Prairie View A\&M University
Digital Commons @PVAMU

All Theses

8-1969

A Fundamental Theorem in Linear Programming

George E. Higgs

Follow this and additional works at: https://digitalcommons.pvamu.edu/pvamu-theses

AFUDAMENIA TEOREM IN LINEAR PROCRAMMNG

A FUNDAMENTAL THEOREM IN LINEAR PROGRAMMING

A Thesis
Submitted to the Graduate School of Prairie View Agricultural and Mechanical College

in Partial Fulfillment of the Degree of Master of Science by

George E. Figs August, 1969

PRAIRIE VIEW AGRICULTURAL AND MECHANICAL COLLEGE GRADUATE SCHOOL

WORKSHOP SHEET III \& IV
THESIS (OR ESSAY) REPORT
*TURN IN THIS FORM WITH YOUR COMPLETED THESIS OR ESSAY

A Thesis

by

George E. Higgs

(Head of Department)
(inember)
(Member)
(Member)

August, 1969

ACKNOWLEDGMENTS

The writer wishes to express his appreciation and esteemed gratitude to Mrs. E. E. Thornton for her professional guidance, assistance and untiring patience during the writing of this paper.

The writer also wishes to express his sincere thanks to Dr. A. D. Stewart, Mr. Willie Taylor and my other instructors in mathematics for giving me enlightment, and for making the many long hours of study worthwhile.

DEDICATION

This paper is dedicated to my wife Olivette, and my two children, Cherie and Marcus who so willingly and untiringly have made my entire pursuits for an education possible.

TABLE OF CONTENTS

CHAPTER PAGE
INTRODUCTIONS 1
I DEFINITIONS AND TERMINOLOGY 4
II PROPERTIES OF IINEAR INEQUALITIES 8
III MAIN THEOREM 15
IV APPLICATIONS 19
BIBLIOGRAPHY 24

INTRODUCTION

Linear Programming is a recent empiral tool made available to the market world. It has already found many important applications and offers exciting opportunities in the future. It can serve as an important management aid to marketing firms.

Linear Programming originated during World War II as a method for specifying routes that would minimize travel distance for the limited shipping facilities available to the Allies; for determining the best method of allocating scarce labor, machine tools, and plant facilities to produce war goods; and for similar purposes. Since the end of the war, the method has become highly refined and is being used by a large number of private firms and research organizations.

Linear Programming techniques involve the maximization or minimization of linear function, subject to linear inequalities. The linear function ordinarily is a profit or cost function.

Linear Programming can be applied as to procedure for selecting a beginning plan which is consistent with sets of two or more inequalities defining the upper and
lower limit to real activities or unused resources. Since linear programming is a fairly new concept in the solution of certain types of problems, a thorough understanding about these properties must be comprehended by the teacher of high school algebra.

In the teaching of high school algebra the method that is used to find the maximum or minimum of a function $f(X)=A X+b$ over a polygonal convex set is as follows: Find the corner points of the set, there will be a finite number of them; substitute the coordinates of each into the function; the largest of the value so obtained will be a maximum of the function and the smallest value will be the minimum of the function. Knowing that this method always brings about a practical solution in a.ll cases, the question brought to the writer's mind is why does the maximum or minimum always occur at a corner point?

The primary objective of this paper is to show that given a linear function f defined over a polygonal convex set, its maximum and minimum will occur at the corner points.

In Chapter I we have basic definitions and theorems that will be used throughout this paper.

In Chapter II we show conditions under which a system of inequalities in R^{2} has a solution and in fact
we show that if a solution exists it is a convex set. Furthermore we assume that a system of inequalities in R^{n} has a solution and show this solution is convex. In Chapter III we prove two lemmas that are to be used in the proof to the main theorem. We also show in the main theorem that if given a linear function f define over a polygonal set, its maximum or minimum will occur at a corner point.

In Chapter IV we show two examples that are applicable to the main theorem. Although these applications will give the reader some idea of the adaptability of linear-programming methods, it is not the writer's purpose to describe the complete range of linear-programming applications. These applications were selected mainly for their ability to illustrate the techniques of formulating a linear-programming model.

CHAPTER I

DEFINITIONS AND TERMINOLOGY

1.0 Definition: Any ordered pair of real numbers (x, y) is called a vector. Definition: $R^{n}=\left\{x \mid\left(x^{1}, x^{2} \quad, x^{n}\right)\right.$ where $x^{i} \in R$ for $i=1,2, \cdots, \bar{n}$
1.2 Definition: If $V=(x, y)$, then the norm of V is designated by $\|v\|$ and is defined by $\|v\|=\sqrt{x^{2}+y^{2}}$.
1.3
1.4
1.5

Definition: If each of x and y is an element of R^{n}, then

1) the sum of x and y is an element of R^{n}, denoted by $x+y=\left(x^{1}+y^{1}, x^{2}+y^{2}, \cdots x^{n}+y^{n}\right)$
2) the dot product of x and y is an element

$$
\begin{aligned}
& \text { of } R \text { denoted by } \\
& x y=\left[\begin{array}{llll}
x^{1}, & x^{2}, & \cdots & x^{n}
\end{array}\right]\left[\begin{array}{c}
y^{1} \\
y^{2} \\
\vdots \\
y^{n}
\end{array}\right]=x^{1} y^{1}+x^{2} y^{2}+\cdots+x^{n} y^{n}
\end{aligned}
$$

Definition: An (men) matrix A is a rectangular array of real numbers denoted symbolically by

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12---} a_{1 n} \\
a_{21} & a_{22---} a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2---} a_{m n}
\end{array}\right]
$$

having n rows and m columns. If $n=1, A$ is a column vector and $\mathrm{m}=1$, A is a row vector.

Definition: Greater Than $(>)$; For every pair x, y of real numbers, $x>y$ if, and only if, $\mathrm{x}-\mathrm{y}$ is a positive number.

Definition: Less Than (\leq); For every pair x, y of real numbers $x<y$ if, and only if $x-y$ is a negative number.
1.9 Definition: Let $f: R^{n} \rightarrow R$ and $x_{0} \in R^{n}$, then $f\left(x_{0}\right)$ is a maximum of f if for each $y \in R^{n}$, $f(y) \leq f\left(x_{0}\right)$.
2.0 Definition: Let $f: R^{n} \rightarrow R$ and $x_{0} \in R^{n}$, then $f\left(x_{0}\right)$ is a minimum of f if for each $y \in R^{n}$, $f(y) \geq f\left(x_{0}\right)$.

Definition: The statement that $[\bar{A} ; \bar{B}]$ is a linear path from the point A to the point B in the R^{n} means; there is a continuous function
f from $[\overline{0}, 1\rangle$ into R^{n} such that if t is an
element of $[\overline{0}, 1]$, then $f(t)=(1-t) A+t B$ 。
$[A ; B]^{\prime}=\{f(t) \mid 0 \leq t \leq 1\}$ is called the
carrier of the linear path from A to B.
2.2 Let C denote a subset of R^{n}, then the set C is said to be convex provided that if A and B are points in C, the $[A ; B]^{\prime}$ is a subset of C.

Example:
H_{1} : C is a closed circular disc with point P
as its center.
$H_{2}: C=\{x \mid\|X-P\| \leqslant r$
C C C is a convex set.
Proof:
Let A and B be points in C and $[A ; B]$ be the
linear path from A to B and X a point in $[A ; B]^{\prime}$, then there exist $t \in[0,1]$ such that $X=(1-t)$
$A+t B$.

$$
\begin{aligned}
d(P, X) & =\|X-P\|, X=(1-t) A+t B \text { and } P=(1-t) P+t P \\
& =\|(1-t) A+t B-L(1-t) P+t P\rangle \| \\
& =\|(1-t)(A-P)+t(B-P)\| \\
& \leq\|(1-t)(A-P)\|+\|t(B-P)\| \\
& =\|(1-t)\| A-P\|+\| t\| \| B-P \|
\end{aligned}
$$

Since $A-P \leqslant r$ and $B-P \leqslant r$ implies that

$$
(1-t) r+t r=r
$$

Therefore C is a convex set.

PROPERTIES OF IINEAR INEQUALITIES

We shall not prove that under certain conditions a system of inequalities has a solution, but we will observe the following:

If the associated system of equalities,

has a solution, then so does the system of inequalities. It is interesting to note that given the system

$$
a_{11} x_{1}+a_{12} x_{2} \geq c_{1}
$$

$$
a_{21} x_{1}+a_{22} x_{2} \geq c_{2}
$$

in case $\frac{a_{11}}{a_{21}}=\frac{a_{12}}{a_{22}}$
the associated system

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}=c_{2}
\end{array}\right.
$$

has no solution, but the system of inequalities may have a solution.

We shall state in the following theorem the necessary and sufficient conditions for such a system to have a solution.

Theorem I

$H_{1}:\left\{\begin{array}{l}a_{1} x_{1}+b_{1} x_{2} \geq c_{2} \\ a_{1} x_{1}+b_{1} x_{2} \geq c_{1}\end{array} \quad c_{1} \neq c_{2}\right.$
C: The system in H_{1} has a solution.

Proof:

Since $c_{1} \neq c_{2}$, then either $c_{2}>c_{1}$ or $c_{1}>c_{2}$
Suppose $c_{2}>c_{1}$
Let $K=\left\{\left(x_{1}, x_{2}\right) \mid a_{1} x_{1}+b_{1} x_{2}=c_{2}+d\right\}$ where $d \geq 0$
We will show that K is a solution set in H_{1} :
$a_{1} x_{1}+b_{1} x_{2}=c_{2+\alpha} \geq c_{2} \Rightarrow a_{1} x_{1}+b_{1} x_{2} \geq c_{2}$
$a_{1} x_{1}+b_{1} x_{2}=c_{2}+d>c_{1}+d \geq c_{1}$
Therefore K is a solution set to H_{1}

Theorem II
$H_{1}:\left\{\begin{array}{l}a_{1} x_{1}+b_{1} x_{1} \geqslant c_{1} \\ a_{1} x_{1}+b_{1} x_{1} \leq c_{2}\end{array}\right.$
C: There exist a solution set to H_{1} ff $c_{2} \geq c_{1}$.
Assume a solution set exists
Prove: $\quad c_{1} \leqslant c_{2}$
Proof:

1. $\left\{\begin{array}{l}a_{1} x_{1}+b_{1} x_{1}-c_{1} \geq 0 \\ a_{1} x_{1}+b_{1} x_{1}-c_{2} \leq 0\end{array}\right.$
2. $\left\{\begin{array}{l}a_{1} x_{1}+b_{1} x_{1}-c_{1} \geq 0 \\ -a_{1} x_{1}-b_{1} x_{1}+c_{2} \geq 0\end{array}\right.$

Divide second inequality by -1 .
3. $c_{2}-c_{1} \geq 0$

$$
\text { Therefore } c_{2} \geq c_{1}
$$

Assume $c_{1} \leqslant c_{2}$, show there exist a solution.

1. Since $c_{1} \leq c_{2}, \quad c_{1} \leq \frac{c_{1}+c_{2}}{2} \leq c_{2}$
2. Let $H=\left\{\left(x_{1}, x_{2}\right) \left\lvert\, a_{1} x_{1}+b_{1} x_{2}=\frac{c_{1}+c_{2}}{2}\right.\right\}$
3. Claim H is a solution set to H_{1}.
4. Let $K=\frac{c_{1}+{ }^{c} 2}{2}$, Then $a_{1} x_{1}+b_{1} x_{2}=k$
5. $x_{1}=\frac{k-b_{1} x_{2}}{a_{1}} \quad a_{1} \neq 0$ and $x_{2}=\frac{k-a_{1} x_{1}}{b_{1}} \quad b_{1} \neq 0$
6. $x_{1}\left(\frac{k-b_{1} x_{2}}{x_{1}}\right)+x_{1}\left(\frac{k-a_{1} x_{1}}{x_{1}}\right) \geq c_{1}$

$$
\begin{aligned}
& \text { } f_{1}\left(\frac{K-b_{1} x_{1}}{z_{1}}\right)+x_{1}\left(\frac{K-a_{1} x_{2}}{b_{1}}\right) \leq c_{2}
\end{aligned} \text { 7. }\left\{\begin{array}{l}
\mathbb{K}-b_{1} x_{2}+K-a_{1} x_{1} \geq c_{1} \\
K-b_{1} x_{2}+K-a_{1} x_{1} \leq c_{2}
\end{array}\right\} \begin{aligned}
& \text { 8. } \begin{array}{l}
2 K-b_{1} x_{2}-a_{1} x_{1} \geq c_{1} \\
2 K-b_{1} x_{2}-a_{1} x_{1} \leq c_{2}
\end{array} \\
& \text { 9. }\left\{\begin{array}{l}
\not\left(\frac{c_{1}+c_{2}}{Z}\right)-b_{1} x_{2}-a_{1} x_{1} \geq c_{1} \\
\not\left(\frac{c_{1}+c_{2}}{Z}\right)-b_{1} x_{2}-a_{1} x_{1} \leq c_{2}
\end{array}\right. \\
& \text { 10. }\left\{\begin{array}{l}
c_{2}-b_{1} x_{1}-a_{1} x_{1} \geq 0 \\
c_{1}-b_{1} x_{2}-a_{1} x_{1} \leq 0
\end{array}\right.
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& c_{2} \geq b_{1} x_{2}+a_{1} x_{1} \\
& c_{1} \leq b_{1} x_{2}+a_{1} x_{1}
\end{aligned}
$$

Theorem III

$\mathrm{H}_{2}: \quad \mathrm{AX} \geqslant \mathrm{C}$
H_{3} : K is solution set for the inequality H_{2}.
C: K is a convex set

Proof:

Let R and S be points in K and $[\bar{R} ; \underline{S}]$ be the linear path R to S and let X be a point in $[\bar{R}: S\rangle^{\prime}$, then there exist a $t \in[0 ; 1]$ such that $X=(1-t) R+t S$. Since the dimensions in H_{1} are known it can be written in the following form:

1. A is called the coefficient matrix of the system of inequality.
2. C is called the constent vector of the system.
3. $A[(1-t) R+t \underline{S}]=$
4. $\operatorname{AR}(1-t)+\operatorname{ASt} \leq$
5. $C(1-t)+C t=C$

Therefore K is a convex set.

Theorem IV

$$
\begin{aligned}
& a_{1} x_{1}+b_{1} x_{2} \geq c_{1} \\
& a_{2} x_{1}+b_{2} x_{2} \geq c_{2} \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

H_{2} : S is a positive Solution to H_{1}.
C: $\quad \mathrm{S}$ is a convex set.
Proof:
Let I and \mathbb{M} be points in S and $[\bar{I} ; \underline{S}]$ is a linear path from I to \mathbb{M} and if K is a point in $\angle \bar{L} ; \mathbb{M} Z^{\prime}$ there exist a. $t \in[0,17$ such that $K=(1-t) L+M t$ is a positive number.
Let $K=\left(x_{1}, x_{2}\right)$

1. $\binom{x_{1}}{x_{2}}=(1-t)\binom{1_{1}}{1_{2}}+t\binom{m_{1}}{m_{2}}$
2. $\binom{x_{1}}{x_{2}}=\binom{(1-t) 1_{1}}{(1-t) 1_{2}}+\binom{t m_{1}}{t m_{2}}$

$$
x_{1}=(1-t) 1_{1}+t_{1}
$$

3. $x_{2}=(1-t) 1_{2}+\operatorname{tm}_{2}$
4. Substituting in inequality $\# 1$ in H_{1}, we have

$$
\left.a_{1} L(1-t) 1_{1}+\operatorname{tm}_{1}\right]=a_{1} 1_{1}(1-t)+a_{1} m_{1} t \geq c(1-t)+c t=c_{1} .
$$

5. Substituting in inequality $\# 2$ in H_{1}, we have

$$
a_{2}\left[(1-t) 1_{2}+t m_{2} J=a_{2} 1_{2}(1-t)+a_{2} m_{2} t \geq c(1-t)+c t=c_{2}\right.
$$

6. Substituting in inequality \#3, in H_{1} we have

$$
(1-t) 1_{1}+\operatorname{tm}_{1} \geq 0(1-t)+t 0=0
$$

7. Substituting in inequality \#4, in H_{1}, we have

$$
(1-t) 1_{2}+\operatorname{tm}_{2} \geq 0(1-t)+t 0=0
$$

Therefore S is a convex set.

MAIN THEOREM

Lemma I:

$H_{1}: \quad[A, B]$ is an interval in R
$H_{2}: \quad f(x)=a x+b$ is defined on $[A, B\rangle$, where A and B are in R $H_{3}: \quad f(A) \leqslant f(B)$
$C:$ If $Z \in[A, B]$, then $f(A) \leq f(Z) \leq f(B)$
Proof:
Let A and B be an interval and Z is a point in $[A, B]$ such that $Z=(1-t) A+t B$, and $t \in[0,1]$, there exist a $f(Z) \in[f(A) ; f(B)]$ such that $f(Z)=a Z+b$.

1. $f(A)=a A+b$ and $f(B)=a \cdot B+b$
2. $Z=(1-t) A+t B, \quad 0 \leq t \leq 1$
3. $f(Z)=a[(1-t) A+t B 7+b$
4. $=a A(1-t)+a B t+b \leq a B+b=f(B)$
5. $\quad f(Z)=a[(1-t) A+t B 7+b=$
6. $\quad a \cdot A(1-t)+t B+b \geq$
7. $\quad a \cdot A+b=f(A)$

Therefore $f(A) \leq f($ 名 $) \leq f(B)$

Lemma II
$H_{1}: \quad[A ; B]$ is a linear path in R^{n}
$H_{2}: \quad f:[\mathbb{A} ; B]^{\prime} \rightarrow R$ defined by
$f(X)=C X+b$, where $X=\left(x_{1} x_{2} \ldots x_{n}\right)$ and $C=\left(c_{1} c_{2} \ldots c_{n}\right)$
$b \in R$, then $f(X)=c_{1} x_{1}+c_{2} x_{2} \quad \cdots \cdot c_{n} x_{n}+b$
$H_{3}: \quad f(A) \leq f(B)$
$C:$ If $Z \in[A ; B]^{\prime}$, then $f(A) \leqq f(Z) \leqslant f(B)$
Proof:

1. Let A and B be points in R^{n} and Z is a point in $\angle \bar{A} ; B]^{\prime}$ such $Z=(1-t) A+t B$ and $t \in[\overline{0}, 1]$, then $f(Z)=C Z+b$ 。 We must show that $f(Z) \in[\bar{f}(A) ;(B)]$.
2. $A=\left(a_{1}, a_{2}, \ldots a_{n}\right)$
$B=\left(b_{1}, b_{2}, \ldots . b_{n}\right)$
$z=\left(z_{1}, z_{2}, \ldots . b_{n}\right)$
3. $f(A)=C A+b=c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}+b$
$f(B)=C B+b=c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{n} b_{n}+b$
$f(z)=C Z+b=c_{1} z_{1}+c_{2} z_{2}+\cdots+c_{n} z_{n}+b$
4. $f(Z)=c_{1}\left[(1-t) a_{1}+t b_{1}\right]+b+c_{2}\left[(1-t) a_{2}+t \underline{b} \bar{T}+b+\ldots\right.$
$+c_{n}\left[(1-t) a_{n}+t b_{n}\right]+b$
$=c_{1} a_{1}(1-t)+c_{1} b_{1} t+b+c_{2} a_{2}(1-t)+c_{2} b_{2} t+b+c_{n} a_{n}$
$(1-t)+c_{n} b_{n} t+b$
$\geq c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{n} a_{n}+b=f(A)$
5. $f(Z)=c_{1}\left[(1-t) a_{1}+t b_{1}\right]+b+c_{2}\left[(1-t) a_{2}+t b_{2}\right]+b+\ldots$

$$
\begin{aligned}
+c_{n} & \left.\Gamma(1-t) a_{n}+t b_{n}\right]+b \\
= & c_{1} a_{1}(1-t)+c_{1} b_{1} t+b+c_{2} a_{2}(1-t)+c_{2} b_{2} t+b+c_{n} a_{n}(1-t) \\
& +c_{n} b_{n} t+b \\
\leq & c_{1} b_{1}+c_{2} b_{2}+\cdots++c_{n} b_{n}+b=f(B)
\end{aligned}
$$

Therefore $f(A) \leq f(Z) \leqslant f(B)$

Theorem

H_{1} : K is a convex set
$\mathrm{H}_{2}: \quad \mathrm{X}$ is a point in K
H_{3} : f is non-constant linear function defined on K . $f(X)=A X+b$ for X in $K . A=\left(a_{1}, a_{2} \ldots a_{n}\right)$

$$
x=\left(x_{1}, x_{2}, \ldots x_{n}\right) \text { and } b \in R
$$

H_{4} : $f\left(X_{0}\right)$ is a minimum for some $X_{0} \in K$

$$
X_{0} \text { is a corner point of } K
$$

Proof:

1. Suppose X_{o} is not a corner point in K, since K is a convex set, there exist a point X_{0} in K such that $X_{0} \in\left[\bar{x}_{0} ; x_{0}^{\prime}\right]^{\prime}$. Extend $\left.\left[\bar{x}_{0} ; X_{0}^{\prime}\right]\right]$ so that it intersects the boundaries of K at points P and Q either $f(P) \geq f(Q)$ or $f(Q) \geq f(P)$. Assume $f(P) \leq f(Q)$, then $f(P) \leqslant f\left(X_{0}\right) \leq f(Q) \Rightarrow f\left(X_{0}\right)=f(P)$ since $f\left(X_{0}\right)$ is a. minimum.
2. If P is a corner point we know $P \neq X_{0}$, but $f(P)=f\left(X_{0}\right)$ Therefore since f is linear it must be constant, but this leads to a contradiction of H_{1}. Hence the theorem holds.
3. If P is not a corner point, then $p \in\left[\bar{R} ; S 7^{\prime}\right.$ where R and S are corner points in K.
4. Assume $f(R) \leq f(S)$, then $f(R) \leq f(P) \leq f(S)$. According to statement $1 f\left(X_{0}\right)=f(P)$, then we have $f(R) \leq f\left(X_{0}\right) \leq f(S)$
5. $\quad f(R) \leq f\left(X_{0}\right) \Rightarrow f\left(X_{0}\right)$ is not a minimum which leads to a contradiction.

Therefore X_{0} is a corner point.

CHAPTER IV

APPLICATIONS

Example \#1

To fill his vitamin needs, a man is to buy 100 pills which must contain at least 750 units of $B_{1}, 600$ units of B_{2}, and 280 units of B_{6}. At 5 cents per pill, he can buy pill I, which contains 10 units of $B_{1}, 5$ of B_{2} and 3 of B_{6}. At 6 cents per pill, he can buy pill II which has 12 units of $B_{1}, 2$ of B_{2} and 11 of B_{6}. Also, pill III, which contains 6 units of $B_{1}, 7$ of B_{2}, and 2 of B_{6}, is available at 4 cents per pill. How many of each kind of pill should he use in order to fulfill his needs at the lowest cost.

Solution

$$
\begin{aligned}
\text { Let } \mathrm{x} & =\text { number of pills at } 5 \phi \\
\mathrm{y} & =\text { number of pills at } 6 \phi \\
100-\mathrm{x}-\mathrm{y} & =\text { number of pills at } 4 \phi
\end{aligned}
$$

Total cost to be minimized is $5 x+6 y+400-4 x-4 y$ or x $2 y 400$.

	pill I (5 6$)$	pill II (6ϕ)	pill III (4ϕ)	Amount Needed
B_{1}	10	12	6	750
B_{2}	5	2	7	600
B_{6}	3	11	2	280

a. $10 x+12 y+600-6 x-6 y \geq 750 ; 4 x+6 y \geq 150 ; 2 x+3 y \geq 75$
b. $5 x+2 y+700-7 x-7 y \geq 600 ;-2 x-5 y \geq-100 ; 2 x+5 y \leqslant 100$
c. $3 x+11 y+200-2 x-2 y \geq 280 ; x+9 y \geq 80$
a. $x \geq 0$
e. $y \geq 0$
f. x and y must be integers

Solving the system of inequalities, we find that the vertices as listed on the chart below.

Vertex	$x+2 y+400$	Cost
$\left(18 \frac{3}{4}, 12 \frac{1}{2}\right)$	$18 \frac{3}{4}+25+400$	$443 \frac{3}{4}$ or $\$ 4.44$
$\left(38 \frac{6}{13}, 4 \frac{8}{13}\right)$	$38 \frac{6}{13}+9 \frac{3}{13}+400$	$447 \frac{9}{13}$ or $\$ 4.48$
$\left(29,5 \frac{2}{3}\right)$	$29+11 \frac{1}{3}+400$	$440 \frac{1}{3}$ or $\$ 4.40$

(29, $5 \frac{2}{3}$) is vertex of minimum value
Therefore $x=29$ and $y=6$
29 pills can be purchased at $5 \varnothing$
6 pills can be purchased at 6ϕ
65 pills can be purchased at $4 \varnothing$
The 100 pills can be purchased for $\$ 4.40$.

Example \#2

A poultry farmer raises chickens, ducks, and turkeys and has room for 500 birds on his farm. While he is willing to have a total of 500 birds, he does not want more than 300 ducks on his farm at any one time. Suppose that a chicken costs $\$ 1.50$, a duck $\$ 1.00$, and a turkey $\$ 4.00$ to raise to maturity. Assume that the farmer can sell chickens for $\$ 3.00$, ducks for $\$ 2.00$, and turkeys for T dollars each. He wants to decide which kind of poultry to raise in order to maximize his profit.
a. Let x be the number of chickens and y be the number of ducks he will raise, then $500-\mathrm{x}-\mathrm{y}$ is the number of turkeys to be raised. What is the convex of possible values of x and y which satisfy the restrictions.

Solution:

$$
\begin{aligned}
y & \leq 300 \\
x+y & \leq 500 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

b. Find the expression for the cost of raising x chickens, y ducks, and (500-x - y) turkeys. Find the total amount he gets for these birds. Compute the profit which he would make under the circumstances.

Solution:

$$
\begin{aligned}
& S(x, y)=3.00 x+2.00 y+T(500-x-y) \\
& C(x, y)=1.50 x+1.00 y+4(500-x-y) \\
& P(x, y)=1.50 x+1.00 y+(T-4)(500-x-y)
\end{aligned}
$$

c. If $T=\$ 6.00$, show that to obtain the maximum profit the farmer should raise only turkeys.

Solution:
$P(0,0)=1.50(0)+1.00(0)+(6-4)(500-0-0)=\$ 1000.00$
d. If $T=\$ 5.00$, show that he should raise only chickens and find a maximum profit.

Solution:

$$
P(500,0)=1.50(500)+1.00(0)+(5-4)(500-500-0)=\$ 750.00
$$

e. If $T=\$ 5.50$, show that he can raise any combination of chickens and turkeys and find a maximum profit.

Solution:

$$
\begin{aligned}
& P(500,0)=1.50(500)+1.00(0)+(5.5-4)(500-500-0)=\$ 750.00 \\
& P(0,0)=1.50(0)+1.00(0)+(5.5-4)(500-0-0)=\$ 750.00 \\
& \text { f. Show if the price of turkeys drops below } \\
& \quad \$ 5.50 \text {, the farmer should raise only chickens. } \\
& P(0,300)=1.50(0)+1.00(300)+(5.49-4.00)(500-0-300)=\$ 598.00 \\
& P(200,300)=1.50(200)+1.00(300)+(5.49-4.00)(500-200-300) \\
& =\$ 650.00 \\
& P(0,0)=1.50(0)+1.00(0)+(5.49-4.00)(500-0-0)=\$ 745.00 \\
& P(500,0)=1.50(500)+1.00(0)+(5.49-4.00)(500-500-0) \\
& =\$ 750.00
\end{aligned}
$$

g. Show that if the price is above $\$ 5.50$ he should raise only turkeys.

$$
\begin{aligned}
& P(0,0)=1.50(0)+1.00(0)+(5.51-4.00)(500-0-0)=\$ 755.00 \\
& P(500,0)=1.50(500)+1.00(0)+(5.51-4.00)(500-500-0)=\$ 750.00 \\
& P(200,300)=1.50(200)+1.00(300)+(5.51-4.00)(500-200-300) \\
& =\$ 650.00 \\
& P(0,300)=1.50(0)+1.00(300)+(5.51-4.00)(500-0-300)=\$ 602.00
\end{aligned}
$$

BIBLIOGRAPHY

Dolciani, Mary P. Modern Introductory Analysis. New York: Houghton Mifflin Company, 1964.

Gass, Saul I. Linear Programming. New York: McGrawHill Book Company, 1964 .

Heady, Earl 0. Linear Programming Methods. Ames, Iowa: The Iowa State University Press, 1964.

Johnson, Richard E. Modern Algebra. Reading Massachusetts: Addison-Wesley Inc., 1962.

Kemeny, John G. Finite Mathematics. Englewood Cliffs, New Jersey: Prentice-Hill Inc., 1957.

