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Abstract
The complexity of the electric power network causes a lot of distortion, such as a decrease in power quality (PQ) in the form 

of voltage variations, harmonics, and frequency fluctuations. Monitoring the distortion source is important to ensure the availability 
of clean and quality electric power. Therefore, this study aims to classify power quality using a neural network with empirical mode 
decomposition-based feature extraction. The proposed method consists of 2 main steps, namely feature extraction, and classification.  
Empirical Mode Decomposition (EMD) was also applied to categorize the PQ disturbances into several intrinsic mode func-
tions (IMF) components, which were extracted using statistical parameters and the Hilbert transformation. The statistical para-
meters consist of mean, root mean squared, range, standard deviation, kurtosis, crest factor, energy, and skewness, while the Hilbert 
transformation consists of instantaneous frequency and amplitude. The feature extraction results from both parameters were com-
bined into a set of PQ disturbances and classified using Multi-Layer Feedforward Neural Networks (MLFNN). Training and testing 
were carried out on 3 feature datasets, namely statistical parameters, Hilbert transforms, and a combination of both as inputs from 
3 different MLFNN architectures. The best results were obtained from the combined feature input on the network architecture with 
2 layers of ten neurons, by 98.4 %, 97.75, and 97.4 % for precision, recall, and overall accuracy, respectively. The implemented me-
thod is used to classify PQ signals reliably for pure sinusoids, harmonics with sag and swell, as well as flicker with 100 % precision.
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1. Introduction
The electric power system generates electrical energy which is delivered to customers at an 

accepTable voltage and current levels. However, as the number of devices connected to the system 
grows, such as electronics, non-linear loads, and inverters, this process is becoming more complex. 
Furthermore, the increasing and widespread use of nonlinear loads in industrial environments, such 
as electric motor speed regulation, power supplies, lighting, transformers, and converters, causes 
power quality (PQ) issues in the electricity network. PQ disturbances harm industrial operations, 
resulting in production losses, manufacturing disruptions, product damage, wasted energy, and 
reduced equipment life [1, 2]. Subsequently, the rise in the use of sensitive electronic components, 
such as computers, programmable logic controllers, protective equipment, and relays increases the 
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electrical power consumption with continuous supply and high power quality, thereby demanding 
that consumers provide uninterrupTable power supplies and stabilizers at high costs [3].

The provision of renewable energy sources based on biomass, wind, solar and tidal waves 
mostly requires inverters for the conversion of electricity quantities. There are several advantages 
associated with the inverter, however, its output voltage contains a large number of unwanted 
harmonics, which harms the mechanical and electrical components of the system [4], affect the 
quality of the electricity network output power, voltage fluctuations, and malfunctions in the de-
vices connected to the network [5]. The integration of renewable energy into the existing power 
grid poses difficult technical challenges. An example is the PQ problem in the form of voltage 
and frequency fluctuations caused by its variability and harmonics generated by power electronic 
devices used in renewable energy generation, which is an important aspect in its integration [6]. 
The availability of these sources encourages integration and connection with the existing electri-
city distribution network, thereby creating a smart grid concept with PQ as an important aspect 
that cannot be ignored because it ensures the necessary compatibility between all the equipment 
connected to the network [7]. 

The smart grid network consists of two-way communication between customers and elec-
tricity providers, through power line communication. The frequency range used coincides with 
supraharmonic emissions sourced from power and energy-saving electronic equipment, thereby 
creating disturbances in the network with varying data transfer rates. Amaripadath carried out 
research for measuring and detecting supraharmonic emissions in smart grids [8]. This research 
also describes dynamic state analysis parameters for measurement and configuration. According 
to Amaripadath, the system experiences a basic shift in the main operation, such as a change from 
direct power flow in the form of alternating current (AC) to a direct current (DC) and AC with 
a wider frequency range. Therefore, PQ is an important parameter used to analyze the effects of 
power interactions and future changes on the network [9].

PQ monitoring [10] consists of 2 main subjects namely the development of a power quality 
index to measure the electrical supply and detection of disturbances to determine the electric sys-
tem condition. The power quality index is the basis of the PQ standard used to describe the negative 
impact of electrical disturbances, in the form of frequency deviation, supply voltage variation, 
flicker, transient voltage, harmonics, etc. The second is the traditional index, namely the peak 
value, factor, total harmonic distortion, power factor, and the proposed new index, which consists 
of instantaneous distortion energy ratio, frequency, burst index, etc. PQ is a quality combination 
of current and voltage, which deals with their respective ideal deviations. Furthermore, it depends 
on the quality of supply, as a combination of voltage and non-technical aspects of the interaction 
between the power grid and the customer [11]. 

Classification of power quality disturbances is needed as a first step to identify and miti-
gate sources of distortion [12]. Therefore, it is necessary to monitor PQ disturbances to provide 
clean power as suggested by IEEE [13, 14]. Several studies on the detection and classification 
of PQ disturbances have been conducted, including the generation of a mathematical model 
using the discrete wavelet transform-fast Fourier approach [15], fuzzy-wavelets [16], support 
vector machine algorithms [17], analysis of the real signal database distorted by the disturbance  
of the measurement system results with the unsupervised classification approach [18] and an 
intelligent measurement [19]. EMD method and Hilbert transformation were developed for as-
sessment [20]. Probabilistic neural network is used as a mapping function to identify different 
disturbance classes.

In [16] developed an intelligent system for the PQ disturbances diagnosis in a modular 
form. Extraction of the stress waveform characteristics was carried out through the combined use 
of discrete wavelet transform (DWT), multiresolution analysis (MRA), and entropy norm (EN). 
Meanwhile, the classification process was conducted using the fuzzy-ARTMAP neural network. 
In line with the development of data acquisition techniques and equipment, this system promotes 
ideas and efforts for the characterization and classification of PQ. According to [21], a combined 
know ledge of PQ problems, signal processing techniques, and artificial intelligence is needed to 
provide solutions [21]. The events are generally non-linear, non-stationary, and contain noise, with  
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several techniques developed for the analysis of non-stationary signals or data, with empirical 
mode decomposition as the most reliable [22]. EMD has been widely developed for the analysis  
of PQ events, such as harmonics, sag, swell, and flicker compared to other methods such as S-trans-
formation [20]. 

Although preliminary studies [15, 17–19] have been able to classify PQ disturbances, the 
feature extraction method developed only uses statistical parameters and power distribution.  
Another shortcoming associated with these studies is the classification of the number of dis-
turbances as few and not multi. This research is a continuation of the previous discussion on  
EMD-based PQ disturbances analysis and statistical parameters [23]. The proposed novelties are:

1. Development of feature extraction methods for various types of PQ disturbances signals 
using the EMD method, Hilbert transform and statistical parameters, such as mean, root mean 
squared, range, standard deviation, kurtosis, crest factor, energy, and skewness.

2. Development of Feedforward Neural Networks (FNN) for the classification of its signals.

2. Materials and methods
The term PQ is generally used to define the various electromagnetic phenomena that occur 

in power system networks. The ability of a power system to provide voltage, current, and frequen-
cy signals without distortion is referred to as power supply quality [24]. According to IEC 61000 
Series, PQ is defined as systems, equipment, and devices capable of functioning in an electromag-
netic environment without causing intolerable electromagnetic disturbances to all objects in their 
environment. Meanwhile, according to IEEE 1159:2009, IEEE 1100:2005, it is the concept of po-
wering and grounding in the operation of electronic equipment compatible with supplies and other 
connected equipment. 

The smooth operation of electrical equipment can be used to determine the extent to which 
a power supply is compatible and measure the smooth operation of its load. PQ disturbances, ac-
cording to the IEEE 1159-1995 standard [25], include transients, interrupts, sag, and swells, fre-
quency variations, undervoltages and overvoltages, and steady-state variations (harmonic, notch, 
and blinking). Meanwhile, the IEEE 1459-2010 standard specifies the amount of electric power  
in sinusoidal, non-sinusoidal, balanced, and unbalanced conditions [26].

The types of disturbances include voltage variations, harmonics, and frequency fluctuations. 
Voltage variation is defined as a deviation from the nominal voltage that lasts both short (milli-
seconds) and long (more than one minute). Dips/sags, spikes/surges, and swells are examples of 
short-duration voltage, whereas flicker (voltage fluctuation), undervoltage, overvoltage, and inter-
ruption are examples of long-duration voltage. Sag is a decrease in the value of the RMS voltage 
in the range of 10-90 % within a period of 0.5 cycles to less than one minute. A spike is a high 
instantaneous voltage that rapidly occurs within a short duration. Meanwhile, swell is an increase 
in the value of the RMS voltage in the range of 110–180 % within a period of 0.5 cycles to less than 
one minute. Harmonics are periodic sinusoidal distortions of supply voltage or load current and an 
integer multiple of the power supply’s AC voltage and current. The deviation of the system’s fre-
quency from an accepTable standard nominal value (50 or 60 Hz) due to power dissimilarity in the 
load is referred to as frequency fluctuation. Fluctuations that exceed the tolerance value of 5 % are 
harmful to the power system and can lead to its collapse.

An integrated mathematical model consisting of sinusoidal signal distortion used to derive 
various PQ disturbance equations has been proposed by [27]. Table 1 provides a mathematical 
model of the pure sinusoidal signal and PQ disturbance equation.

The detailed parameters of the PQ disturbances mathematical model in Table 1 are shown 
in the reference research [27]. 

Since PQ disturbance waves are mostly non-stationary and noisy in nature, their identifi-
cation and analysis require a robust and accurate method. The Fourier transform (FT) is the most 
commonly used algorithm for signal analysis. The Fourier spectral analysis has some significant 
limitations, including the requirement that the data be stationary with a linear system to obtain  
a correct spectrum. A Short-Time Fourier Transform (STFT) with a windowing technique was also 
developed to determine the FT on a smaller area of the entire signal [28].
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Table 1
PQ disturbances mathematical model

Class PQ Disturbances Equations

1 Pure Sinusoidal v t A wt( ) = +( )sin ϕ

2 Sag v t A u t t u t t wt( ) = - -( ) - -( )( )( ) +( )1 1 2a ϕsin

3 Swell v t A u t t u t t wt( ) = - -( ) - -( )( )( ) +( )1 1 2β ϕsin

4 Interruption v t A u t t u t t wt( ) = - -( ) - -( )( )( ) +( )1 1 2ρ ϕsin

5 Transient v t A wt e e u t t u t tt t t t
a b

a a( ) = -( ) - -( ) -( ) - -( )- -( ) - -( )sin ϕ ψ 750 334 (( )( )





6 Oscillatory Transient v t A wt e w t t u t t u t tt t
n I II I

I( ) = -( ) + -( ) -( ) -( ) - -(- -( )sin sin/ϕ β ϑt ))( )( )





7 Harmonics v t A wt nwt
n

n n( ) = +( ) + -( )









=

∑sin sinϕ a ϑ
3

7

 

8 Harmonics With Sag v t A u t t u t t wt wt n
n

n( ) = - -( ) - -( )( )( ) +( ) +( ) +
=
∑1 1 2

3

7

a ϕ ϕ asin sin sin wwt n-( )











ϑ

9 Harmonics With Swell v t A u t t u t t wt wt n
n

n( ) = - -( ) - -( )( )( ) +( ) +( ) +
=
∑1 1 2

3

7

β ϕ ϕ asin sin sin wwt n-( )











ϑ

10 Flicker v t A w t wtf( ) = + ( )  -( )1 λ ϑsin sin

The Hilbert Huang Transform (HHT), which consists of two processes, is one of the tools  
for analyzing non-stationary complex waveforms with excellent time resolution [23]. First, the sig-
nal is decomposed into IMFs using EMD process, which has a significant effect on the instanta-
neous amplitude, frequency, and phase of the analyzed signal components. Second, the Hilbert 
Transform is applied to each of the IMFs that are granting loans. Based on scale separation, EMD 
decomposes a time series into several IMFs. Scale separation is defined as the minimum or max-
imum distance between two successive local extremes. The EMD algorithm is shown below [23]:

1. Identify all local maximum and minimum values of data (X(t)).
2. Determine the top (Xup(t)) and bottom covers (Xlow(t)) using cubic spline interpolation.
3. Calculate the mean (m(t)) for the top and bottom covers with (1):

 m t X t X tup low( ) = ( ) + ( )( ) 2.  (1)

4. Find the difference C(t) between the data signal and the mean with (2):

 C t X t m t( ) = ( ) - ( ).  (2)

5. Check the value of C(t) using the following conditions.
If C(t) satisfies two IMF criteria, then h(t) = c(t) is the IMF component of the signal. Other-

wise, substitute X(t) with the residue resulting from Equation (3):

 r t X t C t( ) = ( ) - ( ).  (3)

There are two criteria for producing an IMF, namely:
– in all data series, the number of extrema (maximum and minimum sum) and the data se-

ries that equals zero need to be similar or differ by at most 1;
– at each point, the mean of the local maximum and minimum value covers should equal zero.
If C(t) is not a IMF, replace X(t) with C(t).
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Repeat steps 1–5 until a residue that meets the iteration termination criteria is obtained.
The Hilbert transform of a real-valued x(t) time-domain signal is another real-valued x t( ) 

time-domain signal, denoted by an analysis signal z t x t x t( ) = ( ) + ( )

, where:

 

x t H x t
x

t
( ) = ( )  =

( )
-( )-∞

∞

∫
t

π t
. (4)

The dominant function of time t is in the range of -∞< t<∞. The Hilbert transform of  
a signal produces an orthogonal signal that is 90 degrees off by the original.

The instantaneous amplitude of the x(t) signal is defined as follows:

 A t x t jx t( ) = ( ) + ( ) 
2 1 2



/
. (5)

The x(t) signal’s instantaneous frequency is defined as follows:

 f
t

x t

x t0
1

1

2
=

( )
( )













-
π

tan .


 (6)

In general, the proposed PQ disturbance classification method consists of two main steps, the 
first is preprocessing in the form of feature extraction, while the second is classification. Further-
more, the first step uses the EMD method to decompose its data into several intrinsic mode func-
tions (IMF) components. The feature extraction on IMF is done by using statistical parameters and 
Hilbert transformation. Feature extraction using statistical parameters produces values in the form 
of mean, root mean squared, range, standard deviation, kurtosis, crest factor, energy, and skewness, 
while the Hilbert transformation produces the instantaneous frequency and amplitude of each IMF. 
The feature extraction result from the two is then combined into a set of PQ disturbances. The se-
cond step is to develop an artificial neural network (ANN) structure to classify the type where the 
input is a feature that has been obtained. The sequence of feature extraction steps is shown in Fig. 1.

Fig. 1. Classification of PQ Disturbances using Neural Network

PQ disturbances are data from pure sinusoidal, sag, swell, interruption, transient, oscilla-
tory transient, harmonics, harmonics with sag, and flicker signals, which are decomposed using 
EMD to obtain the IMF composition. This research considers the first 4 IMFs for feature extraction 
and calculates their statistical values. Furthermore, the Hilbert transform technique was used to 
obtain features of the PQ disturbances signal in the form of instantaneous amplitude and frequency.
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The following are the steps for extracting the features of PQ disturbances using statistical 
parameters and the Hilbert transformation:

1) Using the N-dataset, generate pure X sinusoidal signals and PQ disturbances: 

 X x t x t x t x t x t x t xN= ( ) ( ) ( )… ( ) ( ) ( )11 1 2 1 3 1 2 1 2 2 2 3, , , , , , , tt x tM N( ) ( ) ... .,  (7)

2) Decompose X data using EMD to generate IMF set:

 IMF emd XX = ( ).  (8)

3) For each IMF, use statistical parameters such as mean, root mean squared, range, stan-
dard deviation, kurtosis, crest factor, energy, and skewness:

 Mean → = =
=

∑ ,M x
N

IMF
n

N

X
1

1

 (9)

 Standard deviation → =
-

-( )









=

∑S
N

IMF x
n

N

X
1

1
1

2

1
2

, (10)

 Root means square → =










=

∑ ,RMS
N

IMF
n

N

X

1

1

2  (11)

 Range → = ( ) - ( )max min ,R IMF IMFX X  (12)

 Crest Factor → CF
IMF

RMS
X=

max
,  (13)

 Kurtosis → = -( )
=

-

∑K
S N

IMF x
n

N

X
1
4

0

1
4 ,  (14)

 Skewness → SK
S N

IMF M
n

N

X= -( )
=

-

∑
1
3

0

1
3 ,  (15)

 Energy → E IMF
n

N

X= ( )
=

∑
1

2 .  (16)

4) To obtain the instantaneous frequency and amplitude, apply the Hilbert transform to  
each IMF:

 IMF t H IMF t
IMF

t
 ( ) = ( )  =

( )
-( )-∞

∞

∫
t

π t
.  (17)

The instantaneous amplitude of the IMF(t) signal is defined as follows:

 A t IMF t jIMF tIMF ( ) = ( ) + ( )





2
1 2



/
.  (18)

The instantaneous frequency of the x(t) signal is expressed as follows:

 f
t

IMF t

IMF t0
1

1

2
=

( )
( )













-
π

tan .


 (19)

After feature extraction, 32 statistical features were derived from the first 8 multi-
plied by 4 IMFs. Furthermore, 8 features of the Hilbert transformation derived from the first  
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2 features were multiplied by 4 IMFs. In the end, a total of 40 combined statistical features and  
Hilbert transformations were obtained which are expressed as Ft11, Ft12, Ft13,… Ft410 as summa-
rized in Table 2.

Table 2
Features obtained by statistical parameters and Hilbert Transformation

Features IMF-1 IMF-2 IMF-3 IMF-4

Mean Ft11 Ft21 Ft31 Ft41

Standard deviation Ft12 Ft22 Ft32 Ft42

Root Mean Squared Ft13 Ft23 Ft33 Ft43

Range Ft14 Ft24 Ft34 Ft44

Crest Factor Ft15 Ft25 Ft35 Ft45

Kurtosis Ft16 Ft26 Ft36 Ft46

Skewness Ft17 Ft27 Ft37 Ft47

Energy Ft18 Ft28 Ft38 Ft48

Inst. Frequency Ft19 Ft29 Ft39 Ft49

Inst. Amplitude Ft110 Ft210 Ft310 Ft410

The second step is to classify the type of PQ disturbances by developing Multi-Layer Feed-
forward MLF Neural Networks (MLFNN), which is an artificial neural network consisting of 
neurons arranged into many layers. The first layer is called the input, and the last is the output, and 
between both is the hidden layer with its number dependent on the problem to be solved. The input 
layer is connected to the hidden by the set of weights, while the hidden layer is connected to the 
output by weights to the feed-forward system [29]. MLF neural network is widely used for accurate 
diagnosis [30], estimation [31], forecasting [32] and classification [33].

Based on experiments using Matlab 2019b, MLFNN was used with the architecture as 
shown in Fig. 2. It consists of 1 input, 2 hidden, and 1 output layer. The input has N feature co-
lumns, each hidden and output layer contains 10 neurons, and the final section has 10 outputs. 
The transfer function in hidden layers 1 and 2 is ‘tansig’ while the output is ‘softmax’. Tansig  
also known as hyperbolic tangent sigmoid is a function to calculate the output of input in the  
range –1 to +1. This function is a better tradeoff than the tanh function in Matlab-implemented 
neural networks, so it is commonly used as a transfer function in a network’s hidden layer [34]. 
Softmax is a mapping function from input real numbers, that normalizes and makes the probabi-
lity distribution in the range (0, 1). A larger input component corresponds to a greater probability.  
It is also often used in neural networks at the output layer to represent categorical distributions, 
such as object classification [35].

Fig. 2. MLF Neural Network Architecture

The network consists of many layers where each has a weight matrix W, bias vector b,  
output vector a, and activation function f. Fig. 5 shows how the MLF neural network architecture 
is used to identify and classify ten different types of PQ signals. PQ data generated as many as  
1,500 different variations for each type of PQ, which means that there are 10×1,500 data. By ap-
plying the data preprocessing according to the steps in Fig. 1, 40 features×1,500 data columns  
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were obtained. The ratio of the dataset distribution used as training, validation, and testing data 
is 0.75, 0.15, and 0.15, respectively. To train the network, the Trainlm backpropagation algorithm  
was used, which was chosen due to its supervised and optimized standard in achieving the  
desired target. It also used the Hessian matrix approach to update the weight [35]. This optimiza-
tion algorithm is better than the Gauss-Newton algorithm (GNA) and the gradient descent (GD), 
although it requires more memory. The performance of trainlm is expressed in terms of mean 
or sum of squared error (MSE) using Jacobian for error calculation. MSE is calculated as shown  
in equation (17).

 MSE
N

e
N

t a
i

N

i
i

N

i i= ( ) = -( )
= =
∑ ∑

1 1

1

2

1

2 ,  (17)

where N is the number of data, ei is the i-th error as a result of the ti target value minus the ai  
output value.

3. Results and discussion
The dataset consists of a pure sinusoidal signal and a PQ disturbances as shown in Fig. 3.  

It is generated randomly with a uniform distribution through computer simulation using  
Matlab 2019a. Based on the signal mathematical model [27], ten classes of PQ signals are gene-
rated, each with 1,500 data samples, for a total of 15,00. The sampling frequency of 16 kS/sec, the 
number of 100 samples per class, the amplitude of 1 p. u., and the fundamental frequency of 50 Hz 
with 10 cycles are the main parameters of the generated dataset. The data samples are arranged  
by class, as shown in Table 1.

Fig. 3. Signals of pure sinusoidal and power quality disturbances

Furthermore, feature extraction is applied to the dataset to obtain the first 4 IMFs by using 
EMD as shown in Fig. 4. This is because most of the frequency content of the PQ disturbances 
signal lies in the first 4 oscillation modes. By calculating the statistical parameters and apply-
ing the Hilbert transform to each IMF, 40 features×10 classes×1,500 data columns were obtained.  
The obtained feature dataset is divided into sub-datasets for training, validation, and testing.  
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The target output is formed by creating a matrix with the size of 10 classes×1,500 feature data, 
where each class output is expressed in one hot encoding.

Fig. 4. IMF of harmonics with sag signal

Before training the network, the weights and biases were assigned a random initial value. 
Training stops when a maximum number of epochs (repetitions) is reached, performance is mini-
mized to the goal, the gradient of performance falls below min grad, and validation performance 
increases more than max fail times. The training process uses a computer with a Core i5-6200U pro-
cessor specification, 16 GB RAM, and Matlab 2019b. This research determined the classification 
accuracy of network outputs as a result of processing inputs with different network architectures.  
The network input consists of 3 types of features, namely statistics, Hilbert transformation, and  
a combination of both. Meanwhile, the network architecture consists of several hidden layers and 
different neurons Furthermore, there is no precise formula for calculating the number of neurons 
in a hidden layer. The network architecture is formed by input layer, hidden layer 1, hidden layer 2, 
and an output layer with the structure N-input – 10–10–10-output, N-input – 15–15–10-output, 
N-input – 20–20–10-output, and N-input – 25–25–10-output. In this case, the order of structure 
from the architecture is expressed as 1, 2, and 3.

This research conducts 3 types of training and testing based on the type of input and net-
work architecture, as follows:

1. First, training and testing are carried out by providing input statistical features on net-
works with architectures 1, 2, and 3.

2. Second, the training and testing are carried out by providing input features of the Hilbert 
transformation on the network with architectures 1, 2, and 3.

3. Third, training and testing are carried out by providing input statistical features-Hilbert 
transformation on networks with architectures 1, 2 and 3.

Tables 3–5 show the training and testing of the 3 types of training, which tend to produce 
network weights after reaching several epochs. The weights and network architecture obtained 
from the training process are then used to determine the testing data to accurately classify the PQ.  
The classification accuracy of each class and the whole is obtained from the confusion matrix 
after testing all the data. There are 10 and 9 classes of PQ signals and disturbances, respectively 
as shown in Table 1. To avoid underfitting, the number of datasets is enlarged to 1,500 per case. 
Meanwhile, to avoid overfitting, it is divided into training, validation, and testing. Furthermore, af-
ter each training, the validation process is carried out to validate the model and prevent overfitting.
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Table 3
Precision, recall, and accuracy of network classification with statistical feature input

Number of 
Features 

Network Architec-
ture (neurons)

Performance 
parameters 

Class of PQ
1 2 3 4 5 6 7 8 9 10

32 10–10–10 
Precision (%) 86.8 90.3 98.4 84.7 93.6 97.0 98.7 98.2 99.5 99.5

Recall (%) 100 85.4 96.4 89.6 82.2 96.6 99.6 99.1 97.0 100
Overall Accuracy (%) 94.6

32 15–15–10 
Precision (%) 85.8 79.6 95.0 75.1 93.7 88.9 100 90.7 95.7 97.5

Recall (%) 100 73.2 96.9 85.6 81.3 92.7 75.8 96.4 97.5 100
Overall Accuracy (%) 89.7

32 20–20–10 
Precision (%) 85.5 75.4 96.9 79.0 96.3 94.4 100 92.4 97.4 98.0

Recall (%) 100 79.6 95.5 84.4 82.2 94.4 84.1 96.9 94.9 100
Overall Accuracy (%) 91.1

Table 4
Precision, recall, and accuracy of network classification with Hilbert transform input

Number of 
Features 

Network Architec-
ture (neurons)

Performance 
parameters 

Class of PQ
1 2 3 4 5 6 7 8 9 10

12 10–10–10 
Precision (%) 71.0 88.2 97.4 87.6 95.5 99.6 100 100 99.5 91.0

Recall (%) 100 86.6 99.0 85.3 78.5 99.6 93.4 99.1 100 78.2
Overall Accuracy (%) 92.1

12 15–15–10 
Precision (%) 66.8 91.8 96.5 89.3 95.1 99.6 99.5 97.7 98.0 91.0

Recall (%) 100 88.0 97.4 91.2 82.2 98.7 95.2 97.3 97.5 63.4
Overall Accuracy (%) 91.4

12 20–20–10 
Precision (%) 58.6 88.5 95.7 92.1 85.2 100 100 98.7 99.5 48.4

Recall (%) 44.7 86.0 90.8 84.0 77.0 99.6 95.5 99.6 98.5 77.1
Overall Accuracy (%) 85.6

Table 5
Precision, recall, and accuracy of network classification with Statistics – Hilbert transformation input

Number of 
Features 

Network Architec-
ture (neurons)

Performance  
parameters 

Class of PQ
1 2 3 4 5 6 7 8 9 10

28 10–10–10 
Precision (%) 97.4 94.3 96.5 94.2 94.3 99.4 100 98.8 100 99.3

Recall (%) 100 95.5 99.3 95.6 96.8 96.3 92.8 100 98.5 100
Overall Accuracy (%) – 97.4

28 15–15–10
Precision (%) 97.5 95.9 95.7 88.4 98.0 98.7 99.4 98.8 100 97.9

Recall (%) 100 89.7 96.4 96.3 97.4 98.1 94.5 99.4 99.3 100
Overall Accuracy (%) 97.1

28 20–20–10 
Precision (%) 98.1 93.6 94.1 90.2 97.3 99.4 97.6 98.8 98.5 98.5

Recall (%) 100 94.2 90.7 94.9 92.9 98.8 97.6 98.8 98.5 100
Overall Accuracy (%) 96.7

The confusion matrix is used as a basis for measuring the performance of model testing 
towards the dataset. It also provides information on the comparison of the classification results 
performed by the model in terms of accuracy, precision, and recall. To obtain these parameters, 
it is necessary to determine the predicted and actual values. The True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Negative (FN) are positive, negative, negative, and posi-
tive data predicted to be correct, true, positive, and negative, respectively.
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Fig. 5 shows the confusion matrix of the output and target class of the testing data. There 
are 1,500 test data from 10 PQ signals with the row denoting the output or predicted class, while 
the column is the target or actual class. Diagonal cells are correctly classified observations. The 
rightmost column is precision (positive predictive value), the bottom row is recall (true positive) 
and the bottom-right cell is overall accuracy.

Fig. 5. Confusion matrix for the testing dataset

Based on the confusion matrix in Fig. 5, the values for accuracy, precision, and recall are 
as follows:

Acuracy =
+ + + + + + + + +

= .
148 148 133 136 146 168 156 171 136 124

1500
0 977 == 97 7. %.

(21) is used to determine the precision value as follows:

Precision PQ1
148

148 3
0 977 98( ) =

+
= =. %,
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in the same way, will get the precision for PQ2 until PQ10, therefore the total precision obtained 
according to (22) is as follows:

Total Precision =
+ + + + + + + +86 8 90 3 98 4 84 7 93 6 97 98 7 98 2 99. . . . . . . .55

10
98 4= . %.

Furthermore, the recall value is obtained through equation 23, as follows:

Recall PQ1
148

148
1 100( ) = = = %

with a recall for PQ2 until PQ10, therefore the total recall obtained according to (24) is as follows:

Recall total =
+ + + + + + + + +100 93 1 94 3 95 1 97 3 98 8 98 7 100 100 100. . . . . .

110
97 7= . %.

Table 3 shows the precision, recall, and accuracy of network classification with a total of 
32 input statistical features. The total accuracy performance on network architectures 1, 2, and 3 
are 94.6 %, 89.7 %, and 91.1 %, respectively. Table 4 shows the precision, recall, and accuracy of 
network classification with a total of 12 input features of the Filbert transformation. The total accu-
racy performance on network architecture 1, 2, and 3 are 92.1 %, 91.4 %, and 85.6 %, respectively.  
Meanwhile, Table 5 shows the precision, recall, and accuracy of network classification with sta-
tistical feature input and Hilbert transform, with a total input of 28 features. The total accuracy 
performance on network architectures 1, 2, and 3 are 97.4 %, 97.1 %, and 96.7 %, respectively.

Network performance is measured by overall accuracy, the number of iterations (epochs), 
MSE, and the length of training time as shown in Table 6. The least epochs are obtained in the 
first network architecture with a combination of input and features. Meanwhile, the most number 
of epochs from the Hilbert transformation feature is 1,000. The lowest and highest MSE obtained 
from the combined features and Hilbert transformations are 0.00178 and 0.0159. Furthermore, the 
fastest training time was obtained from the combined features of 4 minutes 11 seconds and the 
longest from the Hilbert transformation feature of 14 minutes 17 seconds.

Table 6
Comparison of epochs, MSE, and time 

Input Features Network Architecture (neurons) epoch MSE Time 

Statistics Parameters (SP) 10–10–10 204 0.00745 6 M; 30 S

Hilbert Transforms (HT) 10–10–10 1000 0.0159 14 M; 7 S

SP+HT 10–10–10 200 0.00178 4 M; 9 S

This research focuses on obtaining PQ signal feature extraction using the EMD method  
for PQ signal decomposition. Furthermore, it applied statistical parameters and Hilbert transfor-
mation to the first 4 IMFs to produce 28 selected features. MLFNN was used to classify 10 classes 
of PQ disturbances which were evaluated based on precision, recall, accuracy, number of epochs, 
MSE, and learning process time. The results of the evaluation obtained knowledge as follows:

1. A total of 10 PQ classes were detected and classified, namely pure sinusoidal, sag, swell, 
interruption, transient, oscillatory transient, harmonics, harmonics with sag, harmonics with the 
swell, and flicker.

2. Based on Tables 3–5 and Fig. 6, the best overall accuracy is obtained from network  
architecture 1, at 94.6 %, 92.1 %, and 97.4 %, respectively as shown in Fig. 6. Furthermore, 
when compared to the overall accuracy of the 3 input features, the combined statistical parameter  
and Hilbert transformation feature had the highest overall accuracy of 97.4 %.
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3. The highest precision and total recall were obtained from the combined features of statis-
tical parameters and the Hilbert transform, by 98.4 % and 97.7 %, respectively.

4. Table 6, showed that the lowest epoch, MSE, and training time were obtained from the 
combined features of statistical parameters and the Hilbert transformation.

5. The implemented method can be used to detect and classify PQ signals reliably for pure 
sinusoids, harmonics with sag and swell, and flicker with a precision of 100 %.

The benchmarked approach using a real-life dataset published in the IEE-data port was 
used to carry out this research [36]. The dataset was generated from experimental measurements 
on a power grid with a frequency of 50 Hz at the University of Cadiz in 2011. It provided a set  
of the most common PQ disturbances in the form of real-life sag events with a sampling frequency 
of 20 kHz for testing experimentation and measurement instrumentation according to UNE-IEC  
as shown in Fig. 7, 61000-4-11:2005 and UNE-EN-50160:2011.

Fig. 6. The overall accuracy of all features input

Fig. 7. Real-life power quality sag: a – 30 %; b – 60 %; c – 70 %; d – 80 %

The trained network is then applied to test the input data containing 30 %, 60 %, 70 %,  
and 80 % real-life sag as shown in Fig. 7. Each input data after being preprocessed is analyzed  
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by the network to obtain the PQ class type classification output. At 30 % real-life sag dataset  
produces 14 IMF components with frequencies in the range of 1 to 3.7 kHz. However, it only pro-
duces 6 IMF components when compared to the pure sag dataset with frequencies in the range  
of 1 to 50 Hz. Fig. 8 shows the preprocessing results for the 30 % real-life sag dataset compared 
to the pure sag. The analysis result related to the network on the real-life sag signal preprocessed 
to produce a classification output is ‘Harmonics with Sag.’ This is understandable because the 
network is trained using a pure sag dataset where it only has a frequency component of 50 Hz as 
shown in Fig. 7. Meanwhile, the real-life sag dataset has several frequencies which are multiples of 
50 Hz, therefore the network produces a classification output in the form of ‘Harmonics with Sag.’ 

Fig. 8. Frequency component of: a – real-life signal; b – pure sag signal

Fig. 8 shows the frequency component and IMF amount of the 30 % real-life sag signal.  
The figure shows that the frequency component of 50 Hz is found in the 7th IMF, while the 1st  
to 6th IMF contains its multiples. For further signal analysis, IMFs 1 to 6 are discarded and re-
placed with 7 to 14 as network input. The results of the network output on the filtered real-life sag 
signal produce a classification output in the form of ‘Sag’ as shown in Fig. 8, b.

After filtering the 30 % real-life sag signal, it is then inputted into the neural network and 
the result is ‘sag’. Another real-life sag dataset test that produces the correct classification output, 
without filters is ‘sag’. The results of this test indicate that the trained network can detect and clas-
sify the types of PQ disturbances in the real data input of the measurement results. The detailed test 
results of each network architecture are summarized in Table 7.

The test results of trained networks on real-life datasets are evidence of the initial hypo-
thesis that the EMD method and the developed statistical parameters and Hilbert Transforms can 
produce feature extraction as MLFNN input for PQ type classification. The features obtained sig-
nificantly affect the accuracy of the model. The effect is shown by the values of R training, valida-
tion, test, and R-overall at 0.9917, 0.9918, 0.9771, and 0.9879, respectively. The output of the trained  
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network can detect and classify non-linear as well as non-stationary PQ signals with high accuracy.  
However, the trained network test on real-time measurement data is still limited to sag signals, due 
to the difficulty of obtaining data from other valid power quality signals.

Table 7
Classification accuracy results for a real signal

PQ Disturbance
Accuracy

Network Architecture 1 Network Architecture 2 Network Architecture 3

Sag 97.2 % 94.6 % 91.3 %

This paper presents the advantages of feature extraction by developing the use of EMD, 
statistical parameters, and the Hilbert transformation. We have evaluated the performance of the  
developed method and obtained evidence that the approach is capable of detecting and classifying  
PQ disturbances with high accuracy. However, there are some shortcomings, such as the training data 
is synthetic, not real-life data, testing on real-life data is still only one class, and testing has not been 
carried out in real-time.

In future work, let’s train neural networks with real-life data input measured from po wer loads 
containing various PQ disturbances. It is necessary a power electronics circuit that will generate 
many types of PQ disturbances and then capture the data with a data acquisition tool. Then, let’s im-
plement the trained network on a computer interface based on graphical user interface (GUI) software 
that is connected to a data acquisition tool to detect and classify various PQ disturbances in real-time.

4. Conclusions
In conclusion, this research described a novel approach of feature extraction and neural 

networks for the detection and classification of power quality signals by developing EMD me-
thods, statistical parameters and Hilbert transforms. The main results were 28 selected features 
obtained from the decomposition of the power quality signal into the first 4 IMF and extracted into 
RMS values, range, crest factor, energy, instantaneous frequency, and amplitude. Furthermore,  
a network architecture in the form of MLFF was developed which consists of 10 to 15 neurons in 
the hidden layer for the classification of 10 PQ disturbance classes. The presented methodology 
showed satisfactory results for the classification process, which is expressed in terms of high preci-
sion, recall, and accuracy. Simple network architecture and training process without a long time is 
another reliability of this method. The trained network is proven to be able to predict input real-life 
datasets with high accuracy, although it is still limited to one case of power quality signal class, 
namely ‘sag’, due to the inadequate availability of real-life datasets.
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