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Abstract

In this paper, we considered the non-uniformly distributed zeros on the unit circle, which are
obtained by projecting vertically the zeros of the derivative of Legendre polynomial together with
x = 1 and x = −1 onto the unit circle. An interpolating polynomial is considered by prescribing
the function on the above said nodes and its second derivative with suitable weight function at all
nodes except at x = 1 and x = −1. We obtained the existence, explicit representations, estimation
and convergence theorem of that interpolatory polynomial. Such type of interpolation is known as
weighted Lacunary interpolation on the unit circle.

Keywords: Weight function; Legendre polynomial; Explicit representation; Convergence

MSC 2010 No.: 41A05, 30E10

1. Introduction

Kiš (1960) considered the problem of (0,2) and (0, 1, ..., r − 2, r) – interpolation on the nth roots
of unity. For any integer r ≥ 2, he established regularity, fundamental polynomials as well as
convergence theorem for the same. The study of weighted (0, 2) interpolation was initiated by
Balázs (1961) on the real line, taking nodes as the zeros of an Ultraspherical polynomial by using
the suitable weight function. A few years later, results for the cases (0,m) and (0,m1,m2) –
interpolations were established by Sharma (1964 and 1966).
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The modification of Hermite – Fejér interpolation was introduced by Pál (1975), in which the func-
tion values and the first derivatives were prescribed on two sets of nodes. The study of Lacunary
interpolation was initiated by Turán (1979), considering (0,2) – interpolation. Later on, several
mathematicians have considered the Lacunary interpolation problem on the unit circle.

The general Lacunary interpolation problem on the unit circle was solved by Sharma and Riemen-
schneider (1981) using the nodes as the nth roots of unity. Szilli (1983) studied the problem,
in which the first derivatives were interpolated at the zeros of nth Legendre polynomial Pn(x),
whereas the function values were interpolated at the zeros of P ′

n(x).

A decade later, Kasana and Kumar (1994) considered an approximation and interpolation of entire
functions with index – pair (p,q). After that Xie (1995) established the regularity, explicit represen-
tation and convergence behaviour for (0, 1, 3)∗ – interpolation on the nodes, which were obtained
by projecting vertically the zeros of nth Legendre polynomial Pn(x) together with x = 1 and
x = −1 onto the unit circle. After one year, Xie (1996) came out with another paper established
the regularity of (0, 1, ..., r − 2, r)∗− interpolation problem by projecting vertically the zeros of
Jacobi polynomial onto the unit circle.

Kumar (2007) considered the Lp - convergence of Lagrange interpolation in the finite disc. In an-
other paper, Kumar (2008) considered Ultraspherical expansion of generalized biaxially symmetric
potentials and Pseudo-analytic functions. Bahadur and Mathur (2011) provided the convergence
theorem for the weighted (0, 2)∗ - interpolation on the set of nodes similar to Xie (1995). Bahadur
and Shukla (2014) considered (0,2)-interpolation problem on the unit circle and established the
convergence theorem for the nodes considered by Xie (1996).

Srivastava and Singh (2018) considered an interpolation on the zeros of the Ultraspherical poly-
nomial. Powar et al. (2020, 2021) considered linear and higher degree approximation by various
operators. For more details one can refer to Gandhi et al. (2017) and also Mishra et al. (2013).
Recently, Kumar et al. (2021 (a) and 2021 (b) ) considered interpolation and quadrature formula in
rational space and with Chebyshev-Markov function.

In this paper, we consider the weighted Lacunary interpolation on the zeros of the first derivative of
nth Legendre polynomial together with x = ±1 and establish the convergence of such interpolatory
polynomial. In Section 2, we give some preliminaries. In Section 3, we describe the problem and
its existence whereas Section 4 consists of explicit forms of the interpolatory polynomials. In
Section 5 and Section 6, estimation and convergence of the interpolatory polynomials are given,
respectively.

2. Preliminaries

Let zk be the zeros of S (z), defined as

Zn =

{
zk = cosϕk + i sinϕk,

z(n−1)+k = zk ,
(1)
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where

S (z) =
2n−2∏
k=1

(z − zk),

with the help of the following well known equalities for the nth Legendre polynomial Pn (x) (Xie
(1995)),

Pn (x) =
(2n− 1)

n
xn + . . . ,

(1− 2xt+ t2)−
1

2 =
∞∑
m=0

Pm (x) tm.

We have

S (z) = KnP
′
n

(
1 + z2

2z

)
zn−1, (2)

where

Kn = 22n−1(n− 1)!
Γ(n+ 1)

Γ(2n + 1)
.

Moreover, using the equation(
1− x2

)
P ′′n (x)− 2xP ′n (x) + n (n+ 1)Pn (x) = 0, (3)

we obtain

S ′ (zk) =
Kn

2

(
z2k − 1

)
P

′′

n (uk) z
n−3
k , (4)

S ′′ (zk) = Kn

[
(n− 3)

(
z2k − 1

)
− 3
]
P

′′

n (uk) z
n−4
k . (5)

Let

T (z) =
(
z2 − 1

)
S (z) . (6)

Then, we have

T ′ (zk) =
(
z2k−1

)
S ′ (zk) , (7)

and

T ′′ (zk) = 4zkS
′
(zk) +

(
z2k − 1

)
S ′′ (zk) . (8)

We shall require the fundamental polynomial of Lagrange interpolation based on the zeros of S (z)
and T (z), respectively, given as:

lk (z) =
S(z)

(z − zk)S ′ (zk)
, k = 1 (1) 2n− 2, (9)

Lk (z) =
T (z)

(z − zk)T ′ (zk)
, k = 0 (1) 2n− 1. (10)

We will also use the following well known inequalities (Szegö (1959)), for −1 < x < 1,(
1− x2

)3/4 |P ′n (x) | ∼ n1/2, (11)

3
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(
1− x2

)
|P ′′

n (x) | ∼ n2, (12)∣∣P (r)
n (x)

∣∣ ∼ n2r , r = 1, 2, 3 . . . (13)

Let

xk = cosθk, k = 1 (1)n,

are the zeros of nth Legendre polynomial Pn (x), with

1 > x1 > x2 > · · · > xn > −1,

then, (
1− x2k

)−1 ∼ (k
n

)−2
, (14)

∣∣P (s)
n (xk)

∣∣ ∼ k−s−
1

2 n2s , s = 0, 1, 2, 3 . (15)

3. The Problem and Regularity

Let Zn ∪ {−1, 1} be the vertical projection of (1− x2)P ′n (x) on the unit circle, where Zn is
defined in (1) with z0 = 1, z2n−1 = −1 and P ′n (x) stands for the first derivative of nth Legendre
polynomial having the zeros

uk = cosϕk, k = 1 (1)n− 1,

such that

1 > u1 > u2 > · · · > un−1 > −1.

We determine the interpolatory polynomial R4n−3 (z) of degree ≤ 4n− 3, such that R4n−3 (zk) = αk, k = 0(1)2n− 1,[
(z2 − 1)

3/2
R4n−3 (z)

]′′

z=zk
= βk, k = 1(1)2n− 2,

(16)

where α′ks and β′ks are arbitrary complex constants. We establish a convergence theorem for the
same.

Theorem 3.1.

R4n−3 (z) is regular on Zn ∪ {−1, 1}.

Proof:

It is sufficient if we show that the unique solution of (16) is

R4n−3 (z) ≡ 0,

when all data αk = βk = 0. In this case, we have

R4n−3 (z) = S (z) q (z) ,

4
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where q (z) is a polynomial of degree ≤ 2n− 1 and S (z) is given in (2).

Obviously

R4n−3 (zk) = 0, k = 1 (1) 2n− 2.

From [(
z2 − 1

)3/2
R

4n−3 (z)
]′′

z=zk
= 0, for k = 1 (1) 2n− 2,

using (4) – (5), we obtained

zk q
′
(zk) + n q (zk) = 0. (17)

Therefore, we have

z q
′
(z) + n q (z) = (a+ bz)S (z) , (18)

where a and b are arbitrary constants. Solving (18), we get

zn q (z) = a J20 (z) + b J21 (z) + c, (19)

where

J2j (z) =

∫ z

0

tn+j−1 S (t) dt, ( j = 0, 1) . (20)

Puting z = 0 in (19), we get c = 0. Now, for z = ±1, we get{
a J21 (1) + b J20 (1) = 0,

a J21 (−1) + b J20 (−1) = 0.
(21)

Since

J2j (−1) = (−1)n+j J2j (1) , (22)

using (22) in (21) we get a = b = 0.

Hence the theorem follows. �

4. Explicit Representation of Interpolatory Polynomials

We shall write R4n−3 (z) satisfying (16) as

R4n−3 (z) =
2n−1∑
k=0

αkUk (z) +
2n−2∑
k=1

βkVk (z) , (23)

where Uk (z) and Vk (z) are unique polynomials, each of degree at most 4n − 3 satisfying the
conditions:
For k = 0 (1) 2n− 1,  Uk (zj) = δjk, j = 0 (1) 2n− 1,[

(z2 − 1)
3/2
Uk (z)

]′′

z=zj
= 0, j = 1 (1) 2n− 2.

(24)

5
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For k = 1 (1) 2n− 2, Vk (zj) = 0, j = 0 (1) 2n− 1,[
(z2 − 1)

3/2
Vk (z)

]′′

z=zj
= δjk, j = 1 (1) 2n− 2.

(25)

Theorem 4.1.

For k = 1 (1) 2n− 2, we have

Vk (z) = z−nS (z) {bk J∗k (z) + b0k J20 (z) + b1k J21 (z)} , (26)

where

J∗k (z) =

∫ z

0

tn+1 lk (t) dt, (27)

J2j (z) =

∫ z

0

tn+j−1 S (t) dt, (28)

bk =
1

2zk (z2k − 1)
3/2

S ′ (zk)
, (29)

b0k = − bk
2 J20 (1)

{J∗k (1) + (−1)nJ∗k (−1)} , (30)

b1k = − bk
2 J21 (1)

{
J∗k (1) + (−1)n+1J∗k (−1)

}
. (31)

Proof:

From (26), obviously

Vk (zj) = 0, j = 1 (1) 2n− 2,[(
z2 − 1

)3/2
Vk (z)

]′′

z=zj
= 0, j 6= k,

and for j = k, we get (29).

From

Vk (zj) = 0, j = 0 and 2n− 1,

we get (30) – (31). �

Theorem 4.2.

For k = 1 (1) 2n− 2, we have

Uk (z) = Lk (z) lk (z) + z−n
S (z)

S ′ (zk)
{Mk (z) + a0kJ20 (z) + a1kJ21 (z)}+ akVk (z) , (32)

6
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where

Mk (z) = −
∫ z

0

tn
[
L

′

k (t)− L′

k (zk)Lk (t)
]

(t− zk)
dt, (33)

ak =
(
z2k − 1

)3/2 {
L

′′

k (zk)− l
′′

k (zk)
}
− 2

(
z2k − 1

)3/2
L

′

k (zk)
{
L

′

k (zk) + l′k (zk)
}

− 6zk
(
z2k − 1

)1/2 {
L

′

k (zk) + l′k (zk)
}
− 3

(
z2k − 1

)−1/2 (
2 z2k − 1

)
, (34)

a0k = −{Mk (1) + (−1)nMk (−1)}
2 J20 (1)

, (35)

a1k = −
{
Mk (1) + (−1)n+1Mk (−1)

}
2 J21 (1)

. (36)

For k = 0 and 2n− 1

Uk (z) =
z−n S (z)

z−nk S ′ (zk)
{a∗0kJ20 (z) + a∗1kJ21 (z)} , (37)

where

a∗0,0 = (−1)na∗0,2n−1 =
1

2 J20 (1)
, (38)

a∗1,0 = (−1)n+1a∗1,2n−1 =
1

2 J21 (1)
. (39)

Proof:

From (32), one can check that

Uk (zj) = δjk, j = 1 (1) 2n− 2.

From [(
z2 − 1

)3/2
Uk (z)

]′′

z=zj
= 0, for j 6= k,

we get

M
′

k (zj) = −
znj

(zj − zk)
L

′

k (zj) ,

owing to the second condition of (24), and we get

M
′

k (z) = − zn
[
L

′

k (z)− L
′

k (zk)Lk (z)
]

(z − zk)
,

on solving, we get (33).

From [(
z2 − 1

)3/2
Uk (z)

]′′

z=zk
= 0, for j = k,

we get (34).

7
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For

Uk (zj) = 0, for j = 0 and 2n− 1,

we get (35) – (36).

Similarly, one can obtain (38) – (39), owing to the condition (24). �

5. Estimation of Fundamental Polynomials

Let λn (z) and λn denote the Lebegue function and Lebegue constant for Lk, i.e.,

λn (z) =
2n−1∑
k=0

|Lk (z)|, λn = max|z| ≤1 λn (z) . (40)

Lemma 5.1.

For |z| ≤ 1, we have

max|z|=1

2n−1∑
k=0

|Lk (z)| ≤ c
n−1∑
k=1

1

k
, (41)

where Lk (z) is defined in (10) and c is a constant and independent of n and z.

Proof:

From maximal principle, we know

λn = max|z|=1 λn (z) . (42)

Using (3) in (2), we get

|S (z)| ≤ max|z|=1 |S (z)| = S (1) =
Kn

2
n (n+ 1) . (43)

Using (43) in (10), we get

|L0 (z)| ≤ 1, |L2n−1 (z)| ≤ 1, for |z| ≤ 1 . (44)

Let z = x+ iy and |z| = 1, then for 0 ≤ argz < π and k = 1 (1)n− 1, we have
zk = uk + ivk,

|z2 − 1| = 2
√

1− x2,
|z2k−1| = 2

√
1− u2k,

|z − zk| =
√

2
√

1− xuk −
√

1− x2
√

1− u2k ,

(45)

|Lk (z)| ≤ c

√
1− x2 |P ′n (x)|

2
√

2 (1− u2k)
√

1− xuk −
√

1− x2
√

1− u2k |P ′′n (uk)|

8
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≤ c

√
1− x2 |P ′n (x)| (1− xuk)

1

2

2
√

2 (1− u2k) |P ′′n (uk)| (x− uk)
= Gk (x) .

Also, ∣∣L(n−1)+k (z)
∣∣ ≤ Gk (x) .

Similarly, for π ≤ argz < 2π and k = 1 (1)n − 1, |Lk (z)| ≤ Gk (x) and
∣∣L(n−1)+k (z)

∣∣ ≤
G(n−1)+k (x) .

Therefore, for a fixed z = x+ iy, |z| = 1 and − 1 < x < 1,

λn ≤ 2
n−1∑
k=1

Gk (x) + |L0 (z)| +
∣∣L(2n−1) (z)

∣∣
= 2

∑
|uk−x|≥ 1

2
(1−u2

k)

Gk (x) + 2
∑

|uk−x|< 1

2
(1−u2

k)

Gk (x) + 2, (46)

using (14) - (15), we get

∑
|uk−x|≥ 1

2
(1−u2

k)

Gk (x) ≤ c n1/2

n−1∑
k=1

1

(1− u2k)
3/2 |P ′′

n (uk)|
≤ c

n−1∑
k=1

1

k
. (47)

Similarly, we can obtain

∑
|uk−x|< 1

2
(1−u2

k)

Gk (x) ≤ c
n−1∑
k=1

1

k
.

Hence, the lemma is established. �

Lemma 5.2.

For |z| ≤ 1, we have

max
|z|=1

2n−2∑
k=1

|lk (z)| ≤ c

n−1∑
k=1

1

k−1/2
, (48)

where l1k(z) is defined in (9) and c is a constant independent of n and z.

Proof:

Using (2), (4) and (9), we get

|lk (z)| ≤ c
|P ′n (x)|

|z − zk| |z2k−1| |P ′′n (uk)|
.

Following the same steps as in Lemma 5.1 and using (13) – (15), we get the result. �
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Lemma 5.3.

For |z| ≤ 1, we have

2n−2∑
k=1

∣∣∣(z2 − 1
)3/2

Vk (z)
∣∣∣ ≤ cn−1/2logn ,

where Vk (z) be defined in Theorem 4.1 and c is a constant independent of n and z.

Proof:

It is sufficient, if we prove the result is true for |z| = 1.

Let z = eiθ (0 ≤ θ < 2π) . Then using (27) – (31) in (26), we get
2n−2∑
k=1

∣∣∣(z2 − 1
)3/2

Vk (z)
∣∣∣ ≤ c

2n−2∑
k=1

(1− x2)3/4
∣∣P ′

n (x)
∣∣

(1− u2k)
5/4 |P ′′

n (uk)|

∫ 1

0

tn+1
∣∣lk (teiθ)∣∣ dt ,

using (11), (14) – (15) and Lemma 5.2, we get the result. �

Lemma 5.4.

For z = eiθ (0 ≤ θ < 2π) , we have

2n−2∑
k=1

∣∣∣∣z−n(z2 − 1)
3/2 S (z)

S ′ (zk)
Mk (z)

∣∣∣∣ ≤ cn1/2logn , (49)

where Mk (z) is given by (33) .

Proof:

Differentiating (10), we get {
Lk (z) = T

′
(z)

T ′ (zk)
− (z − zk)L

′

k(z),

L
′

k (z) = T
′′
(z)

2T ′ (zk)
− 1

2
(z − zk)L

′′

k(z).
(50)

Using (50) in (33), we get

Mk (z) =
1

(1− z2k)T
′ (zk)

∫ z

0

tn (1 + zkt)S
′ (t)dt+

1

2

∫ z

0

tnL
′′

k (t)dt− L
′

k (zk)

∫ z

0

tnL
′

k (t)dt

+
3(n− 1)

(z2k − 1)

∫ z

0

tnlk (t)dt+
n

zk

∫ z

0

tn−1
{
Lk (t) + (t− zk)L

′

k(t)
}
dt

+
2zk

(z2k − 1)
2

∫ z

0

tn+1lk (t)dt+
2n

(z2k − 1)

∫ z

0

tnlk (t)dt.

Thus, we may write as
2n−2∑
k=1

∣∣∣∣z−n (z2 − 1
)3/2 S (z)

S ′ (zk)
Mk (z)

∣∣∣∣ ≤ I1 + I2 + I3 + I4 + I5 + I6 + I7. (51)

10
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Using (2), (4), (7), (11) and (13) – (15), we get

|I1| ≤ c n−1/2logn.

Using (2), (4) – (5), (11), (14) – (15), Lemma 5.1 and Bernstein inequality, we get

|I2|+ |I3|+ |I5| ≤ clogn.

Using (2), (4), (11), (14) – (15) and Lemma 5.2, we get

|I4| ≤ c n1/2logn.

Using (2), (4), (11), (14) – (15) and Lemma 5.2, we get

|I6|+ |I7| ≤ c n1/2logn.

Therefore, combining all these, we get (49). �

Lemma 5.5.

For z = eiθ (0 ≤ θ < 2π) , we have
2n−1∑
k=0

∣∣∣(z2 − 1)
3/2
Uk (z)

∣∣∣≤ c n3/2logn, (52)

where Uk (z) is given in Theorem 4.2 and c is a constant independent of n and z.

Proof:

From (32), we have
2n−2∑
k=1

∣∣∣(z2 − 1
)3/2

Uk (z)
∣∣∣ ≤ 2n−2∑

k=1

∣∣∣(z2−1
)3/2

Lk (z)
∣∣∣ |lk (z)| +

2n−2∑
k=1

∣∣∣∣z−n (z2 − 1
)3/2 S (z)

S ′ (zk)
Mk (z)

∣∣∣∣
+

2n−2∑
k=1

|ak|
∣∣∣(z2−1

)3/2
Vk (z)

∣∣∣,
2n−2∑
k=1

∣∣∣(z2 − 1)
3/2
Uk (z)

∣∣∣ = I1 + I2 + I3. (53)

Using (14) – (15) in (34), we get

|ak| ≤ c n2. (54)

Using (54) and Lemma 5.3, we get

I3 =
2n−2∑
k=1

|ak|
∣∣∣(z2−1

)3/2
Vk (z)

∣∣∣ ≤ c n3/2logn. (55)

Using Lemma 5.2, (11) and (14) – (15), we get

I1 ≤ c

2n−2∑
k=1

(1− x2)3/4
∣∣P ′

n (x)
∣∣

(1− u2k) |P
′′

n (uk)|
|lk (z)| ≤ c n1/2logn. (56)

Similarly, one can obtain for k = 0 and 2n− 1.

On combining (55) – (56) and Lemma 5.4, we get the result. Hence, the Lemma follows. �
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6. Convergence

Theorem 6.1.

Let f (z) be continuous for |z| ≤ 1 and analytic for |z| < 1. Let the arbitrary numbers β′ks be such
that

|βk| = O
(
n2 ω2

(
f, n−1

))
, k = 1 (1) 2n− 2. (57)

Then, {R4n−3 (z)} defined by

R4n−3 (z) =
2n−1∑
k=0

f (zk)Uk (z) +
2n−2∑
k=1

βk V k (z), (58)

satisfies the relation∣∣∣(z2 − 1)
3/2 {R4n−3 (z)− f (z)}

∣∣∣ = O
(
n3/2 ω2

(
f, n−1

)
logn

)
, (59)

where ω2 (f, n−1) be the second modulus of continuity of f (z).

To prove Theorem 6.1, we shall need the following.

Remark: Let f (z) be continuous for |z| ≤ 1 and analytic for |z| < 1, and f ′ ∈ Lipα, α > 1
2
. Then

the sequence {R4n−3 (z)} converges uniformly to f (z) in |z| ≤ 1, follows from (59) provided

ω2

(
f, n−1

)
= O

(
n−1−α

)
. (60)

Let f (z) be continuous for |z| ≤ 1 and analytic for |z| < 1. Then, there exists a polynomial Fn (z)
of degree ≤ 4n− 3 satisfying Jackson’s inequality,

|f (z)− Fn (z)| ≤ c ω2

(
f, n−1

)
, z= eiθ (0 ≤ θ < 2π) , (61)

and an inequality (Kiš (1960))∣∣F (m)
n (z)

∣∣ ≤ c nm ω2

(
f, n−1

)
, m ∈ I+. (62)

Proof:

Since R4n−3 (z) is a uniquely determined polynomial of degree ≤ 4n − 3 and the polynomial
Fn (z) of degree ≤ 4n− 3 satisfying (61) and (62) can be expressed as

Fn (z) =
2n−1∑
k=0

F n (zk)Uk (z) +
2n−2∑
k=1

F
′′

n (zk)Vk (z),

then,∣∣∣(z2 − 1
)3/2 {R4n−3 (z)− f (z)}

∣∣∣ ≤ ∣∣z2 − 1
∣∣3/2 |R4n−3 (z)− Fn (z)|+

∣∣z2 − 1
∣∣3/2 |Fn (z)− f (z)|

≤
2n−1∑
k=0

|f (zk)− F n (zk)|
∣∣∣(z2 − 1)

3/2
Uk (z)

∣∣∣
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+
2n−2∑
k=1

{
|βk|+

∣∣F ′′

n (zk)
∣∣} ∣∣∣(z2 − 1)

3/2
Vk (z)

∣∣∣
+
∣∣z2 − 1

∣∣3/2 |Fn (z)− f (z)| .
Using (57) – (58), (60) – (62), Lemma 5.3 and Lemma 5.5, we get (59). �

7. Conclusion

In this paper, we have considered the nodes on the unit circle, which are obtained by projecting
vertically the zeros of the derivative of nth Legendre polynomial together with x = 1 and x = −1
and the interpolatory polynomial of degree at most 4n−3, which is prescribed on above said nodes
and its second derivative with a suitable weight function at all points except at x = ±1. Then, we
proved the existence, uniqueness, explicit representation and the convergence of such interpolatory
polynomial. If the function f(z) continuous in the closed unit disk, analytic in the open unit disk
and f ′ ∈ Lipα, (α > 1

2
), then the above said interpolatory polynomials converges uniformly to the

function f(z) in the closed unit disk.
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