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ABSTRACT
On the basis of an extended cluster analysis algorithm, we present a new validation method for the evaluation of
simulation experiments characterized by more than one parameter. This method allows the assessment of any parameter
combination in space and time. As an example for the effectiveness of the algorithm, the results of two regional climate
model runs and observational data have been tested and interpreted.

1. Introduction

Models to describe complex systems have become more and
more detailed. A problem that has been recently discussed is
the evaluation of such models especially when they are very
complex. The very complexity of such models means that se-
vere limits are placed on our ability to analyse and understand
the model processes, interactions and uncertainties. In general,
it is easy to define the error in simulations of single variables
in climate models, for instance by the ‘Taylor diagram’ (IPCC
2001). However, the validation of coupled variables or processes
is a problem that has not yet been solved satisfactorily. In IPCC
(2001, p. 474) it was pointed out that “while we do not consider
that the complexity of a climate model makes it impossible to
ever prove such a model ‘false’ in any absolute sense, it does
make the task of evaluation extremely difficult . . . .” To make
progress in this field is the outline of the paper. Therefore, a tool
is presented which can be used to validate the complex behaviour
of the model results (Section 2). The basis of this tool is an ex-
tended non-hierarchical cluster analysis (see Appendix A) and a
new error handling which permits the detection of error sources.
The application of these methods shows how far this tool can de-
liver more information on the quality of climate model outputs
(Section 3).

2. Methods

The question that should be answered by the new method is the
following: how well can a model represent complex parameter
combinations of a regime?

∗Corresponding author.
e-mail: gerstengarbe@pik-potsdam.de

To answer this question the following working steps are
necessary.

1. Definition of a complex relation

The quality of a climate model is primarily based on the cor-
rect determination of the interactions between individual mete-
orological parameters. Thus, temperature and precipitation, for
instance, describe the thermic-hygric situation. Therefore, it is
necessary to determine which physical situation should be de-
scribed in the model.

2. Selection of meteorological parameters

Meteorological parameters required to investigate the complex
relation are selected. This is done for a reference data set (for
instance, observed data of meteorological stations) as well as
for a model data set (grid data), the quality of which should
be verified by the reference data set. It is required that the
position of the grid and the time period correspond with each
other.

3. Derivation of characteristic parameters

Each meteorological parameter can be described more pre-
cisely by a set of its characteristics p, for instance, maximum,
minimum, sum, mean value and mean variance, etc., the selection
of which is determined by the specific purpose of the investiga-
tion. Should the mean conditions be tested, mean value and sum
are to be chosen, whereas maximum and minimum are chosen
for extreme value observations. This means that these character-
istic parameters are to be calculated for the reference data set as
well as for the climate model.
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4. Extended cluster analysis

The patterns that are typical for the reference data set will be
determined with the aid of the extended cluster analysis (see
Appendix A). These patterns are the basis for the comparison of
the model results with the reference data set.

5. Validation I

In a first validation step, we verify for each grid point of the
model data set whether the respective parameter combination
corresponds with the one of the respective station in the reference
data set, i.e. whether there is a cluster correspondence. If this is
not the case, we search for the cluster to which the grid point
can best be suited. The classification is done by using a distance
measure, here the Euclidean distance. The Euclidean distance
is used to relate the parameter combination of the model data
set to the cluster of the reference data set that has the smallest
distance to the group centroid (see Appendix A). No error exists
if the cluster number of a simulated field grid point agrees with
the cluster number of the respective station within the reference
data set. If they do not correspond, an error handling is necessary
as follows. Let us define the different clusters of the station of
the reference data set and of the grid point of the simulated field
with a and b. As a simple rule, it can be said that the more
the pair of clusters a and b are separated from each other, the
greater the error is. So the number of overlaps Oa,b can be used to
estimate this error. Thus, we proceed as follows. We calculate the
ratio Ra,b from the current number of overlaps and the maximum
number of overlaps between two clusters a and b of the reference
data set:

Ra,b = Oa,b/Omax
a,b . (1)

We calculate the maximum ratio Rmax of all possible combina-
tions of Ra,b:

Rmax = max(Ra,b) with a, b = 1, · · · , K with a �= b. (2)

We calculate the standardized relative ratio Qnorm
a,b for the de-

tection of errors with changing clusters:

Qnorm
a,b = 100 × (1 − Ra,b/Rmax). (3)

Error classes can be determined using Qnorm
a,b as is specified in

Table 1.

6. Validation II

If a grid point of the model data set has a different cluster clas-
sification than the respective station of the reference data set, it
has to be clarified to what extent the individual meteorological
parameters differ from each other. Let us consider the situation
that the station is assigned to cluster a according to the refer-
ence data and to a different cluster b according to the model
data. In this case we can determine what parameters are mainly

Table 1. Definition of error classes

Error class Qa,b
norm

0.00 ≥0% <5%
0.05 ≥5% <10%
0.10 ≥10% <25%
0.25 ≥25% <50%
0.50 ≥50% <75%
0.75 ≥75% <90%
0.90 ≥90% <95%
1.00 ≥95% ≤100%

Fig 1. Validation scheme.

responsible for this error. They will be the ones with the small-
est Euclidean distance to the cluster centroid of b, i.e. with the
largest distance to the cluster centroid of a. The standardized
ratios of the distances are a measure of how much the individual
parameters contribute to the error. A complete overview of all
working steps can be found in the flow diagram of Fig. 1.

3. Application of the method to the validation of
climate simulations

3.1. Model and data base

To test the method, two different simulation runs of a regional
climate model were used. The first run was carried out with the
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basic version of the non-hydrostatic model (M1) of the Ger-
man Weather Service (DWD; Doms and Schättler, 1999) and
the second one with the same model but with a parametrization
of the cloud ice (M2) (Schättler and Doms, 2000). The cloud
ice scheme is designed for applications using a horizontal grid
spacing of about 3–50 km to take microphysical processes in
stratiform mixed-phase and ice clouds into account. The experi-
ments are carried out in a non-hydrostatic mode with a resolution
of 7 km and with 40 layers in vertical. The model domain (1/16◦

horizontal resolution) covers the region from 3◦W to 53◦E and
from 43◦S to 68◦N. DWD analysis data from August to October
1995 were used as initial and boundary conditions. The observa-
tion data of 372 weather stations in an area from 9◦W to 16◦E and
from 50◦S to 55◦N were used as a reference data set. This area
was selected for the investigation of water budget components
and covers the catchment of the River Elbe.

As meteorological variables, the near-surface temperature
and precipitation in combination were selected to describe the
thermo-hygric complex. These near-surface parameters were
chosen because both are of fundamental importance for the eval-
uation of the climate regime. The derived parameters are the
monthly mean 2-m temperature (t2m) and the monthly sum of
daily precipitation (prec). The model variables are staggered on
an Arakawa-C/Lorenz grid (Arakawa and Lamb, 1981) with
scalars defined at the centre of a grid box (prec and t2m) and
the normal velocity components defined on the corresponding
box faces. For our validation, we assume that the spatial differ-
ences between the centre of a model cell and the actual position
of the validation station can be neglected.

3.2. Tasks and execution

During the validation, two questions have to be answered.

(1) How large is the difference between simulated results and
observed data (reference field) averaged over the investigation
period of three months?

(2) How strong is the influence of the two meteorolog-
ical parameters on the difference between simulation and
observation?

A simulation run with a duration of three months was carried
out for each model. The statistical parameters were estimated
for each month and each grid point. For the cluster calculation
(validation I), we used two parameters per month (monthly mean
of the air temperature and the monthly sum of precipitation), a
total of six parameters for the whole period of three months.
To answer the first question, the simulation runs of M1 and M2
were compared grid point by grid point with the cluster results
of the reference case (observational data) for the whole period.
This comparison between simulation and observations gives an
idea of the existing cluster shifts. A comparison of the differences

between the model versions provides an answer to question 1. To
solve question 2, the influence of each meteorological parameter
has to be calculated as described in Section 2 (validation II).

3.3. Results

The results discussed below are not only intended as an assess-
ment of the quality of any specific climate model but as an ex-
ample of how well the newly developed method may be applied.

Figure 2 shows the cluster distribution for the observed data.
12 clusters were separated, i.e. all stations with the same cluster
number showing the same statistical characteristics.

Figure 3a shows the deviations between the simulation carried
out with M1 and the observations according to the error classes
defined in Table 1. In the ideal case (when the grid points of
simulation and observations are in the same cluster) the simu-
lation exactly represents the mean conditions of the meteoro-
logical variables and only error class 0 (white) occurs. One can
immediately see that errors of different degrees occur (shading
from light to dark green) if a shifting of cluster affiliation exists.
The spatial error structure provides information about what may
possibly have caused them.

The calculations of the M2 version were carried out in the
same way. The results are shown in Fig. 3b. It is obvious that the
results differ in comparison to Fig. 3a.

Table 2 provides an overview of the mean values of the error
deviations for the validation area before and after activating the
cloud ice parametrization. The table shows that, in M1, precip-
itation and near-surface temperature could only identically be
reproduced (error class 0) for approximately 20% of all stations
whereas the number of stations for which this has not at all been
possible (error class 1) is twice as high. The model’s insufficient
calculation of the monthly precipitation amount is the reason
why the majority of the grid cells do not or only partially corre-
spond with the observations. These statements are also true for
M2. The cloud ice parametrization used here does not lead to an
improvement of the model quality for all grid cells.

Table 3, however, shows a more differentiated picture of the
efficiency of the cloud ice parametrization. At 113 out of 372
stations, a shift in the error class can be seen (improvement, 49;
deterioration, 64). Furthermore, at 40 of these stations, there is
not only a shift in the error class but a complete reversal of the
error class from 0 to 1, or vice versa. In most of these cases,
precipitation is responsible for this complete reversal (improve-
ment, 12; deterioration, 18). This fact is not amazing because
cloud ice parametrization should be able to improve the precip-
itation flow in general. However, the used parametrization not
only selectively affects model grid points with precipitation de-
ficiencies but in summary also model grid points with an already
stable precipitation balance in M1.

Figures 4a and 4b show the spatial structures of the influence
of each meteorological parameter on the error for model versus
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38 F. -W. GERSTENGARBE ET AL.

Fig 2. Cluster distribution of the observed
data.

observations for M1 and M2. To get a clear overview three types
were defined:

(1) grid points without cluster deviation (white);
(2) grid points with cluster deviation mainly caused by the

influence of air temperature (red range);
(3) grid points with cluster deviation mainly caused by the

influence of precipitation (blue range).

It is obvious that in both cases the error structure is primarily
controlled by the precipitation (58.3%). Also, the model is not
able to reproduce the temperature conditions correctly (41.7%).

4. Summary

It has been shown that the method presented here is suitable for
describing complex relations (patterns) based on different pa-
rameter combinations. Using pattern comparison the differences
between reference and simulation data sets can be made visible
in space. Investigations on the temporal behaviour are published
in Kücken et al. (2002). Additionally, one can estimate the influ-
ence of each single parameter on the error. Thus, a tool is made
available for the modeller to analyse simulations quickly and
conveniently. The influence of cloud ice parametrization on the
prediction quality of the model that has been investigated with
this method could spatially be exactly quantified in the valida-
tion area. The introduction of cloud ice parametrization did not
lead to a general improvement of the model results. This is due
to the fact that the amount of precipitation was overestimated in

the model with the new cloud ice scheme. At the same time, the
complex validation showed that the calculated near-surface tem-
perature values are, as expected, influenced only in a few cases
by the introduction of this scheme. In principle, it is not enough
to introduce a cloud ice parametrization to better describe the
physical processes that are the basis for the precipitation flow.
The model dynamics, however, requires better fine-tuning with
this parametrization.

5. Appendix A: Extended Non-Hierarchical
Cluster Analysis

The aim of cluster analysis is the separation of several elements
into homogeneous groups. In a first step, an equal number of L
elements ei (with ei = f (pi1, . . . piN , where N is the number of
parameters) from a total of M elements (grid points) has to be
distributed to a defined number of K 0 clusters c1, . . . ck (initial
partition) so that each cluster receives L = M/K 0 elements as
follows:

e1, . . . , eL ∈ c1

eL+1, . . . , e2L ∈ c2

· ·
· ·
· ·
e(k−1)L+1, . . . , ekL ∈ ck

. (A1)

A so-called group centroid ē is then calculated for each cluster
ck. It is the cluster mean value using normalized parameters:
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Fig 3. Spatial error distribution of the
comparison (a) M1 versus observations and
(b) M2 versus observations for the period
August 1, 1995 to October 31, 1995.

ēk = 1

L

kL∑
i=(k−1)L+1

ei . (A2)

The Euclidean distance (Steinhausen and Langer, 1977) between
the elements and the centroid defines the following target func-
tion a(g) at each grouping step g:

a(g) =
K∑

k=1

∑
i∈k

|ei − ēk |2 . (A3)

In this sense, each grouping step can be seen as a displacement
of the element ei into the cluster whose centroid is closest to ei.

Table 2. Distribution of error deviations for M1 and M2

M1 M2

Mean value deviations 0.71 0.72
Error class 0 22.04% 22.04%
Error class 0.5 1.08% 1.34%
Error class 0.75 18.28% 16.40%
Error class 0.9 18.55% 14.52%
Error class 1.0 40.05% 45.70%
T2m influence >50% 41.7% 41.7%
Prec influence >50% 58.3% 58.3%
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Table 3. Shifts in the error classes in M2 compared to M1

Type of shift Cluster improvement Cluster deterioration

All error classes 49 stations 64 stations
Complete change of the error class 0.1 16 stations 24 stations
T2m influence >50% with a 4 stations 6 stations
complete change of the error class
Prec influence >50% with a 12 stations 18 stations
complete change of the error class

Fig 4. Spatial influence of the
meteorological parameters surface air
temperature (red) and precipitation (blue) on
the error of the comparison (a) M1 versus
observations and (b) M2 versus observations
for the period August 1, 1995 to October 31,
1995.
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Thus, the target function can be made smaller:

a(g)∀g → min . (A4)

This procedure is repeated until a local minimum of the target
function is reached.

Gerstengarbe and Werner (1997) have developed a procedure
to test the quality of cluster separation as follows. After hav-
ing reached the local minimum, each cluster contains a certain
number of elements. Each element is defined by n parameters,
that is, it is located in an n-dimensional parameter space. Hence,
each cluster is represented by a scatter plot of elements in the
parameter space. Overlaps may occur between the scatter plots
of individual clusters. This means that the parameter space of
a cluster a may pass into that of cluster b. The number of pa-
rameters in the common space of two clusters can be defined as
overlaps of cluster a with respect to cluster b

Oa,b =
La∑

ia=1

Lb∑
ib=1

N∑
j=1

oia ,ib , j a, b = 1, · · · , k a �= b (A5)

with

oia ,ib , j =
{

1pib , j ≥ pia , j

0pib , j < pia , j
.

The maximum possible number of overlaps between clusters
a and b is denoted as follows: Omax

a,b = NLaLb (where La is the
number of elements in cluster a and Lb is the number of elements
in cluster b). This number is reached if both clusters cover the
same region in the n-dimensional parameter space. A statistically
significant cluster separation depends on the number of overlaps.

A student t-test can be used to see whether Ō and Omax orig-
inate from the same basic population, where Ō is the mean and
Omax is the maximal possible number of overlaps of all combi-
nations of cluster pairs.

The clusters can be separated only when the null hypothesis
is rejected. In this case the following procedure must be per-
formed additionally, otherwise the clustering has to start with
another initial partition. The ratio ν a,b of the actual to the maxi-
mum possible number of overlaps is determined for each cluster
pair νa,b = Oa,b/Omax

a,b .ν̄ is the mean of all ν a,b. A statistically
significant separation between a and b exists if νa,b > ν̄. Where
νa,b > ν̄, the quality of the separation still needs to be deter-
mined. The null hypothesis for this case is formulated as follows.
The overlaps between two clusters a and b are not significantly
different from the mean number of overlaps Ō . For the confir-
mation or rejection of the null hypothesis, the following χ2 test
can be applied using the maximum possible number of overlaps
Omax

a,b , the actual number of overlaps O a,b and the mean of all
actual numbers of overlaps Ō of all combinations of cluster pairs

χ 2 = (Oa,b − Ō)2 · (
2Omax

a,b − 1
)

(Oa,b + Ō)2 · (
2Omax

a,b − Oa,b − Ō
) (A6)

with one degree of freedom. The result of this test can be inter-
preted in the following way. If the calculated χ2 value is greater

than a given threshold of significance, the frequency of overlaps
exceeding the mean value Ō differs significantly from the χ2

value. The separation between the clusters a and b is therefore
statistically not significant.

As mentioned above, the cluster calculation must be started
with a certain number of clusters (initial number). This number of
clusters can influence the cluster result. Therefore, it is necessary
to estimate the optimum initial number of clusters.

The starting point for the calculation of the initial cluster num-
ber is the target function a(g). We know that the target function is
constructed such that the partition for which the function reaches
a minimum defines the best grouping of the clusters. Now we
calculate the target function for an increasing number of initial
clusters (for q = 2, 3, 4, . . . , K 0). We obtain a sequence of K 0

independent target function values. This sequence can be incor-
porated in the following estimation of the optimum initial num-
ber of clusters. Realizing that each value of the target function
corresponds to a specific initial number of clusters, we define the
optimal initial number as the inflection point within the sequence
of target function values where the trend of the target function
values disappears and no further significant changes occur. This
idea can be solved practically with the following steps:

(1) calculate the differences between consecutive values of
the target function sequence and creation of a difference series
di(i = 1, . . . , m) with m = K 0 − 1 values;

(2) apply the Pettitt (1979) test to estimate the beginning of
a trend (or inflection point) within the difference series.

Continuously increasing the initial number of clusters, the
Pettitt test finally defines the position within the difference series
di (of the target function values) which divides this series into
one part with significant changes of the values and the other
part without significant changes. This cluster number defines
the optimal initial number of clusters which we finally use for
the cluster separation.
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