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Abstract

At this moment in time, an outbreak of COVID-19 is transmitting from human to human. Different
parts have different quality of life (e.g., India compared to Russia), which implies the impact varies
in each part of the world. Although clinical vaccines are available to cure, the question is how to
minimize the spread without considering the vaccine. In this paper, via a mathematical model,
the transmission dynamics of novel coronavirus with quarantine and isolation facilities have been
proposed. The examination of the proposed model is set in motion with the boundedness and pos-
itivity of the solution, sole disease-free equilibrium, and local stability. Then, the condition for the
existence of sole endemic equilibrium and its local stability has established. In addition, the global
stability of the endemic equilibrium for a special case has been investigated. Further, it has shown
that the system undergoes a transcritical bifurcation. A threshold analysis has also performed to ex-
amine the effect of quarantine on transmission dynamics. Lastly, numerical simulations are giving
support to theoretical results.

Keywords: Novel coronavirus; Quarantine; Isolation; Stability; Asymptomatic; Lienard Chipart
criterion; Transcritical bifurcation
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1. Introduction

Humanity faces hardships from time to time; outbreaks of infectious diseases are one of them.
Whenever the environment gets disturbed due to human activities, factors opposing nature become
reasons for such a breakout to come into existence. These breakouts affect our society physically,
mentally, economically as well as sociologically. From an era, whether its Plague from 1346 to
1353 that was an outbreak ended up killing 75 to 200 million individuals in Europe, Africa and
Asia or its Influenza of 1956, an outbreak in China, Singapore, Hong Kong, and the United States,
everything was devastated. The Influenza outbreak in 1968 brought silence to approximately one
million residents of Singapore, Vietnam, Australia, Philippines, United States, India, Australia and
Europe. HIV/AIDS killed more than 36 million people in the world since 1981, while 31-35 million
people still live with HIV.

Recently, the SARS-CoV-2 virus has infected a chunk of people, approximately 162,177,376 in-
dividuals and caused more than 3,364,178 deaths worldwide as of May 16, 2021 (WHO (2021)).
The novelty infected case of the COVID-19 was clocked in the Huanan seafood market in Wuhan,
China, on the thirty-first of December, 2019. On the twenty-fourth of January, 2020, World Health
Organization (WHO) stated the SARS-CoV-2 virus could be passed on from one mortal to another
(WHO (2020)). In India, the foremost case of COVID-19 was reported in Kerala on the thirtieth
of January 2020. On the eleventh of March 2020, WHO stated COVID-19 as a pandemic and an-
nounced its Public Health Emergency of International Concern (PHEIC). WHO formally asked
nations to take an instantaneous action to reduce transmission. Quarantine and isolation are the
best first steps to reduce transmission from one individual to another.

To evaluate the dynamics of infectious diseases, mathematical models are the finest. The pattern
deduction of the spread in the host population is essential and which mathematical models help
us to understand concerning both time and space. In 1760, England’s change in mortality rate
due to smallpox made Daniel Bernoulli (Bernoulli (1760)) develop the first mathematical model.
After a big gap, at the beginning of the nineteenth century, some authors came up with new epi-
demiological models (Ross (1911)). In recent times authors ideas evolved realistic mathematical
epidemiological models to investigate the transmission dynamics of infection as well as asymptotic
behaviors of these models (Misra et al. (2018); Sahu and Dhar (2012); Dhar and Sharma (2009);
Lee et al. (2019); Wang et al. (2017); Zhou and Cui (2011); Xing and Cardona (2009)).

Infectious disease outbreaks are dangerous for society due to their unknown effects and unavail-
ability of vaccines and specific drugs. In favour of this situation, one could minimize the infection
by reducing people’s movement through isolation and quarantine of infected individuals (Brauer
and Chavez (2011)). In various transmissible diseases such as smallpox, tuberculosis commonly
called TB, AIDS and SARS, etc., isolation and quarantine have resulted in great success as a con-
trol measure (Hethcote et al. (2002); Gani et al. (1997); Hyman and Li (1998)). In 2013, Safi
and Gumel (2013) proposed a mathematical model taking control strategy into account to study
the transmission of a communicable disease in which quarantine was applied. They found that
the proposed model undergoes a backward bifurcation when the associated reproduction threshold
is less than unity. They quantitatively analyzed the quarantine efficiency and showed that when

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [], Iss. 1, Art. 11

https://digitalcommons.pvamu.edu/aam/vol17/iss1/11



148 M.K. Singh and Anjali

the efficacy of quarantine is perfect and the reproduction threshold is less than unity, the disease-
free equilibrium is globally-asymptotically stable. Sahu and Dhar (2015) proposed a SEQIHRS
epidemic model and analyzed the behaviour of disease-free and unique endemic equilibrium by
keeping quarantine and isolation as control measures. In 2017, Erdem et al. (2017) proposed a
SIQR endemic model with quarantine as control measures. They analyzed the stability of the equi-
libria of their model. Using numerical analysis, they also showed that the proposed model exhibits
Hopf bifurcation when the quarantine effectiveness values vary. The article is targeting to inspect
the ability of quarantine and isolation on the communication of SARS-CoV-2 virus in context of
India.

2. Model formulation and basic properties

2.1. Mathematical model

Khan and Atangana (2020) assumed that the transmission of novel coronavirus first occurred within
the bats’ population and then it occurred to the wild animals (host). Afterwards, the transmission
of novel coronavirus happened in the human population. They proposed the following two models:

(i) bat and hosts mathematical model:



dSb
dt

= Πb − µbSb − ηbSbIb
Nb

,
dEb
dt

= ηbSbIb
Nb
− (µb + θb)Eb,

dIb
dt

= θbEb − (τb + µb)Ib,
dRb
dt

= τbIb − µbRb,
dSh
dt

= Πh − µhSh − ηbhShIb
Nh

− ηhShIh
Nh

,
dEh
dt

= ηbhShIh
Nh

+ ηhShIh
Nh
− (µh + θh)Eh,

dIh
dt

= θhEh − (τh + µh)Ih,
dRh
dt

= τhIh − µhRh.

(1)

(ii) Coronavirus (sea food market) versus people (ignored the interaction among bats and hosts)



dSp
dt

= Πp − µpSp − ηpSp(Ip+ψAP )
Np

− ηwSpM,
dEp
dt

= ηpSp(Ip+ψAP )
Np

+ ηwSpM − (1− θp)ωpEp − θpρpEp − µpEp,
dIp
dt

= (1− θp)ωpEp − (τp + µp)Ip,
dAp
dt

= θpρpEp − (τap + µp)Ap,
dRp
dt

= τpIp + τapAp − µpRp,
dM
dt

= ρpIp + ωpAp − πM.

(2)

In the present paper, we have taken into account human interaction is the main route of trans-
mission of COVID-19. Also, assume that quarantine and isolation are the best strategies to
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break the chain of human social interactions. We improve the model (2) in India’s context
by incorporating imperfect quarantine and isolation facilities and ignoring the seafood market.
Thusly, we propose the following mathematical model with total population (Np(t)) of India at
time t is splitted into seven mutually exclusive classes of susceptible (Sp(t)) citizens, exposed
(Ep(t)) citizens, quarantine (Qp(t)) citizens, infectious (Ip(t)) citizens, asymptomatic (Ap(t))
citizens, Isolated (Hospitalized) (Hp(t)) citizens and recovered (Rp(t)) citizens. Accordingly,
Sp(t) + Ep(t) +Qp(t) + Ip(t) + Ap(t) +Hp(t) +Rp(t) will come to Np(t).



dSp
dt

= Πp − µpSp − ηpSp(Ip+ψAp+ηHp)
Np

,
dEp
dt

= ηpSp(Ip+ψAp+ηHp)
Np

− (γQ + ωp + ρp + µp)Ep,
dQp
dt

= γQEp − (µH + µp)Qp,
dIp
dt

= ωpEp − (τp + µp + αIH)Ip,
dAp
dt

= ρpEp − (τap + µp + αaH)Ap,
dHp
dt

= µHQp + αIHIp + αaHAp − (µp + τH)Hp,
dRp
dt

= τpIp + τapAp + τHHp − µpRp.

(3)

The parameter 0 ≤ η < 1 represents the reduction in virus transmission by isolated being compared
to the non-hospitalized one. In the I class, γQ stands for quarantine rate to exposed people, µH
represents the hospitalization rate for quarantined people, αIH represents the hospitalized rate of
infected people, αaH represents the hospitalized rate of asymptomatically infected people and τH
represents recovery rate of hospitalized people. The schematic flow diagram of the proposed model
is in Figure 1.

Πp

µpHp

µpSp

µpEp

µpAp µpIp µpQp

µpRp

Spηp(Ip+ψAP+ηHp)

Np

ρpEp
ωpEp γQEp

τapAp τpIp

µHQp

τHHp

αaHAp

αIHIp

Sp

Ep

Ap Ip Qp

Hp

Rp

Figure 1. Flow chart of the desired compartmental endemic model (3)
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Table 1. Description of the models state variables

State variables Description
Nb Total population of bats
Nh Total population of hosts
Sb Population of susceptible bats
Eb Population of exposed bats
Ib Population of infected bats
Rb Population of recovered bats
Sh Population of susceptible hosts
Eh Population of exposed hosts
Ih Population of infected hosts
Rh Population of recovered hosts
Np Total population of people
Sp Population of susceptible people
Ep Population of exposed people
Ip Population of infected people
Ap Population of asymptomatically infected people
Qp Population of quarantined peoples
Hp Population of hospitalized peoples
Rp Population of recovered people
M Reservoir or sea food market

2.2. Basic Properties

For the sake of epidemiologically meaningful interpretation of the transmission model (3), it is
assumed that all its associated parameters and initial data Sp(0) = S0, Ep(0) = E0, Qp(0) =
Q0, Ip(0) = I0, Ap(0) = A0, Hp(0) = H0, Rp(0) = R0 are non-negative. Turning over a new
leaf, it is managed to show that the solution of the model (3) with non-negative initial data will be
non-negative and bounded for all time.

Theorem 2.1.

Let Sp(0) = S0 ≥ 0, Ep(0) = E0 ≥ 0, Qp(0) = Q0 ≥ 0, Ip(0) = I0 ≥ 0, Ap(0) = A0 ≥
0, Hp(0) = H0 ≥ 0, Rp(0) = R0 ≥ 0. The solutions Sp(t), Ep(t), Qp(t), Ip(t), Ap(t), Hp(t)
and Rp(t) of the system (3) are non-negative for all t > 0.

Proof:

Consider

t̃ = sup{t > 0 : S0 > 0, E0 > 0, Q0 > 0, I0 > 0, A0 > 0, H0 > 0, R0 > 0} ∈ [0, t].

From the first equation of system (3), we get
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dSp
dt
≥ −

(
µp +

ηp(Ip + ψAP + ηHp)

Np

)
Sp. (4)

On integrating the inequality (4), we have

Sp(t̃) ≥ S0. exp
[
−
(
µpt̃+

∫ t̃

o

ηp(Ip(s) + ψAP (s) + ηHp(s))

Np(s)
ds
)]

> 0.

Similarly,

Ep(t̃) ≥ E0. exp[−(ωp + ρp + µp + γQ)t̃] > 0,

Qp(t̃) ≥ Q0. exp[−
(
µH + µp

)
t̃] > 0,

Ip(t̃) ≥ I0. exp[−
(
τp + µp + αIH

)
t̃] > 0,

Ap(t̃) ≥ A0. exp[−
(
τap + µp + αaH

)
t̃] > 0,

Hp(t̃) ≥ H0. exp[−
(
µp + τH

)
t̃
]
> 0,

Rp(t̃) ≥ R0. exp[−µpt̃] > 0.

Ergo, the solution of the proposed model (3) with non-negative initial figures will be non-negative
for all time t > 0. �

Theorem 2.2.

Let Sp(0) = S0 ≥ 0, Ep(0) = E0 ≥ 0, Qp(0) = Q0 ≥ 0, Ip(0) = I0 ≥
0, Ap(0) = A0 ≥ 0, Hp(0) = H0 ≥ 0, Rp(0) = R0 ≥ 0. Then, the feasible region
Ω =

{
(Sp, Ep, Qp, Ip, Ap, Hp, Rp) ∈ R7

+ : 0 ≤ N ≤ max
{
N0,

Πp
µp

}}
is positively invariant

for the system (3) for all t ≥ 0.

Proof:

Summing up all the equations of (3), the following differential equation is formed,

dNp

dt
= Πp − µpNP . (5)

The solution of differential equation (5) is given by

Np(t) =
Πp

µp
+
(
N0 −

Πp

µp

)
exp(−µpt). (6)

6
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Equation (6) implies Np(t)→ Πp
µp

, when t→∞. The following two scenarios arise:

(i) N0 <
Πp
µp
. In this case Np(t) increases to Πp

µp
as t→∞, i.e., limt→∞Np(t) = Πp

µp
.

(ii) N0 >
Πp
µp
. In this case Np(t) decreases to Πp

µp
as t→∞, i.e., limt→∞Np(t) = Πp

µp
.

Thus, we have 0 ≤ Np(t) ≤ max
{
N0,

Πp
µp

}
, i.e., Np(t) is bounded above. Subsequently,

Sp(t), Ep(t), Qp(t), Ip(t), Ap(t), Hp(t), Rp(t) are bounded above. �

3. Dynamical behavior of the proposed model

In this part, we focus on the dynamics of the proposed system (3). In Section 2, it is proved that
the region Ω =

{
(Sp, Ep, Qp, Ip, Ap, Hp, Rp) ∈ R7

+ : 0 ≤ Np ≤ max
{
N0,

Πp
µp

}}
is positively-

invariant for the system (3) for all t ≥ 0. It is sufficient to study the dynamics of the system (3)
with initial data inside Ω.

3.1. Local stability of disease-free equilibrium

The disease-free equilibrium (DFE) of the system of equations (3) is given by E0 =

(S0, E0, Q0, I0, A0, H0, R0) =
(

Πp
µp
, 0, 0, 0, 0, 0, 0

)
. The local stability of the system (3) at DFE

(E0) is explored using the next generation matrix operator method. We have adopted the method
applied by P. Van den Driesschea and J. Wamough (2002); the matrices F and V , for the new
infection terms and the remaining transfer terms associated with the system (3) at DFE (E0), are
computed, respectively, as follows,

F =


0 0 ηp ψηp ηpη

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

V =


α2 0 0 0 0
−γQ α3 0 0 0
−ωp 0 α4 0 0
−ρp 0 0 α5 0

0 −µH −αIH −αaH α6,

 ,

where α2 = ωp + ρp + µp + γQ, α3 = µH + µp, α4 = τp + µp + αIH , α5 = τap + µp +
αaH , α6 = µp + τH .
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Table 2. Description of the model parameters

Parameter Description Value Source
(per day)

Πb Birth rate of bats - -
µb Death rate of bats - -
ηb Disease transmission rate among bats - -
θb Infection rate after completing - -

incubation period bats
τb Recover rate infected bats - -
Πh Birth rate of host - -
µh Death rate of hosts - -
ηh Disease transmission rate among hosts - -
θh Infection rate of exposed hosts - -
τh Recover rate infected hosts - -
π Removing rate of virus from M - -
ρp Disease transmission coefficient - -

from Ip to M
ωp Disease transmission coefficient - -

from Ap to M
ηw Disease transmission coefficient - -

from M to Sp
Πp Birth rate of people 67446.82054 (Biswas et al. (2020))
µp Natural death rate of people 0.0000391 (Biswas et al. (2020))
ψ Transmissibility multiple of 0.02

Ap, 0 ≤ ψ ≤ 1 (Khan and Atangana (2020))
ηp Disease transmission coefficient 0.67047 (Biswas et al. (2020))

among people
ωp Progression rate from 0.24757 (Biswas et al. (2020))

exposed to infectious class
ρp Progression rate from 0.24176 (Biswas et al. (2020))

exposed to asymptomatic class
τp Recovery rate of infected people 0.05090 (Biswas et al. (2020))
τap Recovery rate of asymptomatically 0.05311 (Biswas et al. (2020))

infected people
η Modification parameter for 0.09 Assumed

reduction in infectiousness
of hospitalized individuals

γQ Quarantine rate of exposed people 0.26556 (Biswas et al. (2020))
µH Hospitalization rate for quarantined 0.397875 (Biswas et al. (2020))

people
αIH Hospitalized rate of infected people 0.26267 (Biswas et al. (2020))
αaH Hospitalized rate of asymptomatically 0.0001 Assumed

infected people
τH Recovery rate of hospitalized people 0.07048 (Biswas et al. (2020))
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The eigenvalues of FV −1 matrix are

ηp(α4α5ηγQµH + α3α4α6ψρp + α3α4ηαaHρp + α3α5α6ωp + α3α5ηωpαIH)

α2α3α4α5α6

, 0, 0, 0, 0.

Thus, the basic reproduction number of system (3), at DFE is

R0 =
ηp(α4α5ηγQµH + α3α4α6ψρp + α3α4ηαaHρp + α3α5α6ωp + α3α5ηωpαIH)

α2α3α4α5α6

.

Epidemiologically, the basic reproduction number R0 measures the average number of secondary
infections that a single infected individual can create in a susceptible population over the duration
of the period of infection (Van den Driesschea and Wamough (2002)).

Theorem 3.1.

The DFE (E0) of the system of equations (3) is locally asymptotically stable if R0 < 1 and unstable
otherwise.

Proof:

The Jacobian matrix of the system of equations (3) at DFE (E0) can be written as

JE0 =



−µp 0 0 −ηp −ηpψ −ηpη 0
0 −α2 0 ηp ηpψ ηpη 0
0 γQ −α3 0 0 0 0
0 ωp 0 −α4 0 0 0
0 ρp 0 0 −α5 0 0
0 0 µH αIH αaH −α6 0
0 0 0 τp τap τH −µp


.

The characteristic equation of the Jacobian matrix JE0 is

(−λ− µp)2(λ5 + A1λ
4 + A2λ

3 + A3λ
2 + A4λ+ A5) = 0, (7)

where A1 = α2 +α3 +α4 +α5 +α6, A2 = α2α3 +α2α4 +α2α5 +α2α6 +α3α4 +α3α5 +α3α6 +
α4α5 + α4α6 + α5α6 − ψηpρp − ηpωp, A3 = α2α3α4 + α2α3α5 + α2α3α6 + α2α4α5 + α2α4α6 +
α2α5α6 +α3α4α5 +α3α4α6 +α3α5α6− γQηηpµH −ψα3ηpρp−ψα4ηpρp−ψα6ηpρp−α3ηpωp−
α5ηpωp−α6ηpωp−ηαaHηpρp−ηαIHηpωp, A4 = α2α3α4α5+α2α3α4α6+α2α3α5α6+α2α4α5α6+
α3α4α5α6−α4ηηpγQµH−α4ηηpγQµH−α3α4ψηpρp−α3α6ψηpρp−α4α6ψηpρp−α3ηαaHηpρp−
α4ηαaHηpρp − α3α5ηpωp − α3α6ηpωp − α5α6ηpωp − α3ηηpαIHωp − α5ηηpαIHωp, and A5 =
α2α3α4α5α6−α4α5ηγQηpµH −α3α4α6ψηpρp−α3α5α6ηpωp−α3α4ηηpρpαaH −α3α5ηηpωpαIH .
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From Equation (7), it is clear the two eigenvalues of the Jacobian matrix JE0 are real and negative.
The remaining five eigenvalues of the Jacobian matrix JE0 are the roots of the equation

λ5 + A1λ
4 + A2λ

3 + A3λ
2 + A4λ+ A5 = 0. (8)

Our aim here is to know the sign of the real parts of the roots of the equation (8). The Liénard
Chipart (Daud (2021)) criterion provides necessary and sufficient condition for a polynomial equa-
tion to have all the roots with negative real part. The real parts of the roots of the equation (8) will
be negative if A1, A2, A3, A4, A5 > 0, A1A2 − A3 > 0 and A1A2A3A4 − A1A

2
2A5 − A2

1A
2
4 +

2A1A4A5 − A2
3A4 + A2A3A5 − A2

5 > 0. We have the basic reproduction number

R0 =
ηp(α4α5ηγQµH + α3α4α6ψρp + α3α4ηαaHρp + α3α5α6ωp + α3α5ηωpαIH)

α2α3α4α5α6

.

Consider R0 = R1 + R2 + R3 + R4 + R5, where

R1 =
ηpηγQµH
α2α3α6

,R2 =
ηpψρp
α2α5

,R3 =
ηpηαaHρp
α2α5α6

, R4 =
ηpωp
α2α4

, R5 =
ηpηωpαIH
α2α4α6

.

We have
A2 = α2α3 + α2α4(1−R4) + α2α5(1−R2) + α2α6 + α3α4 + α3α5 + α3α6

+ α4α5 + α4α6 + α5α6,

A3 = α2α3α4(1−R4) + α2α3α5(1−R2) + α2α3α6(1−R1)

+ α2α4α5(1−R2 −R4) + α2α4α6(1−R4 −R5) + α2α5α6(1−R2 −R3)

+ α4α5α6 + α3α4α5 + α3α4α6 + α3α5α6,

A4 = α2α3α4α5(1−R2 −R4) + α2α3α4α6(1−R1 −R4 −R5)

+ α2α3α5α6(1−R1 −R2 −R3)

+ α2α4α5α6(1−R2 −R3 −R4 −R5) + α3α4α5α6,

A5 = α2α3α4α5α6(1−R0),

A1A2 − A3 = α2
2α3 + α2α

2
3 + α2

2α4(1−R4) + 2α2α3α4 + α2
3α4 + α2α

2
4(1−R4)

+ α3α
2
4 + α2

2α5(1−R2) + 2α2α3α5 + α2
3α5 + 2α2α4α5 + 2α3α4α5 + α2

4α5

+ α2α
2
5(1−R2) + α3α

2
5 + α4α

2
5 + α2

2α6 + 2α2α3α6 + R1α2α3α6 + α2
3α6

+ 2α2α4α6 + R5α2α4α6 + 2α3α4α6 + α2
4α6 + 2α2α5α6 + R3α2α5α6

+ 2α3α5α6 + 2α4α5α6 + α2
5α6 + α2α

2
6 + α3α

2
6 + α4α

2
6 + α5α

2
6.

Also,

A1A2A3A4 − A1A
2
2A5 − A2

1A
2
4 + 2A1A4A5 − A2

3A4 + A2A3A5 − A2
5

= (A1A2 − A3)A3A4 + (A2A3 + 2A1A4 − A5)A5 + A1(−A1A
2
4 + A2

2A5)

= α4
2α

3
3α

2
4α5 −R2α

4
2α

3
3α

2
4α5 − 2R4α

4
2α

3
3α

2
4α5 + (· · · 4541 terms · · · ) + α3α

2
4α

3
5α

4
6.

Evidently, A1, A2, A3, A4, A5 > 0, A1A2 − A3 > 0 and (A1A2 − A3)A3A4 + (A2A3 + 2A1A4 −
A5)A5 +A1(−A1A

2
4 +A2

2A5) > 0, when R0 < 1. Thus, all the eigenvalues of the Jacobian matrix
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JE0 have negative real part, if R0 < 1. This implies that the DFE (E0) is locally asymptotically
stable, if R0 < 1. �

From an epidemiological point, the above statement, that, if R0 < 1, then the disease show the
decrement in its spread because of the less able to infect the individuals, whereas, if R0 > 1,
the disease spreads as the infection ability is more than 1, means one infected individual infects a
group of individual, generating the more number of infected individuals.

3.2. Existence and local stability of the endemic equilibrium

The subsection discusses about the feasibility and stability of the endemic equilibrium point.

Theorem 3.2.

The system (3) has a unique feasible endemic equilibrium E∗ = (S∗p , E
∗
p , Q

∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗)
if and only if R0 > 1. Moreover, no endemic equilibrium exists if R0 ≤ 1.

Proof:

Let the endemic equilibrium point E∗ = (S∗p , E
∗
p , Q

∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗
p) of the system of equations

(3), obtained by solving equations as follows

dS∗P
dt

=
dE∗p
dt

=
dQ∗P
dt

=
dI∗P
dt

=
dA∗P
dt

=
dH∗P
dt

=
dR∗P
dt

= 0. (9)

On solving the system (9), we get

S∗p =
Πp

λ∗ + µp
, (10)

E∗p =
λ∗S∗p

(γQ + ωp + ρp + µp)
, (11)

Q∗p =
γQE

∗
p

(µH + µp)
, (12)

I∗p =
ωpE

∗
p

(τp + µp + αIH)
, (13)

A∗p =
ρpE

∗
p

(τap + µp + αaH)
, (14)

H∗p =
µHQ

∗
p + αIHI

∗
p + αaHA

∗
p

(µp + τH)
, (15)

R∗p =
τpI
∗
p + τapA

∗
p + τHH

∗
p

µp
, (16)
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where

λ∗ =
ηp(I

∗
p + ψA∗P + ηH∗p )

S∗p + E∗p +Q∗p + I∗p + A∗p +H∗p +R∗p
. (17)

Substitution of S∗p , E
∗
p , Q

∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗
p in the equation (17) shows that the endemic equilib-

rium of the system (3) satisfies the equation

a1(λ∗)2 + a2λ
∗ = 0, (18)

where

a1 = (τH + µp)αaHρpα3α4 + (τH + µp)ωpαIHα3α5 + (τH + µp)µHγQα4α5

+ (µp + τap)ρpα3α4α6 + (µp + τp)ωpα3α5α6 + (γQ + α3)µpα4α5α6,

a2 = µpα2α3α4α5α6(1−R0).

The solutions of the quadratic equation (18) are λ∗ = 0 and λ∗ = −a2

a1
. The value λ∗ = 0 is

corresponding to DFE (E0). If R0 < 1, then λ∗ = −a2

a1
will be negative. Thus, if R0 < 1 no

endemic equilibrium point will exist. If R0 > 1, then λ∗ = −a2

a1
will be positive. Thus, an endemic

equilibrium point E∗ = (S∗p , E
∗
p , Q

∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗) will exist. �

Now we will derive the condition for local stability of the endemic equilibrium point E∗ of the
system (3) by using Krasnoselskii sub-linearity trick (Hethcote and Thieme (1985); Esteva et al.
(2009); Esteva and Vargas (2000)).

Theorem 3.3.

The endemic equilibrium E∗ = (S∗p , E
∗
p , Q

∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗) of the system (3) with Np = N∗p
is locally asymptotically stable if R0 > 1.

Proof:

Since Np = Sp + Ep +Qp + Ip + Ap +Hp +Rp and Np = N∗p , the system (3) becomes equation
(19) and the corresponding endemic equilibrium point is Ẽ = (E∗p , Q

∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗
p).



dEp
dt

= ηp(N∗
P−Ep−Qp−Ip−Ap−Hp−Rp)(Ip+ψAP+ηHp)

Np
− (γQ + ωp + ρp + µp)Ep,

dQp
dt

= γQEp − (µH + µp)Qp,
dIp
dt

= ωpEp − (τp + µp + αIH)Ip,
dAp
dt

= ρpEp − (τap + µp + αaH)Ap,
dHp
dt

= µHQp + αIHIp + αaHAp − (µp + τH)Hp,
dRp
dt

= τpIp + τapAp + τHHp − µpRp.

(19)

On linearizing the system (19) around the endemic equilibrium point Ẽ, we get
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

dEp
dt

= −(λ∗ + α2)Ep − λ∗Qp + (λ∗1 − λ∗)Ip + (ψλ∗1 − λ∗)Ap
+ (ηλ∗1 − λ∗)Hp − λ∗Rp,

dQp
dt

= γQEp − (µH + µp)Qp,
dIp
dt

= ωpEp − (τp + µp + αIH)Ip,
dAp
dt

= ρpEp − (τap + µp + αaH)Ap,
dHp
dt

= µHQp + αIHIp + αaHAp − (µp + τH)Hp,
dRp
dt

= τpIp + τapAp + τHHp − µpRp,

(20)

where, λ∗1 =
ηpS∗

p

N∗
p
.

The Jacobian matrix of the system (20) at the equilibrium point Ẽ is

JẼ =



−(λ∗ + α2) −λ∗ (λ∗1 − λ∗) (ψλ∗1 − λ∗) (ηλ∗1 − λ∗) −λ∗
γQ −α3 0 0 0 0
ωp 0 −α4 0 0 0
ρp 0 0 −α5 0 0
0 µH αIH αaH −α6 0
0 0 τp τap τH −µp

 ,

where α2 = γQ + ωp + ρp + µp, α3 = (µH + µp), α4 = (τp + µp + αIH), α5 = (τap + µp +
αaH), α6 = (µp + τH). The solution of the system (20) can be considered in form

Z(t) = Z0e
ωt, (21)

where Z0 = (Z1, Z2, Z3, Z4, Z5, Z6) and ω, Z1, Z2, Z3, Z4, Z5, Z6 ∈ C. Using Equation (21), sys-
tem (20) becomes



ωZ1 = −(λ∗ + α2)Z1 − λ∗Z2 + (λ∗1 − λ∗)Z3 + (ψλ∗1 − λ∗)Z4 + (ηλ∗1
− λ∗)Z5 − λ∗Z6,

ωZ2 = γQZ1 − α3Z2,
ωZ3 = ωpZ1 − α4Z3,

ωZ4 = ρpZ1 − α5Z4,
ωZ5 = µHZ2 + αIHZ3 + αaHZ4 − α6Z5,

ωZ6 = τpZ3 + τapZ4 + τHZ5 − µpZ6.

(22)

Evidently, the system (22) is a homogeneous linear system in Z1, Z2, Z3, Z4, Z5, Z6. Now, the
system (22) can be rewritten as
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

(1 + f1(ω))Z1 = λ∗
1

α2
Z3 + ψλ∗

1

α2
Z4 + ηλ∗

1

α2
Z5,

(1 + f2(ω))Z2 = γQ
α3
Z1,

(1 + f3(ω))Z3 = ωp
α4
Z1,

(1 + f4(ω))Z4 = ρp
α5
Z1,

(1 + f5(ω))Z5 = µH
α6
Z2 + αIH

α6
Z3 + αaH

α6
Z4,

(1 + f6(ω))Z6 = τp
µp
Z3 + τap

µp
Z4 + τH

µp
Z5,

(23)

where

f1(ω) =
ω

α2

+
λ

α2

[
1 +

γQ
ω + α3

+
ωp

ω + α4

+
ρp

ω + α5

+
( µHγQ
ω + α3

+
αIHωp
ω + α4

+
αaHρp
ω + α5

)( τH
ω + µp

+ 1
) 1

ω + α6

+
1

ω + µp

( τpωp
α4 + ω

+
τapρp
ω + α5

)]
,

f2(ω) =
ω

α3

, f3(ω) =
ω

α4

, f4(ω) =
ω

α5

, f5(ω) =
ω

α6

, f6(ω) =
ω

µp
.

Let

M =



0 0 λ∗
1

α2

ψλ∗
1

α2

ηλ∗
1

α2
0

γQ
α3

0 0 0 0 0
ωp
α4

0 0 0 0 0
ρp
α5

0 0 0 0 0

0 µH
α6

αIH
α6

αaH
α6

0 0

0 0 τp
µp

τap
µp

τH
µp

0


.

It is easy to verify that Ẽ = (E∗p , Q
∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗) is the solution of the system

Ẽ = MẼ. (24)

If Z is the solution of the system (22), there exist a real positive number r (Esteva et al. (2009);
Esteva and Vargas (2000)) such that

‖Z‖ ≤ rẼ, (25)

where ‖Z‖ = (‖Z1‖, ‖Z2‖, ‖Z3‖, ‖Z4‖, ‖Z5‖, ‖Z6‖) with lexicographic order, and ‖.‖ is a norm
in C. In order to prove that endemic equilibrium Ẽ is locally asymptotically stable, it is sufficient
to prove that Re ω < 0.

If possible suppose Re ω ≥ 0. The following two cases arise:
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(i) ω = 0 :
In this case the determinant of the coefficient matrix of the system (22) is

∆ = α2α3α4α5α6µp(1− λ∗1R0) + α3α5α6λ
∗µpωp + α3α5λ

∗µpαHωp

+ α3α5λ
∗αhτHωp + α3α5α6λ

∗τpωp + α3α4α5α6λ
∗µp + α4α5α6γQλ

∗µp

+ α4α5γQλ
∗µpµH + α3α4α6λ

∗µpρp + α3α4λµpαaHρp +

+ α3α4α6λ
∗ρpτap + α4α5γqλ

∗µHτH + α3α4λ
∗αaHρpτH .

Using the values E∗p , Q
∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗
p , we get (1 − λ∗1R0) = 0, Thus, ∆ > 0. This

implies that the system (22) has a trivial solution Z1 = 0, Z2 = 0, Z3 = 0, Z4 = 0, Z5 =
0, Z6 = 0, i.e., S∗p = 0, E∗p = 0, Q∗p = 0, I∗p = 0, A∗p = 0, H∗p = 0, R∗p = 0.

(ii) Re ω > 0:
Evidently, we have |1 + fi(ω)| > 1, i = 1, 2, ...6. Define F (ω) = mini |1 + fi|. Thus, we
have F (ω) > 1. This implies

r

F (ω)
< r. (26)

Using inequalities (25) and (26), we get

‖Z‖ ≥ r

F (ω)
Ẽ. (27)

Now from definition of F (ω), we have

F (ω)‖Z2‖ ≤ |1 + f2(ω)|‖Z2‖. (28)

Using second equation of system (23), Equation (28) becomes

F (ω)‖Z2‖ ≤
γQ
α3

‖Z1‖. (29)

Using inequality (25), inequality (29), becomes

F (ω)‖Z2‖ ≤
γQ
α3

rE∗p . (30)

That is

F (ω)‖Z2‖ ≤ rQ∗p. (31)

Inequality (31) implies

‖Z2‖ ≤
r

F (ω)
Q∗p. (32)
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We can see that inequality (32) contradicts the inequality (27). Thus, our assumption Reω >
0 is wrong. Hence, the unique endemic equilibrium point E∗ is locally asymptotically stable
if R0 > 1. �

3.3. Global stability of endemic equilibrium for special case

In this paragraph, the global asymptotic stability property of the endemic equilibrium of the model
(3) for the special case has been discussed. Consider ψ = 0 (transmissibility multiple of asymp-
totically infected people) and η = 0 (modification parameter for reduction in infectiousness of
hospitalized individuals). Let λ = βIP , where β = ηp

Np
. In this case R0 = ηpωp

α2α4
.

Theorem 3.4.

The unique endemic equilibrium E∗ = (S∗p , E
∗
p , Q

∗
p, I

∗
p , A

∗
p, H

∗
p , R

∗
p) of the system (3) with

ψ = 0, η = 0 is globally asymptotically stable if R0 > 1.

Proof:

Consider a Lyapunov function

V = S − S∗ − S∗ log
( S
S∗

)
+ E − E∗ − E∗ log

( E
E∗

)
+
α2

ωp

[
I − I∗ − I∗ log

( I
I∗

)]
.

Thus, we have

V̇ = Ṡ − S∗

S
Ṡ + Ė − E∗

E
Ė +

α2

ωp

(
İ − I∗

I
İ
)
.

Using the first, second and fourth equations of (3), we get

V̇ = Πp − µpSp − βSpIp −
S∗p
Sp

(Πp − µpSp − βSpIp) + βSpIp − α2Ep

−
E∗p
Ep

(βSpIp − α2Ep) +
α2

ωp

[
ωpEp − α4Ip −

I∗p
Ip

(
ωpEp − α4Ip

)]
. (33)

At the endemic steady-state Ẽ, we have Πp = µpS
∗
p + βS∗pI

∗
p , α2 =

βS∗
pI

∗
p

E∗
p

and α4 =
ωpE∗

p

I∗p
. Thus,

(33) becomes

V̇ = µpS
∗
p

(
2− Sp

S∗p
−
S∗p
Sp

)
+ βS∗P I

∗
p

(
3− S∗P

SP
−
SP IpE

∗
p

S∗P I
∗
pEp
−
EpI

∗
p

E∗pIp

)
. (34)

It is easy to verify that

2− Sp
S∗p
−
S∗p
Sp

< 0 (35)
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and

3− S∗P
SP
−
SP IpE

∗
p

S∗P I
∗
pEp
−
EpI

∗
p

E∗pIp
< 0. (36)

Using inequalities (35) and (36) in Equation (34), we get

V̇ < 0 for R0 > 1.

Thus, LaSalle’s Invariance Principle (Hale (1969)) implies

lim
t→∞

Sp = S∗P , lim
t→∞

Ep = E∗P , lim
t→∞

Ip = I∗P . (37)

From definition, we have

lim inf
t→∞

Ep = lim inf
t→∞

Ep = E∗p .

Thus, for sufficiently small positive numbers ε1 and ε2 there exists a positive number T such that

lim sup
t→∞

Ep ≤ E∗p + ε1, ∀t > T, (38)

lim inf
t→∞

Ep ≥ E∗p + ε2, ∀t > T. (39)

Using inequality (38), the third equation of system (3) gives
dQp

dt
≤ γQ(E∗p + ε1)− α3Qp(t).

Using comparison theorem (Lakshmikantham et al. (1989)), we get

lim sup
t→∞

Qp(t) ≤
γQ(E∗p + ε1)

α3

.

Let ε1 → 0, we have

lim sup
t→∞

Qp(t) ≤
γQE

∗
p

α3

. (40)

Similarly, we have

lim inf
t→∞

Qp(t) ≥
γQE

∗
p

α3

. (41)

Inequalities (40) and (41) imply limt→∞Qp(t) = Q∗p. Proceeding in this way, we get
limt→∞Ap(t) = A∗p, limt→∞Hp(t) = H∗p , limt→∞Rp(t) = R∗p. Thus, each solution of the model
(3) approaching to the endemic equilibrium, whenever ψ = 0, η = 0 and initial data lies inside
Ω. �

From an epidemiological point of view, the above theorem states that if ψ = 0, η = 0, the disease
spreads in the population whenever R0 > 1.
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3.4. Transcritical Bifurcation

It has been shown that the system (3) has two equilibrium points: i) disease-free equilibrium point
(E0), and ii) endemic equilibrium point (E∗). Further, it has been shown that if R0 < 1, the DFE
is asymptotically stable and EEP is infeasible. Moreover, if R0 > 1, DFE losses its stability and
becomes a saddle point, while the EEP becomes locally asymptotically stable. Thus, there is an
exchange of stability between the two equilibrium points DFE and EEP which may be due to the
existence of transcritical bifurcation.

Theorem 3.5.

The system (3) undergoes a transcritical bifurcation between DFE (E0) and EEP (E∗) with respect
to the parameter µH at R0 = 1.

Proof:

We will use Sotomayor’s theorem (Perko (1996)) to verify the transversality conditions of tran-
scritical bifurcation. If R0 = 1, then we have A5 = 0. This implies that one eigenvalue of the
Jacobian matrix JE0 will be zero and remaining has negative real part. Let

V =
[
v1 v2 v3 v4 v5 v6 v7

]T
and

W =
[
w1 w2 w3 w4 w5 w6 w7

]T
be the two eigenvectors corresponding to the zero eigenvalue of the matrices JE0 and JTE0 , respec-
tively, where v1 = −ηpv4+ψηpv5+ηpηv6

µp
, v2 = 1, v3 = γQ

α3
, v4 = ωp

α4
, v5 = ρp

α5
, v6 =

αaHv5+αIHv4+µHv3
α6

, v7 = τapv5+τHv6+τpv4
µp

, w1 = 0, w2 = α6

ηpη
, w3 = µHw6

α3
, w4 =

αIHw6+ηpw2

α4
, w5 = ψηpw2+αaHw6

α5
, w6 = 1, w7 = 0.

Furthermore, we have

FµH (E0, µTCH ) =
[
0 0 0 0 0 0 0

]T
,

DFµH (E0, µTCH )V =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0





v1

v2

v3

v4

v5

v6

v7


=



0
0
−v3

0
0
v3

0


,

D2FµH (E0, µTCH )(V, V ) =
[
ζ −ζ 0 0 0 0 0

]T
,
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where

ζ =
2ηpµp

Πp

(v4 + ψv5 + ηv6)(v2 + v3 + v4 + v5 + v6 + v7).

Now

W T .FµH (E0, µTCH ) = 0,

W T .[DFµH (E0, µTCH )V ] = −v3w3 + v3w6 = v3(1− µH
µH + µp

) 6= 0,

W T .[D2FµH (E0, µTCH )(V, V )] = −ζw2 6= 0.

Thus, the transversality conditions for transcritical bifurcation are satisfied. This ensures the exis-
tence of transcritical bifurcation. �

3.5. Threshold Analysis

Now, we scrutiny the effect of quarantine to see the transmission variability of the proposed model
(3). By means of computation of partial derivative of R0 with respect to the parameter γQ, a thresh-
old analysis is performed.

Theorem 3.6.

The work of quarantine on the exposed individuals have positive (negative) population-level after-
math if η < (>)η∗, where η∗ = α3(ψα4α6ρp+α4ηαaHρp+α5α6ωp)

α4α5µH(ωp+ρp+µp)−α3α5ωpαIH
.

Proof:

Differentiating partially the R0 with respect to γQ, we get

∂R0

∂γQ
=
α4α5ηpµHη(ωp + ρp + µp)− α3ηp(ψα4α6ρp + α4ηαaHρp + α5α6ωp + α5ηωpαIH)

α2
2α3α4α5α6

.

Let

η∗ =
α3(ψα4α6ρp + α4ηαaHρp + α5α6ωp)

α4α5µH(ωp + ρp + µp)− α3α5ωpαIH
.

We can see that ∂R0

∂γQ
< 0, if η < η∗ and ∂R0

∂γQ
> 0 if η > η∗. �

Thus, the basic reproduction number will depend on γQ and will be decreasing function when
quarantined people do not exceed the threshold value η∗ and therefore, disease burden will reduce.
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Further, the basic reproduction number will be an increasing function of the parameter γQ when
quarantined individuals exceed the threshold value η∗, and therefore, the disease will increase in
the society.

4. Numerical Simulations

In this part, analytical findings of model (3) are verified through numerical simulations. We con-
sider the following data from Table 2 (Biswas et al. (2020)).

Np(0) = 1352642280 (Biswas et al. (2020)), Sp(0) = 1352642280 (Biswas et al. (2020)), Ep(0) =
131 (Biswas et al. (2020)),Qp(0) = 647 (Biswas et al. (2020)), IP (0) = 482 (Biswas et al. (2020)),
Ap(0) = 506 (Biswas et al. (2020)), Hp(0) = 657 (Biswas et al. (2020)), Rp(0) = 20 (Assumed).

For the parametric values given in Table 2, the basic reproduction number R0 = 1.3183 > 1. Thus,
the proposed model (3) have a disease-free equilibrium point that will be locally asymptotically
unstable (Figure 2). Figure 3 depicts the total number of infected individuals for different values of
η when R0 > 1. One can easily see that number of infected individuals are directly proportional to
"modification parameter for reduction in infectiousness of hospitalized individuals" (η). The basic
reproduction number R0 = 1 when η = 0.03661, and there is an exchange of stability between the
two equilibrium points DFE and EEP which shows that the system (3) undergoes a Transcritical
bifurcation (Figure 4). Thus, there exist a threshold value ηTC = 0.03661 for the parameter η
such that if η > 0.03661, the disease-free equilibrium will be locally asymptotically stable and if
η < 0.03661, the endemic equilibrium will be locally asymptotically stable. Further, if η = 0.005,
the proposed model (3) has an endemic equilibrium point that will be locally asymptotically stable
for R0 < 1 which can be seen in Figure 5. In Figure 6 it is readily visible that the decrement rate
of the infected individual is directly proportional to the "modification parameter for reduction in
infectiousness of hospitalized individuals" (η) whenever R0 < 1. Figure 7, depicts that parameter
η has a threshold value η∗ = 0.2, such that, parameter γQ has positive population-level impact for
η < 0.2 and negative population-level impact for η > 0.2.

5. Results and discussion

The future is so un-predictive that one can not tell when another epidemic will fall out. A math-
ematical epidemiological model (3) has been proposed and analyzed to evaluate the strategies for
preventing future outbreaks with the help of epidemiological information and guide society in
managing the disease. The dynamical transmission behaviour of the proposed model has studied
theoretically and numerically. We have obtained the following mathematical and epidemiological
results of the proposed model:

(i) The solution of the model is non-negative and bounded for all time t > 0, when initial
data are non-negative (Theorem 2.1 and 2.2). Thus, the proposed mathematical model (3) is
mathematically well-posed and epidemiologically reasonable.
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Figure 2. The variation of the scaled population in scaled-time for R0 > 1. The parameter values used are as in Table 2
except η = 0.01
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Figure 3. The total number of infected people as a function of time for R0 > 1. The parameter values used are as in
Table 2 except η

(ii) The model has a disease-free equilibrium that is locally-asymptotically stable whenever the
associated basic reproduction number is less than unity (Theorem 3.1). Epidemiologically
speaking, if the associated basic reproduction number is less than unity, every infected person
will infect less than one person in the entire period of infection, which means that the disease
will be exhausted. Thus, we can conclude that it is possible to control the disease by keeping
the associated basic reproduction number less than one in the absence of a vaccine.

(iii) The mathematical model has one and only one endemic equilibrium if the basic reproduction
number exceeds unity. This endemic equilibrium is locally asymptotically stable (Theorem
3.3) and globally-asymptotically stable for special case (Theorem 3.4). Epidemiologically
speaking, if the associated basic reproduction number exceeds unity, then each infected per-
son will infect more than one person in the entire infection period, which implies that the
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Figure 4. Transcritical bifurcation diagram for the model (3)
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Figure 5. The variation of the scaled population in scaled-time for R0 < 1. The parameter values used are as in Table 2
except value of η = 0.005

disease invading the susceptible population.
(iv) The model exhibits a transcritical bifurcation concerning the parameter µH (hospitalization

rate for quarantined individuals). Epidemiologically speaking, a threshold value µH = µTCH
of µH exists, such that, if µH > µTCH then disease eradication may be obtained.

(v) The quarantine of exposed people can control the reproduction number (Theorem 3.6). Epi-
demiologically speaking, by keeping η < η∗ we can reduce new infections. Thus, in the
control of disease, one can conclude that the facility of quarantine is utile.

6. Conclusion

Epidemics and pandemics are so sudden that they need strict instantaneous restrictions and bound-
aries to be implemented in society. Quarantine and isolation are two of them. The sudden reaction
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Figure 6. The total number of infected people as a function of time for R0 < 1. The parameter values used are as in
Table 2, but with different values of η
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Figure 7. Effect of quarantine parameter γQ on basic reproduction number R0

of government authorities and citizens can affect the rise or fall in the cases of a disease at that
time. Depending on the geographical area, spread rate, reproduction number and prevention strate-
gies, it may last for days, one year, or more. Isolation and quarantine can be highly effective as it
helps separate infected and exposed citizens from the healthy people. Breaking the spread chain
can effectively result in to decrease in the spread. It is challenging to impose a perfect quarantine;
however, if imposed, it will reduce the virus blowout, as discussed in the paper. The reproduc-
tion number can also be controlled with the quarantine, and a threshold number can provide the
predictions related to an outbreak to impose restrictions efficiently. Also, if no such imposition
is there, the reproduction number increases and result in the disease staying in the environment,
which could result in a dangerous situation, and hence, one can easily conclude that isolation and
quarantine can play a crucial role in controlling an outbreak from expanding all around in the
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