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Abstract
This study aims to determine the effect of milling time and sintering temperature parameters on the alumina transformation 

phase in the manufacture of Aluminium Matrix Composites (AMCs) reinforced by 20 % silica sand tailings using powder metallurgy 
technology. The matrix and fillers use waste to make the composites more efficient, clean the environment, and increase waste uti-
lization. The milling time applied to the Mechanical Alloying (MA) process was 0.5, 6, 24, 48, and 96 hours, with a ball parameter 
ratio of 15:1 and a rotation of 93 rpm. Furthermore, hot compaction was carried out using a 100 MPa two-way hydraulic compression 
machine at a temperature of 300 °C for 20 minutes. The temperature variables of the sintering parameter process were 550, 600  
to 650 °C, with a holding time of 10 minutes. Characterization of materials carried out included testing particle size, porosity,  
X-Ray Diffraction (XRD), SEM-Image, and SEM-EDX. The particle measurement of mechanical alloying processed, using Particle
Size Analyzer (PSA) instrument and based on XRD data using the Scherrer equation, showed a relatively similar trend, decreasing
particle size occurs when milling time was increased 0.5 to 24 hours. However, when the milling time increases to 48 and 96 hours,
the particle size tends to increase slightly, due to cold-weld and agglomeration when the Mechanical Alloying is processed. The
impact is the occurrence of the matrix and filler particle pairs in the cold-weld state. So, the results of XRD and SEM-EDX cha-
racterization showed a second phase transformation to form alumina compounds at a relatively low sintering temperature of 600 °C
after the mechanical alloying process was carried out with a milling time on least 24 hours.
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1. Introduction
AMCs products have been widely applied in the aerospace and automotive industries due to 

their high strength-to-weight ratio [1], even aluminium metal is the second light metal after magnesium 
which is most widely used in industry after iron [2, 3]. The reinforcement of composite materials using 
a soft and ductile aluminium matrix, combined with rigid ceramic particles, such as oxides, carbides, 
borides, and nitrides, requires adequate engineering processes to obtain AMCs products with me-
chanical properties, such as lesser porosity, higher hardness, and greater resistance to friction [4–6].

Mechanical Alloying (MA) involves the mixture of matrix material and reinforcing powder 
as well as the simultaneous reduction of particle sizes using high-energy ball milling [7]. There-
fore, MA is an essential process of powder metallurgy techniques widely used and developed as  
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reported in several recent studies. This solid-state method [8], involves repeated ball collisions, 
thereby leading to deformation, cold welding, fracturing, and re-welding of powder particles in 
a high-energy ball mill [9]. However, it has been widely used, to synthesize various materials, 
such as intermetallic compounds [10], amorphous alloys [11], nanocrystalline substances [12], car-
bides [13], nitrides, and composites [14].

In certain conditions, the presence of an alumina phase (Al2O3) in the composite product is 
desirable. This is based on the fact that alumina has better mechanical properties than the reinforcing 
metal oxides (M), such as silicon dioxide (SiO2), iron oxide (Al2O3), zinc oxide (ZnO), etc. A trans-
formation reaction synthesizes aluminium with a suitable metal oxide during the MA process under 
a specific sintering temperature to produce the Al2O3 phase based on the following equation [15]:

 3 2 32 3MO Al Al O M+ = + .  (1)

The use of MA methods proposed by Radial Ball Mill technology involves a combination of the 
powder mixing process with the matrix, regarded as an alloying element. Conversely, when a higher 
level of the Al2O3 phase is required, an increased % wt. of M needs to be conferred to improve the 
material properties. Therefore, to optimize the AMCs properties, the adequacy of M needs to be de-
termined, in addition to composing the ceramic reinforcement, the matrix also has to be designed [16]. 
Silicon dioxide (SiO2) is a possible candidate for producing these AMCs because its reaction with Al 
produces high negative free energy (ΔG) changes [17]. The Al matrix dissolves the reduced Si, there-
by increasing the mechanical properties of the composite. Several studies have been carried out on 
AMCs using different MA milling times [15] and sintering parameters to produce the alumina phase 
in the composite products. Some of these studies used Aluminium and SiO2 material consti tuents 
with a milling time of 8 hours and sintering at 650 °C for 2 hours [18]. Furthermore, Al and ZnO 
materials were used with a milling time of 60 hours and sintering at 550 °C for 3 minutes [15], as well 
as Al, SiO2, and C materials with a milling time of 50 hours and sintering at 650 °C for 1 hour [19].

The MA process reduces particle size, resulting in Schottky defects and Frenkel de-
fects [20, 21], so the interstitial or substitution between particles occurs and increases the distri-
bution of reinforcing powders across the aluminium matrix, thereby enhancing the yield strength 
of the AMCs constituent powders following the Hall-petch strengthening analysis [22, 23]. It also 
improves matrix properties, through high deformation rates, optimizes heat energy absorption and 
dislocation densities, including reinforcement by oxide dispersions [24]. Therefore, the MA pro-
cesses involving Al-SiO2 reduces transformation reaction temperatures below 750 °C, relatively 
less than that of the normal reaction, which is approximately 1000 to 1300 °C [18]. This is because 
the ball milling process triggers the formation of nano-sized diffusion pairs of Al-SiO2 and accel-
erates associated reactions by reducing atomic diffusion distance. Besides, severe plastic deforma-
tions tend to cause significant crystal imperfections in the particles, increase the absorption of heat 
energy, chemical reactivity, and atomic diffusivity [25].

Previous studies used essential composites ingredients that have relatively high purity, >98 %. 
Meanwhile, it is generally expensive to obtain highly purified silica [26]. Likewise, the cost to pro-
duce primary aluminium is prohibitive, because it requires 95 % of the waste recycling process, 
thereby making AMCs expensive [3, 27]. Therefore, this research aims to produce Al-Si or Al2O3 
micro composites using aluminium recycled materials and silica sand tailings with low purity le-
vels (<90 %), which are relatively inexpensive. Irrespective of the fact that several preliminary studies 
have been carried out on the relatively high level of parameter complexity in the MA process as well 
as the different purposes and AMCs constituent materials used, in-depth research needs to be con-
ducted to determine the effect of milling time and sintering temperature on the occurrence of phase 
transformation reactions using Al2O3 and AMCs fabricated with silica sand tailings reinforcement. 

2. Materials and methods
2. 1. Materials
The aluminium powder used as a matrix was obtained by recycling motorcycle waste ma-

terials, namely, pulley, piston, machine block, and beverage-can packages. This process involves 
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a metal casting method with ingot moulds, turned into chips, using a ball mill machine [28]. The 
recycled aluminium casting process and the ball mill technique were carried out in the αβγ Lab-
oratory, Landungsari, Malang, Indonesia. The aluminium produced from the recycled material 
is referred to as Al-ZnSiFeCuMg. Meanwhile, silica sand tailings are derived from mining and 
leaching waste from PT. Timah, Tbk. in Mentok, Province of Bangka-Belitung Islands, was used 
as reinforcement.

The size of the utilized Al-ZnSiFeCuMg and silica sand tailings material powder bases 
determined using PSA machines is D50: 204 µm, and D50: 31 µm respectively. The 2 powdered 
materials that constitute the AMCs have undergone the initial grinding process. The SEM images 
illustrating the dimensions and physical forms of Al-ZnSiFeCuMg and silica sand tailing powders 
are shown in Fig. 1, a, b. Meanwhile, the chemical compositions of the Al-ZnSiFeCuMg material 
powder base were determined using the Spectro Spark Analyzer test at PT.HP. Metal in Ngoro 
Industry Persada East Java Indonesia is shown in Table 1. 

Furthermore, the chemical compositions of silica sand tailing powder base determined  
using the XRD test carried out at the Mineral and Advanced Materials Laboratory of the State 
University of Malang is shown in Table 2. The silica sand tailing contains several impurities due 
to the presence of a lesser wt. % Cu(FeO2), and Fe2O3 [1].

Fig. 1. Scanning Electron Microscope (SEM) image: a – Powder of Al-ZnSiFeCuMg Aluminium; 
b – Powder of Silica Sand Tailings

Table 1
Chemical Composition of Al-ZnSiFeCuMg Powder [D50:204 µm]

Element Al Zn Si Fe Cu Mg Sn Pb Sb Ni Other

[%] 83.15 6.16 4.35 2.20 1.30 1.13 0.37 0.33 0.28 0.16 0.56*

STDEV** 1.33 1.07 0.35 0.20 0.09 0.08 0.04 0.01 0.03 0.02 0

*Cr/Mn/Ti/Zr/Ca/Bi/Na/P/Sr/Be/Cd.
**STDEV = Standard Deviation

Table 2 
Chemical Composition of Silica Sand Tailing Powder [D50:31 µm]

No. Compound Name Chemical Formula Perct. [%]
1 Quartz SiO2 81
2 Maghemite Fe2O3 12
3 Anatase TiO2 5
4 Zirconium Oxide ZrO2 2

2. 2. Experimental Procedure and Methods
Powder metallurgy was used to produce AMCs reinforced with silica sand tailings. This 

technique involves several stages, namely powder preparation and additives, blending or mixing, 
compaction, lubrication removal, sintering, process, and product finishing [29, 30]. The experi-
mental procedures and methods are shown in Fig. 2. Schematic of Powder Metallurgy Stages on 
the Manufacturing AMCs Reinforced Silica Sand Tailing.

  

300 µm 300 µm 

a b
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Fig. 2. Schematic of Powder Metallurgy Stages on the Manufacturing Aluminium Matrix 
Composites (AMCs) Reinforced Silica Sand Tailing

Generally, the extremely small reinforcement percentage used failed to provide the required 
strengthening effect. In contrast, the higher the percentage of the reinforcement, the easier the ag-
glomeration thereby, making it difficult to obtain a homogeneous composites constituent mixture. 
Therefore, the applied matrix and reinforcement weight ratio is 80 % wt. Al-ZnSiFeCuMg and 
20 % wt. silica sand tailing, SiO2 [28, 31–33]. To achieve a thickness of ±8 mm, 25 grams of cold-
weld powder from the MA process was inserted into one of the mould specimens.

The mixing of powdered AMCs constituents was realized using Mechanical Alloying with 
a radial Ball Mill Machine. A Ball Parameter Ratio (BPR) of 15:1 and a machine ball mill rotation 
of 93 revolutions per minute (rpm) were utilized [34]. The vial tube and the ball miller material 
were made from stainless and chrome steel, respectively. The applied milling time variations were 
0.5 hours, 6 hours, 24 hours, 48 hours, and 96 hours. The MA and sintering processes were carried 
out using the atmosphere [35].

Furthermore, a hot-compaction system at a temperature of 300 °C, and pressure of 100 MPa 
for 10 minutes was utilized [30]. This mechanism used a 2-way hydraulic pump consisting of top 
and bottom rams. The mould specimens were ring-shaped, with outer and inner diameters of 40 mm, 
and 17 mm, and a thickness of 8 mm [36]. The sintering process is performed 20 days (480 hours) 
after the hot-compaction process was carried out to obtain a relatively stable specimen because 
powder metallurgy product that naturally ages within 2000 hours changes the microstructure [37]. 
Additionally, the rate of change in the chemical composition of the particles in the specimen is still 
ongoing. However, it is relatively gradual and slow.

According to [38], the reaction between Al and SiO2 powders using the Mechanical Alloy-
ing process at a milling time of 4 hours and sintered within a temperature range of 560 and 680 °C 
led to a transformation reaction namely Al2O3. Meanwhile, composite wetting conditions of alu-
minium powder metallurgy generally occur at sintering temperatures of 550 and 620 °C, using  
a mixer or a mechanical alloying process [26]. [18], stated that smaller particle sizes produced by 
the MA ball-mill increase the reactivity of the composite constituent powder and the heat energy 
absorption efficiency, thereby causing the alumina transformation reaction to occur at a reduced 
temperature, of relatively 530 and 680 °C. An exothermic reaction occurs between the liquid solids 
Al and SiO2. Therefore, the sintering temperature process was carried out at 550 °C, 600 °C, and 
650 °C, at a holding time of ±10 minutes.

The theoretical density of the matrix and the AMCs reinforcing powder mixture is deter-
mined using the following (2) [28]:

 ρ
ρ ρ ρ ρ

T
u u u n unu u u u

=
∑ ⋅

=
⋅ + ⋅ +…+ ⋅% % % %

,
100 100

1 1 1 2  (2)

where, the variables of ρu and %u are the densities and chemical elements percentages, while ρT  
is the theoretical density value. Measurement of the density value was performed by applying 

Silica Sand
Tailing [31µm]

Al-ZnSiFeCuMg
[204 µm]

Top
Ram

Bottom 
Ram

Mould

Thermoc
ouple

Sample/
Powder Furnace

Matrix and 
reinforcement

Mixing with MA

 93 rpm,  
BPR 15:1,  
Mill time: 

0.5/24/48/96 [hour] 



Original Research Article:
full paper

(2022), «EUREKA: Physics and Engineering»
Number 1

107

Engineering

Archimedes’ principle, after the hot-compaction (ρH C� ) and sintering process (ρS) [39]. Initially, 
the density of the produced AMCs specimens, ρAMCs involved the weight of a specimen basket in 
water (Wsb), the scale weight in the air (Wa), the weight of the basket in water (Wb), and the weight 
of the specimen in water (Wc = Wsb–Wb). However, assuming ρw is the density of water, the value 
of the composite specimen is obtained using (3) [28]. Subsequently, the percentage porosity (γ%),  
of hot-compaction and sintered AMCs, were determined using (4).

 ρ ρAMCs =
− −( ) ´

W

W W W
a

a sb b
w ,  (3)

 γ
ρ ρ

ρ
% .( ) =

−
´T Composite

T
100  (4)

The process of characterizing powdered and AMCs specimens involves the use of several 
instruments. First, the chemical composition of powdered materials was tested using the X’Pert 
Pro, Pan Analytical X-Ray Diffraction (XRD) type at the Laboratory of Minerals and Advanced 
Materials, State University of Malang. Meanwhile, the chemical composition of AMCs products 
was tested using Xpert-3 type PANanalytical X-Ray Diffraction (XRD) at the Central Laboratory 
of Biosciences Brawijaya University (LSIH-UB). XRD analysis was carried out using HighScore 
Plus software. Measurement of particle size distribution was performed using a Cilas 1090 Dry 
Laser Particle Size Analyzer (PSA) machine at the Chemical Engineering Laboratory of Brawijaya 
University. Meanwhile, microstructure analysis was carried out, using a Scanning Electron Micro-
scope (SEM) of the FEI Quanta FEG 650 series and FE-SEM type. Besides, the elemental com-
position analysis was obtained using the X-act Oxford Instrument EDS detector at the Bioscience 
Central Laboratory of Brawijaya University (LSIH-UB).

In addition, to confirm the PSA testing carried out using the Cilas 1090 Dry PSA machine, 
the average particle size of crystal (d) base on coherent diffraction domain size was estimated using 
the Scherrer Equation (5) and XRD data [40]:

 d
K

= ( )
l

β θcos
, (5)

where β is FWHM (Full Width at Half Maximum, in radians) from the diffraction peak, approx-
imated for Cu Kα and instrument widening, and K is a constant with a magnitude that depends  
on the crystal form factor, referred to as the diffraction (hkl) plane. The actual K varies from 0.62 
to 2.08, while the commonly used value is 0.94 assuming β is FWHM, and the Integral Breadth 
is 0.89 [41]. Meanwhile, l is the wavelength of the used X-rays, lCu is 0.1540598 Å, and θ is  
the diffraction angle [42].

3. Results and discussion
3. 1. Scanning Electron Microscope (SEM) image and particle distribution graph  

results to the MA Mechanical Alloying (MA) product mixtures
There were 5 variations of milling time realized during the mixing process of the powdered 

material constituents of AMCs using the Mechanical Alloying (MA) method, namely 0.5, 6, 24, 48, 
and 96 hours. The dimensions and shapes characterization of the powdered materials for each 
sample produced from the MA process is shown in the SEM image, Fig. 3, a, 4, a, 5, a, 6, a, 7, a.  
Whereas, the constituent AMCs powders from the MA process were measured using the PSA 
Cilas 1090 Machine. The PSA measurement results are shown in Fig. 3, b, 4, b, 5, b, 6, b, 7, b. This 
method of coding is based on the milling time variables of 0.5 hours, 6 hours, 24 hours, 48 hours, 
and 96 hours shown in Fig. 3, a, 4, a, 5, a, 6, a, 7, a and codified as MA-0.5h, MA-6h, MA-24h, 
MA-48h, and MA-96h respectively.

The difference between the two specimens, as shown in Fig. 3–5, it is clear that the dif-
ference in milling time has shown differences in the shape and size of the MA powder, the longer 
MA milling time the smaller the powder size.
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Fig. 3. Characterization Sample of 0.5 hours Mechanical Alloying (MA-0.5 h):  
a – Scanning Electron Microscope (SEM) image; b – Graph of Particle Size Analyzer (PSA) 

measurement results 

Fig. 4. Characterization Sample of 6 hours Mechanical Alloying (MA-6h):  
a – Scanning Electron Microscope (SEM) image; b – Graph of Particle Size Analyzer (PSA) 

measurement results

Fig. 5. Characterization Sample of 24 hours Mechanical Alloying (MA-24h):  
a – Scanning Electron Microscope (SEM) image; b – Graph of Particle Size Analyzer (PSA) 

measurement results

Fig. 6. Characterization Sample of 48 hours Mechanical Alloying (MA-48h):  
a – Scanning Electron Microscope (SEM) image; b – Graph of Particle Size Analyzer (PSA) 

measurement results

Fig. 6, 7 below inform that increasing MA milling time no longer decreases powder size, 
but increases powder size. This condition occurs because the increase in the milling time of the  
MA process and powder agglomeration due to cold-weld.

Based on the images shown in Fig. 3, a, 4, a, 5, a, 6, a, 7, a it is evident that the higher 
the milling time applied, the smaller the particle size. This corresponds to the PSA measurement 
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shown in Fig. 3, b, 4, b, 5, b, 6, b, 7. Furthermore, supposing this is observed between Fig. 1, 3, a, 
4, a, 5, a, 6, a, 7, a, the difference is clear. 

Fig. 7. Characterization Sample of 96 hours Mechanical Alloying (MA-96h):  
a – Scanning Electron Microscope (SEM) image; b – Graph of Particle Size Analyzer (PSA) 

measurement results

In Fig. 1, the powder form tends to be complex with a sharp surface. On the contrary, 
from Fig. 3, a, 4, a, 5, a, 6, a, 7, a, the powder mixture image produced by MA show that its form 
tends to be blunt with relatively lesser surface roughness and radius which indicate the occurrence  
of cold-weld. 

3. 2. X-ray Diffraction (XRD) characterization and particle size analysis of cold-weld 
produced by Mechanical Alloying (MA)

Besides using the PSA Cilas 1090 instrument, the cold-weld powder produced by the MA 
process was also measured using an X-Ray Diffraction Tool. XRD measurement results are shown 
in Fig. 8. The milling time parameter applied is 0.5 to 96 hours, aimed to determine the phase 
change that occurs. It was observed that the phase graphs from MA-0.5 h to MA-96h in Fig. 8 
have similar shapes and features, and slightly high intensities [43]. This difference is presumed to 
be influenced by several impurities contained in the constituent materials of AMCs powder, such 
as FeO2, ZrO2, and TiO2, which have relatively small % wt. The dominant phase with the highest 
intensity is aluminium, followed by SiO2.

Fig. 8. X-ray Diffraction (XRD) pattern phases for Mechanical Alloying (MA) results  
based on different milling times

The XRD data for MA cold-weld powder was used to calculate the poly-crystal size using 
the Scherrer equation. The calculations proved that there is a tendency for the particle size to get 
smaller along with the increasing milling time, as shown in Fig. 9. Initially, the mixed powdered 
material size was 219.78 nanometers, after the application of a milling time of 0.5 hours. However, 
it continued to decrease to 140.47 nanometers after the application of milling time of 96 hours. 
Initially, the measured cold-weld powder using the PSA Cilas 1090 instrument was D50: 148.17 µm 
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for MA-0.5h, which decreased to D50: 18.17 µm for MA-24h, and slightly increased to  
D50: 24.11 µm for MA-48h and D50: 28.28 µm for MA-96h. The trend line of the test for cold-
welds powder size using PSA-1090 was calculated by the Scherrer equation shown in Fig. 9, which 
has similar tendencies irrespective of the fact that a different measurement method was adopted.

Fig. 9. Particle Size Chart of Cold-weld Produced by Mechanical Alloying (MA)

Fig. 9 indicates that initially, the particle size of the material from the mechanical alloy-
ing process decreases rapidly, then slowly. Although, at specific sizes, it increases slightly due 
to clots during the cold-weld cycle. However, assuming the milling time continues to increase, 
the particle size tends to decrease. Furthermore, when collision and the cold-welding process 
occur, the material coagulates and increases in size, then the powder size decreases again. This 
trend occurs because the constituent powders for the manufacture of AMCs consist of ductile and 
brittle materials namely aluminium and silica sand respectively. During the MA process with 
radial ball mill, several techniques including collisions, deformations, cold-welds, and particle 
fracture that repeatedly occurred continuously and simultaneously till a specific milling time 
were reached [9].

3. 3. Porosity analysis
The theoretical density of AMCs constituent powder, specimens, and the porosity were 

respectively determined using equations (2)–(4). Furthermore, the calculated porosity results are 
shown in Fig. 10.

Fig. 10. Histogram of porosity of the Aluminium Matrix Composites (AMCs)  
specimen the difference in Mechanical Alloying (MA) milling time and sintering temperature

219.78 223.18

163.66 162.48
140.47

148.17

65.31

18.17 24.11 28.28

0

40

80

120

160

200

240

0.5 6 24 48 96

Polycrystallite Size Calculated by Scherrer's Formula [nano meter]

Particle Size by PSA Measured [micro-meter]

Milling Time [Hours]

Pa
rti

cl
e 

Si
ze

 o
f A

l-S
io

2
by

 P
SA

 C
ila

s 1
09

0 
M

ea
su

re
d

[m
ic

ro
-m

et
er

]

Po
ly

cr
ys

ta
lli

ne
 S

iz
e 

of
 A

l-S
iO

2
by

 C
al

cu
le

d 
Sc

he
rr

er
Eq

ua
tio

n
[n

an
o 

m
et

er
]

240

160

80

0

18.06 17.47 16.39 15.99
15.23 14.14 13.80

11.84

0

4

8

12

16

20

6 96

AMCs Hot-Compaction 300 °C
AMCs Sintered 600 °C

AMCs Sintered 550 °C
AMCs Sintered  650  °C

24 48
Milling time of MA [Hours]

Po
ro

si
ty

 [%
]



Original Research Article:
full paper

(2022), «EUREKA: Physics and Engineering»
Number 1

111

Engineering

Based on the graph in Fig. 6, it is clear that AMCs porosity after the sintering process shows 
a decrease of approximately 40.8 %, where the initial value for AMCs-6h in the Green Hot-Com-
paction 300 °C sample is 18.06 %, which further reduced to 11.84 % in AMCs-96 h samples  
at 650 °C. An increase in the applied MA milling time causes an increase in the powder that 
diffuses from the matrix and reinforced particles as well as the cold-weld density and decreases  
the AMCs’ porosity. Similarly, an increase in sintering temperature, during hot compaction causes the  
matrix particles to rapidly turn into semi-solid, as well as increases the wetting properties of  
the matrix and increasingly fills the gaps with smaller particles.

3. 4. Characterization and Microstructure Analysis of Aluminium Matrix Composi-
tes (AMCs) Product

3. 4. 1. X-ray Diffraction (XRD) analysis
AMCs specimens, using cold welding powder resulting from the MA process, were fur-

ther processed during hot solidification and followed by a sintering technique. It is assigned an 
additio nal unique code associated with Bulk Sintering, abbreviated as BS, followed by MA time. 
Therefore, AMCs specimens using an MA time of 6 hours and processed at a sintering tempera-
ture of 600 °C were assigned a unique code of BS-6h-600 °C. This unique codification is ap-
plied to the entire specimen, as shown in Fig. 11, which includes BS-6h-650 °C, BS-24 h-550 °C,  
BS-24 h-600 °C, BS-48h-550 °C, BS-48 h-600 °C BS-96h-550 °C, and BS-96h-600 °C.

Fig. 11. X-ray Diffraction (XRD) phase patterns for AMCs-BS specimens with different  
milling times and different sintering temperatures

The XRD pattern result shown in Fig. 11 was observed and analyzed, especially on  
BS-24 h-600 °C, BS-48h-600 °C, and BS-96h-600 °C specimens. It is clear that the longer the MA 
milling time and the higher the applied sintering temperature causes an increase in the intensity of 
the Alumina and Si phases. On the contrary, SiO2 and Al intensity tend to decrease. This shows the 
formation of excess compounds and the significant increase in the concentration of Alumina and 
Si phases. This indicates that the transformation of aluminium and silica to form an alumina phase 
occurred at a temperature of 600 °C. Conversely, for AMCs, which was subjected to the MA pro-
cess for 6 hours, even though it was sintered at 650 °C, the BS-6h-650 °C specimen did not show 
any alumina phase transformation. Likewise, AMCs use a cold-weld powder with MA 24h, 48h, 
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and 96 h, while the sintering temperature is reduced to 550 °C, therefore it also does not exhibit  
the expected alumina transformation.

3. 4. 2. SEM-EDX Scanning Electron Microscope – Energy Dispersive X-Ray Spectro-
scopy (SEM-EDX) analysis

Fig. 12–15 shows the microstructure SEM-EDX of the BS-6h-650 °C specimen,  
BS-24 h-600 °C, BS-48h-600 °C, and BS-96h-600 °C respectively. The distribution of the ele-
ments characterizing the results using SEM-EDX for each sample is shown and placed to the right 
of the image of each sample’s, including the 4 elements with the highest percentage, namely Alu-
minum (Al), Silicon (Si), Iron (Fe), and Oxygen (O). In the SEM-EDX Fig. 12, the particle size is 
relatively coarse and excessively porous. There is a visible agglomeration of several phases and an 
invisible formation of the Al2O3, which is indicated by the grain boundaries in the form of fractures 
separating the Al and O elements, however, a small part was found.

Fig. 13, 14 shows that the particle size of AMCs microstructure with MA milling times of 
24 hours and 48 hours is relatively smaller. After undergoing the sintering process at a temperature 
of 600 °C, a stroke pattern was formed between elements Al and O at a relatively similar position, 
possibly in the Al2O3 phase. However, the phase clumps are apparent, indicating that the homogene-
ity of the mixture is poor. It is slightly porous, and the particle size is finer than the BS-6h specimen.

In contrast, the Al phases in the BS-96h-600 °C specimen microstructure in Fig. 15 appear 
to be evenly distributed, indicating a homogeneous mixture compared to the others. The Al2O3 
phase is likely to form, as indicated by the relative distribution of the Al and O elements. Never-
theless, porosity is quite significant because finer powder leads to easier agglomerate. However, 
Fig. 12 indicate the agglomeration of much smaller particle sizes has stronger bonds than in coarse-
sized AMCs-6h-650 °C specimens. This porosity is also caused by the presence of some impurities 
such as Zn, which has a lower boiling point than Al and starts to burn, thereby leading to cracks in 
the grain boundary area. The presence of trapped air is due to the rapid cooling of the external air. 

In addition to the decreased MA material clumping and increased homogeneity, the com-
posite product’s density also increases due to the increased milling time applied. Sample porosity 
values are AMCs with codes 6h-650 °C, BS-24 h-650 °C, BS-48 h-650 °C, and BS-96 h-650 °C  
is 15.23 %, 14.14 %, 13.80 %; and 11.84 gram/cm3 respectively.

Based on these SEM-EDX characterizations in Fig. 12–15, it is evident that AMCs speci-
mens from MA and sintering are relatively similar to the results of XRD analysis.

Fig. 12. Scanning Electron Microscope – Energy Dispersive X-ray (SEM-EDX) for Mechanical 
Alloying 6 hours and 650 °C Sintered Specimen (BS-6h-650 °C)
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Fig. 13. Scanning Electron Microscope – Energy Dispersive X-ray (SEM-EDX) for Mechanical 
Alloying 24 hours and 600 °C Sintered Specimen (BS-24h-600 °C)

Fig. 14. Scanning Electron Microscope – Energy Dispersive X-ray (SEM-EDX) for Mechanical 
Alloying 48 hours and 600 °C Sintered Specimen (BS-48h-600 °C)

The longer the milling time parameters are applied, the phase shift of aluminium and  
SiO2 or other oxides becomes clearer, which indicates their occurrences. The second phase trans-
formation is alumina at a sintered temperature that is relatively lower than that of the normal  
reaction, 600 °C.

According to the above analysis, it proves that the MA process has resulted in cracks and 
fractures in the powder, interstitials and substitutions occur between particles in the lattice, the 
powder size is getting smaller so that the absorption of heat energy increases. This situation caused 
the initiation of anion and cation pairs in cold-weld alloys to occur, reinforcing powders is more 
evenly distributed in the matrix [9]. This condition has triggered a phase transformation from alu-
minium and silica to alumina when sintering processed, following the reaction equation (6) under 
the normal reaction temperature, 1000 to 1300 °C [18].
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Fig. 15. Scanning Electron Microscope – Energy Dispersive X-ray (SEM-EDX) for Mechanical 
Alloying 96 hours and 600 °C Sintered Specimen (BS-96h-600 °C)

However, this experimental research will only be successful if the MA process parameters 
are applied optimally with a minimum milling time of 24 hours and a minimum sintering tempera-
ture of 600 °C:

 4Al+3SiO2→3Si+2Al2O3. (6)

Based on this study results, where this experiment has resulted in a second phase transfor-
mation of alumina at a relatively low temperature from normal reaction, so it can be recommended 
as a friction brake material, because in addition to alumina being harder than the SiO2 reinforce-
ment used, theoretically its wear resistance also increases [16, 18]. The development of this re-
search is to obtain Non-asbestos friction brake material which is more environmentally friendly 
and safe against lung disease which is very dangerous. 

4. Conclusions
Based on the characterization results of AMCs specimens reinforced with silica sand tail-

ings, which includes particle-size, and XRD testing, the calculated particle size using the Scherrer 
equation, and microstructure testing using SEM-EDX, the following conclusions were made:

a) the AMCs powder metallurgy fabrication using materials such as Al-ZnSiFeCuMg, re-
cycled aluminium waste, reinforced with silica sand tailings was successfully mixed using the MA 
technology;

b) the mixing of AMCs constituent powders using the MA process was proven to success-
fully and properly crush the composites’ powder. The more milling time applied, the more evenly 
distributed the reinforced powder is on the matrix, and the more the homogeneous mixture. There-
fore, the initial process of MA is imperative in powder metallurgy technology;

c) measurement of powder from the MA process using the PSA Cilas 1090 instrument 
showed that the milling time parameters increase leading to a decrease in particle size tending and  
a slight increase. Likewise, when the crystal particle size of the MA sample was calculated using the 
Scherrer equation of the XRD data, the result showed a similar linear trend with decreasing values;

d) MA milling time of 6h and sintering temperature of approximately 650 °C for AMCs 
specimens reinforced with silica tailings sand did not occur an alumina phase transformation re-
action. The new Al2O3 transformation occurred when a minimum of 24 hours milling time was 
applied with a minimum sintering temperature of 600 °C, in BS-24h-600 °C, BS-48-600 °C, and 

Al

Fe

Si

O

250 µm

Al2O3Al2O3

Al2O3

Porous of a 
fine powder

250 µm

250 µm

250 µm

250 µm



Original Research Article:
full paper

(2022), «EUREKA: Physics and Engineering»
Number 1

115

Engineering

BS-96-600 °C specimens. In addition, the temperature of this transformation reaction is lesser than 
the normal one, which is relatively 1000 to 1300 °C.
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