches occupy a relatively compact area in the feature
space, incorporating the 3 neighbors in calculating the health
indicator would reduce the effect of noise, and thus, would
lead to a higher precision in detecting anomalies compared
to the MQE approaches whose health indicator is based only
on the distance to the BMU. This can be verified in Table 5
where the anomaly detection rates are nearly identical for
all the approaches, while the false alarm rates of the KNN

TABLE 6. Statistical summary of the accuracies achieved by the
approaches for the single-operating-condition models.

approaches are noticeably lower than those of the MQE
approaches.

Table 6 lists a statistical summary of the accuracies
achieved by the studied anomaly detection approaches in the
first scenario. The conclusions of the first-scenario evaluation
can be summarized as follows.
• MQE-L and KNN-L achieved a more stable perfor-
mance compared to MQE-G and KNN-G, owing to
being less affected by the overall structure of the training
data. Moreover, they were able to yield an F1-score
of over 90% for all the individual experimental cases,
as shown in Table 5. In addition, their average accu-
racy over the eight first-scenario models are over 90%
(90.4% for MQE-L, and 91.1% for KNN-L), as shown
in Table 6.

• The stability of the different approaches with respect
to the different operating conditions can be evaluated
on the basis of the range and standard deviation of
the accuracy values achieved over the different single-
operating-condition models (see Table 6); the more sta-
ble the approach is, the smaller the accuracy range and
standard deviation will be. As such, the approaches can
be ranked with respect to their performance stability as
follows (from the best to the worst): MQE-L, KNN-L,
MQE-G, and KNN-G. We consider the stability a key
factor to evaluate the approaches, since it reflects the
ability of the approach to yield a consistent TCM regard-
less of which operating conditions the data come from.

2) THE SECOND-SCENARIO RESULTS AND DISCUSSION
As mentioned previously, multi-operating-condition models
are built in this scenario. We start with the results obtained
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TABLE 7. Performance indicators of the studied SOM-based approaches for the multi-operating-condition models with our proposed feature selection
scheme.

with our feature selection scheme proposed in this paper, and
then a comparison with PCA and LS will be performed.

a: RESULTS WITH OUR PROPOSED SCHEME
First, only the five sensory features selected by our proposed
scheme (see Table 4) are fed to the SOM models. The aver-
age accuracy achieved by a specific approach in the first
scenario will be used as a baseline for comparison with the
accuracy achieved in the second scenario. Such a comparison
helps to evaluate the robustness of the individual approaches
when dealing with complex data structures. Next, the numer-
ical machining parameters in the NASA Milling Data Set,
i.e., feed rate and Depth of Cut (DoC), are incorporated into
the selected sensory features, constituting a 7-feature input
sample to the SOM models.

Table 7 shows the different performance indicators of the
anomaly detection approaches. Starting with the case without
including the machining parameters, it can be seen that the
accuracy achieved by MQE-G in this scenario (68.8%) is
considerably lower than the average accuracy achieved in the
first scenario (87.8%), i.e., there is a degradation of 19%.
Similarly, the accuracy of KNN-L (73.1%) is lower than the
average accuracy achieved in the first scenario (91.1%), i.e., a
18% degradation. As for KNN-G, an accuracy of 33.4% is
achieved against 71.5% in the first scenario (a 38.1% degra-
dation). On the other hand, MQE-L achieved an accuracy
of 89.4% which is nearly the same as the average accuracy
achieved in the first scenario (90.4%), i.e., the degradation is
only 1%. Among the four approaches, MQE-L achieved the
highest accuracy for the multi-operating-condition model.

Since the SOM neurons’weights follow the density distri-
bution of the training samples, the patterns that appear more
frequently in the input space will be represented by a greater
number of map neurons compared to the input patterns that
appear less frequently. Hence, for all the approaches, lower
values of the health indicators are expected in the areas where
the neurons are denser, and vice versa. Such irregularities
affect the tool assessment when the thresholds are set glob-
ally. This explains why the accuracy of MQE-G and KNN-G
is more prone to deterioration in general, and in particular,
when the training data belong to different operating condi-
tions. It can be vividly seen that MQE-L is the only approach
that succeeded in maintaining nearly the same level of accu-
racy as in the first scenario, which reflects the robustness of

this approach. These results reinforce that MQE-L is the least
vulnerable approach to the influence of the overall structure
of the training data, as it was also seen in the first scenario.
This aspect is particularly useful to achieve a reliable TCM.

As it is illustrated in Table 7, adding the machining param-
eters to the input feature sample led to a noticeable perfor-
mance improvement for all the four approaches. This is to be
expected since adding these values would contribute to reduc-
ing the overlapping between the normal and anomalousmulti-
operating-condition data. It can be seen that this addition has
simultaneously enhanced both the anomaly detection rate and
false alarm rate for all the approaches. An accuracy of 94.4%
was achieved by MQE-L.

b: RESULTS OF COMPARING OUR SCHEME WITH PCA
AND LS
As mentioned previously, our proposed feature selection
schemewill be comparedwith both PCA and LS in the second
scenario.

PCA is one of the most commonly used feature reduction
methods [7], [39], [48], [54]. It is based on generating a new
low-dimensional reference system that contains the directions
with the largest variance of the original data. This system is
formed by the so-called principal components, where each
principal component is a linear combination of the original
variables [39]. Using PCA in conjunction with SOM was
already used in many researches, e.g., [54]. In our implemen-
tation, the first five principal components are selected, hence
the 184 features extracted from the two selected sensors will
be projected onto these components, and the resultant scores
will constitute a 5-feature input sample to SOM.

Laplacian score (LS) for feature selection was proposed
in [38]. It is one of the most popular unsupervised feature
selection methods, and has been adopted in a multitude of
research works, e.g., [55], [56]. LS reflects the ability of
a feature to preserve locality. The basic idea behind it is
that closely spaced data samples are likely to represent the
same state. The LS algorithm can be summarized as follows.
First, the local data structure is modeled through a nearest
neighbor graph. Each node in this graph represents one data
sample constituted by the values of all the candidate features
corresponding to that sample. Two nodes are considered con-
nected if one of them is among the K nearest neighbors of
the other. Moreover, the inter-node connections are weighted
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based on a similarity measure. Next, LS will be computed
for each individual feature, where LS reflects the extent to
which each feature is able to preserve the constructed graph,
and hence the features can be ranked based on their LS.
More details about this method and the equations involved
can be found in [38]. In our implementation, the number of
K nearest neighbors in the nearest neighbor graph is taken
to be 5 as in [38]. It should be noted that LS method does
not take into account redundancy among features. In order to
make a more relevant comparison between our scheme and
LSmethod, we extended the LSmethod by adding a final step
in order to account for redundant features. In the extended
LS, after ranking the features based on their importance as
specified by the Laplacian scores, the ranked features will
undergo the procedure we implemented in our scheme to
eliminate redundant features (see Section IV-C), and then the
top 5 features will be selected from the remaining features.
Table 8 and Table 9 list the 5 most important features selected
based on LS and extended LS, respectively. Comparing the
two tables, it can be seen that there exist two redundant
features, namely the features ranked second and fifth, among
the 5 features selected based on LS.

TABLE 8. The features selected by LS method for the
multi-operating-condition models.

TABLE 9. The features selected by the extended LS method for the
multi-operating-condition models.

Fig. 7 shows the accuracies of the different approaches
in the second scenario for our proposed feature selection
scheme, PCA, LS, and extended LS (with and without adding
the machining parameters). As it is observed for all the exper-
iments in this figure, our proposed feature selection scheme
outperformed the other methods. This is attributed to the
fact that these methods are based on underlying assumptions
that are not consistent with themulti-operating-condition data
whose variation stems from both the operating conditions and
the tool wear progression. More specifically, PCA is based
on maximizing the data variance. However, the directions of
the maximum variance of the data could not be linked to the
tool state. Hence, it is possible to generate similar PCA scores

FIGURE 7. The accuracies of the studied SOM-based anomaly detection
approaches for the multi-operating-condition models with our proposed
feature selection scheme, PCA, LS, and extended LS (with/without adding
machining parameters to the input feature sample).

by data belonging to different tool states, especially with the
increased overlapping between normal and anomalous data
under the existence of different operating conditions. In addi-
tion, LS-based methods select the features with the highest
locality preserving power, assuming that similar data points
belong to the same state. However, as mentioned previously,
with the combined effect of both the tool degradation and
operating conditions, similar data patterns could be generated
even under different tool states. On the other hand, our pro-
posed scheme selects the features with the highest discrim-
inability concerning the data of the same/different operating
conditions. As for the difference between LS and extended
LS, it can be noticed that the extended LS considerably
outperformed the LS. This emphasizes the importance of the
added step that aims to eliminate redundant features. Regard-
ing when no machining parameters are added to the input
feature sample, the maximum accuracy gain achieved by our
scheme over PCA, LS, and extended LS reached 30.4% (for
MQE-G), 40.1% (for MQE-G), and 21.5% (for MQE-G),
respectively. With the addition of machining parameters,
the accuracy gain over PCA, LS, and extended LS reached
38.6% (for KNN-G), 40.7% (for KNN-G), and 31.7% (for
KNN-G), respectively.

The second-scenario evaluation can be summarized as
follows.
• With our proposed feature selection scheme and
5-feature input sample, the MQE-L was the only
approach that succeeded in maintaining the same
average accuracy it achieved over the single-operating-
condition models (about 90%). Contrarily, the perfor-
mance of all the other approaches considerably suffered
with the multi-operating-condition data. Based on the
difference between the accuracy achieved in the sec-
ond scenario and the average first-scenario accuracy,
the approaches can be ranked as follows (from the best
to the worst): MQE-L, KNN-L, MQE-G, and KNN-G.

• For all the four approaches, our proposed feature selec-
tion scheme outperformed PCA, LS, and extended LS.

• Adding the machining parameters to the input fea-
ture sample could substantially improve the assessment
accuracy achieved by the multi-operating-condition
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models, which can be attributed to the decreased over-
lapping between the normal and anomalous data.

It should be noted that the performance of our proposed
feature selection scheme can be enhanced with selecting
more than 5 sensory features. However, keeping the num-
ber of the selected features constant for both the single-
operating-condition models and multi-operating-condition
models allowed us to link the results obtained in the latter
models to the robustness of our scheme and the anomaly
detection approaches. In addition, the performance of all
the studied approaches can be optimized by calibrating the
corresponding quantile values. However, using the quantile
of 0.99 would reveal the inherent performance tendency of
the different approaches. In addition, it represents the most
commonly used quantile value in the literature.

VII. CONCLUSION AND FUTURE WORK
This work addressed the anomaly detection, modeled as
a one-class classification, of milling tools under different
operating conditions. A feature selection scheme for multi-
operating-condition models was proposed in this paper.
In this scheme, the SOF metric was used in two forms
to reflect the discriminability of a given feature regarding
the different data patterns belonging to the same/different
operating conditions. In addition, TOPSIS was used to
rank the features, and redundant features were eliminated.
SOM was employed to model the normal data, and four
SOM-based anomaly detection approaches are studied. The
NASA Milling Data Set was used for the evaluation experi-
ments. Two extreme evaluation scenarios with respect to the
diversity of the operating conditions were performed. First,
the anomaly detection approaches were applied on 8 single-
operating-condition models, with the aim of examining their
stability over these different models. Second, they are applied
on multi-operating-condition models (each one incorporating
8 different sets of operating conditions), with the aim of
examining their robustness when dealing with complex data
structures.

Feature extraction from 5 sensor signals was first per-
formed based on the time-domain statistical analysis as
well as the continuous/discrete wavelet transforms. TOPSIS
scores of the total features were utilized as a basis to choose
only the two sensors that have the highest ranked features.
The selected sensors are: the table AE sensor and AC spindle
current sensor.

The overall results showed that the studied SOM-based
anomaly detection approaches can be ranked in terms of
the stability and robustness as follows (from the best to the
worst): MQE-L, KNN-L, MQE-G, and KNN-G. This rank-
ing indicates that the threshold type (global or local) is the
most significant factor that affects the stability and robust-
ness of the SOM-based approaches studied in this paper.
The global thresholds render the approach more susceptible
to the influence of the overall data structure. In addition,
incorporating more than one neuron in calculating the health
indicator, as in the KNN-based approach, has also shown to

increase the sensitivity of the approach to the data structure.
Further, the accuracy fluctuation of some approaches over the
different models emphasizes that achieving a high diagnosis
accuracy is not the only important indicator to be sought
after when approaching TCM solutions. The stability and
robustness of the TCMmodels are just as important to ensure
a reliable TCM in the real-world settings.

Our proposed feature selection scheme was compared with
PCA, LS, extended LS (in which we added a step to the orig-
inal LS to eliminate redundant features). The results showed
that higher accuracies were achieved by all the approaches
with our scheme, with differences of up to 38.6%, 40.7%
and 31.7% as compared to PCA, LS, and extended LS,
respectively. These results show the feasibility of our feature
selection scheme for multi-operating-condition models used
for anomaly detection, and highlight the fact that the existing
feature reduction/selection techniques might not always be
powerful in regards to the complex industrial tasks, owing
to their dependency on specific criteria that might not be
consistent with the task at hand. For such tasks, utilizingmany
existing and/or task-tailored criteria to evaluate the sensory
features might be essential; not only to seek the features that
allow for a high diagnosis accuracy, but also to gain more
insights about the different sensors based on their signals,
as it was performed in this paper. To this end, TOPSIS can
play a vital role in ranking the features through a simple yet
powerful procedure.

For the future work, the stability and robustness of other
SOM-based TCM solutions that rely on novel health indica-
tors, e.g., the health indicator proposed in [26], will also be
investigated under different operating conditions. In addition,
applying the non-convex archetypal analysis proposed in [13]
on top of a SOM model is also intriguing. Further, we con-
sider applying TOPSIS-assisted feature selection on labeled
run-to-failure data for multi-class classification tasks, and
investigating subjective and objective weight determination
methods for TOPSIS with these tasks.
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