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Abstract  
 
In this article, admissibility problem for a kind of singular systems with delays is studied. 
Firstly, the given singular system with delays is transformed into a neutral system with delays. 
Secondly, new sufficient criteria are obtained on the stability of the new neutral system by aid 
of Wirtinger-based integral inequality, linear matrix inequality (LMI) and suitable Lyapunov-
Krasovskii functionals (LKFs). The obtained criteria are valid for both of the systems. At the 
end, two numerical examples are given to illustrate the applicability of the obtained results 
using MATLAB-Simulink software. By this article, we extend and improve some results of  the 
past literature. 
 
Keywords: Admissibility; Impulse-free; Lyapunov-Krasovskii functional (LKF); Neutral 

system; Regular; Singular system 
 

MSC 2020 No.: 34A08, 34K40 
 
 

1.  Introduction 
 

In the last few decades, because of their extensive applications in the electrical and mechanical 
models; singular systems, which are also called descriptor systems, semi-state systems, implicit 
systems, have been one of the major research field of control theory. Many books and articles 
related to singular systems have been discussed and many results have been obtained regarding 
the stability and admissibility of these systems. Thus, the problem of stability and admissibility 
analysis for singular systems with delays is very important both theoretically and practically. It 
is noted that the study of singular systems is much more complicated than that for regular time 
delay systems because of the existence of algebraic constraints. Lyapunov-Krasovskii 
functional method is very important technique for stability of time delay systems (for instance, 
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Liu (2017), Seuret and Gouaisbaut (2013), Wu et al. (2013), Xu and Lam (2006), Yiğit and 
Tunç (2022) and references therein).  
 
There are very important reference books, which include various qualitative conditions about 
singular systems, such as Dai (1989), Xu and Lam (2006), and Yang et al. (2013). In recent 
years, numerous important and interesting results on the qualitative properties for various linear 
systems of first order have been obtained by applying linear matrix inequality, the second 
Lyapunov method, the Lyapunov-Krasovskii method, perturbation approach, and   so on. Cong 
(2014) created a way to prove the stability by using a perturbation approach and Lyapunov 
functional approach. Liu and Hou (2014) proved some sufficient conditions for first order linear 
differential equation systems. Liu et al. (2014) obtained new stability criteria for linear singular 
time-delay systems. Tunç and Yiğit (2020) obtained certain sufficient conditions for the 
solutions of nonlinear delay differential equations, which include two variable delays. Yiğit and 
Tunç (2020) obtained new conditions for singular time-delay systems by using some well-
known inequalities and LKFs. For some recent interesting and related papers on various 
qualitative properties of solutions non-singular integro-differential equations and some others, 
we referee the readers to the papers of   Khan et al. (2020a, 2020b), Sohail (2018), Yiğit  and 
Tunç (2022a, 2022b),  Tunç (2020), Tunç and Tunç (2018, 2021),  Tunç et al. (2021) and the 
references of these papers. 
 
2.  Preliminaries 
 
The motivation of this paper has been inspired by the results of Liu et al. (2014) regarding 
singular system with time- delay. In that paper, they obtained new stability criteria for this linear 
singular time-delay systems by using an LKF and the Wirtinger-based integral inequality 
method. Thus, we consider the following linear singular integro-system with three delays: 

                           
( ) ( ) ( ).dx t x t x t τΕ = Α + Α −

 
They obtained new stability criteria for this linear singular time-delay systems by using an LKF 
and the Wirtinger-based integral inequality method. 
 
The motivation of this paper has been inspired by the results of Liu et al. (2014) and the formers 
related works in the literature.  
 
We consider the following linear singular integro-system with three delays:  
 

                            ,)())(()()(
2

1
∫∑
−=

Α+−Α+Α=Ε
t

ti
id dssxttxtxtx

i
τ

ττ                                      (1) 

                               ( ) ( ),  [ ,0],  0.x t t tϕ τ τ= ∈ − >  

where  ( ) nx t ∈  is the state vector, )(tφ  is a continuous initial function defined on  ].0,[ τ−   
n n×Α∈  is a negative definite real constant matrix and  , ,

i

n n
dτ

×Ε Α Α ∈  are  real constant 

matrices, the matrix n n×Ε∈  is singular, and it is assumed that  , 1.rank r n nΕ = ≤ ≥  The 
time-varying delays   )(tiτ  are continuous differentiable and satisfying 
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            ,)(0 ii t ττ ≤< ),2,1( ,1)( =≤≤≤ iht iii τσ  ,0 },,max{ 21 >= ττττ                               (2)                           

where  ii σττ ,,  and ih  are some known constant delays.   
 
We now give some information, which are needed in advance. The pair ),( ΑΕ  is said to be 
regular if  .0) det( ≠Α−Εs  The pair ( , )Ε Α  is said to be impulse-free if  
deg  (det  ( ))  ( )s rankΕ − Α = Ε  (Dai (1989)). The singular delay system (1) is said to be regular 
and impulse-free if the pair ),( ΑΕ  is regular and impulse-free. The singular delay system  (1) 
is said to be admissible if it is regular, impulse-free and stable (Xu and Lam (2006)). 

 

If the pair ),( ΑΕ is regular and impulse-free, then Dai (1989) shows that there exist two non-

singular matrices ,  n nM N ×∈ with their respective matrices such that  
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Let n nR ×∈  be any constant symmetric matrix and : [ , ] nx a b →   be a continuously 
differentiable function. Then, the following inequality holds: 

 
1 3( ) ( ) [ ( ) ( )] [ ( ) ( )]

b
T
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x s Rx s ds x b x a R x b x a R
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− −∫   , 

where 

                                   

2( ) ( ) ( )
b

a

x a x b x s ds
b a

 Ω = + −  −  ∫
(Seuret and Gouaisbaut (2013)). 

Firstly, let us transform the linear singular system (1) to a neutral system. By above information, 
there exist two regular matrices  ,  n nD K ×∈   such that 
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Then, we write the system (1) as the following system:  
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which can be decomposed into the following system: 
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Taking the time derivative of the equation (4), we have  
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Combining the equation (4) and the equation (5), we obtain 
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In view of equations (3) and (6), it follows that  

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [], Iss. 1, Art. 15

https://digitalcommons.pvamu.edu/aam/vol17/iss1/15



AAM: Intern. J., Vol. 17, Issue 1 (June 2022) 231 
 

                              
( )
( )

( )
( ) ( )






Α−Α−

+







−
Α

=







ttt

t
t
t

24132

11

2

1

)(
0

µµµ
µ

µ
µ

ττ



             

                                                 
( ) ( )
( ) ( )






−Α−−Α−
−Α+−Α

+
)()(

)()(

124113

122111

11

11

tttt
tttt

dd

dd

τµτµ
τµτµ

 

                                                 

( ) ( )
( ) ( )






−Α−−Α−
−Α+−Α

+
)()(

)()(

224213

222211

22

22

tttt
tttt

dd

dd

τµτµ
τµτµ

 

                                                 








−Α+−Α

+
)()(

0

2413 τµτµ ττ tt  

                                                 
( ) ( )

( ) ( ) 

















Α−Α−

Α+Α
+

∫ ∫

∫ ∫

− −

− −
t

t

t

t

t

t

t

t

dssdss

dssdss

τ τ
ττ

τ τ
ττ

µµ

µµ

2413

2211

 

                                                 









−
−









Α−Α−

−+
))((
))((00

))(1(
12

11

43
1

11
tt
tt

t
dd τµ

τµ
τ





  

                                                 ,
))((
))((00

))(1(
22

21

43
2

22









−
−









Α−Α−

−+
tt
tt

t
dd τµ

τµ
τ







                                         

which is equivalent to the following neutral system with three delays: 

                               

                                                                                                       (7)  
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=
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(8) 

It should be noted that the systems (1) and (7) are not equivalent, however the asymptotic 

stability of the system (7) guarantees the asymptotic stability of system (1), and vice versa (see,  

Liu et al. (2014)). In the light of the above information, we can conclude that the system (1) is 

asymptotically admissible. 

 
3. Main Results and Numerical Applications 

 
A. Assumptions 
 
Throughout this work, we suppose the following condition holds. 
 

(A1)  We suppose that the pair (E, A) is regular and impulse-free and the eigenvalues of  
 

                are inside the unit circle,  

        i.e., 1, })()-(1,)()-(1max{(t))C( iii <=
∧

ii ChC ρρσρ   

 
       where the symbol ρ  denotes the spectral radius of the matrix. 

 
 (A2) There are symmetric positive definite n n ,    , ,n n n n

i i iQ R S× × ×∈ ∈ ∈     
n n  , ( 1, 2) iW i×∈ =  and  6 6n n×Ρ∈  matrices such that the following LMIs  hold: 

          , 
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, 

            

,  

and , , ,  and  are defined by (8).  
 
Theorem 3.1.  

If the conditions (2), (A1) and (A2) hold, then the system (7) is asymptotically stable and thus 
the system (1) is asymptotically admissible.           

Proof:   
 
Firstly, we define 

                  

                  

                              
 

and note that                 
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We now prove the asymptotic stability of the system (7). For this, we define a new LKF as 
follows: 

                                 
∑
=

=
5

1
),()(

i
i tVtV                                                             (9) 

where           



























Ι−Ι
Ι−−Ι

Ι−−Ι
Ι−

Ι−
Α−−Β−ΑΑΒ+Α

=

∧∧∧∧∧

0000000
000))(1(0000
0000))(1(000
000))(1(00000
0000))(1(0000

00))(1())(1(

2

1

2

1

2211

0

21

t
t

t
t

CtCt

F

dd

τ
τ

τ
τ

τττ τ





































Ι
Ι

Ι
Ι

Ι
Ι

=

τ
τ

τ

00000000
0)(0000000
00)(000000
00000000
00000000
00000000

2

1
1

t
t

F









Ι−ΙΙ

Ι−Ι
=









Ι−ΙΙ

Ι−Ι
=

0200000
0000000

,
0020000
0000000

3

2

F

F

∧

Α id
∧

Α
∧

Β ,τ

∧

Α )(tC i

∧

)2,1( , =iCi

( ) ,] )( )( )( ))(( ))(( )([
-t)(-t)(-t

21

21

ΤΤΤΤΤΤΤ ∫∫∫−−=
tt

t

t

t

dssdssdsstttttt
τττ

µµµτµτµµξ

( )  ))(( ))(( )( ))(( ))(( )([ 2121 ttttttttttt τµτµτµτµτµµη −−−−−= ΤΤΤΤΤΤ


ΤΤΤΤ ∫∫∫ ] )(1    )(
)(

1   )(
)(

1

-t)(-t2)(-t1 21

tt

t

t

t

dssdss
t

dss
t τττ

µ
τ

µ
τ

µ
τ

( ) ( )tFt ηξ 1= ( ) ( )tFt ηξ 0=

7

Yi?it and Tunç: Admissibility of Singular Systems with Delays

Published by Digital Commons @PVAMU,



234 A. Yiğit and C. Tunç 

                                   ),()()(1 tttV T ξξ Ρ=   

                                   ∫∫
−−

+=
t

tt

T
t

tt

T dssQsdssQstV
)(

2
)(

12

21

)()()()()(
ττ

µµµµ
 

                                                    

                             
,)()()()()(

)(
2

)(
13

21

∫∫
−−

+=
t

tt

T
t

tt

T dssRsdssRstV
ττ

µµµµ 

 

                             
θµµτ

τ θ

ddssSsttV
t

t

t

T∫ ∫
− +

=
0

)(
114

1

)()()()(   

                                                    

                             
. )()()(

0

25 θµµ
τ θ

ddssWstV
t

t

T∫ ∫
− +

=  

It is clear that the LKF (9) is positive definite. By the time derivative of the LKF )(tV of (9) 
along the system (7), we obtain 
 

                                       ∑
=

=
5

1
),()(

i
i tVtV 

                                              (10) 

where 

            )()()()()(1 tPttttV TT ξξξξ  +Ρ=
 

            

( ) ( ) ,1∫
−

Τ+
t

t

dssWs
τ

µµ

( ) ( ) ,)(
0

)(
22

2

∫ ∫
− +

Τ+
t

t

t

dsdsSst
τ θ

θµµτ 



























−−
−−−
−−−

−−
−−



































−
−

+



































−
−



























−−
−−−
−−−

−−
−−

=

Τ

−

−

−

−

−

−

Τ

∫

∫

∫

∫

∫

∫

)()(
))(())(1()(
))(())(1()(

))(())(1(
))(())(1(

)(

)(

)(

)(

))((
))((

)(

)(

)(

)(

))((
))((

)(

)()(
))(())(1()(
))(())(1()(

))(())(1(
))(())(1(

)(

22

11

22

11

)(

)(

2

1

)(

)(

2

1

22

11

22

11

2

1

2

1

τµµ
τµτµ
τµτµ

τµτ
τµτ

µ

µ

µ

µ

τµ
τµ

µ

µ

µ

µ

τµ
τµ

µ

τµµ
τµτµ
τµτµ

τµτ
τµτ

µ

τ

τ

τ

τ

τ

τ

tt
tttt
tttt

ttt
ttt

t

P

dss

dss

dss

tt
tt

t

dss

dss

dss

tt
tt

t

P

tt
tttt
tttt

ttt
ttt

t

t

t

t

tt

t

tt

t

t

t

tt

t

tt





















8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [], Iss. 1, Art. 15

https://digitalcommons.pvamu.edu/aam/vol17/iss1/15



AAM: Intern. J., Vol. 17, Issue 1 (June 2022) 235 
 

                     )(}){()(}){( 0110 tFFttFFt TTTT ηηηη Ρ+Ρ=  

                                                                                                        (11)  

            
))(())(())(1()()()( 111112 ttQttttQttV TT τµτµτµµ −−−−= 

  

                              

                                  

                                                                            (12) 

            
))(())(())(1()()()( 111113 ttRttttRttV TT τµτµτµµ −−−−= 

  

     

                              

                          

                              

                              

                              

                              

                              

                              

                              

                          

                              

                                                 

                                                 

                                            

( ) { } ( ),01 tPFFSymt ηη ΤΤ=

( ) ( ) ( ) ( ))()())(1( 22222 ttQttttQt τµτµτµµ −−−−+ ΤΤ


( ) ( ) ( ) ( )τµτµµµ −−−+ ΤΤ tWttWt 11

( ) ( ) ( ) ( ) ( ) ( ),121 tWttQttQt ηηηηηη ΤΤΤ ++=

))(())(())(1()()( 22222 ttRttttRt τµτµτµµ −−−−+ ΤΤ


))())(()()[(
2

1
τµτµµ −Β−−Α+Β+Α=

∧

=

∧∧∧

∑ tttt
i

idi

)()[(])())(()( 1

2

1
tRdsstttC

t

t
i

i
i µµτµ

τ

τ

∧∧
Τ

−

∧

=

∧

Β+ΑΑ+−+ ∫∑ 

])()())())((
2

1

2

1
∫∑∑
−

∧

=

∧∧

=

∧

Α++−Β−−Α+
t

ti
i

i
id dsstCttti

τ

τ µτµτµ

))())(()()[(
2

1
τµτµµ −Β−−Α+Β+Α+

∧

=

∧∧∧

∑ tttt
i

idi

)()[(])())(()( 2

2

1
tRdsstttC

t

ti
ii µµτµ

τ

τ

∧∧
Τ

−

∧

=

∧

Β+Α×Α+−+ ∫∑ 

))(()())())((
2

1

2

1
tttCttt i

i
i

i
idi τµτµτµ −+−Β−−Α+ ∑∑

=

∧∧

=

∧


))(())(())(1(])( 1111 ttRtttdss
t

t

τµτµτµ
τ

τ −−−−Α+ Τ

−

∧

∫ 

))(())(())(1( 2222 ttRttt τµτµτ −−−− Τ


Τ
∧∧∧∧∧∧

Τ Α−−Β−ΑΑΒ+Α= ]    0    0 ))(1(   ))(1(            )[( 221121 ττττη CtCtt dd 

111 ))(1(             [ 21 CtR dd τ−Β−ΑΑΒ+Α×
∧∧∧∧∧

1    )[()(]    0    0   ))(1( 22 dttCt
∧∧∧

Τ
∧

ΑΒ+Α+Α− ηηττ τ

22211 ]    0    0   ))(1(   ))(1(     2 RCtCtd
Τ

∧∧∧

Α−−Β−Α ττττ 

0   ))(1(   ))(1(            [ 221121 CtCtdd ττ  −−Β−ΑΑΒ+Α×
∧∧∧∧∧

9

Yi?it and Tunç: Admissibility of Singular Systems with Delays

Published by Digital Commons @PVAMU,



236 A. Yiğit and C. Tunç 

                                                  

                                    

 

                                                                                                   (13) 

            
∑
=

∧∧∧∧

−Β−−Α+Β+Α=
2

1

2
14 )())(()())[(()(

i
id ttttttV i τµτµµτ  

                                           

                                           

                                           

                                           

                                            

                                           

                                          
 

                                    
 

                                             

                                             

 
                                          

 

                                             

                                             

                                            .                    (14)  

 

( ) ( ) ( ) ( )tRttRtt ηηηηητ τ 21)(]    0 ΤΤ
∧

−−Α

( ) ( ) ( ) ( )tFRFttFRFt ηηηη 020010
ΤΤΤΤ +=

( ) ( ) ( ) ( ),21 tRttRt ηηηη ΤΤ −−

)()[(])())(()( 1

2

1
tSdsstttC

t

t
i

i
i µµτµ

τ

τ

∧∧
Τ

−

∧

=

∧

Β+ΑΑ+−+ ∫∑ 

))(()()())((
2

1

2

1
tttCttt i

i
i

i
idi τµτµτµ −+−Β−−Α+ ∑∑

=

∧∧

=

∧


∑∫
=

∧∧∧

−

∧

−Α+Β+Α+Α+
2

1

2
2 ))(()())[((])(

i
id

t

t

ttttdss i τµµτµ
τ

τ

2

2

1
])())(()())( SdsstttCt

t

t
i

i
i

Τ

−=

∧∧

∫∑ Α+−+−Β−
τ

τ µτµτµ 

))())(()()[(
2

1
τµτµµ −Β−−Α+Β+Α×

∧

=

∧∧∧

∑ tttt
i

idi

])())(()(
2

1
∫∑
−

∧

=

∧

Α+−+
t

t
i

i
i dsstttC

τ

τ µτµ

( ) ( ) ( ) ( )∫∫
−

Τ

−

Τ −−
t

tt

t

tt

dssSstdssSst
)(

22
)(

11

21

)()(
ττ

µµτµµτ 

11
2
1 ))(1(    -            )[()( 21 Cttt dd τητ −ΒΑΑΒ+Α=

∧∧∧∧∧
Τ

21         []    0    0    ))(1( 122 ddSCt
∧∧∧∧

Τ
∧

ΑΑΒ+ΑΑ− τττ

)(]    0    0    ))(1(    ))(1(    - 2211 tCtCt ητττ τ

∧∧

Α−−Β 

11
2
2 ))(1(    -            )[()( 21 Cttt dd τητ −ΒΑΑΒ+Α+

∧∧∧∧∧
Τ

21         []    0    0    ))(1( 222 ddSCt
∧∧∧∧

Τ
∧

ΑΑΒ+ΑΑ− τττ

)(]    0    0    ))(1(    ))(1(    - 2211 tCtCt ητττ τ

∧∧

Α−−Β 

( ) ( ) ( ) ( )∫∫
−

Τ

−

Τ −−
t

tt

t

tt

dssSstdssSst
)(

22
)(

11

21

)()(
ττ

µµτµµτ 

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [], Iss. 1, Art. 15

https://digitalcommons.pvamu.edu/aam/vol17/iss1/15



AAM: Intern. J., Vol. 17, Issue 1 (June 2022) 237 
 

Applying the Wirtinger inequality, for the last two terms in (14), we obtain the following 
inequalities, respectively: 
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Combining (10)-(18), we have 

                           ( ) ( ) ( ).V t t tη ηΤ≤ Ψ  

Since , we arrive at .0)( <tV  Thus, we conclude that the neutral system (7) is 
asymptotically stable. Consequently, since the singular system (1) is regular, impulse free and 
asymptotically stable, it is also asymptotically admissible. This result completes the proof of 
Theorem 3.1.       Example 3.2.  

For the particular case of the system (1), we consider the following linear singular system with 
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Under the above conditions, all eigenvalues of the LMI defined by   Ψ  satisfy 

 .0583.0)(max −≤Ψλ
 
Consequently, it is clear that all conditions of Theorem 3.1 can be 
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Trajectories of the solutions of the above system is given in Figure 1. The given system is solved 
by MATLAB-Simulink software.

 

 
Figure 1. Trajectories of the solution  )(tx  of the system in Example 3.2, when 0,1τ =  
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Trajectories of the solutions of the above system is given in Figure 2. The given system is solved 
by MATLAB-Simulink software. 

 

 
Figure 2. Trajectories of the solution  )(tx  of system in Example 3.3, when 0.05τ =  

 
3.  Conclusion 

In this paper, we consider a class of linear singular systems with mixed delays. By a suitable 
transform, we reduce the considered system to a non-singular neutral system with mixed delays. 
Then, using a new LKF, LMI and Wirtinger-based integral inequality, we investigate 
asymptotic admissibility. Finally, two numerical examples are also given with their simulations 
to demonstrate the applications of the main results. The obtained results include and generalize 
some recent results in the literature.  
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