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Abstract 

In this manuscript, a queueing system with two optional vacation policies, power-saving mode 
under reneging and retention of reneged customers in both vacations is analyzed. If the server 
is free, it chooses either of the vacations, classical vacation or working vacation. During 
vacations, the customers may get impatient due to delays and may leave the system, but they 
are retained in the system with some convincing mechanisms. On vacation completion, if the 
system is empty, the server is turned off to facilitate better utilization of the resources. Some 
of the operating system characteristics are derived using the probability generating functions 
technique. The numerical results are graphically represented by using MATLAB software. 

Keywords:  Queueing; Vacations; Classical vacation; Working vacation; Bernoulli 
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2 P. Gupta et al. 

1. Introduction 

Queueing systems with server vacations have been extensively studied by many researchers in 
the last few decades due to their practical applications in many real-life systems such as 
telecommunication networks, inventory systems, etc. Vacations in the queueing system refer 
to the duration in which the server is either not available at all to serve the customers or serve 
them at a comparatively slower rate. The server takes vacations due to many reasons. It may 
be due to server breakdowns or some auxiliary works like maintenance, testing, etc., assigned 
to the server. Levy and Yechiali (1975) performed pioneer work on vacation queueing models. 
Doshi (1986) presented a good survey on queues with vacations.  Depending on the situation, 
two types of vacations are broadly discussed in the literature. Classical vacations in which 
server does not provide service to customers at all and working vacation in which server 
continues to serve the customers but at a lower rate. Servi and Finn (2002) first analyzed 
queueing systems with working vacation policy. Later on, many authors contributed to the 
field. For such models, we refer the reader to Tian and Zhang (2006), Banik et al. (2007), Gupta 
and Kumar (2021a), and references therein. Vacation in a queueing system is a special case of 
a queue with delayed service. Some research works concerning the delay in service may be 
referred to in Haghighi et al. (2008, 2011, 2016) and references therein.  Some authors Ibe and 
Isijola (2014), Zhang and Zhou (2017), Unni and Mary (2019) studied queues with 
differentiated vacation policies. Later on Gupta and Kumar (2021b) extended the differentiated 
vacation policy to retrial queueing systems. 

The impatience of customers is an important feature, which needs to be included in the study 
of queueing systems to model practical situations more closely. Analyzing the need, the 
queueing systems with impatient behavior of customers have been studied by many 
researchers. The impatience of customers may lead to reneging or balking of customers, which 
results in potential loss hence adversely affect the organizations. The main reason for the loss 
of customers in queueing systems is generally the unavailability of servers either due to 
vacations or server failures. To compensate for the loss, organizations adopt some convincing 
methods to retain the customers in the system. Such models are also discussed in the literature.  
We may refer to Haghighi et al. (1986), Yechiali (2004), Altman and Yechiali (2006), Yue et 
al. (2012), Ammar (2015, 2017), Bouchentouf et al.(2020a, 2020b, 2021), Kadi et al. (2020), 
Gupta and Kumar (2021c) for the related works. 

Power saving is another growing issue in today’s scenario. An idle server consumes significant 
power so it is inevitable to turn off the server when it is not in use. However, a trade-off arises 
as the arriving customer has to wait till the server is reactivated and a setup cost is also incurred 
in such models. Some authors worked on queueing systems with setup times in the recent past 
to find a solution to the issue. Some of the related works can be found in Xu et al. (2009), 
Azhagappan and Deepa (2019), Manoharan and Jeeva (2020). 

Despite a rich literature on queueing theory, there is no work available in the literature on 
optional vacation policy (Bernoulli vacation policy) with customers’ impatience and power-
saving mode. We have extended the work of Manoharan and Ashok (2018) on optional 
vacations by incorporating the impatience of customers and power-saving mode. The present 
paper deals with a single server queueing system under Bernoulli’s vacation policy (two 
optional vacations), setup times and retention of customers on vacations. The model provides 
an option to the server to choose one of the vacations either classical or working of different 
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durations with probabilities 𝑝𝑝 or �̅�𝑝 depending on the requirement, every time it becomes free 
from the normal state. The model reduces to a queueing system with working vacation, 
reneging and setup times on taking 𝑝𝑝 = 0. Further, if working vacation time also equals zero, 
it changes to queue with setup times. If 𝑝𝑝 is taken as 1, it boils down to queue with classical 
vacation, reneging and retention of customers under setup times. The rest of the paper is 
organized as follows. Section 2 describes real-life application of the model. The mathematical 
description of the model is presented in Section 3. Differential –difference equations for the 
proposed model are discussed in Section 4. Balance equations and steady-state probabilities 
are obtained in Section 5. Some operating characteristics of the system are obtained in section 
6. The graphical behavior of operating characteristics of the system is shown in Section 7. 
Section 8 concludes the paper. 

 

2.  Real-life application of the model 

Consider a flour mill or spice mill with an operator. As long as customers arrive for service, 
they are provided service in order of their arrivals. When the operator gets free after serving all 
the customers, he may get engaged in some secondary tasks. During this period, the arriving 
customers may get service depending on the availability of the assistant. Of course, the assistant 
will serve the customers at a comparatively low rate than the operator. In absence of the 
operator, due to slow or no service, customers may lose patience and leave without being 
served. To save power, the machine is turned off when not in use. If any of the customers are 
not satisfied with the service then he/she may rejoin to get satisfactory service. In queueing 
terminology, operator, availability of assistant, non-availability of assistant, power off, 
rejoining of customers corresponds to sever, working vacation, classical vacation, closed down 
state, feedback respectively. 

3. Mathematical description of the model  

The model is assumed to satisfy the following assumptions: 

1. The customers arrive according to the Poisson process with a mean arrival rate of 1/λ. 
2. The server serves the customers on an FCFS basis with exponentially distributed service 

time. The mean service rate is taken as 1/μ in the normal/active state of the server. 
3. After serving all the customers, the server may opt to go on classical or working vacations 

with probabilities 𝑝𝑝 or �̅�𝑝 respectively from the active state. 
4. In classical vacation, the server stays idle whereas, in working vacation, the customers are 

served but at a slower rate 𝜇𝜇𝑣𝑣< μ. The duration of both the vacations is assumed to be 
exponentially distributed with different parameters 𝜃𝜃1 and 𝜃𝜃2 respectively in working and 
classical vacations. 

5. The customers may get impatient due to long wait and activate impatient timers 𝑇𝑇1 and 𝑇𝑇2 
in working and classical vacations respectively. These impatience timers are assumed to be 
exponentially distributed with rates 𝜙𝜙1 and 𝜙𝜙2 respectively. The reneging customers may 
be retained in the system by some convincing mechanisms with probabilities 𝑞𝑞1��� and 𝑞𝑞2��� 
respectively. 

6. If there is no waiting customer in the system, the server is turned off on vacation completion 
instant, i.e., enters in closed downstate. 
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4 P. Gupta et al. 

7. The customer arriving during the off state of the server; activates the server. The setup time 
is assumed to follow an exponential distribution with parameter η. The customers arriving 
during the setup process will have to wait in the queue for their turn. 

8. The inter-arrival times, service times, reneging times and setup times are all assumed to be 
identically and independently distributed. 
 
 

 
Figure 1.  Transition state diagram of the system 

 
 
4. Differential difference equations 

Denoting the number of customers in the system and the state of the server at time t by N(t) 
and S(t) respectively, we observe that {N(t), S(t)} is a continuous Markov chain. The different 
possible states of the server are given as follows: 

S(t) = �

0, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛/𝑛𝑛𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠 𝑠𝑠𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠,                 
1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑤𝑤𝑛𝑛𝑠𝑠𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤 𝑠𝑠𝑛𝑛𝑎𝑎𝑛𝑛𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖 𝑠𝑠𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠,           
 2, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛𝑛𝑛 𝑠𝑠𝑛𝑛𝑎𝑎𝑛𝑛𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖 𝑠𝑠𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠,           
3, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑐𝑐 𝑐𝑐𝑛𝑛𝑤𝑤𝑖𝑖/𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑝𝑝 𝑠𝑠𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠.       
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Taking  𝑝𝑝𝑛𝑛 𝑖𝑖(𝑎𝑎)  as the probability of the system being in ith server state with n customers at 
time and using the Markov process, the differential-difference equations for the proposed quasi 
birth-death model are  

𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝1 0(𝑎𝑎) = 𝜇𝜇𝑝𝑝2 0(𝑎𝑎) + 𝜃𝜃2𝑝𝑝1 2(𝑎𝑎) + 𝜃𝜃1𝑝𝑝1 1(𝑎𝑎) + 𝜂𝜂𝑝𝑝1 3(𝑎𝑎) − (𝜆𝜆 + 𝜇𝜇)𝑝𝑝1 0(𝑎𝑎) ,                 (1) 

𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝𝑛𝑛 0(𝑎𝑎) = 𝜇𝜇𝑝𝑝𝑛𝑛+1 0(𝑎𝑎) + 𝜃𝜃2𝑝𝑝𝑛𝑛 2(𝑎𝑎) + 𝜃𝜃1𝑝𝑝𝑛𝑛 1(𝑎𝑎) + 𝜂𝜂𝑝𝑝𝑛𝑛 3(𝑎𝑎) + 𝜆𝜆𝑝𝑝𝑛𝑛−1 0(𝑎𝑎)

− (𝜆𝜆 + 𝜇𝜇)𝑝𝑝𝑛𝑛 0(𝑎𝑎) ,                        𝑖𝑖 ≥ 2,                                                           (2) 

𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝0 1(𝑎𝑎) = (𝜇𝜇𝑣𝑣 + 𝑞𝑞1𝜙𝜙1)𝑝𝑝1 1(𝑎𝑎) + �̅�𝑝𝜇𝜇𝑝𝑝1 0(𝑎𝑎) − (𝜆𝜆 + 𝜃𝜃1)𝑝𝑝0 1(𝑎𝑎),                                      (3) 

𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝𝑛𝑛 1(𝑎𝑎) = 𝜆𝜆𝑝𝑝𝑛𝑛−1 1(𝑎𝑎) + 𝜇𝜇𝑣𝑣𝑝𝑝𝑛𝑛+1 1(𝑎𝑎) + (𝑖𝑖 + 1)𝑞𝑞1𝜙𝜙1𝑝𝑝𝑛𝑛+1 1(𝑎𝑎)

− (𝜆𝜆 + 𝜃𝜃1 + 𝜇𝜇𝑣𝑣 + 𝑖𝑖𝑞𝑞1𝜙𝜙1)𝑝𝑝𝑛𝑛 1(𝑎𝑎) ,                  𝑖𝑖 ≥ 1,                                    (4) 
𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝0 2(𝑎𝑎) = 𝑞𝑞2𝜙𝜙2𝑝𝑝1 2(𝑎𝑎) + 𝑝𝑝𝜇𝜇𝑝𝑝1 0(𝑎𝑎) − (𝜆𝜆 + 𝜃𝜃2)𝑝𝑝0 2(𝑎𝑎),                                                    (5) 

𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝𝑛𝑛 2(𝑎𝑎) = 𝜆𝜆𝑝𝑝𝑛𝑛−1 2(𝑎𝑎) + (𝑖𝑖 + 1)𝑞𝑞2𝜙𝜙2𝑝𝑝𝑛𝑛+1 2(𝑎𝑎) − (𝜆𝜆 + 𝜃𝜃2 + 𝑖𝑖𝑞𝑞2𝜙𝜙2)𝑝𝑝𝑛𝑛 2(𝑎𝑎),   

                                                                                                 𝑖𝑖 ≥ 1,                                  (6) 
𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝0 3(𝑎𝑎) = 𝜃𝜃1𝑝𝑝0 1(𝑎𝑎) + 𝜃𝜃2𝑝𝑝0 2(𝑎𝑎) − 𝜆𝜆𝑝𝑝0 3(𝑎𝑎) ,                                                                      (7) 

𝑐𝑐
𝑐𝑐𝑎𝑎
𝑝𝑝𝑛𝑛 3(𝑎𝑎) = 𝜆𝜆𝑝𝑝𝑛𝑛−1 3(𝑎𝑎) − (𝜆𝜆 + 𝜂𝜂)𝑝𝑝𝑛𝑛 3(𝑎𝑎).                               𝑖𝑖 ≥ 1,                                   (8) 

 
5. Balance equations and stationary probabilities 

Under stability condition λ < μ, taking limit t → ∞, we have 

lim
𝑡𝑡→∞

 𝑝𝑝𝑛𝑛 𝑖𝑖 (t) =   𝑝𝑝𝑛𝑛 𝑖𝑖                              
𝑐𝑐
𝑐𝑐𝑎𝑎 𝑝𝑝𝑛𝑛 𝑖𝑖(𝑎𝑎) =  0                                      

� 

Thus, the balance equations are as follows 
(𝜆𝜆 + 𝜇𝜇)𝑝𝑝1 0 = 𝜇𝜇𝑝𝑝2 0 + 𝜃𝜃2𝑝𝑝1 2 + 𝜃𝜃1𝑝𝑝1 1 + 𝜂𝜂𝑝𝑝1 3,                                                                      (9) 

(𝜆𝜆 + 𝜇𝜇)𝑝𝑝𝑛𝑛 0 = 𝜇𝜇𝑝𝑝𝑛𝑛+1 0 + 𝜃𝜃2𝑝𝑝𝑛𝑛 2 + 𝜃𝜃1𝑝𝑝𝑛𝑛 1 + 𝜂𝜂𝑝𝑝𝑛𝑛 3 + 𝜆𝜆𝑝𝑝𝑛𝑛−1 0,     𝑖𝑖 ≥ 2,                         (10) 

(𝜆𝜆 + 𝜃𝜃1)𝑝𝑝0 1 = (𝜇𝜇𝑣𝑣 + 𝑞𝑞1𝜙𝜙1)𝑝𝑝1 1 + �̅�𝑝𝜇𝜇𝑝𝑝1 0,                                                                            (11) 

(𝜆𝜆 + 𝜃𝜃1 + 𝜇𝜇𝑣𝑣 + 𝑖𝑖𝑞𝑞1𝜙𝜙1)𝑝𝑝𝑛𝑛 1 = 𝜆𝜆𝑝𝑝𝑛𝑛−1 1 + 𝜇𝜇𝑣𝑣𝑝𝑝𝑛𝑛+1 1 + (𝑖𝑖 + 1)𝑞𝑞1𝜙𝜙1𝑝𝑝𝑛𝑛+1 1,   𝑖𝑖 ≥ 1,     (12) 

(𝜆𝜆 + 𝜃𝜃2)𝑝𝑝0 2 = 𝑞𝑞2𝜙𝜙2𝑝𝑝1 2 + 𝑝𝑝𝜇𝜇𝑝𝑝1 0,                                                                                          (13) 

(𝜆𝜆 + 𝜃𝜃2 + 𝑖𝑖𝑞𝑞2𝜙𝜙2)𝑝𝑝𝑛𝑛 2 = 𝜆𝜆𝑝𝑝𝑛𝑛−1 2 + (𝑖𝑖 + 1)𝑞𝑞2𝜙𝜙2𝑝𝑝𝑛𝑛+1 2,   𝑖𝑖 ≥ 1,                                    (14) 

𝜆𝜆𝑝𝑝0 3 = 𝜃𝜃1𝑝𝑝0 1 + 𝜃𝜃2𝑝𝑝0 2 ,                                                                                                            (15) 

(𝜆𝜆 + 𝜂𝜂)𝑝𝑝𝑛𝑛 3 = 𝜆𝜆𝑝𝑝𝑛𝑛−1 3,        𝑖𝑖 ≥ 1.                                                                                           (16) 
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6 P. Gupta et al. 

Taking probability generating functions of the number of customers in the system as  

𝐻𝐻𝑖𝑖(𝑧𝑧) = �𝑝𝑝𝑛𝑛 𝑖𝑖

∞

𝑛𝑛=0

𝑧𝑧𝑛𝑛 ,       𝑖𝑖 = 1, 2, 3 ,                                                                                        (17) 

𝐻𝐻0(𝑧𝑧) = �𝑝𝑝𝑛𝑛 0𝑧𝑧𝑛𝑛
∞

𝑛𝑛=1

.                                                                                                                    (18) 

Multiplying equations (9) and (10) with appropriate powers of z, summing over all possible 
values of n and using equation (18), we get 

�𝜆𝜆 + 𝜇𝜇 − 𝜆𝜆𝑧𝑧 −
𝜇𝜇
𝑧𝑧
�𝐻𝐻0(𝑧𝑧) − 𝜃𝜃1𝐻𝐻1(𝑧𝑧) − 𝜃𝜃2𝐻𝐻2(𝑧𝑧) − 𝜂𝜂𝐻𝐻3(𝑧𝑧)

= −𝜇𝜇𝑝𝑝1 0 − 𝜃𝜃1𝑝𝑝0 1 − 𝜃𝜃2𝑝𝑝0 2 − 𝜂𝜂𝑝𝑝0 3 .                                                          (19) 

Similarly, equations (11), (12) yields 

𝑞𝑞1𝜙𝜙1(1 − 𝑧𝑧)𝐻𝐻1′(𝑧𝑧) + �−𝜆𝜆(1 − 𝑧𝑧) + 𝜇𝜇𝑣𝑣 �
1 − 𝑧𝑧
𝑧𝑧

� − 𝜃𝜃1�𝐻𝐻1(𝑧𝑧)

= −�̅�𝑝𝜇𝜇𝑝𝑝1 0 +   𝜇𝜇𝑣𝑣 �
1 − 𝑧𝑧
𝑧𝑧

� 𝑝𝑝0 1.                                                                     (20) 

Multiplying equations (13) and (14) with appropriate power of z and summing over all values 
of n and using equation (17) simultaneously, we get 

(1 − 𝑧𝑧)𝑞𝑞2𝜙𝜙2𝐻𝐻2′(𝑧𝑧) + (𝜆𝜆𝑧𝑧 − 𝜆𝜆 − 𝜃𝜃2)𝐻𝐻2(𝑧𝑧) = −𝑝𝑝𝜇𝜇𝑝𝑝1 0.                                                      (21) 

Similarly multiplying equation (15) and (16) by 𝑧𝑧𝑛𝑛 and adding over all possible values of n 
and using probability generating functions 

(𝜆𝜆 + 𝜂𝜂 − 𝜆𝜆𝑧𝑧)𝐻𝐻3(𝑧𝑧) = (𝜆𝜆 + 𝜂𝜂)𝑝𝑝0 3.                                                                                          (22) 

Equation (20) can be re-written as 

𝐻𝐻1′(𝑧𝑧) + �−
𝜆𝜆

𝑞𝑞1𝜙𝜙1
+

𝜇𝜇𝑣𝑣
𝑞𝑞1𝜙𝜙1𝑧𝑧

−
𝜃𝜃1

𝑞𝑞1𝜙𝜙1(1 − 𝑧𝑧)
�𝐻𝐻1(𝑧𝑧) = −

𝐴𝐴1
1 − 𝑧𝑧

+
𝐴𝐴2
𝑧𝑧

,                             (23) 

where 

𝐴𝐴1 =
𝑝𝑝𝜇𝜇
𝑞𝑞1𝜙𝜙1

𝑝𝑝1 0 ,                                                                                                                            (24) 

𝐴𝐴2 =
𝜇𝜇𝑣𝑣
𝑞𝑞1𝜙𝜙1

𝑝𝑝0 1.                                                                                                                             (25) 

Solving this differential equation, we obtain 

𝐻𝐻1(𝑧𝑧) = 𝑠𝑠
𝜆𝜆𝜆𝜆

𝑞𝑞1𝜙𝜙1  𝑧𝑧−
𝜇𝜇𝑣𝑣
𝑞𝑞1𝜙𝜙1(1− 𝑧𝑧)−

𝜃𝜃1
𝑞𝑞1𝜙𝜙1  �−𝐴𝐴1𝐵𝐵1(𝑧𝑧) + 𝐴𝐴2𝐵𝐵2(𝑧𝑧)�,                                          (26) 

where, 

𝐵𝐵1(𝑧𝑧) = �𝑠𝑠
−𝜆𝜆𝜆𝜆
𝑞𝑞1𝜙𝜙1  𝑧𝑧

𝜇𝜇𝑣𝑣
𝑞𝑞1𝜙𝜙1  (1 − 𝑧𝑧)

𝜃𝜃1
𝑞𝑞1𝜙𝜙1

−1
𝜆𝜆

0

𝑐𝑐𝑧𝑧 ,                                                                            (27) 
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𝐵𝐵2(𝑧𝑧) = �𝑠𝑠
−𝜆𝜆𝜆𝜆
𝑞𝑞1𝜙𝜙1  𝑧𝑧

𝜇𝜇𝑣𝑣
𝑞𝑞1𝜙𝜙1

−1(1− 𝑧𝑧)
𝜃𝜃1

𝑞𝑞1𝜙𝜙1  𝑐𝑐𝑧𝑧 .                                                                            (28)
𝜆𝜆

0

 

Solving the differential equation (21), we obtain 

𝐻𝐻2(𝑧𝑧) =
−𝑠𝑠

𝜆𝜆𝜆𝜆
𝑞𝑞2𝜙𝜙2(1 − 𝑧𝑧)

−𝜃𝜃2
𝑞𝑞2𝜙𝜙2

𝑞𝑞2𝜙𝜙2
�𝑠𝑠

−𝜆𝜆𝜆𝜆
𝑞𝑞2𝜙𝜙2(1 − 𝑧𝑧)

𝜃𝜃2
𝑞𝑞2𝜙𝜙2

−1𝑝𝑝𝜇𝜇𝑝𝑝1 0𝑐𝑐𝑧𝑧 .                                        (29)
𝜆𝜆

0

 

Taking limit 𝑧𝑧 → 1 in equation (19), we obtain 

𝜇𝜇𝑝𝑝1 0 + 𝜃𝜃1𝑝𝑝0 1 + 𝜃𝜃2𝑝𝑝0 2 +  𝜂𝜂𝑝𝑝0 3 = 𝜃𝜃1𝐻𝐻1(1) + 𝜃𝜃2𝐻𝐻2(1) +  𝜂𝜂𝐻𝐻3(1) .                             (30) 

Using equations (19) and (30) together, we get 

𝐻𝐻0(𝑧𝑧) =
𝜃𝜃1𝐻𝐻1(𝑧𝑧)+𝜃𝜃2𝐻𝐻2(𝑧𝑧) + 𝜂𝜂𝐻𝐻3(𝑧𝑧) − (𝜃𝜃1𝐻𝐻1(1) + 𝜃𝜃2𝐻𝐻2(1) + 𝜂𝜂𝐻𝐻3(1))

(1 − 𝑧𝑧)(𝜆𝜆 − 𝜇𝜇
𝑧𝑧)

 .               (31) 

Taking limit 𝑧𝑧 → 1 in equation (22), we get 

𝐻𝐻3(1) =
𝜆𝜆 + 𝜂𝜂
𝜂𝜂

𝑝𝑝0 3 .                                                                                                                    (32) 

We see that on taking limit 𝑧𝑧 → 1 in equation (26), the denominator tends to zero so, the 
numerator must also tend to zero, i.e., we must have 

-𝐴𝐴1𝐵𝐵1(1) + 𝐴𝐴2𝐵𝐵2(1) = 0.                                                                                                         (33) 

Equation (33) gives,  

𝑝𝑝0 1 =
𝑝𝑝𝜇𝜇𝐵𝐵1(1)
𝜇𝜇𝑣𝑣𝐵𝐵2(1) 𝑝𝑝1 0.                                                                                                                    (34) 

Further, adding equations (9), (10), (12), (14), (16) and using recursion, we obtain 

𝜆𝜆𝑝𝑝𝑛𝑛 0 + 𝜆𝜆𝑝𝑝𝑛𝑛 1 +  𝜆𝜆𝑝𝑝𝑛𝑛 2 +  𝜆𝜆𝑝𝑝𝑛𝑛 3 − 𝜇𝜇𝑝𝑝𝑛𝑛+1 0 − 𝜇𝜇𝑣𝑣𝑝𝑝𝑛𝑛+1 1 − (𝑖𝑖 + 1)𝑞𝑞2𝜙𝜙2𝑝𝑝𝑛𝑛+1 2
− (𝑖𝑖 + 1)𝑞𝑞1𝜙𝜙1𝑝𝑝𝑛𝑛+1 1
= −𝜇𝜇𝑝𝑝1 0 + 𝜆𝜆𝑝𝑝0 2 − 𝑞𝑞2𝜙𝜙2𝑝𝑝1 2 + 𝜆𝜆𝑝𝑝0 1 − (𝜇𝜇𝑣𝑣 + 𝑞𝑞1𝜙𝜙1)𝑝𝑝1 1 + 𝜆𝜆𝑝𝑝0 3      (35) 

Using equations (11), (13) and (15) in the above equation, we get 

𝜆𝜆𝑝𝑝𝑛𝑛 0 + 𝜆𝜆𝑝𝑝𝑛𝑛 1 +  𝜆𝜆𝑝𝑝𝑛𝑛 2 +  𝜆𝜆𝑝𝑝𝑛𝑛 3 − 𝜇𝜇𝑝𝑝𝑛𝑛+1 0 − 𝜇𝜇𝑣𝑣𝑝𝑝𝑛𝑛+1 1 − (𝑖𝑖 + 1)𝑞𝑞2𝜙𝜙2𝑝𝑝𝑛𝑛+1 2
− (𝑖𝑖 + 1)𝑞𝑞1𝜙𝜙1𝑝𝑝𝑛𝑛+1 1 = 0 .                                                                            (36) 

Summing over all possible values of n and using normalization condition, it changes to 

𝜆𝜆 − 𝜇𝜇𝐻𝐻0(1) − 𝜇𝜇𝑣𝑣𝐻𝐻1(1) − 𝑞𝑞2𝜙𝜙2𝐻𝐻2′(1) − 𝑞𝑞1𝜙𝜙1𝐻𝐻1′(1) + 𝜇𝜇𝑣𝑣𝑝𝑝0 1 = 0 .                               (37) 

Taking limit 𝑧𝑧 → 1 in equation (21), we get 

𝐻𝐻2(1) =
𝑝𝑝𝜇𝜇
𝜃𝜃2
𝑝𝑝1 0.                                                                                                                          (38) 

From equation (30), we have 
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𝜇𝜇𝑝𝑝1 0 = 𝜃𝜃1𝐻𝐻1(1) + 𝜃𝜃2𝐻𝐻2(1),                                                                                                    (39) 

𝐻𝐻1(1) =
𝜇𝜇𝑝𝑝1 0 − 𝜃𝜃2𝐻𝐻2(1)

𝜃𝜃1
.                                                                                                        (40) 

Now, taking limit 𝑧𝑧 → 1 in equation (31) and using L- Hospital rule, we get 

𝐻𝐻0(1) =
𝜃𝜃1𝐻𝐻1′(1)+𝜃𝜃2𝐻𝐻2′(1) + 𝜂𝜂𝐻𝐻3′(1)

𝜇𝜇 − 𝜆𝜆
.                                                                                (41) 

To obtain the values of 𝐻𝐻1′(1) 𝑛𝑛𝑖𝑖𝑐𝑐 𝐻𝐻2′(1), differentiate equations (20) and (21) and taking limit 
𝑧𝑧 → 1, 

𝐻𝐻1′(1) =
𝜇𝜇𝑣𝑣𝑝𝑝0 1 + (𝜆𝜆 − 𝜇𝜇𝑣𝑣)𝐻𝐻1(1)

𝜃𝜃1 + 𝑞𝑞1𝜙𝜙1
 ,                                                                                         (42) 

𝐻𝐻2′(1) =
𝜆𝜆

𝜃𝜃2 + 𝑞𝑞2𝜙𝜙2
𝐻𝐻2(1).                                                                                                       (43) 

Similarly, differentiating equation (22) and taking a limit, we get  

𝐻𝐻3′(1) =
𝜆𝜆(𝜆𝜆 + 𝜂𝜂)

𝜂𝜂2
𝑝𝑝0 3.                                                                                                               (44) 

On similar steps, differentiating equation (31), we get 

𝐻𝐻0′(1)

=
(𝜃𝜃1𝐻𝐻1′′(1)+𝜃𝜃2𝐻𝐻2′′(1) + 𝜂𝜂𝐻𝐻3′′(1))(𝜇𝜇 − 𝜆𝜆) + 2𝜇𝜇(𝜃𝜃1𝐻𝐻1′(1)+𝜃𝜃2𝐻𝐻2′(1) + 𝜂𝜂𝐻𝐻3′(1))

2(𝜇𝜇 − 𝜆𝜆)2
,   (45) 

where 𝐻𝐻2′′(1) is obtained by differentiating equation (21) twice and taking limit 𝑧𝑧 → 1, 

𝐻𝐻2′′(1) =
2𝜆𝜆 𝐻𝐻2′(1)
𝜃𝜃2 + 2𝑞𝑞2𝜙𝜙2

.                                                                                                               (46) 

Similarly, differentiating equation (20) twice and taking a limit, we obtain 

𝐻𝐻1′′(1) =
−2𝜇𝜇𝑣𝑣𝑝𝑝0 1 + 2(𝜆𝜆 − 𝜇𝜇𝑣𝑣)𝐻𝐻1′(1) + 2𝜇𝜇𝑣𝑣𝐻𝐻1(1)

𝜃𝜃1 + 2𝑞𝑞1𝜙𝜙1
 .                                                        (47) 

As we see from the above equations, all the probability generating functions are expressed in 
terms of 𝑝𝑝0 1,𝑝𝑝0 3 and 𝑝𝑝1 0. 

To find the values of 𝑝𝑝0 1,𝑝𝑝0 3 and 𝑝𝑝1 0, 

Simple mathematical calculations in equation (37) and using eq. (34) gives the following 
relation between 𝑝𝑝0 3 and 𝑝𝑝1 0  

𝑝𝑝0 3 =
𝜂𝜂(𝜆𝜆 + 𝐷𝐷𝑝𝑝1 0)
𝜆𝜆𝜇𝜇(𝜆𝜆 + 𝜂𝜂)

 ,                                                                                                                  (48) 

where, 
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𝐷𝐷 =
(1 − 𝐶𝐶1)𝑝𝑝𝜇𝜇𝐵𝐵1(1)

𝐵𝐵2(1) −
�̅�𝑝𝜇𝜇𝐶𝐶1(𝜆𝜆 − 𝜇𝜇𝑣𝑣)

𝜃𝜃1
−
𝐶𝐶2𝑝𝑝𝜇𝜇
𝜃𝜃2

−
𝜇𝜇𝜇𝜇𝑣𝑣
𝜃𝜃1

,                                                   (49) 

𝐶𝐶1 =
𝑞𝑞1𝜙𝜙1 + 𝜇𝜇𝜃𝜃1

𝜇𝜇 − 𝜆𝜆
𝜃𝜃1 + 𝑞𝑞1𝜙𝜙1

 ,                                                                                                                   (50) 

𝐶𝐶2 =
𝜆𝜆𝑞𝑞2𝜙𝜙2 + 𝜇𝜇𝜆𝜆𝜃𝜃2

𝜇𝜇 − 𝜆𝜆
𝜃𝜃2 + 𝑞𝑞2𝜙𝜙2

 .                                                                                                                (51) 

Now, 𝑝𝑝0 3 and 𝑝𝑝0 1 are both explicitly expressed in terms of 𝑝𝑝1 0, which can be obtained by 
using normalization condition 

�𝐻𝐻𝑖𝑖(1) = 1.                                                                                                                               (52)
3

𝑖𝑖=0

 

6. System operating characteristics 
 
Expected system length 𝐸𝐸𝐸𝐸𝑆𝑆 = 𝐸𝐸𝐸𝐸0 + 𝐸𝐸𝐸𝐸1 + 𝐸𝐸𝐸𝐸2 + 𝐸𝐸𝐸𝐸3, where, 𝐸𝐸𝐸𝐸𝑖𝑖, i = 0, 1, 2, 3 denotes mean 
system length in ith state of the server. 
 

𝐸𝐸𝐸𝐸𝑆𝑆 = ��𝑖𝑖𝑝𝑝𝑛𝑛 𝑖𝑖

∞

𝑛𝑛=1

3

𝑖𝑖=0

 

= �𝐻𝐻𝑖𝑖′(1)
3

𝑖𝑖=0

,                                                                                       (53) 

𝐻𝐻0′(1), 𝐻𝐻1′(1), 𝐻𝐻2′(1), 𝐻𝐻3′(1) are obtained from equations (42) to (45). 

Expected Sojourn time 𝑊𝑊𝑆𝑆 = Mean waiting time experienced by customers in the system 

=
𝐸𝐸𝐸𝐸𝑆𝑆
𝜆𝜆

.                                                                                                    (54) 

Probability of server in the active/normal state 𝑃𝑃𝑁𝑁 = 𝐻𝐻0(1).                                                      (55) 

Probability of server in setup/closed down state 𝑃𝑃𝐶𝐶𝐶𝐶 = 𝐻𝐻3(1).                                                  (56) 

Probability of server in working vacation state 𝑃𝑃𝑊𝑊𝑊𝑊 = 𝐻𝐻1(1).                                                    (57) 

Probability of server in the classical vacation state 𝑃𝑃𝐶𝐶𝑊𝑊 = 𝐻𝐻2(1).                                              (58) 

Rate of abandonment in working vacation 𝑅𝑅𝑊𝑊𝑊𝑊 = 𝑞𝑞1𝜙𝜙1𝐻𝐻1′(1).                                                 (59) 

Rate of abandonment in classical vacation 𝑅𝑅𝐶𝐶𝑊𝑊 = 𝑞𝑞2𝜙𝜙2𝐻𝐻2′(1).                                                   (60) 

 

7. Numerical and graphical illustration 

In this section, we study the graphical behavior of various system characteristics for different 
values of system parameters. The values of various parameters are taken as as λ = 1.5, μ = 4, 
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𝜇𝜇𝑣𝑣 = 3,  p = 0.4, 𝜃𝜃1 = 3,  𝜃𝜃2 = 3.2, 𝜙𝜙1 = 0.6, 𝜙𝜙2 = 0.9, 𝑞𝑞1 = 0.6,  𝑞𝑞2 = 0.8, 𝜂𝜂 = 4 unless 
varied as shown in graphs. 

(a) Sensitivity analysis 

 
Figure 2.  Expected system length 𝐸𝐸𝐸𝐸𝑆𝑆 versus λ for different values of μ 

Figure 2 shows that with the increase in arrival rate λ, the mean system length increases, for a 
fixed value of service rate μ in the normal service state. It is due to a decrease in the mean inter-
arrival time of customers. For fixed λ, as μ increases, the mean service time decreases resulting 
in a reduction in expected system length. 

 
Figure 3.   Expected system length 𝐸𝐸𝐸𝐸𝑆𝑆 versus η for different values of λ 

We observe from Figure 3 the behavior of the expected system length with setup rate η for 
different values of arrival rate λ. We see that the expected system length decreases with an 
increase in setup rate η, for a fixed value of arrival rate λ. This decrease in mean system length 
with an increase in setup rate is theoretically expected due to the corresponding decrease in the 
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mean setup time of the server. The figure depicts that with the increase in arrival rate, for a 
fixed setup rate, the mean system length goes on increasing. 

 

 
Figure 4. Expected sojourn time 𝑊𝑊𝑆𝑆 versus η for different values of 𝜇𝜇𝑣𝑣 

From Figure 4, we see the variation in mean sojourn time experienced by customers in the 
system with setup rate η. For a fixed value of service rate in working vacation 𝜇𝜇𝑣𝑣, expected 
sojourn time decreases with an increase in setup rate. Actually, with the increase in setup rate, 
the mean setup time decreases which leads to early return to the active state of the server 
thereby reducing the mean sojourn time of customers in the system. As the service rate in 
working vacation increases, again due to fast service, the mean sojourn time further decreases 
for a fixed setup rate. 

 
Figure 5. Effect of service rate μ on 𝑊𝑊𝑆𝑆 for different 𝜃𝜃1 and 𝜃𝜃2 

Figure 5 reveals the variation in mean waiting/sojourn time observed by customers in the 
system with service rate μ. As the service rate increases, the expected sojourn time decreases 
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for fixed values of classical and working vacation rates 𝜃𝜃1 and 𝜃𝜃2. This decrease is due to a 
reduction in mean service time with an increase in mean service rate μ. For fixed service rate, 
the mean sojourn time of customers in the system increases with an increase in vacation rates 
𝜃𝜃1 and 𝜃𝜃2.  

 
Figure 6.  Effect of 𝜃𝜃1 on 𝑃𝑃𝑊𝑊𝑊𝑊 for different values of p 

We observe from Figure 6 the variation in the probability of the server being in a working 
vacation state with the rate of working vacation 𝜃𝜃1. For a fixed value of probability p, as 𝜃𝜃1 
increases, the mean duration of working vacation decreases resulting in a decrease in the 
probability of the server staying in a working vacation state. 

 
Figure 7. Effect of 𝜃𝜃2 on 𝑃𝑃𝐶𝐶𝑊𝑊 for different values of p 

Figure 7 represents the variation in the probability of the server being on classical vacation 
with a rate of classical vacation 𝜃𝜃2. For a fixed value of p, as 𝜃𝜃2 increases, the classical vacation 
gets of shorter duration hence the probability of the server being in classical vacation reduces. 
For a particular value of 𝜃𝜃2, the probability of the server being in classical vacation increases 
with an increase in p.  
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Figure 8. Variation in 𝑃𝑃𝐶𝐶𝐶𝐶  versus η for different  𝜃𝜃1 and 𝜃𝜃2 

We observe from the above figure that for particular values of 𝜃𝜃1 and 𝜃𝜃2, the probability of the 
server being in a closed-down state reduces with an increase in the setup rate η. This is because 
as the setup rate increases, the time taken in the setup of the server reduces hence the probability 
of the server being in a closed-down state reduces.  Further probability of the server being in a 
closed-down state increases with vacation rates 𝜃𝜃1 and 𝜃𝜃2. This is because as vacation rates 
increase, the duration of both types of vacations decreases hence the chances of the server going 
to the closed down state increases. 

 
Figure 9.  Effect of λ on 𝑅𝑅𝐶𝐶𝑊𝑊 for different values of 𝜙𝜙2 

Figure 9 depicts the variation in abandonment rate during the classical vacation with arrival 
rate for different values of reneging rate in classical vacation. For a fixed value of arrival rate, 
the abandonment rate in classical vacation increases with an increase in reneging rate 𝜙𝜙2. As 
𝜙𝜙2 increases, the mean impatience time 𝑇𝑇2 in classical vacation decreases hence customers get 
impatient more quickly thereby increasing the corresponding rate of abandonment. 
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Figure 10.  Effect of μ and η on mean system length 𝐸𝐸𝐸𝐸𝑆𝑆 

Figure 10 represents the variation in mean system length with setup rate and service rate in 
normal state simultaneously. 

 
Figure 11.  Effect of 𝑞𝑞2 and 𝜃𝜃2 on abandonment rate 𝑅𝑅𝐶𝐶𝑊𝑊 

Figure 11 represents the variation in the rate of abandonment in classical vacation 𝑅𝑅𝐶𝐶𝑊𝑊 with the 
rate of classical vacation 𝜃𝜃2 and probability of reneging in classical vacation 𝑞𝑞2 together. 

(b) Cost optimization  
 
The optimal cost concerning service rate μ is obtained via the quadratic fit approach. The 
different cost elements are fixed as 𝐶𝐶𝐿𝐿𝑆𝑆 = 25, 𝐶𝐶𝜇𝜇 = 35, 𝐶𝐶𝜇𝜇𝑣𝑣 = 32, 𝐶𝐶𝜃𝜃1 = 30, 𝐶𝐶𝜃𝜃2 = 20, 𝐶𝐶𝜂𝜂 =
10, for the purpose and operating cost function per unit time is taken as  
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F(μ) =𝐸𝐸𝐸𝐸𝑆𝑆 𝐶𝐶𝐿𝐿𝑆𝑆+ μ𝐶𝐶𝜇𝜇 + 𝜇𝜇𝑣𝑣𝐶𝐶𝜇𝜇𝑣𝑣 +  𝜃𝜃1𝐶𝐶𝜃𝜃1 + 𝜃𝜃2𝐶𝐶𝜃𝜃2 + 𝜂𝜂𝐶𝐶𝜂𝜂 . 
 

The optimal operating cost = 310.030501 is obtained corresponding to μ = 2.852213 with the 
permissible error of 10−5 as shown in Table 1. Figure 12 verifies the observed results. 

 

 
Figure 12.  Expected operating cost per unit time versus μ 

 
Table 1. Cost optimization via quadratic fit approach 

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐   𝒙𝒙𝟑𝟑 F(𝒙𝒙𝟏𝟏) F(𝒙𝒙𝟐𝟐) F(𝒙𝒙𝟑𝟑) 𝒙𝒙𝑳𝑳 
2.00000 2.20000 3.00000 452.364967 357.437682 310.813424 2.669989 
2.20000 2.669989 3.00000 357.437682 311.719180 310.813424 2.846608 

2.669989 2.846608 3.00000 311.719180 310.031809 310.813424 2.865909 
2.846608 2.865909 3.00000 310.031809 310.038157 310.813424 2.851633 
2.846608 2.851633 2.865909 310.031809 310.030515 310.038157 2.852255 
2.851633 2.852255 2.865909 310.030515 310.030501 310.038157 2.852217 
2.851633 2.852217 2.852255 310.030515 310.030501 310.030501 2.852213 

 

8. Conclusion 

A queueing system with Bernoulli vacation policies, retention of customers during vacations 
and setup times is studied. The probability generating functions of the number of customers in 
the system are derived in the active state, setup state, classical and working vacation states of 
the server. The results obtained in this study are of great importance for many real-life systems 
like manufacturing, inventory and other related ones. The effect of various parameters on some 
operating characteristics of the system like rate of abandonment, mean size of the system, mean 
sojourn times and different state probabilities of the server is numerically and graphically 
analyzed via MATLAB software. For future work, it will be interesting to analyze the model 
with multi-server and general service times.   
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