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Abstract
The object of research in this work was cast iron for machine-building parts, alloyed with Al. The possibility of improving the 

mechanical properties of cast iron by choosing the optimal Mn–Al combinations, depending on the carbon content in the cast iron, 
was determined. The study was carried out on the basis of available retrospective data of serial industrial melts by constructing the 
regression equation for the ultimate strength of cast iron in the three-factor space of the input variables C–Mn–Al. The optimization 
problem was solved by the ridge analysis method after reducing the dimension of the factor space by fixing the carbon content at 
three levels: C = 3 %, C = 3.3 %, and C = 3.6 %.

It was found that the maximum values of the ultimate strength are achieved at the minimum level of carbon content (C = 3 %) 
and are in the range of values close to 300 MPa. In this case, the Al content is in the range (2.4–2.6) %, and the Mn content is  
about 0.82 %. With an increase in the carbon content, there is a tendency to a decrease in the content of Mn and Al in the alloy, which 
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is necessary to ensure the ultimate strength close to 300 MPa. The results of the ridge analysis of the response surface also showed 
that at the upper limit of the carbon content (C = 3.6 %), it is not possible to reach the ultimate strength of 300 MPa in the existing 
range of Mn and Al variation.

All solutions are verified for the following ranges of input variables C = (2.94–3.66) %, Mn = (0.5–1.1) %, Al = (1.7–2.9) %.
Graphical-analytical descriptions of the optimal Mn–Al ratios are obtained, depending on the actual content of carbon in 

the alloy, which make it possible to purposefully select the optimal melting modes by controlling the tensile strength of the alloy.
Keywords: alloy, mechanical properties, cast iron, regression equation, ridge analysis, response surface.
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1. Introduction
Fierce competition in the market of metal products, in particular, products of metallurgical 

production and mechanical engineering, is the factor that stimulates the development of technologi-
cal innovations in industrial production [1, 2]. Such innovations are optimal technological solutions 
in terms of melting [3–6] and out-of-furnace processing of melts [7–10]. The alloys obtained in 
this case are used for cast machine parts, therefore, the operational reliability of the corresponding 
units and mechanisms directly depends on the quality of the alloy. The solutions proposed in such 
studies are based on the creation of conditions under which a targeted formation of a microstruc-
ture occurs, which determines the mechanical properties of alloys [11–13]. In this case, the creation 
of such conditions is based on theoretical and experimental data on the relationship between the 
chemical composition and properties, taking into account the specifics of the production in which 
such alloys are produced [14–16]. These data are obtained from mathematical models, which, as 
a rule, have the form of regression equations, built on the basis of either active [17, 18] or passive 
planning of the experiment [19, 20]. On the basis of such equations, the optimal values of the in-
put variables of the investigated object or process are sought. In the presence of restrictions, such  
a problem is solved either by the methods of ridge analysis [21, 22], or by studying the response 
surface by its canonical transformation [23, 24]. The latter methods can be considered as research 
tools within the framework of the general response surface methodology, which is widely used in 
the study of metallurgical processes [25]. The results obtained in this case are used in control sys-
tems for technological processes not only in conditions when one optimization criterion is selected, 
but also in the presence of several criteria, including competitive ones [26].

Within the framework of the described approaches, a study was carried out earlier [27], in 
which the problem of the synthesis of aluminum cast iron was solved based on the choice of the 
optimal Al–Si combination in the alloy and the assessment of the possibilities of obtaining such 
cast iron in industrial melts. The actual development of this work is the study of the strength of cast 
iron in the system of elements C–Mn–Al. This is due to the fact that Mn is a carbide-forming ele-
ment that increases strength, but stimulates a metastable process during crystallization. Therefore, 
a compensator for the development of a metastable process can be the use of either Si or an increase 
in the content of C in the melt. For reasons of economy of ferrosilicon, it is the second way that 
seems rational. However, in this case, it is necessary to determine how the carbon content affects 
the position of the Mn–Al optima, which will make it possible to calculate the optimal amount 
of additives in the melt to obtain cast iron with maximum strength. This study is devoted to this.

2. Materials and Methods
The research was carried out within the framework of the PC Technology Center research 

topic «Technological audit and identification of production reserves». Retrospective data of a series 
of industrial meltings were selected as the initial data [28].

The object of research was cast iron for machine-building parts, alloyed with Al.
The aim of research was to determine the optimal Mn–Al combination that would allow reach-

ing the maximum values of the ultimate strength of cast iron containing different amounts of carbon.
To achieve this aim, the task was to construct an adequate regression equation in a three-fac-

tor space of input variables, describing the effect of carbon, manganese and aluminum in the com-
position of the alloy on its ultimate strength.
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The main hypothesis of the study was that, having solved the optimization problem using 
the ridge analysis, it is possible to purposefully select the ratio of Mn and Al, depending on the 
actual content of carbon in the melt, by controlling the strength of the alloy.

The following were chosen as input variables: x1 – content of C in the alloy, %, x2 – content 
of Mn in the alloy, %, x3 – content of Al in the alloy, %.

Ultimate tensile strength σb, MPa (y) was chosen as the output variable.
The standardization of these serial industrial meltings was carried out according to the 

formula [29]:
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where the * symbol denotes the natural value of the input variables.
The ranges of variation of the input variables and their normalized values calculated accord-

ing to (1), as well as the values of the output variable, are given in Table 1.

Table 1
Experiment planning scheme for 3 components (C, Mn, Al)

No. of  
experiment

Dosage of the investigated components
σb, MPa

Conventional units Weight parts
X1 X2 X3 C Mn Al y

1 –1 –1 –1 3.0 0.6 1.8 221
2 +1 –1 –1 3.6 0.6 1.8 243
3 –1 +1 –1 3.0 1.0 1.8 224
4 +1 +1 –1 3.6 1.0 1.8 240
5 –1 –1 +1 3.0 0.6 2.8 239
6 +1 –1 +1 3.6 0.6 2.8 240
7 –1 +1 +1 3.0 1.0 2.8 286
8 +1 +1 +1 3.6 1.0 2.8 251
9 –1.21 0 0 2.94 0.8 2.3 287
10 +1.21 0 0 3.66 0.8 2.3 266
11 0 –1.21 0 3.3 0.5 2.3 279
12 0 +1.21 0 3.3 1.1 2.3 260
13 0 0 –1.21 3.3 0.8 1.7 240
14 0 0 +1.21 3.3 0.8 2.9 284
15 0 0 0 3.3 0.8 2.3 251

To construct the regression equation, the formulas for estimating the coefficients were used 
in the case of the implementation of the plan of a full factorial experiment, the resulting response 
surface was analyzed by the method of ridge analysis [26].

To interpret the obtained simulation results from the point of view of microstructural ana
lysis, let’s use electron microscopy data from [28].

3. Results and discussion
The general structure of the regression equation is:

	 y b b x b x b x b x b x b x b x x b x x b x x= + + + + + + + + +0 1 1 2 2 3 3 4 1
2

5 2
2

6 3
2

7 1 2 8 2 3 9 1 3 ++ b x x x10 1 2 3. 	 (2)

The following matrix of estimates of the coefficients was obtained in the calculation in  
a normalized form (Fig. 1):
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Fig. 1. Calculated and experimental values of the ultimate strength: y–δ and y+δ – the lower  
and upper limits of the confidence intervals, respectively

Since it is of particular interest to elucidate the behavior of the Mn–Al optima at different 
contents of carbon in the alloy, the value of x1 was fixed at three levels: –1; 0; 1, which correspon
ded to the following actual carbon content: C = 3 %, C = 3.3 %, C = 3.6 % (Table 1). Substitution of 
these values into the general equation (2) made it possible to move to the two-dimensional region  
of the factor space for subsequent ridge analysis. The general structure of the model for ridge ana
lysis in this case is as follows:

	 y x a a x x ax r x x( , ) ( ),l l= + ¢ + ¢ + − ¢0
22 	 (3)

where a0 – initial coefficient, 2a – matrix of estimates of linear coefficients, А – matrix of esti-
mates of nonlinear coefficients, the symbol «¢» denotes the operation of transposition of the matrix,  
x – matrix of input variables, λ – Lagrange multiplier, r – radius of the region of restrictions im-
posed by the experiment planning domain, calculated from the formula:

	 r x x2 = ¢ . 	 (4)

The matrix of optimal values of the input variables providing the maximum ultimate 
strength (ymax) was found by solving equation (5) from the conditions for the existence of a statio
nary point (6):

	 x I A aopt ( ) ( ) ,l l= − −1 	 (5)
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The solutions to equation (6) are functions λ with two poles λ1 and λ2, in which the func-
tion r(λ)→∞.

The calculated values of the parameters of equation (3) have the form shown in Tables 2–4 
at x1 = –1, x1 = 0, x1 = +1, respectively.

Table 2
Parameters of equation (3) at x1 = –1

a0 a A λ1 λ2

289.2652
4.226819 –9.84273 5.5

–18.4712 –6.33689
10.96218 5.5 –14.9653

Table 3
Parameters of equation (3) at x1 = 0

a0 a A λ1 λ2

292.3677
1.601819 –9.84273 3.625

–16.8426 –7.96547
6.46218 3.625 –14.9653

Table 4
Parameters of equation (3) at x1 = +1

a0 a A λ1 λ2

285.3469
–1.02318 –9.84273 1.75

–15.5061 –9.30198
1.96218 1.75 –14.9653

The character of the response surfaces for x1 = –1, x1 = 0, x1 = +1 is shown in Fig. 2–4 re-
spectively.

The results of the ridge analysis in the form of functions r(λ) for the response surfaces 
shown in Fig. 2–4 are shown in Fig. 5, 8, 11, and in the form of functions y(r) in Fig. 6, 9, 12,  
respectively. Optimal ratios x2–x3 for x1 = –1, x1 = 0, x1 = +1 are shown in Fig. 7, 10, 13, respectively. 
The calculation was carried out on the basis of formula (4).

Fig. 2. The nature of the Mn–Al response surface for C = 3 %
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Fig. 3. The nature of the Mn–Al response surface for C = 3.3 %

Fig. 4. The nature of the Mn–Al response surface for C = 3.6 %

Fig. 5. The results of the ridge analysis in the form of a function r(λ) for x1 = –1 (С = 3 %)
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Fig. 6. The results of the ridge analysis in the form of a function y(r) for x1 = –1 (С = 3 %)

Fig. 7. Optimal ratios x2–x3 for x1 = –1 (С = 3 %)

Fig. 8. The results of the ridge analysis in the form of a function r(λ) for x1 = –0 (С = 3.3 %)
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Fig. 9. The results of the ridge analysis in the form of a function r(λ) for x1 = –0 (С = 3.3 %)

Fig. 10. Optimal ratios x2–x3 for x1 = –0 (С = 3.3 %)
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are achieved at the minimum level of carbon content (C = 3 %) and are in the range of values close 
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If the carbon content increases, then there is a tendency for the optimal content of Mn and 
Al to decrease, which is necessary to ensure the ultimate strength close to 300 MPa (Fig. 10).  
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of 300 MPa in the existing range of variation of Mn and Al. Probably, such results are explained by 
the fact that Mn has a significant effect on the process of carbide formation, the more developed, 
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gical procedure. However, if the requirements for the castings allow for a lower tensile strength, 
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a solution is advisable in which the carbon will be kept at the upper level. This will facilitate the 
formation of a microstructure during crystallization in a stable manner. It is known that Al has 
a twofold effect on the process of graphite formation – depending on the range of content, both 
the process of graphitization and the process of carbide formation can appear. It can be assumed 
that, in the considered range, Al influences more as a graphitizing element – the results obtained 
may indirectly also indicate this. For example, from Fig. 7, 10, 13 it can be seen that in order to 
ensure the same strength, an increase in the Mn content requires a simultaneous decrease in the 
Al content. That is, in this case, both elements compensate for the action of each other in terms 
of the formation of the microstructure. In this case, as evidenced by the results of electron micro
scopy – Fig. 14 [28], the presence of Al leads to the formation of a more finely dispersed structure 
of the metal matrix and graphite. This may explain the increase in strength of cast iron containing 
Mn–Al combination in its composition.

Fig. 11. The results of the ridge analysis in the form of a function r(λ) for x1 = +1 (С = 3.6 %)

Fig. 12. The results of the ridge analysis in the form of a function y(r) for x1 = +1 (С = 3.6 %)
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Fig. 13. Optimal ratios x2–x3 for x1 = +1 (С = 3.6 %)

Fig. 14. Photos of the metal base: a – gray; b – aluminum cast irons obtained  
by electron microscopy [28]
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It is important to note that the results obtained do not contain explicit data on the for-
mation of the microstructure, which would be important in the framework of further research.  
Moreover, an indirect assessment of the formation of the microstructure can be performed by mo
deling the influence of the considered elements in the same ranges of variation on the hardness  
of the alloy.

This is explained by the known fact that the most significant factor influencing strength is 
the content, size and distribution of carbon in the microstructure, and the most significant factor 
influencing hardness is the structure of the metal matrix. Since the formation of a microstructure is 
directly related to whether the crystallization processes proceed according to a stable or metastable 
scheme, the analysis of the data on the ultimate strength and hardness would allow one to indirectly 
estimate the scheme according to which scheme the given process proceeds. This may be the sub-
ject of further research development.

4. Conclusions
The regression equation for the tensile strength of cast iron in the three-factor space of the 

input variables C–Mn–Al is obtained. On the basis of this equation and the subsequent procedure 
of the ridge analysis, the optimal combinations of Mn–Al are established for three levels of car-
bon content in the alloy: C = 3 %, C = 3.3 % and C = 3.6 %. The solutions obtained are verified 
for the following ranges of input variables C = (2.94–3.66) %, Mn = (0.5–1.1) %, Al = (1.7–2.9) %. 
It is found that the maximum values of the ultimate strength are achieved at the minimum level 
of carbon content (C = 3 %) and are in the range of values close to 300 MPa. In this case, the Al 
content is in the range (2.4–2.6) %, and the Mn content is about 0.82 %. With an increase in the 
carbon content, there is a tendency to a decrease in the content of Mn and Al in the alloy, which is 
necessary to ensure the ultimate strength close to 300 MPa. At the upper limit of the carbon con-
tent, it is not possible to reach the ultimate strength of 300 MPa in the existing range of variation 
of Mn and Al.

The optimal Mn–Al ratios obtained in graph-analytical form, depending on the actual  
content of carbon in the alloy, make it possible to purposefully select the optimal modes for obtain-
ing the alloy, controlling its ultimate strength.
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