Prairie View A\&M University
Digital Commons @PVAMU

All Theses

8-1970

An Alternative Approach To High School Geometry

James L. Williams

Follow this and additional works at: https://digitalcommons.pvamu.edu/pvamu-theses

AN ALTERNATIVE APPROACH 10

 HIGH SCHOOL GEOMETRYPRAIRIE VIEW AGRICULTURAL AND MECHANICAL, COLLEGE GRADUATE SCHOOL

WORKSHOP SHEET III ס IV
THESIS (OR ESSAY) REPORT
*TURN IN THIS FORM WITH YOUR COMPLETED THESIS OR ESSAY

NAME \qquad Williams, James L. Degree Master of Science Dallas Teyasderartment \qquad mathematics (PERMANENT HOME ADDRESS)
\qquad TITLE OF THESIS OR ESSAY:

DATE SUBMITTED. \qquad
\qquad
Approach to High
School Geometry
\qquad
\qquad
RECORD:
\qquad undergraduate major \qquad HOMER OF TABLES OR CHARTS 2 UNDERGRADUATE MINOR \qquad ITAME of TYPIST: Francis Fraisher
\qquad GRADUATE MAJOR \qquad GRADUATE MINOR \qquad
APPROVAL: \qquad
(SIGNATURE OF SUPERVISING PROFESSOR)
BRIEF SUMMARY OF THESIS (OR ESSAY)
(NOT TO EXCEED 100 WORDS)
(THIS SUMMARY IS A PERMANENT BIBLIOGRAPHICAL RECORD. IT SHOULD be written carefully).
The emphasis throughout this paper was mo que an understanding of the basic principles of ipprovcherig thigh School Aerometry from an analytic geometry approach Considerable care wrac takin with the proof of the main therese Wo -that we maydevelap an appreciation of the Pogical structure of a mathematical proof.

AN ALTERNATIVE APPROACH TO

HIGH SCHOOL GEOMETRY

By

James L. Williams

A Master Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate Division

This Thesis for the Degree Master of Science Has Been Approved for the Department of Mathematics:

By:

Advisor

Head of Department

Date

ACKNOWLEDGEMENT

The writer wishes to acknowledge his sincere appreciation to Dr. A. D. Stewart, Head of the Mathematics Department, director of this thesis, whose advice and suggestions were essential in the completion of this paper.

DEDICATION

This thesis is affectionately dedicated to my beloved wife, Mrs. Dorothy S. Williams, whose encouragements and inspirations have made this thesis possible.

TABLE OF CONTENTS

Chapters Page
I. Introduction and Terminology 1
II. Theorems (Proofs of all basic theorems) 6
III. Triangles 17
IV. Quadrilaterals 41
V. Circles 76
Summary 85
Bibliography 86

Introduction and Terminology

The fundamental ideas of analytic geometry are usually attributed to the French mathematician and philosopher Descartes (1596-1650). The key to the expression of geometric facts in algebraic form lies in the representation of a point in the plane by means of a pair of real numbers called the coordinates of the point. This paper is devoted to some detailed proofs of fundamental theorems in High School Geometry based on an alternative approach.

The analytic geometry approach seems to be a more powerful attack upon many of the problems of High School Geometry than the methods which we have thus far employed. Analytic geometry not only simplifies the proofs of many of the propositions with which we are familiar, but enables us to attack successfully problems which we could handle in elementary geometry only with great difficulty, or not at all. With the tools already developed-the formulas for distance, point of division (midpoint), and slope- will aid in solving many problems of High School Geometry.

In analytic geometry the methods of algebra are combined with those of Euclidean geometry in the solution of geometry problems. The properties of a geometric figure depend upon the relations of the parts and not upon the particular position which the figure is drawn. Therefore, the properties of any geometric figure are independent of the way in
which the axes are chosen. In the proof of geometric properties of figures it will, in general, be possible to choose the axes in more than one way. The axes will be chosen in the way which gives the simplest algebra.

The writer would like to point out that analytic geometry is not a different geometry but is a different approach to geometry. This approcah was used to prove theorems previously developed by the synthetic approach. In all such cases the analytic proof is not the only proof, but in many cases it is a far simpler proof.

The statement, symbol or notation on the left has meaning on the right.
(1) Angle of inclination
(2) Bisector of an angle
(3) Equilateral triangle
(4) Isosceles triangle
(5) Midpoint
(6) Parallelogram
(7) Perpendicular lines
(8) Rectangle
(9) Reflexive Property of Equality
(10) Rhombus
(11) Right angle
(12) Slope of a line
(1) The statement that θ is the angle of inclination means that θ is the angle between the line l and the x-axis on the positive side.
(2) The ray which divides the angle into two equal angles.
(3) A triangle having all congruent sides.
(4) A triangle with at least two congruent sides.
(5) The point which divides the line segment into equal line segments.
(6) A quadrilateral in which both pairs of opposite sides are parallel.
(7) Two lines that meet to form congruent adjacent angles.
(8) A parallelogram with four right angles.
(9) Any quantity is equal to itself.
(10) A parallelogram with a pair of adjacent sides equal.
(11) An angle of measure 90°.
(12) The statement that m is the slope of the line l means that there exists two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ such that $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad x_{2}>x_{1}$.
(13) Transitive Property of Equality
(14) Trapezoid
(15) Trigonometric Cofunctions
(16) Trigonometric identities
(17) =
(18) \neq
(19) >
(20) \angle
(21) \triangle
(22) \longleftrightarrow
(23) $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}$
(24) \perp
(25) \cong
(26) 11
(27) $\sqrt{ }$
(28) X1
(29) \square
(30) m
(31) $\tan \theta$
(13) Two numbers equal to the same or equal number are equal to each other.
(14) A quadrilateral with exactly two sides parallel.
(15) The statement that two functions are trigonometric cofunctions means their arguments are complementary.
(16) If f and g are trigonometric functions then the equation $f=g$ is said to be an identity iff $f(x)=g(x)$ $\quad x$ domain of $f \cap \mathrm{~g}$.
(17) Is equal to
(18) Is not equal to
(19) Is greater than
(20) Angle
(21) Triangle
(22) Line
(23) Line segment $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}$
(24) Is perpendicular to
(25) Is congruent to
(26) Is parallel to
(27) The square root of
(28) Is not parallel to
(29) Parallelogram
(30) Slope
(31) Tangent of angle θ

(32) \therefore	(32) Therefore
(33) α	(33) Alpha
(34) β	(34)Beta
(36) 8	(35) Delta
(37) S.A.S.	(36) Theta

CHAPTER II

Theorems

In this chapter is a list of all basic theorems and their proofs to be used in proving High School Geometry from an analytic approach.

The Distance between Two Points
The distance between two points is given by the formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Given: Points P_{1} and P_{2} with the coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\text { respectively } \mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{d}
$$

Prove: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Proof:

Statements

1. Draw $P_{1} B$ || to the x-axis and $P_{2} B \|$ to the y-axis.
2. $\angle P_{2} \mathrm{BP}_{1}$ is a right angle.
3. ${ }^{B P}{ }_{1}=x_{2}-x_{1}$ and $P_{2} B=y_{2}-y_{1}$.
4. $\overline{P_{2} P_{1}{ }^{2}}=\overline{B P_{1}^{2}}+\overline{P_{2} B^{2}}$.
5. $d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$.
6. $\therefore d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
7. Through a given point, a line can be constructed parallel to a given line.
8. Definition of perpendicular lines.
9. The distance between two points having the same coordinates is the difference of their abscissas and the distance between two points having the same abscissas is the difference of their ordinates.
10. Pythagorean theorem.
11. Substitution
12. Taking the square root of both sides of the equation.

The Midpoint of a Line Segment
The coordinates of the midpoint of line segment are one-half the sums of the coordinate of the end points or

$$
x=\frac{x_{1}+x_{2}}{2} \text { and } y=\frac{y_{1}+y_{2}}{2}
$$

Given: P the midpoint of line segment $P_{1} P_{2}$.
Prove: $x=\frac{x_{1}+x_{2}}{2}$ and $y=\frac{y_{1}+y_{2}}{2}$

Proof:

1. Draw $P_{1} A, P B$, and $P_{2} C \perp$ the x-axis. 1. Through a given point, a line can be constructed perpendicular to a given line.
2. $P_{1} A\|P B\| P_{2} C$.
3. $P_{1} P=P_{2}$.
4. $x-x_{1}=x_{2}-x$
5. $2 x=x_{2}+x_{1}$.
6. $\therefore x=\frac{x_{2}+x_{1}}{2}$
7. Two or more lines which are perpendicular to the same line are parallel.
8. Definition of midpoint .
9. Substitution .
10. Addition property .
11. Division property •

Similarly, a line through P_{1}, P, and P_{2} perpendicular to the y-axis we can prove that

$$
\mathrm{y}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}
$$

Theorem 1.3

Two non-vertical lines are parallel if and only if they have the same slope.

Part I: Two non-vertical lines have the same slope, then they are parallel. If $l_{1} \nmid l_{2}$ then $m_{1} \neq m_{2}$.

Given:

$$
l_{1} \nVdash l_{2} .
$$

Prove: $m_{1} \neq m_{2}$.

Proof:
I. l_{1} and l_{2} intersect at some 1. It was given that $l_{1} \nmid l_{2}$. common point $\left(x_{1}, y_{1}\right)$.
2. There exist point $\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{3}\right)$ on l_{1} and l_{2}, respectively, $\mathrm{y}_{2} \neq \mathrm{y}_{3}$.
3. $m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and $m_{2}=\frac{y_{3}-y_{1}}{x_{2}-x_{1}}$.
3. Definition of slope .
4. $\quad \therefore \mathrm{m}_{1} \neq \mathrm{m}_{2}$.
4. From step 3 .

Part II: If two non-vertical lines are parallel, then they have the same slope.

Given: $l_{2} \| l_{1}, l_{1}$ and l_{2} are non-vertical;

$$
\text { Slope of } \ell_{1}=m_{1} ; \text { Slope of } \ell_{2}=m_{2}
$$

Prove: $m_{1}=m_{2}$.

1. Since l_{1} and l_{2} are non-vertical, they will intersect the y-axis at point $\left(0, y_{1}\right)$ and $\left(0, y_{2}\right)$ respectively. Assume $y_{1} \neq 0$. (If $y_{1}=0$, interchange the role of y_{1} in y_{2} in the rest of the proof.)
2. Suppose that $m_{1} \neq m_{2}$.
3. There exist some point having the coordinates $\left(x_{3}, m_{1} x_{3}+y_{2}\right)$, $\left(x_{3} \neq 0\right)$.
4. There exist a line l_{3} containing the point $\left(0, y_{2}\right)$ and ${ }^{3}\left(x_{3}, m_{1} x_{3}+y_{2}\right)$.
5. l_{3} has a slope of m_{1} and is
6. But l_{3} and l_{2} pass through $\left(0, y_{2}\right)$ and are parallel to l_{1}.
7. $\therefore l_{3}=l_{2}$ and it follows

$$
\text { that } m_{1}=m_{2}
$$

3. There exist a one-to-one correspondence between points in a plane and ordered pairs of real numbers.
4. Given any two points, there exists exactly one line containing them.
5. Definition of slope (Theorem 1.3, part I).
6. Construction.
7. Through a given point not on a line, there exists exactly one line parallel to the given line.

Two non-vertical perpendicular lines l_{1} and l_{2} having slopes m_{1} and m_{2} then, one slope is positive and the other slope is negative.

Given: Two non-vertical \perp lines l_{1} and l_{2} having slopes m_{1} and m_{2} respectively.

Prove: One slope is positive and one slope $\left(\psi_{3}, y_{3}\right)$ is negative.

Proof:

1. Let $\left(x_{1}, y_{1}\right)$ be the point of intersection of lines l_{1} and l_{2}.
2. $l_{1} \perp l_{2}$.
3. Choose $\left(x_{2}, y_{2}\right)$ on l_{1} and $\left(x_{3}, y_{3}\right)$ on l_{2}.
4. $m_{1}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}, m_{2}=\frac{y_{3}-y_{1}}{x_{2}-x_{1}}$.
5. $m_{1}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}>0$.
6. Assumption .
7. Given -
8. Assume .
9. Definition of slope .
10. Ratio of two positive numbers is a positive number.
11. $y_{3}-y_{1}>0$ and $x_{3}-x_{1}<0$

$$
\Rightarrow \frac{y_{3}-y_{1}}{x_{3}-x_{1}}<0
$$

$$
\Rightarrow m_{2}<0
$$

7. \therefore one slope is positive and one slope is negative.
8. Ratio of a positive and negative number is negative.
9. From step 5 and step 6.

If lines l_{1} and l_{2} having slopes m_{1} and m_{2} are perpendicular then $m_{1} m_{2}=-1$.

Part I.
Given: Lines l_{1} and l_{2} with m_{1} and m_{2} $l_{1} \perp l_{2}$.

Prove: $m_{1} m_{2}=-1$.

Proof:

Statements

1. Let l_{1} and l_{2} intersect.
2. ${\overline{P_{1}} P_{3}}^{\text {is parallel to the } x \text {-axis. }}$
3. $m_{1}>0$ and $m_{2}<0$.
4. P_{3} is 1 unit to the right of P_{1}.
5. ${\overline{P_{3}}}_{P_{2}}=$ a units vertical through at $P_{4} . \quad \bar{P}_{3} P_{4}=b$ units.
6. $m_{1}=a$ and $m_{2}=-b$.
7. $\overline{P_{1} P_{3}}$ is the altitude on the hypotenuse $\overline{\mathrm{P}_{2} \mathrm{P}_{4}}$ of the right Δ $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$.
8. $\bar{P}_{1} P_{3}$ is the mean proportional
9. $\overline{P_{3} P_{2}} \cdot \overline{P_{4} P_{3}}=\overline{P_{1} P_{3}{ }^{2}}$.
10. $a \cdot b=1$.
11. $a \cdot b=-\left(m_{1} \cdot m_{2}\right)$.
12. $m_{1} m_{2}=-1$
13. Assumption .
14. Construction
15. Lemma 1 .
16. Construction .
17. Construction .
18. Lemma 1 .
19. $l_{1} \perp \ell_{2}$.
20. Definition of mean proportional.
21. Same as step 8 .
22. Substitution .
23. From step 7 .
24. Substitution

Part II.
Given: Lines l_{1} and l_{2} with slopes m_{1} and $m_{2} ; \quad m_{1} m_{2}=-1$.

Prove: $l_{1} \perp l_{2}$.

Proof:

1. Let l_{1} with slope m_{1} and l_{2}. 1. Given .
with slope m_{2} be given .
2. $m_{1} \cdot m_{2}=-1 \Rightarrow m_{1}=\frac{-1}{\frac{I 2}{2}}$. 2. Given.
3. m_{1} and m_{2} are opposite each other. 3. Lemma 1 .
4. $m_{1}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=a, m_{2}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}=-\frac{1}{a}$. 4o Definition of slope.
5. $m_{1}=\tan \alpha=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=a$
6. Definition of trigonometric identity.
$m_{2}=\tan \beta=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}=-\frac{1}{a}$.
7. $\tan \alpha=-\cot \beta$.
8. $-\cot \beta=\tan \left(\beta+90^{\circ}\right)$.
9. $\beta=\alpha+90^{\circ}$.
10. $\therefore l_{1} \perp l_{2}$.
11. Substitution .
12. Definition of cofunction .
13. Since tangent and cotangent are cofunctions.
14. From step 7 and step 8 .

Let l_{1} and l_{2} be lines with slope m_{1} and m_{2} respectively, and let θ be the angle from l_{1} to l_{2}. If $m_{1} m_{2}=-1, \theta=90^{\circ}$. Otherwise, θ is the angle such that

Proof: Let m_{1} be the slope of l_{1} and let m_{2} be the slope of l_{2}. Then $m_{1}=\tan \alpha_{1}, \quad m_{2}=\tan \alpha_{2}$.
θ is the angle between l_{2} and l_{1}.
$\tan \theta=\tan \left(\alpha_{2}-\alpha_{1}\right)$
$=\frac{\tan \alpha_{2}-\tan \alpha_{1}}{1+\tan \alpha_{2} \tan \alpha_{1}} \quad$ (from trigonometry)
$=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}$

Hence

$$
\tan \theta=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}
$$

The equation of the line passing through the point $\left(x_{1}, y_{1}\right)$ and having slope m is $y-y_{1}=m\left(x-x_{1}\right)$.

Given: Points P and P with the coordinates ($x \frac{1}{y} y$) and $\left(x_{1}, y_{1}\right)$ respectively.

Prove: $y-y_{1}=m\left(x-x_{1}\right)$.

Proof: Let P be the point (x, y) and P_{I} be the point $\left(x_{1}, y_{1}\right)$.
The slope (m) of $\overline{\mathrm{PP}}_{1}$ is expressed by $\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{x}-\mathrm{x}_{1}}$.
Since the slope of $\overleftrightarrow{\mathrm{PP}_{1}}$ must be $\mathrm{m}, \frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{x}-\mathrm{x}_{1}}=\mathrm{m}$. Hence $y-y_{1}=m\left(x-x_{1}\right)$.

The circle with center (a, b) and radius r has the equation $(x-a)^{2}+(y-b)^{2}=r^{2}$.

In this chapter, the two methods will be applied to several theorems related to triangles. First, the synthetic method will be applied to prove a theorem, then the analytic method will be used to prove the same theorem in sequence. Theorems proved by the synthetic method will be denoted by unprime numbers while the same theorems being proved by the analytic method will be denoted by prime numbers. Example, Theorem 1 and Theorem l^{\prime}.

Theorem 1

If two sides of a triangle are equal, the angles opposite these sides are equal.

Given: $\triangle A B C$ with $\overline{A C}=\overline{B C}$.
Prove: in $\angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}$.

Proof: Construct $\overline{C D}$, the bisector of $\angle C$.
Statements
Reasons

1. $\overline{A C}=\overline{B C}$.
2. $\angle x=\angle y$.
3. $\overline{\mathrm{DC}}=\overline{\mathrm{DC}}$.
4. $\triangle A D C \cong \triangle B D C$.
5. $\therefore m \angle A=m \angle B$.
6. Given .
7. Definition of bisector of an angle .
8. Reflexive Property.
9. S.A.S.
10. C.P.C.T.

Given: $\Delta P_{1} P_{2} P_{3}$ with $\overline{P_{1} P_{3}}=\overline{P_{2} P_{3}}$.
Prove: $m \angle \theta=m \angle \beta$.
Proof: Let $P_{1} P_{2}$ lie on the x-axis and the altitude from P_{3} lie on the y -axis. Let the coordinates of $\mathrm{P}_{1} \mathrm{P}_{2}$ and P_{3} be as shown. By the slope formula:

1. m_{1}-slope of ${\overline{P_{1} P}}_{3}, \quad \frac{b-0}{0-T_{a}}=\frac{b}{a}$
m_{2} - slope of ${\overline{P_{2} P}}_{3}, \quad \frac{b-0}{0-a}=-\frac{b}{a}$
m_{3} - slope of ${\overline{P_{1} P}}_{2}, \quad \frac{0-0}{a--a}=0$
2. $\tan \theta=\frac{m_{1}-m_{3}}{1+m_{3} \cdot m_{1}}=\frac{\frac{b}{a}-0}{1+0 \frac{b}{a}}=\frac{b}{a}$.
3. $\tan \beta=\frac{m_{3}-m_{2}}{1+m_{2}{ }^{\circ} m_{3}}=\frac{0--\frac{b}{a}}{1+0-\frac{b}{a}}=\frac{b}{a}$.
4. $\tan \theta=\tan \beta$.
5. Hence $\theta=\beta$ since θ and $\beta<180^{\circ}$.

If a point is on the perpendicular bisector of a line segment, it is equally distant from the ends of the segment.

Given: Line segment $A B$ and perpendicular bisector l and point P on line l.

Prove : $\overline{A P} \cong \overline{B P}$.

Proof:
Statements
Reasons

1. $\overline{A M}=\overline{B M}$.
2. $\angle \mathrm{x}=\angle \mathrm{y}$.
3. $\overline{P M}=\overline{P M}$.
4. $\triangle A M P \cong \triangle B M P$.
5. $\therefore \overline{A P} \cong \overline{B P}$.
6. Definition of bisector .
7. Definition of perpendicular lines.
8. Reflexive Property.
9. S.A.S
10. C.P.C.T。

Figure 2^{\prime}
Given: Line segment $\overline{P_{1} P_{2}}$ and perpendicular bisector ℓ and point P_{3} on line.

Prove: $d_{1}=d_{2}$.
Proof: Let $P_{1} P_{2}$ lie on the x-axis with line l on the y-axis. Let the coordinates of P_{1}, P_{2}, and P_{3} be as shown in the figure. $d_{1}=\overline{P_{1} P_{3}}$ and $d_{2}=\overline{P_{2} P_{3}}$. By the distance formula:

1. $d_{1}=\sqrt{(-a-0)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$
2. $d_{2}=\sqrt{(a-0)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$.
3. Hence $d_{1}=d_{2}$.

Theorem 3

If two parallel lines are crossed by a transversal, the alternate interior angles are equal.
Given: Line $\overleftrightarrow{X Y} \|$ line $\overleftrightarrow{Z W}$. Both lines are cut by transversal TR at points A and B.

Prove: $\quad \angle x=\angle y$.

Figure 3
Proof: Construct a perpendicular to line $Z W$ at $D M$, the midpoint of $B A$.

Statements
Reasons

1. If one of two parallel lines is \perp to a third line, the other is \perp to it.
2. $\triangle B D M$ and $\triangle A G M$ are right triangles.
3. Definition of right triangles .
4. Definition of a midpoint.
5. Vertical angles are equal.
6. Congruent hypotenuse and acute angle.
7. C.P.C.T。

Figure 3^{1}
Given: Line $l_{1} \|$ line l_{2}. Both lines are cut by transversal l_{3}. Prove: $\angle \alpha=\angle \beta$.
Proof: Let l_{2} lie on the x-axis and $l_{1} \| l_{2}$. Let l_{3} intersect l_{2} at the origin and l_{3} at some point. By the slope formula:

1. m_{1} - slope of l_{2}
m_{2} - slope of l_{1}

$$
m_{3} \text { - slope of } l_{3}
$$

2. $\tan \alpha=\frac{m_{3}-m_{1}}{1+m_{3} m_{1}}=\frac{m_{3}-0}{1+m_{3}(0)}=m_{3}$

$$
\tan \beta=\frac{m_{3}-m_{2}}{1+m_{3} m_{1}}=\frac{m_{3}-0}{1+m_{3}(0)}=m_{3}
$$

3. So $\tan \alpha=\tan \beta$ if α and $\beta<180^{\circ}$. 4. $\therefore \angle \alpha=\angle \beta$.

The line that joins the midpoints of two sides of a triangle is parallel to the third sides.

Given: Line $M N$ joining the midpoints of $\overline{A B}$ and $\overline{A C}$ of $\triangle A B C . \overline{C D}$ is drawn parallel to $\overline{A B}$, meeting $\overline{M N}$ extended at D.

Prove: $\overline{M N} \| \overline{B C}$.

Proof:

Statements

1. $\angle z=\angle w$.
2. $\overline{\mathrm{AN}}=\overline{\mathrm{CN}}$.
3. $\angle \mathrm{x}=\angle \mathrm{y}$.
4. $\triangle C N D \cong \triangle A M N$.
5. $\overline{\mathrm{CD}}=\overline{\mathrm{AM}}$.
6. $\overline{B M}=\overline{A M}$.
7. $\overline{\mathrm{CD}}=\overline{\mathrm{BM}}$.
8. BMDC is a \square.
9. $\therefore \overline{\mathrm{MN}} \| \overline{\mathrm{BC}}$.
10. Vertical angles are equal .
11. Definition of midpoint .
12. Alternate interior angles are equal .
13. A.S.A.
14. $C_{0} P \cdot C_{0} T_{0}$
15. Definition of midpoint.
16. Transitive Property .
17. A pair of opposite sides of a quadrilateral are both equal and parallel.
18. Definition of a parallelogram .

Figure 4^{1}

Prove: $\overline{\mathrm{P}_{5} \mathrm{P}_{4}} \| \overline{\mathrm{P}_{1} \mathrm{P}_{2}}$.

Proof: Let $P_{1} P_{2}$ lie on the x-axis with P_{1} at the origin and coordinates of P_{2} and P_{3} be as shown. By the midpoint formula P_{5} is the point (c, d) and P_{4} is the point ($a+c, d$).

1. m_{1} - slope of $\overline{\mathrm{P}_{5} \mathrm{P}_{4}}$

$$
m_{2}-\text { slope of } \overline{P_{1} P_{2}}
$$

2. $m_{1}=\frac{d-d}{a+b-0}=0$

$$
m_{2}=\frac{0-0}{2-0}=0
$$

3. Hence $m_{1}=m_{2}$.
4. $\therefore{\overline{P_{5} P_{4}}}_{\| P_{1} P_{2}}$.

Theorem 5

The line segment that joins the midpoint of two sides of a triangle is equal to one half of the third side.

Given: $\triangle A B C$ and line segment $M N$ joining the midpoints of $A B$ and $A C$. Prove: $\overline{M N}=1 / 2(\overline{B C})$.

Proof: Draw $\overline{C D} \| \overline{A B}$ meeting $M N$ extended to D. Find E, the midpoint.

1. $\overline{M N} \| \overline{B C}$.
2. $B C D M$ is a \square.
3. $\overline{N E} \| \overline{A B}$.
4. BENM is a \square.
5. $\overline{M N}=\overline{B E}$.
6. $\overline{B E}=1 / 2(\overline{B C})$.
7. $\overline{\mathbb{M}}=1 / 2(\overline{B C})$.
8. The line that joins the midpoints of two sides of a triangle is parallel to the third side.
9. Definition of parallelogram.
10. Same as step 1 .
11. Definition of parallelogram .
12. Opposite sides of a parallelogram are equal.
13. Definition of a midpoint .
14. Transitive Property .

Figure 5^{1}
Given: $\Delta P_{1} P_{2} P_{3} ; P_{5}$ is the midpoint of $P_{1} P_{3}$ and P_{6} is the midpoint of $\overline{P_{2} P_{3}}$.

Prove: $\overline{P_{5} P_{6}}=1 / 2\left(\overline{P_{1} P_{2}}\right)$.

Proof: Let the line containing $P_{1} P_{2}$ be the x-axis and let the coordinates of P_{1}, P_{2} and P_{3} be as shown. By the midpoint formula:

1. $P_{5}=\left(\frac{0+2 b}{2}, \frac{0+2 c)}{2}=(b, c)\right.$.
2. $P_{6}=\left(\frac{2 a+2 b}{2}, \frac{0+2 c)}{2}=\frac{2(a+b, c)}{2}=(a+b, c)\right.$.
3. $\bar{P}_{1_{2}}=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a$.
4. $\bar{P}_{5} P_{6}=\sqrt{(a+b-b)^{2}+(c-c)^{2}}=\sqrt{a^{2}}=a$.
5. $\therefore \overline{P_{5} P_{6}}=1 / 2\left(\overline{P_{1} P_{2}}\right)$.

Theorem 6

In an isosceles triangle, two medians are congruent.

Given: Isosceles $\triangle \mathrm{ABC} ; \quad \overline{\mathrm{AD}}=\overline{\mathrm{BE}} ; \quad \angle \mathrm{BAC}=\angle \mathrm{ABC}$.
Prove: $\overline{\mathrm{AE}}=\overline{\mathrm{BD}}$.

Figure 6
Proof:

1. $\overline{\mathrm{AD}}=\overline{\mathrm{BE}} ; \angle \mathrm{BAC}=\angle \mathrm{ABC}$.
2. $\overline{A B}=\overline{A B}$.
3. $\triangle A B D \cong \triangle A B E$.
4. $\overline{\mathrm{AE}}=\overline{\mathrm{BD}}$.
5. Given .
6. Reflexive Property.
7. S.A.S.
8. C.P.C.T.

Figure 6°
Given: Isosceles $\Delta P_{1} P_{2} P_{3}$ with $\bar{P}_{1} P_{4}=\bar{P}_{2} P_{5}$.
Prove: ${\overline{P_{1}} P_{5}}^{P_{2}} \overline{P_{2} P_{4}}$.

Proof: Let $P_{1} P_{2}$ lie on the x-axis and the altitude from P_{3} lie on the y-axis. Let the coordinates of $P_{7} P_{2}$ and P_{3} be as shown in the figure. By the midpoint formula:

1. $P_{4}=\left(\frac{0+-2 h}{2}, \frac{2 g+0}{2}\right)=(-h, g)$

$$
P_{5}=\left(\frac{0+2 h}{2}, \frac{2 g+0}{2}\right)=(h, g)
$$

$$
\text { 2. } \bar{P}_{2} P_{4}=\sqrt{(2 h--h)^{2}+(0-g)^{2}}=\sqrt{(3 h)^{2}+g^{2}}=\sqrt{9 h^{2}+g^{2}}
$$

$$
\overline{P P}_{15}=\sqrt{(-2 h-h)^{2}+(g-0)^{2}}=\sqrt{(-3 h)^{2}+g^{2}}=\sqrt{9 h^{2}+g^{2}}
$$

3. Hence ${\overline{P_{1} P_{5}}}^{P_{2}} \overline{P_{2} P_{4}}$.

Theorem 7

In an equilateral triangle, the three medians are congruent.
Given: Equilateral $\triangle A B C$ with midpoints E, F, and G of $\overline{A B}, \overline{B C}$ and $\overline{A C}$ respectively.
Prove: $\overline{A F}=\overline{B G}=\overline{C E}$.

Proof:

1. $\overline{A C}=\overline{B C}$.
2. $\overline{A G}=\overline{B F}$.
3. $\angle \mathrm{GAE}=\angle \mathrm{FBE}$.
4. $\overline{A B}=\overline{A B}$.
5. $\triangle A B G \cong \triangle A F B$
6. $\overline{\mathrm{AF}}=\overline{\mathrm{BG}}$.
7. $\overline{C B}=\overline{A B}$
8. $\overline{\mathrm{EB}}=\overline{\mathrm{AG}}$.
9. $\angle B=\angle A$.
10. $\triangle C B E \cong \triangle B A G$.
11. $\overline{C E}=\overline{B G}$.
12. $\overline{A F}=\overline{B G}=\overline{C E}$.
13. Definition of equilateral triangle .
14. Halves of equals are equal.
15. Angles of equilateral trioangles are equal.
16. Reflexive Property
17. S. A. S.
18. C.P.C.T。
19. Same as 1 .
20. Same as 2 .
21. Same as 3 .
22. So A. So
23. $C_{0} P_{0} C_{0} T_{0}$
24. Transitive Property .

Theorem 7'

Figure 7^{1}
Given: Equilateral $\triangle P_{1} P_{2} P_{3}$ with midpoints P_{4}, P_{5}, and P_{6} of $\overline{P_{1} P_{2}}$, $\overline{P_{2} P_{3}}$ and $\overline{P_{1} P_{3}}$ respectively.
Prove: $\overline{P_{1} P_{5}}=\overline{P_{2} P_{6}}=\overline{P_{3} P_{4}}$.
Proof: Let $\overline{P_{1} P_{2}}$ lie on the x-axis with P_{4} at the origin Let P_{1} be point $(-2 a, 0)$ and P_{2} be point $(2 a, 0)$. Let P_{3} be point $(0, y)$. Since $\bar{P}_{1} P_{2}=\bar{P}_{2} P_{3}, \sqrt{4 a^{2}+y^{2}}=4 a ; 4 a^{2}+y^{2}=16 a^{2} ;$ $y^{2}=12 a^{2} ; y=2 a \sqrt{3}, P_{3}$ is point $(0,2 a \sqrt{3})$. By the midpoint formula:
I. $P_{6}=\left(\frac{-2 a+0}{2}, \frac{0+2 a \sqrt{3}}{2}=(-a, a \sqrt{3})\right.$
2. $P_{5}=\left(\frac{2 a+0}{2}, \frac{0+2 a \sqrt{3}}{2}\right)=(a, a \sqrt{3})$
3. $\vec{P}_{2} P_{6}=\sqrt{(-a-2 a)^{2}+(a \quad 3-0)^{2}}=\sqrt{9 a^{2}+3 a^{2}}=\sqrt{12 a^{2}}=2 a \sqrt{3}$
4. $P_{1} P_{5}=\sqrt{(a--2 a)^{2}+(a \quad 3-0)^{2}}=\sqrt{9 a^{2}+3 a^{2}}=\sqrt{12 a^{2}}=2 a \sqrt{3}$.
5. $\bar{P}_{3} P_{4}=\sqrt{(0-0)^{2}+(2 a \quad 3-0)^{2}}=2 a \sqrt{3}$.
6. $\therefore{\overline{P_{1} P_{5}}}=\overline{P_{2} P_{6}}={\overline{P_{3} P}}_{4}$.

Theorem 8

The union of the three segments joining, in pairs, the midpoints of the sides of an isosceles triangle is an isosceles triangle.

Given: Isosceles $\triangle A B C$ with $\overline{A C}=\overline{B C}$ and midpoints D, F and E of $\overline{A B}, \overline{B C}$ and $\overline{A C}$ respectively.

Prove: $\triangle \mathrm{DEF}$ is isosceles.

Proof:

Statements

1. $D_{2} F$ and E are midpoints of $\overline{A B}$,
$B C$ and $\overline{A C}$ respectively
2. $\overline{A C}=\overline{B C}$.
3. $\overline{A D}=\overline{B C}$.
4. $\angle F A D=\angle E B C$.
5. $\overline{\mathrm{AF}}=\overline{\mathrm{BE}}$.
6. $\triangle A F D \cong \triangle B E D$.
7. $\overline{F D}=\overline{E D}$.
8. \therefore DFE is isosceles
I. Given
9. Given
10. Definition of midpoint .
11. If two sides of an isosceles triangle are equal, the angles opposite the two sides are equal.
12. Halves of equals are equal.
13. S.A.S.
14. C.P.C.T。
15. Definition of isosceles triangle.

Given: Isosceles $\Delta P_{1} P_{2} P_{3}$ with ${\overline{P_{1}} P_{3}}^{P_{2}}{\overline{P_{2}}}_{3}$ and midpoints P_{4}, P_{5} and P_{6} of $\overline{P_{1} P_{2}}, \overline{P_{2} P_{3}}$ and ${\overline{P_{1} P_{3}}}^{\text {respectively. }}$

Prove: ${ }_{\Delta P} P_{4} P_{6}$ is isosceles.

Proof: Let $P_{1} P_{2}$ be on the x-axis with P_{4} on the origin and P_{1} and P_{2} having coordinates $(-2 a, 0)$ and $(2 a, 0)$ respectively. Let P_{3} be the point $(0,2 \mathrm{~b})$. By the midpoint formula:

1. $P_{5}=\left(\frac{2 a+0}{2}, \frac{0+2 b}{2}\right)=(a, b)$.
2. $P_{6}=\left(\frac{-2 a+0}{2}, \frac{0+2 b}{2}\right)=(-a, b)$.
3. By the distance formula:

$$
\left.\begin{array}{r}
\bar{P}_{46}=\sqrt{(-a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}} \\
{\bar{P} P_{5}}_{4}=\sqrt{(a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}} \\
\\
\therefore \bar{P}_{4} P_{6}=\bar{P}_{4} P_{5}
\end{array}\right) \text { and } P_{4} P_{5} P_{6} \text { is isosceles. }
$$

Theorem 9

The line segments joining the midpoints of the side of an equilateral triangle form another equilateral triangle.

Given: The equilateral $\triangle A B C$ with $\overline{E F}, \overline{F G}$ and $\overline{G E}$ joining the midpoints of the sides $\overline{A B}, \overline{B C}$ and $\overline{C A}$.

Prove: $\triangle G E F$ is equilateral.

Proof:

Statements

1. $E_{2} F$ and G are midpoints of $\overline{A B}$,
$\overline{B C}$ and $\overline{A C}$ respectively.
2. $\overrightarrow{A B}=\overline{B C}=\overline{C A}$.
3. $\overline{A E}=\overline{E B}, \overline{B F}=\overline{F C}$ and $\overline{C G}=\overline{G A}$.
4. $2 \overline{\mathrm{AE}}=2 \overline{\mathrm{BF}}=\overline{2 \mathrm{GC}}$.
5. $\overline{A E}=\overline{B F}=\overline{C G}$.
6. $\overline{\mathrm{AG}}=\overline{\mathrm{BE}}=\overline{\mathrm{CF}}$.
7. $\angle A=\angle B=\angle C$.
8. $\triangle A E G \cong \triangle B F E \cong \triangle C G F$.
9. $\overline{\mathrm{GE}}=\overline{\mathrm{EF}}=\overline{\mathrm{FG}}$.
10. $\therefore \triangle G E F$ is equilateral.
11. Given :
12. Given .
13. Definition of bisector .
14. A quantity may be substitoted for its equal.
15. If equals are divided by equals, the quotients are equal.
16. From steps 4 and 5 .
17. An equilateral triangle is equiangular.
18. S.A.S.
19. C.P.C.T.
20. Definition of equilateral triangle

Given: $\triangle P_{1} P_{2} P_{3}$ is equilateral with ${\overline{P_{4} P}}_{5}, \bar{P}_{6} P_{4}$ and ${\overline{P_{5} P}}_{5}$ joining the midpoint of ${\overline{P_{1} P}}_{2},{\overline{P_{2} P} 3}$ and $\overline{P_{3} P_{1}}$.

Prove: $P_{6} P_{4} P_{5}$ is equilateral.
Proof: Let $\overline{P_{1} P_{2}}$ lie on the x-axis with P_{4} at the origin and P_{1}, the point $(-2 a, 0), P_{2}$ the point $(2 a, 0)$ and P_{3} the point $(0,2 a \sqrt{3})$. By the midpoint formula:

1. $P_{4}=\left(\frac{2 a+0}{2}, \frac{0+2 a \sqrt{3})}{2}=(a, a \sqrt{3})\right.$.
2. $P_{5}=\left(\frac{-2 a+0}{2}, \frac{0+2 a \sqrt{3})}{2}=(-a, a \sqrt{3})\right.$.
3. $\bar{P}_{4} P_{5}=\sqrt{(a-0)^{2}+(a \sqrt{3})^{2}}=\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}=2 a$

40 $\bar{P}_{5} P_{6}=\sqrt{(-a-a)^{2}+(a \sqrt{3}-a \sqrt{3})^{2}}=\sqrt{4 a^{2}+0}=2 a$
5. $\bar{P}_{6} P_{4}=\sqrt{(0--a)^{2}+(a \sqrt{3}-0)^{2}}=\sqrt{a^{2}+3 a^{2}}=\sqrt{4 a^{2}}=2 a$.
6. $\therefore \bar{P}_{4} P_{5}=\overline{P_{5} P_{6}}=\overline{P_{6} P_{4}}$ and ${\triangle P_{6} P_{4} P_{5}}$ is equilateral.

The altitudes of a triangle are concurrent.
Given: $\triangle A B C$ with the altitudes $\overline{A D}, \overline{B E}$ and $\overline{C F} B^{\prime}-\ldots, \ldots A^{\prime}$ Prove: $\overline{\mathrm{AD}}, \overline{\mathrm{BE}}$ and $\overline{\mathrm{CF}}$ are concurrent.

Figure 10
Proof:
Statements
Reasons

1. Draw $B^{\prime} A^{\prime}$ through $C \| \overline{A B} ; C^{\prime} A^{\prime}$ through $B \| \overline{A C} ; C^{\prime} B^{\prime}$ through $A \| \overrightarrow{B C}$.
2. $A B C B^{\prime}$ and $A B A^{\prime} C$ are .
3. $\therefore B^{\prime} C=\overline{A B}$ and $C A^{\prime}=A B$.
4. $\therefore B^{\prime} C=C A^{\prime}$.
5. $\overrightarrow{C F} \perp \mathrm{AB}$.
6. $C F \perp B^{\prime} A^{\prime}$
7. $\therefore \overline{\mathrm{CF}}$ is the \perp bisector of $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$.
8. In like manner, BE and AD are the perpendicular bisectors of $C^{\prime} A^{\prime}$ and $B^{\prime} C^{\prime}$ respectively.
9. $\therefore \mathrm{AD}, \mathrm{BE}$ and CF are concurrent.
10. Through a given point only one line can be constructed : parallel to a given line.
11. Opposite sides are parallel.
12. Opposite sides of a parallelogram are equal.
13. Quantities equal to the same quantity are equal to each other.
14. Given $C F$ altitude of $A B$.
15. If a line is \perp to one of two parallel lines, it is \perp to the other also.
16. $C F$ bisects $B^{\prime} A^{\prime}$ and is \perp to $B^{\prime} A^{\prime}$.
17. Same as 8 .
18. The perpendicular bisectors of the sides of a triangle are concurrent in a point equidistant from the vertices.

Figure 10'
Given: Any $\triangle \mathrm{ABC}$ with $\mathrm{P}_{4}, \mathrm{P}_{5}$ and P_{6} the points where the altitudes

Prove: ${\overline{P_{1}}}_{5}, \overline{\mathrm{P}}_{2} \mathrm{P}_{6}$ and $\overline{\mathrm{P}}_{3}{ }_{4}$ intersect at a common point.
Proof: Let $P_{1} P_{2}$ lie on the x-axis, with the altitude $P_{3} P_{4}$ lying on the y-axis. Let the coordinates of P_{1}, P_{2} and P_{3} be as shown in the figure. By the slope formula:

1. $m_{1}-$ slope of $P_{2} P_{3}=\frac{c-0}{0-b}=-\frac{c}{b}$, slope of $P_{1} P_{5}=\frac{b}{c}$.
2. $m_{2}-$ slope of $P_{1} P_{2}=\frac{0 \dot{-0}}{b-a}=0$.
3. $m_{3}-$ slope of $P_{1} P_{3}=\frac{c-0}{0-a}=\frac{c}{-a}$, slope of $P_{2} P_{6}=\frac{a}{c}$.
4. Equations of the line containing altitudes

$$
\begin{aligned}
P_{1} P_{5}=y-0 & =m(x-a) \\
y & =\frac{b}{c}(x-a) \\
P_{2} P_{6}=y-0 & =m(x-b) \\
y & =\frac{a}{c}(x-b)
\end{aligned}
$$

5. $P_{2} P_{6}$ and $P_{1} P_{5}$ intersect at the point where

$$
\begin{aligned}
\frac{b}{c}(x-a) & =\frac{a}{c}(x-b) \\
\frac{b x-a b}{c} & =\frac{a x-a b}{c} \\
b x-a b & =a x-a b \\
b x-a x & =-a b+a b \\
x(b-a) & =0 \\
x & =0 \\
y & =\frac{-a b}{c}
\end{aligned}
$$

6. $\therefore P_{1} P_{5}, P_{2} P_{6}$ and $P_{3} P_{4}$ intersect at a common point .

The midpoint of the hypotenuse of a right triangle is equally
distant from all three vertices.
Given: Right triangle ABC, M is the midpoint of $\overline{\mathrm{BC}}$.
Prove: $\overline{\mathrm{CM}}=\overline{\mathrm{BM}}=\overline{\mathrm{AM}}$.

Proof: Draw $\overline{C D} \| \overrightarrow{A B}$ and $\overline{B D} \| \overrightarrow{A C}$.

Figure 11 '
Given: Right $\Delta P_{1} P_{2} P_{3}$ with P_{4} the midpoint of $\overline{P_{1} P_{2}}$.
Prove: $\overline{P_{1} P_{4}}=\overline{P_{2} P_{4}}={\overline{P_{3} P_{4}}}$.
Proof: Let $P_{2} P_{3}$ lie on the x-axis and $P_{1} P_{3}$ lie on the y-axis. Let the coordinates of P_{1} and P_{2} be as shown in the figure. By the midpoint formula, P_{4} is the point (g, h).

1. $P_{1} P_{4}=\sqrt{(g-0)^{2}+(h-2 h)^{2}}=\sqrt{g^{2}+h^{2}}$
2. $P_{2} P_{4}=\sqrt{(g-2 g)^{2}+(h-0)^{2}}=\sqrt{g^{2}+h^{2}}$
3. $\widetilde{P}_{3} P_{4}=\sqrt{(g-0)^{2}+(h-0)^{2}}=\sqrt{g^{2}+h^{2}}$
4. ${\overline{P_{1} P}}_{4}={\overline{P_{2} P_{4}}}^{P_{3}} \overline{P_{3} P_{4}}$.
5. $\quad \therefore P_{4}$ is equidistant from the three vertices.

CHAPTER IV

Quadrilaterals

In this chapter, the two methods will be applied to several theorems related to quadrilaterals. First, the synthetic method will be applied to prove a theorem, then the analytic method will be used to prove the same theorem in sequence. Theorems proved by the synthetic method will be denoted by unprime numbers while the same theorems being proved by the analytic method will be denoted by prime numbers. Example, Theorem 12 and Theorem 12'.

In a parallelogram, the opposite sides are congruent.
Given: $\square \mathrm{ABCD}$, diagonal $A C$.
Prove: $\overline{\mathrm{AB}}=\overline{\mathrm{DC}} ; \overline{\mathrm{AD}}=\overline{\mathrm{BC}}$.

Proof:

1. $\angle \mathrm{BAC} \cong \angle \mathrm{DCA}$.
2. $\angle \mathrm{BCA} \cong \angle \mathrm{DAC}$.
3. $\overline{A C} \cong \overline{A C}$.
4. $\triangle A B C \cong \triangle A D C$.
5. $\therefore \overline{A B}=\overline{D C} ; \overline{A D}=\overline{B C}$.
6. If two parallel lines are intersected by a transversal, then the pairs of alternate interior angles are equal.
7. Same as 1 .
8. Reflexive Property.
9. A.S.A.
10. C.P.C.T.

Theorem $12{ }^{\circ}$

Given: $\int \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$.
Prove: $\overline{P_{1} P_{2}}=\overline{P_{4} P_{3}} ; \overline{P_{1} P_{4}}=\overline{P_{2} P_{3}}$.
Proof: Let $P_{1} P_{2}$ lie on the x-axis with P_{1} at the origin and coordinates of P_{2} and P_{4} as shown in the figure. Then P_{3} is point $(a+b, c)$. By the distance formula:

1. $\overline{P_{1} P_{2}}=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a$.
2. $\bar{P}_{4} P_{3}=\sqrt{(a+b-b)^{2}+(c-c)^{2}}=\sqrt{a^{2}}=a$
3. $\overline{P_{1} P_{4}}=\sqrt{(c-0)^{2}+(b-0)^{2}}=\sqrt{b^{2}+c^{2}}$
4. $\overline{P_{2} P_{3}}=\sqrt{(c-0)^{2}+(a+b-a)^{2}}=\sqrt{b^{2}+c^{2}}$.
5. $\therefore \overline{P_{1} P_{2}}=\overline{P_{4} P_{3}} ; \overline{P_{1} P_{4}}=\overline{P_{2} P_{3}}$.

If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram.
Given: $\triangle \mathrm{ABCD}$ with diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ intersecting at 0 , so that

$$
\overline{\mathrm{AO}}=\overline{\mathrm{OC}} \text { and } \overline{\mathrm{BO}}=\overline{\mathrm{OD}}
$$

Prove: $A B C D$ is a \square.

Proof:

Statements
Reasons

1. $\overline{A O}=\overline{O C}$.
2. $\overline{B O}=\overline{O D}$.
3. $\angle 1=\angle 2$.
4. $\triangle A O B \cong \triangle C O D$.
5. $\angle 3=\angle 4$.
6. $\overline{A B} \| \overline{C D}$.
7. $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$.
8. $\therefore A B C D$ is a \qquad
9. Given .
10. Given -
11. Vertical angles .
12. S.A.S.
13. C.P.C.T.
14. If two lines form equal alternate interior angles with a transversal, the lines are parallel.
15. C.P.C.T.
16. If one side of a quadrilateral is equal and parallel to the opposite side, then the figure is a parallelogram.

Given: Quadrilateral $P_{1} P_{2} P_{3} P_{4}$ in which $P_{1} P_{3}$ bisect $P_{2} P_{4}$.
Prove: $P_{1} P_{2} P_{3} P_{4}$ is a \square.

Proof: Let $P_{1} P_{2}$ lie on the x-axis with P_{1} at origin; P_{2} the point $(c, 0)$ and (a, b) the point of intersection of $P_{1} P_{3}$ and $P_{2} P_{4}$. By the midpoint formula, P_{3} is point $(2 a, 2 b)$. Let P_{4} be point (x, y). Then $\frac{x+c}{2}=a ; x+c=2 a ; x=2 a-c ; \frac{0+y}{2}=b ;$ $y=2 b$. Hence P_{4} is the point ($2 \mathrm{a}-\mathrm{c}, 2 \mathrm{~b}$).

1. The slope of $\bar{P}_{1} P_{4}=\frac{2 b-0}{2 a-c-0}=\frac{2 b}{2 a-c}$
2. The slope of $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}=\frac{0-0}{c-0}=0$.
3. The slope of $\overline{P_{2} P_{3}}=\frac{2 b-0}{2 a-c}=\frac{2 b}{2 a-c}$.
4. The slope of $\overline{P_{3} P_{4}}=\frac{2 b-2 b}{2 a-2 a-c}=0$.
5. Since the slopes are equal, $\overline{P_{1} P_{2}} \| \overline{P_{4} P_{3}}$ and $\overline{P_{1} P_{4}} \| \overline{P_{2} P_{3}}$.
6. Hence $P_{1} P_{2} P_{3} P_{4}$ is a \square.

If two sides of a quadrilateral are congruent and parallel,
the quadrilateral is a parallelogram.
Given: Quadrilateral $A B C D$ with $\overline{A B}$ equal and parallel to $\overline{C D}$.
Prove: $A B C D$ is a
Δ

Proof: Draw diagonal AC.

Statements

1. $\overline{A C}=\overline{A C}$.
2. $\angle 1=\angle 2$.
3. $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$.
4. $\triangle A B C \cong \triangle C D A$.
5. $\angle 3=\angle 4$.
6. $\overline{A D} \| \overline{B C}$.
7. $\therefore \mathrm{ABCD}$ is a
8. Reflexive Property
9. Alternate interior angles of parallel lines $A B$ and $C D$.
10. Given .
11. S.A.S.
12. C.P.C.T.
13. If two lines form equal alternate interior angles with a transversal, the lines are parallel.
14. Opposite sides are parallel .

Given: Quadrilateral $P_{1} P_{2} P_{3} P_{4}$ with $\overline{P_{1} P_{2}}=\overline{P_{3} P_{4}}$ and $P_{1} P_{2} \| P_{3} P_{4}$.
Prove: $P_{1} P_{2} P_{3} P_{4}$ is a \square.
Proof: Let $P_{1} P_{2}$ lie on the x-axis with P_{1} at the origin and P_{2} the point ($\mathbf{a}, 0$).

1. The slope of $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}$ is 0 .
2. Since $\overline{P_{4} P_{3}} \| \overline{P_{1} P_{2}}$, the slope of $\overline{P_{4} P_{3}}=0$.
3. Let the coordinates of P_{4} be (b, d) and the coordinates of $P_{3},(c, d)$.

Lo Since $\overline{P_{1} P_{2}}=\overline{P_{3} P_{4}}=a, \sqrt{(c-b)^{2}}, c-b=a, c=a+b$.
5. The coordinates of P_{3} are $(a+b, d)$.
6. The slope of $\overline{P_{1} P_{4}}=\frac{d-0}{b-0}=\frac{d}{b}$.

The slope of $\overline{P_{2} P_{3}}=\frac{d-0}{a t b-a}=\frac{d}{b}$.
7. $\therefore \overline{\mathrm{P}_{1} \mathrm{P}_{4}} \| \overline{\mathrm{P}_{2} \mathrm{P}_{3}}$ and $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$ is a \square.

In a parallelogram, opposite angles are equal. Given: Parallelogram $A B C D, A B| | C D, A C| | B D$. Prove: $\angle A=\angle D, \angle B=\angle C$.

Proof:

1. $\angle a=\angle A$.
2. $\angle a=\angle b$.
3. $\angle A=\angle b$.
4. $\angle b=\angle D$.
5. $\therefore \angle A=\angle D$.
6. $\angle d=\angle C$.
7. $\angle d=\angle c$.
8. $\angle C=\angle C$.
9. $\angle d=\angle B$.
10. $\therefore \angle B=\angle C$.
11. Alternate interior angles are equal.
12. Vertical angles are equal.
13. Transitive Property .
14. Alternate interior angles are equal.
15. Transitive Property .
16. Alternate interior angles are equal.
17. Vertical angles are equal.
18. Transitive Property.
19. Alternate interior angles are equal.
20. Transitive Property .

Given: $\square P_{1} P_{2} P_{3} P_{4}, P_{1} P_{2}\left\|P_{3} P_{4} ; P_{1} P_{4}\right\| P_{2} P_{3}$.
Prove: $\angle \theta=\angle \beta \quad \angle \alpha=\angle \delta$.
Proof: Let $P_{1} P_{2}$ lie on the x-axis with P_{1} at the origin; P_{1} is the angle θ, P_{2} is the angle α, P_{3} is the angle β and P_{4} is the angle δ. By the slope formula:

1. m_{1} - slope of $P_{1} P_{4}$ and $P_{2} P_{3}$
m_{2} - slope of $P_{1} P_{2}$ and $P_{4} P_{3}$

$$
m_{2}=0
$$

2. $\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} \cdot m_{2}}=\frac{m_{1}-0}{1+m_{1} \cdot 0}=m_{1}$

$$
\tan \beta=\frac{m_{1}-m_{2}}{1+m_{1} \cdot m_{2}}=\frac{m_{1}-0}{1+m_{1} \cdot 0}=m_{1}
$$

3. Hence $\tan \theta=\tan \beta$.
4. Hence $\theta=\beta$ since θ and $\beta<180^{\circ}$.
5. $\tan \alpha=\frac{m_{2}-m_{1}}{1+m_{2} \cdot m_{1}}=\frac{0-m_{1}}{1+0 \cdot m_{1}}=-m_{1}$

$$
\tan \delta=\frac{m_{2}-m_{1}}{1+m_{2} \cdot m_{1}}=\frac{0-m_{1}}{1+0 \cdot m_{1}}=-m_{1}
$$

6. Hence $\tan \alpha=\tan \delta$, if α and $\delta<180^{\circ}$.
7. $\therefore \angle \alpha=\angle S$

In any parallelogram the diagonals bisect each other.
Given: $\triangle A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$.
Prove: E is the midpoint of $\overline{A C}$ and $\overline{B D}$.

Proof:

Statements
Reasons

1. $\triangle A B C \cong \triangle A D C$.
2. $\angle z=\angle y$.
3. $\angle a=\angle b$.
4. $\triangle A B C \cong \triangle B D C$.
5. $\angle w=\angle x$.
6. $\overline{A B}=\overline{D C}$.
7. $\triangle \mathrm{ABE} \cong \triangle \mathrm{DCE}$
8. $\overline{\mathrm{DE}}=\overrightarrow{\mathrm{BE}}$
$\overline{\mathrm{AE}}=\overline{\mathrm{CE}}$.
9. E is the midpoint of $\overline{A C}$ and $\overline{B D}$.
10. In a parallelogram a diagonal forms two congruent triangles .
11. C.P.C.T.
12. Vertical angles are equal
13. Same as 1.
14. C.P.C.T.
15. Opposite sides of a parallelogram are equal.
16. A.S.A.
17. C.P.C.T.
18. Definition of midpoint .

Given: $\square P_{1} P_{2} P_{3} P_{4}$, diagonals ${\overline{P_{1} P}}_{2}$ and ${\overline{P_{2} P}}_{4}$.
Prove: $\overline{P_{1} P_{3}}$ bisect $\overline{P_{2} P_{4}}$.
Proof: Let $P_{1} P_{2}$ lie on the x-axis with P_{1} at the origin and coordinates of P_{2} and P_{4} as shown in the figure. Then P_{3} is point $(a+b, c)$. By the midpoint formula:

1. $\overline{P_{1} P_{3}}=\left(\frac{0+a+b}{2}, \frac{0+c}{2}\right)=\left(\frac{a+b}{2}, \frac{c}{2}\right)$
2. $\bar{P}_{2} P_{4}=\left(\frac{a+b}{2}, \frac{0+c}{2}\right)=\left(\frac{a+b}{2}, \frac{c}{2}\right)$.
3. \therefore The midpoints of the two segments are the same point, the diagonals bisect each other.

In a parallelogram, a diagonal forms two congruent triangles.

Given: $\square \mathrm{ABCD}$ with diagonal BD .
Prove: $\triangle A B D \cong \triangle B D C$.

Proof:
Statements
Reasons

1. $\overline{A B}=\overline{D C}$.
2. $\overline{A D}=\overline{B C}$.
3. $\overline{B D}=\overline{B D}$.
4. $\triangle A B D \cong \triangle B D C$.
5. Opposite sides of a parallelogram are equal.
6. Same as 1 .
7. Reflexive Property
8. S.S.S.

Given: $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$ with diagonal $\overline{\mathrm{P}_{2} \mathrm{P}_{4}}$.
Prove: $\triangle P_{1} P_{2} P_{4} \cong \triangle P_{2} P_{4} P_{3}$.
Proof: Let $P_{1} P_{2}$ lie on the x-axis with P_{1} at the origin and coordinates of P_{2} and P_{4} as shown in the figure. Then P_{3} is point $(a+b, c)$. By the distance formula:

1. $\bar{P}_{1} P_{2}=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a$.
2. $\overline{P_{43} P_{3}}=\sqrt{(a+b-b)^{2}+(c-c)^{2}}=\sqrt{a^{2}}=a$.
3. $\bar{P}_{1} P_{4}=\sqrt{(c-0)^{2}+(b-0)^{2}}=\sqrt{c^{2}+b^{2}}$.

40 $\overline{P_{2} P_{3}}=\sqrt{(c-0)^{2}+(a+b-a)^{2}}=\sqrt{c^{2}+b^{2}}$
5. $\overline{P_{2} P_{4}}=\sqrt{(c-0)^{2}+(b-a)^{2}}=\sqrt{c^{2}+(b-a)^{2}}$
$6.1{\overline{P_{2} P} 4}={\overline{P_{2} P}}_{4}$.
7. $\therefore \triangle P_{1} P_{2} P_{4} \cong{ }_{2} P_{4} P_{3} P_{3}$.

The diagonals of a rectangle are equal.

Given: Rectangle $A B C D$, diagonals $A C$ and $B D$.

Prove: $\overline{A C}=\overline{B D}$.

Proof:
Statements
Reasons

1. $\angle D A B$ and $\angle A D C$ are right $\angle s$.
2. $\triangle D A B$ and $\triangle A D C$ are right triangles .
3. $\overline{A B}=\overline{D C}, \overline{A D}=\overline{B C}$.
4. $\triangle D A B \cong \triangle A D C$.
5. $\overline{A C}=\overline{B D}$.
6. Definition of rectangle .
7. Definition of right friangle .
8. Opposite side of a parallelogram are equal.
9. LL .
10. C.P.C.T.

Given: Rectangle $P_{1} P_{2} P_{3} P_{4}$, diagonals $\overline{P_{1} P_{3}}$ and $\overline{P_{2} P_{4}}$.
Prove: $\overline{P_{1} P_{3}}=\overline{P_{2} P_{4}}$.
Proof: Let $\overline{P_{1} P_{2}}$ lie on the x-axis and $\overline{P_{1} P_{4}}$ lie on the y-axis with coordinates of P_{1}, P_{2}, P_{3} and P_{4} as shown in the figure.

1. $\overline{P_{1} P_{3}}=\sqrt{(a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}$.
2. $\overline{P_{2} P_{4}}=\sqrt{(0-a)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}$.
3. $\overline{P_{1} P_{3}}=\overline{P_{2} P_{4}}$, hence the diagonals are equal.

Theorem 19

The diagonals of a rhombus are perpendicular.
Given: Rhombus RSTQ.
Prove: $\overline{\mathrm{RT}} \perp \overline{\mathrm{SQ}}$.

Proof:

Statements

1. $\overline{R X}=\overline{T X}$.
2. $\overline{Q X}=\overline{Q X}$.
3. $\overline{R Q}=\overline{T Q}$.
4. $\triangle R X Q \cong \triangle T X Q$.
5. $\angle 1=\angle 2$.
6. $\overline{R T} \perp \overline{S Q}$.

Reasons

1. The diagonals of a parallelogram bisect each other.
2. Reflexive Property
3. Definition of a rhombus.
4. S.S.S.
5. C.P.C.T.
6. Two lines that meet to form congruent adjacent angles are perpendicular.

Given: Rhombus $P_{1} P_{2} P_{3} P_{4}$.
Prove: $\overline{P_{1} P_{3}} \perp \overline{P_{4} P_{2}}$.
Proof: Let $\overline{P_{1} P_{2}}$ lie on the x-axis with P_{1} at the origin and coordinates of $P_{4}(b, c)$. Since $\bar{P}_{1} P_{4}=\sqrt{b^{2}+c^{2}}=\bar{P}_{1} P_{2} \quad P_{2}$ has coordinates $\left(\sqrt{b^{2}+c^{2}}, 0\right) \quad \cdot P_{3}$ has coordinates $\left(b+\sqrt{b^{2}+c^{2}}, c\right)$.

1. m_{1} slope of $P_{1} P_{3}$
m_{2} slope of $P_{4} P_{2}$.
2. $m_{1}=\frac{c-0}{b+\sqrt{b^{2}+c^{2}-0}}=\frac{c}{b+\sqrt{b^{2}+c^{2}}}$

$$
m_{2}=\frac{c-0}{b-\sqrt{b^{2}+c^{2}}}=\frac{c}{b-\sqrt{b^{2}+c^{2}}}
$$

3. $\left(\overline{P_{1} P_{2}}\right)\left(\overline{P_{4} P_{2}}\right)=\frac{c}{b+\sqrt{b^{2}+c^{2}}} \frac{c}{b-\sqrt{b^{2}+c^{2}}}=\frac{c^{2}}{b^{2}-\left(b^{2}+c^{2}\right)}=-1$.
4. $\bar{P}_{I_{3}} \perp \bar{P}_{42}$.

If the diagonals of a parallelogram are perpendicular, the parallelogram is a rhombus. Given: $\triangle A B C D ; A C \perp B C$.

Prove: $A B C D$ is a rhombus.

Proof:

1. $\overline{\mathrm{DE}}=\overline{\mathrm{BE}}$.
2. $\overline{C E}=\overline{C E}$.
3. $\angle C E D$ and $\angle C E B$ are
right angles.
4. $\triangle C E D \cong \triangle C E B$.
5. $\overline{D C}=\overline{B C}$.
6. $\therefore A B C D$ is a rhombus

Reasons

1. The diagonals of a parallelogram bisect each other.
2. Reflexive Property .
3. Perpendicular meet to form right angles .
4. S.A.S.
5. C.P.C.T.
6. A parallelogram with two consecutive sides congruent is a rhombus.

Given: $\square P_{1} P_{2} P_{3} P_{4}$ with ${\overline{P_{1} P_{3}}}_{\perp}^{\bar{P}_{2} \bar{P}_{4}}$.

Prove: $P_{1} P_{2} P_{3} P_{4}$ is a rhombus.

Proof: Let P_{1} be point $(0,0)$ with $P_{1} P_{2}$ lying on the x-axis and $P_{2}, P_{3} P_{4}$ as shown in the figure.

1. m_{1} - slope of $P_{1} P_{3}$
m_{2} - slope of $\mathrm{P}_{2} \mathrm{P}_{4}$.
2. $m_{1}=\frac{c-0}{a+b-0}=\frac{c}{a+b}$
$m_{2}=\frac{c-0}{b-a}=\frac{c}{b-a}$
3. Since ${\overline{P_{1}} P_{3}}_{\bar{P}_{2} P_{4}}$, $\quad \frac{c}{a+b}=\frac{a-b}{c} ; c^{2}=a^{2}+b^{2}$.
4. By the distance formula, $P_{4} P_{1}=\sqrt{b^{2}+c^{2}}=\sqrt{b^{2}+a^{2}-b^{2}}=\sqrt{a^{2}}=a$.
5. Since $\overline{P_{1} P_{2}}=a, \overline{P_{1} P_{2}}=\overline{P_{4} P_{1}}$.
6. Hence $P_{1} P_{2} P_{3} P_{4}$ is a rhombus.

The segments joining the midpoints of the opposite sides of a quadrilateral bisect each other.
Given: Quadrilateral $A B C D$ with midpoints Q, R, S, and T of $\overline{A B}, \overline{B C}$, $\overline{C D}, \overline{A D}$ respectively.

Prove: $\overline{T R}$ and $\overline{Q S}$ bisect each other.

Proof:
Statements

1. $\overline{\mathrm{RS}} \| \overline{\mathrm{BD}}$ and $\overline{\mathrm{RS}}=1 / 2(\overline{\mathrm{BD}})$.
2. $\overline{T Q} \| \overrightarrow{\mathrm{BD}}$ and $\overline{\mathrm{TQ}}=1 / 2(\overline{\mathrm{BD}})$.
3. $\overline{T Q}=\overline{R S}$.
4. $\overline{T Q} \| \overline{R S}$.
5. QRST is a parallelogram.
6. $\therefore \overline{T R}$ and $\overline{Q S}$ bisect each other.
7. The line segment joining the midpoints of two sides of a Δ is parallel to the third and equal to one half of it.
8. Same as 1 .
9. Transitive Property.
10. If two lines are parallel to a third line, they are parallel to each other .
11. If a pair of opposite sides of a quadrilateral are both parallel and equal, the quadrilateral is a parallelogram.
12. The diagonals of a parallelogram bisect each other.

Given: Quadrilateral $P_{1} P_{2} P_{3} P_{4}$ with midpoints P_{5}, P_{6}, P_{7} and P_{8} of
$\bar{P}_{1} P_{2},{\overline{P_{2}}}_{2},{\overline{P_{3}} P_{4}}^{P_{1} P_{4}}$ respectively.
Prove: $\bar{P}_{8} P_{6}$ and $\bar{P}_{5} P_{7}$ bisect each other.
Proof: Let coordinate axes and coordinates of P_{1}, P_{2}, P_{3} and P_{4} be as shown in the figure. By the midpoint formula:

1. $P_{5}=\left(\frac{0+2 a}{2}, \frac{0+0}{2}\right)=(a, 0)$.
2. $P_{6}=\left(\frac{2 a+2 b}{2}, \frac{0+2 c}{2}\right)=(a+b, c)$.
3. $P_{7}=\left(\frac{2 b+2 b}{2}, \frac{2 c+2 e}{2}\right)=(b+d, c+e)$.
4. $P_{8}=\left(0+2 d, \frac{0+2 e}{2}\right)=(d, e)$.
5. The midpoint of $\overline{\mathrm{P}_{8} \mathrm{P}_{6}}=\left(\frac{a+b+d}{2}, \frac{c+e}{2}\right)$
6. The midpoint of $\overline{P_{7} P_{5}}=\left(\frac{a+b+d}{2}, \frac{c+e}{2}\right)$
7. The midpoints lie on the same point. Hence $P_{8} P_{6}$ and $P_{5} P_{7}$ bisect each other.

Theorem 22

The median of a trapezoid is parallel to the bases.
Given: Trapezoid $A B C D, M$ is the midpoint of $\overline{A D}$.
N is the midpoint of $\overline{\mathrm{BC}}$.
Prove: $\overline{\mathrm{MN}} \| \overline{\mathrm{AB}}$ and $\overline{\mathrm{MN}} \| \overline{\mathrm{DC}}$.

Proof: Draw $\overline{F E} \| \overline{A D}$ through N. AFED is a \square.

Statements
Reasons

1. $\overline{\mathrm{CN}}=\overline{\mathrm{BN}}$.
2. $\angle \mathrm{CNE}=\angle \mathrm{FNB}$.
3. $\angle N G E=\angle N B F$.
4. $\triangle F N B \cong \triangle C N E$.
5. $\overline{F N}=\overline{E N}$.
6. $\overline{A D}=\overline{F E}$.
7. $\overline{D M}=1 / 2(\overline{A D})$.
8. $\overline{D M}=\overline{E N}$.
9. DMNE is a \square
10. $\overline{M N} \| \overline{\mathrm{DC}}$.
11. $\overline{A M}=1 / 2(\overline{A D})$.
12. $\overline{\mathrm{AM}}=\overline{\mathrm{FN}}$.
13. AMNF is a \square.
14. $\overline{\mathrm{MN}} \| \overline{\mathrm{AF}}$.
15. Definition of a midpoint .
16. Vertical angles are equal .
17. Alternate interior angles are equal.
18. A.S.A.
19. C.P.C.T.
20. Opposite sides of a parallelogram are equal.
21. Definition of midpoint .
22. Halves of equals are equal.
23. A quadrilateral with one pair of sides both equal and parallel is a parallelogram.
24. Opposite sides of a parallelogram are parallel.
25. Definition of midpoint .
26. Halves of equals are equal.
27. A quadrilateral with one pair of sides both parallel and equal is a parallelogram.
28. Definition of a parallelogram .

Given: Trapezoid $P_{1} P_{2} P_{3} P_{4}$ with median ${\overline{P_{5}} P_{6}}$.
Prove: $\overline{P_{5} P_{6}} \| \overline{P_{1} P_{2}}$ and $\overline{P_{5} P_{6}} \| \overline{P_{3} P_{4}}$.
Proof: Let the axes and coordinates be as shown in the figure. By the midpoint formula P_{5} is the point (b, c) and P_{6} is the point $(a+d, c)$.

1. m_{1} - slope of $P_{1} P_{2}$ and $P_{3} P_{4}$

$$
m_{2}-\text { slope of } P_{5} P_{6}
$$

2. $m_{1}=\frac{0-0}{2 a-0}=0$, $\frac{2 c-2 c}{2 d-2 d}=0$

$$
m_{2}=\frac{c-c}{a+d-b}=0
$$

3. Hence $m_{1}=m_{2}$.
4. Since the three slopes are equal, $\overline{P_{5} P_{6}} \|{\overline{P_{1} P_{2}}}$ and ${\overline{P_{5}} P_{6}}_{\| \bar{P}_{3} P_{4}}$.

The median of a trapezoid is parallel to the bases and equal to half their sums.
Given: Trapezoid $A B C D$ with the median $\overline{E F}$.
Prove: $\overline{\mathrm{EF}} \| \overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$ and $\overline{\mathrm{EF}}=1 / 2(\overline{\mathrm{AB}}+\overline{\mathrm{DC}})$

Proof:

$\frac{\text { Stateme }}{\text { 1. Draw } \overline{\mathrm{DF}} \text {. }}$
2. Extend $\overline{\mathrm{DF}}$ to meet $\overline{\mathrm{AB}}$ produced at G .
3. $\triangle F C D \cong \triangle F B G$.
4. $\overline{D F}=\overline{F G}$ and $D C=B G$
5. $\overline{E F} \| \overline{A G}$.
6. $\overline{E F} \| \overline{D C}$.
7. $\overline{E F}=1 / 2(\overline{A G})$ or $1 / 2(\overline{A B}+\overline{B G})$
8. $\therefore \overline{\mathrm{EF}}=1 / 2(\overline{\mathrm{AB}}+\overline{\mathrm{DC}})$.

1. Through two points, one and only one straight line can be drawn.
2. A straight line may be extended to any required length.
3. A.S.A.
4. C.P.C.T.
5. The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to one half of it.
6. Two lines parallel to a third line are parallel to each other .
7. Same as 5 .
8. Substitution .

Given: Trapezoid $P_{1} P_{2} P_{3} P_{4}$ with median $\overline{P_{5} P_{6}}$.
Prove: ${\overline{P_{5} P}}_{5}=1 / 2\left(\bar{P}_{1} P_{2}+\overline{P_{4} P_{3}}\right)$.
Proof: Let the axes and coordinates be as shown in the figure. By the midpoint formula, P_{5} is point (b, c) and P_{6} is point $(a+d, c)$. By the distance formula:

1. $\bar{P}_{4} P_{3}=\sqrt{(2 d-2 b)^{2}+(2 c-2 c)^{2}}=\sqrt{(2 d-2 b)^{2}+0}=2 d-2 b$.
2. $\overline{P_{1} P_{2}}=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{(2 a)^{2}+0}=\sqrt{(2 a)^{2}}=2 a$.
3. $\overline{P_{5} P_{6}}=\sqrt{(a+d-b)^{2}+(c-c)^{2}}=\sqrt{(a+d-b)^{2}+0}=a+d-b$
4. ${\overline{P_{1} P}}_{2}+{\overline{P_{4} P}}_{4}=2 a+2 d-2 b=2(a+d-b)$.
5. Hence $\overline{P_{5} P_{6}}=1 / 2\left(\overline{P_{1} P_{2}}+\overline{P_{4} P_{3}}\right)$.

Theorem 24

Base angles of an isosceles trapezoid are congruent. Given: Trapezoid $A B C D$ with $\overline{D C} \| \overline{A B}$ and $\overline{A D}=\overline{B C}$. Prove: $\angle \mathrm{A}=\angle \mathrm{B}$.

Proof:

Figure 24

Statements

1. Draw $\overline{D X} \perp \overline{A B}$ and $\overline{C Y} \perp \overline{A B}$.
2. $\overline{D X} \| \overline{C Y}$.
3. $\overline{\mathrm{DC}} \| \overline{\mathrm{AB}}$
4. $X Y C D$ is a \square
5. $\overline{D X}=\overline{C Y}$.
6. $\overline{A D}=\overline{B C}$.
7. $\triangle A X D \cong \triangle B Y C$.
8. $\angle A=\angle B$ \qquad
9. Through a point not on a line exactly one line can be drawn \perp to the given line.
10. In a plane, lines \perp to the same line are parallel.
11. Given .
12. Definition of a
13. Opposite sides of a are equal.
14. Given .
15. HL .
16. C.P.C.T.

Given: Isosceles trapezoid $P_{1} P_{2}{ }_{3}{ }_{3} P_{4}$ with $P_{4} P_{3} \| P_{1} P_{2}$ and $\overline{P_{1} P_{4}}=\overline{P_{2} P_{3}}$. Prove: $\quad \angle \theta=\angle \beta$.

Proof: Let $P_{1} P_{2}$ be on the x-axis with P_{1} at the origin and coordinates of P_{2} and P_{4} as shown in the figure. Then P_{3} is the point (a-b,c).

1. $m_{1}-$ slope of $P_{1} P_{2}$ and $P_{4} P_{3}, \quad \frac{0-0}{a-0}=0, \frac{c-c}{a-b-b}=0$
m_{2} - slope of $P_{1} P_{4}, \frac{c-0}{b-0}=\frac{c}{b}$
$m_{3}-$ slope of $\mathrm{P}_{2} \mathrm{P}_{3}, \quad \frac{c-0}{a-b-a}=-\frac{c}{b}$
2. $\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}=\frac{\frac{c}{b}-0}{1+0 \cdot \frac{c}{b}}=\frac{c}{b}$
$\tan \beta=\frac{m_{1}-m_{3}}{1+m_{1} m_{3}}=\frac{0-\left(\frac{-c}{b}\right)}{1+0\left(-\frac{c}{b}\right)}=\frac{c}{b}$
3. $\tan \theta=\tan \beta$.
4. Hence $\theta=\beta$ since θ and $\beta<180^{\circ}$.

The diagonals of an isosceles trapezoid are equal. Given: Isosceles trapezoid $A B C D, \overline{A D}=\overline{B C}$.

Prove: $\overline{A C}=\overline{B D}$.

Figure 25
Proof:

1. $\overline{A D}=\overline{B C}$
2. $\overline{A B}=\overline{A B}$.
3. $\angle A=\angle B$.
4. $\triangle A B C \cong \triangle A B D$.
5. $\therefore \overline{A C}=\overline{B D}$.
6. Given .
7. Reflexive Property .
8. Base angles of an isosceles trapezoid are equal.
9. S.A.S.
10. C.P.C.T.

Given: Isosceles trapezoid $P_{1} P_{2} P_{3} P_{4} ; \overline{P_{1} P_{4}}=\overline{P_{2} P_{3}}$
Prove: $\overline{P_{1} P_{3}}=\overline{P_{2} P_{4}}$

Proof: Let the coordinate axes and coordinates be as shown in the figure. Let $P_{1} P_{4}$ and $P_{2} P_{3}$ be congruent legs in trapezoid $P_{1} P_{2} P_{3} P_{4}$. By the distance formula:

1. $\bar{P}_{1} P_{4}=\sqrt{(d-0)^{2}+(b-0)^{2}}=\sqrt{d^{2}+b^{2}}$
2. $P_{2} P_{3}=\sqrt{(a-c)^{2}+(0-b)^{2}}=\sqrt{(a-c)^{2}+b^{2}}$
3. Since $\overline{P_{1} P_{4}}=\overline{P_{2} P_{3}}, \sqrt{d^{2}+b^{2}}=\sqrt{(a-c)^{2}+b^{2}}$

$$
\begin{aligned}
d^{2}+b^{2} & =(a-c)^{2}+b^{2} \\
d^{2} & =(a-c)^{2} \\
d & =a-c
\end{aligned}
$$

Hence the coordinates of P_{4} are $(a-c, b)$
4. $\overline{P_{1} P_{3}}=\sqrt{(c-0)^{2}+(b-0)^{2}}=\sqrt{c^{2}+b^{2}}$
5. $\bar{P}_{2} P_{4}=\sqrt{(a-c-a)^{2}+(b-0)^{2}}=\sqrt{c^{2}+b^{2}}$
6. $\therefore{\overline{P_{1} P_{3}}}^{P_{2}}{\overline{P_{2} P_{4}}}$.

If the diagonals of a trapezoid are congruent, the trapezoid
is isosceles.
Given: Trapezoid $A B C D ; \overline{A C}=\overline{B D}$
Prove: $\overline{A D}=\overline{B C}$.

Proof:

1. Draw $\overline{D X} \perp \overline{A B}$ and $\overline{C Y} \perp \overline{A B}$.
2. $\overline{D X} \| \overline{C Y}$.
3. $\overline{D C} \| \overline{A B}$.
4. XYCD is a \triangle
5. $\overline{D X}=\overline{C Y}$.
6. $\overline{A C}=\overline{B D}$
7. $\triangle A C Y \cong \triangle B D X$
8. $\angle C A B=\angle D B A$.
9. $\overline{A B}=\overline{A B}$.
10. $\triangle C A B \cong \triangle D B A$
11. $\overline{A D}=\overline{B C}$.
12. Through a point not on a given line exactly one \perp can be drawn to the line.
13. In a plane, two lines \perp to the same line are parallel.
14. Definition of a trapezoid.
15. Definition of a parallelogram.
16. Opposite sides of a parallelogram are congruent.
17. Given
18. HL .
19. C.P.C.T.
20. Reflexive Property .
21. S.A.S.
22. C.P.C.T.

Given: Trapezoid $P_{1} P_{2} P_{3} P_{4}$; with $\overline{P_{1} P_{2}} \| \overline{P_{4} P_{3}}$ and $\overline{P_{1} P_{3}}=\overline{P_{2} P_{4}}$. Prove: $\overline{P_{1} P_{4}}=\overline{P_{2} P_{3}}$.

Proof: Let the axes and coordinates be as shown in the figure. By the distance formula:

1. $\overline{P_{1} P_{3}}=\sqrt{(d-0)^{2}+(c-0)^{2}}=\sqrt{d^{2}+c^{2}}$.
2. $\overline{P_{2} P_{4}}=\sqrt{(a-b)^{2}+(0-c)^{2}}=\sqrt{(a-b)^{2}+c^{2}}$.
3. Since ${\overline{P_{1} P}}_{3}=\vec{P}_{2} \vec{P}_{4}, \quad \sqrt{d^{2}+c^{2}}=\sqrt{(a-b)^{2}+c^{2}}$

$$
\begin{aligned}
d^{2}+c^{2} & =(a-b)^{2}+c^{2} \\
d^{2} & =(a-b)^{2} \\
d & =(a-b)
\end{aligned}
$$

Hence the coordinates of P_{3} are $(a-b, c)$.
5. $\overline{P_{1} P_{4}}=\sqrt{(b-0)^{2}+(c-0)^{2}}=\sqrt{b^{2}+c^{2}}$.
$P_{2} P_{3}=\sqrt{(a-b-a)^{2}+(c-0)^{2}}=\sqrt{b^{2}+c^{2}}$.
6. $\overline{P_{1} P_{4}}=\overline{P_{2} P_{3}}$.
7. Hence the trapezoid is isosceles

The quadrilateral formed by joining, in order, the midpoints of the sides of an isosceles trapezoid is a rhombus.

Given: Trapezoid $A B C D ; \overline{A D}=\overline{B C} ; E, F, G$ and H are midpoints of $\overline{A B}$, $\overline{B C}, \overline{C D}$ and $\overline{A D}$.

Prove: EFGH is a rhombus .

Proof:

Figure 27

Statements

1. EFGH is a \square.
2. $\overline{\mathrm{AH}}=1 / 2(\overline{\mathrm{AD}}), \overline{\mathrm{BF}}=1 / 2(\overline{\mathrm{BC}})$.
3. $\overline{\mathrm{AH}}=\overline{\mathrm{BF}}$.
4. $\angle A=\angle B$
5. $\overline{A E}=\overline{B E}$
6. $\triangle A B H \cong \triangle B E F$.
7. $\overline{\mathrm{HE}}=\overline{\mathrm{FE}}$
8. EFGH is a rhombus.
9. The figure formed by joining, in order, the midpoints of the sides of a quadrilateral is
a. Δ
10. Definition of midpoint .
11. Transitive Property .
12. Base angles of an isosceles trapezoid are equal.
13. Definition of a midpoint .
14. S.A.S.
15. C.P.C.T.
16. A \square with two consecutive sides equal is a rhombus.

Figure 27^{\prime}
Given: Isosceles trapezoid $P_{1} P_{2} P_{3} P_{4}$ with midpoints P_{5}, P_{6}, P_{7} and P_{8} of ${\overline{P_{1} P}}_{2},{\overline{P_{2} P_{3}}}_{3},{\overline{P_{3} P}}_{4}$ and ${\overline{P_{1} P}}_{4}$.
Prove: $P_{5} P_{6} P_{7} P_{8}$ is a rhombus.
Proof: Let the axes and coordinates be as shown in the figure. By the midpoint formula, P_{5} is point $(a, 0), P_{6}$ is point $(2 a-b, c), P_{7}$ is point ($\mathrm{a}, 2 \mathrm{c}$) and P_{g} is point (b, c).

1. m_{1} - slope of $P_{5} P_{6}, P_{7} P_{8}$

$$
m_{2}-\text { slope of } P_{5} P_{8}, P_{6} P_{7}
$$

2. $m_{1}=\frac{c-0}{2 a-b-a}=\frac{c}{a-b}, \frac{2 c-c}{a-b}=\frac{c}{a-b}$

$$
m_{2}=\frac{0-c}{a-b}=\frac{-c}{a-b}, \frac{c-2 c}{2 a-b-a}=\frac{-c}{a-b}
$$

3. Since their slopes are equal, $P_{5} P_{6} \| P_{7} P_{8}$ and $P_{6} P_{7} \| P_{8} P_{5}$.

Hence the figure is a \square.
4. ${\overline{P_{5} P}}_{6}=\sqrt{(a-b)^{2}+c^{2}}$ and ${\overline{P_{6} P}}^{P_{7}}=\sqrt{(a-b)^{2}+c^{2}}$
5. ${\overline{P_{5} P}}_{6}={\overline{P_{6}} 77 \text {, hence the } \square \text { is a rhombus. } . ~ . ~}_{\square}$

Theorem 28
If a line parallel to the bases of a trapezoid bisects one leg,
it bisects the other leg also.
Given: Trapezoid $A B C D$ with $\overline{P Q} \| \overline{A B}$ and P the midpoint of $\overline{A D}$ Prove: Q bisects $\overline{\mathrm{BC}}$.

Proof: Draw $\overline{C E} \| \overline{A D}$ and $\overline{B F} \| \overline{A D}$. Extend $\overline{P Q}$ to F.

1. $\overline{C E} \| \overrightarrow{B F}$.
2. $\angle C G Q=\angle B F Q$.
3. $\angle G Q C=\angle B Q F$.
4. $\angle \mathrm{GCQ}=\angle \mathrm{FBQ}$
5. $\overline{P A}=\overline{B F}$ and $\overline{P D}=\overline{G C}$.
6. $\overline{P A}=\overline{P D}$
7. $\overline{B F}=\overline{G C}$.
8. $\triangle G Q C \cong \triangle B Q F$.
9. $\overline{B Q}=\overline{Q C}$.
10. $\therefore Q$ bisects $\overline{\mathrm{BC}}$
11. Two lines parallel to the same line are parallel.
12. Alternate interior angles .
13. Vertical angles .
14. Two angles of a triangle are equal, so third is equal.
15. Opposite sides of a parallelogram are equal
16. Definition of midpoint
17. Transitive Property .
18. A.S.A.
19. C.P.C.T.
20. Definition of bisector.

Given: Trapezoid $P_{1} P_{2} P_{3} P_{4}$ with $\overline{P_{5} P_{6}} \| \overline{P_{1} P_{2}}$ and P_{5} the midpoint of $\overline{P_{1} P_{4}}$. Prove: P_{6} bisects $\overline{P_{2} P_{3}}$.

Proof: Let coordinate axes and coordinates be as shown in the figure. By the midpoint formula P_{5} is point (b, c).

1. Slope of $P_{1} P_{2}$ is 0 ; since $\overline{P_{5} P_{6}} \|{\overline{P_{1} P}}_{2}, \overline{P_{5} P_{6}}$ slope is 0 .
2. The equation of $\overleftrightarrow{P_{5} P_{6}}$ is $y-c=m(x-b)$

$$
m=0
$$

$$
y-c=0
$$

$$
y=c .
$$

3. The slope of $\stackrel{\mathrm{P}_{2} \mathrm{P}_{3}}{ }=\frac{2 c-0}{2 d-2 a}=\frac{2 c}{2 d-2 a}=\frac{2(c)}{2(d-a)}=\frac{c}{d-a}$.
4. The equation of $\overleftrightarrow{\mathrm{P}_{2} \mathrm{P}_{3}}$ is $\mathrm{y}=\frac{c}{\mathrm{~d}-a}(\mathrm{x}-2 \mathrm{a})$.
5. Intersection of ${\stackrel{F}{F_{5}}}_{6} \mathbf{\lambda}{\stackrel{\leftrightarrow}{P_{2}}}_{3} ; \quad c=\frac{c}{d-a}(x-2 a)$

$$
\begin{aligned}
d-a & =x-2 a \\
x & =d+a \\
y & =c .
\end{aligned}
$$

6. $\therefore P_{6}$ coordinates are $(a+d, c)$.
7. By the midpoint formula the midpoint of $P_{2} P_{3}$ is $\left(\frac{2 d+2 a}{2}, c\right)=d+a, c$
8. Hence P_{6} bisects $\overline{\mathrm{P}_{2} \mathrm{P}_{3}}$.

CHAPTER V

Circles

In this chapter, the two methods will be applied to several theorems related to circles. First, the synthetic method will be applied to prove a theorem, then the analytic method will be used to prove the same theorem in sequence. Theorems proved by the synthetic method will be denoted by unprime numbers while the same theorems being proved by the analytic method will be denoted by prime numbers. Example, Theorem 29 and Theorem 29°.

A line through the center of a circle perpendicular to a chord bisects the chord.

Given: Circle 0 with $\overline{A B}$ through center $0 \perp$ to chord $C D$ at E. Prove: $\overline{C E}=\overline{E D}$.

Figure 29

Proof:

1. Draw radii $O C$ and $O D$.
2. $\overline{O C}=\overline{O D}$.
3. $\overline{O E}=\overline{O E}$.
4. $\overline{O E} \perp \overline{C D}$.
5. Right $\triangle O E C \cong$ Right $\triangle O E D$
6. $\therefore \overline{C E}=\overline{E D}$.
7. Construction .
8. Radii of the same circle are equal.
9. Reflexive Property .
10. Given
11. HL .
12. C.P.C.T.

Given: Circle 0 with $\overline{P_{1} P_{2}}$ through center $P_{6} \perp$ to chord $P_{3} P_{4}$ at P_{5}.
Prove: $\overline{P_{3} P_{5}}=\overline{P_{5} P_{4}}$
Proof: Let the origin be at the center of the circle. Let P_{1} and P_{2} intersect the y-axis. Let the coordinates be as shown in the figure. By the distance formula:

1. ${\bar{P}{ }_{3} P_{5}}=\sqrt{(0+a)^{2}+(-b+b)^{2}}=\sqrt{a^{2}}=a_{0}$
2. $\overline{P_{5} P_{4}}=\sqrt{(a-0)^{2}+(-b+b)^{2}}=\sqrt{a^{2}}=a$.
3. $\therefore \overline{P_{3} P_{5}}=\overline{P_{5} P_{4}}$

If a line is tangent to a circle, it is perpendicular to the radius drawn to the point of contact. Given: $\overline{A B}$ tangent to circle O at C and $O C$ a radius. Prove: $\overline{A B} \perp \overline{O C}$.

Figure 30
Proof:

Statements

1. From D, any point on $\overline{A B}$ except C, draw DO.
2. D is outside the circle 0 .
3. $\therefore \overline{O D}>\overline{O C}$, or $\overline{O C}$ is the shortest line segment from 0 to $\overline{A B}$.
4. $\therefore \overline{O C} \perp \overline{A B}$ or $\overline{A B} \perp \overline{O C}$.
5. Construction .
6. Definition of a tangent.
7. Any point outside a circle is more that a radius distance from the center.
8. The shortest distance from a given exterior point to a line is the 1 distance from the point to the line.

Given: $\overline{P_{1} P_{2}}$ tangent to circle Q at P_{3} and $\bar{P}_{4} P_{3}$ a radius.
Prove: ${\overline{P_{1} P}}_{2} \perp \overline{P_{4} P_{3}}$.
Proof: Let the origin be at the center of the circle. Let P_{1} and P_{2} intersect the x and y axes equal distance from P_{4} (the center). Let the coordinates of P_{1}, P_{2} and P_{4} be as shown in the figure. By the midpoint formula, P_{3} is $(a,-a)$. By the slope formula:

1. The slope of $\overline{P_{1} P_{2}}=m_{1}=\frac{0+2 a}{2 a-0}=\frac{2 a}{2 a}=1$.
2. The slope of $\overline{P_{4} P_{3}}=m_{2}=\frac{0+a}{0-\frac{a}{a}}=-\frac{a}{a}=-1$
3. $m_{1} \cdot m_{2}=-1$

$$
\text { 4. } \therefore \overline{P_{1} P_{2}} \perp \overline{P_{4} P_{3}}
$$

In a circle or in equal circles, chords equidistant from the center are equal.

Given: Circle 0 and chords $A B$ and $C D$ with $\overline{O E} \perp \overline{A B}$ and $\overline{O F} \perp \overline{C D}$; distance $\overline{O E}=$ distance $\overline{O F}$.

Prove: $\overline{A B}=\overline{C D}$.

Figure 31
Proof:

1. Draw radii $O B$ and $O D$.
2. $\overline{O B}=\overline{O D}$.
3. $\overline{O E}=\overline{O F}$.
4. $\overline{O E} \perp \overline{A B}$ and $\overline{O F} \perp \overline{C D}$.
5. Right $\triangle O E B \cong$ Right $\triangle O F D$
6. $\therefore \overline{E B}=\overline{F D}$.
7. $\overline{E B}=1 / 2(\overline{A B})$ and $\overline{F D}=1 / 2(\overline{C D})$.
8. $\therefore \overline{A B}=\overline{C D}$.
9. Construction .
10. Radii of same circle are equal.
11. Given .
12. Given .
13. HL .
14. $C_{0} P_{0} C . T$.
15. A line through the center of a circle \perp to a chord bisects the chord ${ }^{1}$.
16. Doubles of equals are equal .

Figure 31'
Given: Circle 0 and chords $P_{1} P_{2}$ and $P_{3} P_{4}$ with $\overline{P_{5} P_{7}} \perp \bar{P}_{1} P_{2}$ and $\overline{\mathrm{P}_{5} \mathrm{P}_{6}} \perp \overrightarrow{\mathrm{P}_{3}{ }_{4}} ;$ distance $\overline{\mathrm{P}_{5} \mathrm{P}_{7}}=$ distance $\overline{\bar{P}_{5}{ }^{\mathrm{P}} 6}$.

Prove: $\overline{P_{1} P_{2}}=\overline{P_{3} P_{4}}$.
Proof: Let the origin be at the center of the circle 0. Let P_{I} and P_{3} intersect the x-axis and P_{2} and P_{4} intersect the y-axis. Let P_{1}, P_{2}, P_{3} and P_{4} coordinates be as shown in the figure By the distance formula:

1. $\bar{P}_{1} P_{2}=\sqrt{(0+a)^{2}+(a-0)^{2}}=\sqrt{a^{2}+a^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}$.
2. $\bar{P}_{3}^{P}=\sqrt{(a-0)^{2}+(0+a)^{2}}=\sqrt{a^{2}+a^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}$.
3. $\overline{P_{1} P_{2}}=\overline{P_{3} P_{4}}$.

Tangents to a circle from an outside point are equal. Given: Circle 0 with $\overline{P A}$ and $\overline{P B}$ tangent at A and B respectively;

Figure 32
Proof:

1. Draw $O A$ and $O B$.
2. $\overline{O A}=\overline{O B}$.
3. $\angle A$ and $\angle B$ are right angles.
4. $\overline{O P}=\overline{O P}$
5. Right $\triangle O A P \cong$ Right $\triangle O B P$.
6. $\therefore \overline{P A}=\overline{P B}$.
7. Construction .
8. Radii of the same circle are equal.
9. A tangent is \perp to the radius drawn to the point of contact .
10. Reflexive Property .
11. HL
12. C.P.C.T.

Figure 32'
Given: Circle 0 with $\overline{P_{5} P} 4$ and $\overline{P_{5} P_{2}}$ tangent at P_{1} and P_{2} respectively; $\mathrm{P}_{4} \mathrm{P}_{3}$ drawn.

Prove: $\overline{P_{3} P_{1}}=\overline{P_{3} P}$.
Proof: Let the origin be at the center of the circle 0 . Let the coordinates of P_{1}, P_{2}, P_{3} and P_{4} be as shown in the figure. Let the point P_{3} lie on the x-axis. By the distance formula:

1. $\overline{P_{3} P_{1}}=\sqrt{(a-2 a)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}$
2. $\overline{P_{3} P_{2}}=\sqrt{(2 a-a)^{2}+(0+b)^{2}}=\sqrt{a^{2}+b^{2}}$
3. $\therefore \overline{P_{3} P_{1}}=\overline{P_{3} P_{2}}$.

The emphasis throughout this paper was to give an understanding of the basic principles of approaching High School Geometry from an analytic geometry approach. Considerable care was taken with the proofs of the main theorems, so that we may develop an appreciation of the logical structure of a mathematical proof.

There are few subjects that afford a richer or more varied supply of interesting and thought-provoking problems than does analytic geometry. Yet many of us fail to reach a point where we can solve these problems. A major part of the difficulty arise from the fact the new subject matter and method is so abundant in the analytic geometry that there is that little time left to devote to problem solving.

An alternative view is that the most important outcomes from such an approach are (1) understanding of the essentials of developments (2) complete understanding of the results (3) ability to use the results in any problem situations. The teacher adopting such a view would make the first proofs completely in class and then do progressively less proving as the class advances.

The values to be derived from this approach may be divided into two groups, (1) intrinsic values and (2) preparation. Intrinsic values are the qualities of the subject that make its study result in increased problem-solving ability, increased appreciation of geometry as a useful and rigorous science and increased understanding of the relations among things mathematical. Analytic geometry as preparation for further mathematics and science.
Hyatt, Herman R. Modern Plane Geometry for College Students. New York: The Macmillan Company, 1967.
Kinney, Lucien B. Teaching Mathematics in The Secondary School. New York: Rinehart and Company, Inc., 1952.
Mason, Thomas E. Brief Analytic Geometry. Boston: Ginn and Company, 1957.
McCoy, Neal H. Analytic Geometry. New York: Rinehart and Company, Inc., 1955.
Morgan, Frank M. Geometry: Plane-Solid-Coordinate. New York: Houghton Mifflin Company, 1965.

Nichols, Eugene D. Modern Geometry. New York: Holt, Rinehart and Winston, Inc., 1968.

Weeks, Arthur Wo A Course in Geometry Plane and Solid. Boston: Ginn and Company, 1961.

