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CHAPTER 1

This paper is to develope and show some of the relations between

coefficient and roots of polynomials of degree N.

The following definitions, facts and assumed theorems will be used

throughout this paper.

Definition 1: An integral domain D is a set of elements a,b,c,...

having two operations, + and - and an equal relation, which satisfies

the following postulates.
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3.

4.

6.

Closure: For each pair a,b of elements of integral
domain D, a + b and a + b are also elements of the
integral domain D and are unique.

Commutative: For each pair a,b of elements of the
domain D, a+b=b+aanda-b=hH-a

Associative: For each set of three elements a,b,c in D
a+(b+c)=(a+b)+canda-(b-c)=¢(a-+b)-c
Additive Identity (Zero): There exist an element Z in D
such that for every element b, b+ z =z 4+ b = b and
bez=z+bm=z,

Multiplicative Identity (Unity): There exist an element
U in D such that for every element b, b « u =y « b = b,
Additive Inverse: For each element b in D there exist
an element b* such that b + b* = b* 4+ b = 2z where z is
the zero of postulate 4.

Cancellation: If a and b are elements in D, and 1f ¢c # 2



is an element such that ¢ - a=c¢c - b then a = b,
8. Distributive: If a,b and c are elements in D, then
as(b+*c)=a-b+ta-c,and (a+b)c=a--c+

b - c.

Definition 1.1: A field F has the same postulates as the integral
domain with the addition of multiplicative inverse. Multiplicative
Inverse: b # z there exist a corresponding element b"1 such that
beb et peu,

Definition I.2: A polynomial over a field C 1s denoted by F(x) =
a X" + a1x"'] + ... a,, a # 0, can also be used to define a function
of real or complex variables over a field C.

Definition 1.3: A polynomial F(x) over D[x] is irreducible over
D (or prime) if and only 1f it has no proper divisors in D[x]: F(x) is
reducible over D if it has a proper divisor in D[x].

Definition 1.4: Let F(x) be a polynomial of degree N over a field
F. We say that the equation F(x) = 0 is an equation over the field F,
and N is the degree of the equation.

Definition 1.5: If F(x) | g(x) and g(x) | F(x), then F(x) and g(x)
are associates.

Definition 1.6: S denotes sum or product of roots depending

on the subscript of S.

1.6 (a): $, = negative sum of the roots.

1.6 (b): Sz = positive sum of the product of roots
taken 2 at a time.

1.6 {¢): S, = negative sum of the product of the

roots taken 3 at a time.



1.6 (d): S, = (-1)' (sum of the product of the
roots taken 1 at a time).
1.6 (e): $%* (-1)" (product of the roots).
Definftion I.7: A polynomial F is divisible by polynomial g 1f
g # 0 and there exists a polynomial h such that F = gh.

Fact 1.8: Every polynomial of degree N over the field of complex
numbers has all its roots in the field of complex numbers. That is the
only irreducible, non constant polynomials over the field of complex
numbers are those of degree 1.

Fact 1.9: The only frreducible polynomial over the field of real

numbers are of degree 1 and 2.

Theorem 1: The factor theorem. If Xy is a root of the equation,

F(x) = a O e aln_ix""1 e ta = 0, then x ~ Xq divides F(x) and

n
conversley.

Theorem 1.2: The number of positive roots of F(x) = 0 cannot
exceed the number variations of signs in F(x).

Theorem 1.3: Every polynomial F(x) of degree n, with real coef-
ficient denoted by F(x) = lox" + alx""1 toota, # O can be factor
in two n linear factor.

Theorem 1.4: If F(x) # O has real coefficients of F[x] and a root
a + bi where a and b are real and b # 0 of multiplicity I:.'tMna-bj
is a root of F(x) of multiplicity k.

Theorem 1.5: If F(x) = aox“ T o a, g * 3 where a_,
8ys cees @ g, @ are integers and a, $#0, a, # 0, has a rational root

qu, where p and q are relatively prime integers, then p s a factor of



a and q a factor of a,:

Theorem 1. 6: If F (x) 1s a polynomial of degree one or greater,
with coefficients in field C of complex numbers, then the equation
F (x) = 0 has at least one root in C.

Theorem 1. 7: If M (x) 1s a H.C.F. of F (x) and g (x), r 1s a
common root of F (x) and g (x) 1f and only if r s a root of M (x).



CHAPTER I1
ARITHMETIC IN POLYNOMIALS

Definition II. 1: An infinite sequence of elements of a set S
is a function whose domain is the set of nonnegative integers and
whose range is a subject of S. Such a sequence is represented by the
symbol (le. ays 8,5 .«+), where each aieS for every nonnegative
integer 1.

Definition II. 2: If F is a field, a polynomial over F is an
infinite sequence of elements in F such that only a finite number of
terms are different from zero. The set of all polynomials over F is
referred to as the domain of polynomials over F and s denoted F[x].

Definition II. 3: If F is a fleld and if x = (2 , 3y, a,, ...)
and y = (bo’ bl' bz. «s+) are any two elements of F[x], then (1) x =
y only if a; = b, for every nonnegative integer i. (2) xSy = (co. Cye
Cys ces) WEre ¢y = a; + b, for every nonnegative integer 1. (3) Py =
(dys dys dyy ...) where d; = a PbS aPb, .S ... a,Pb, for every non-
negative integer 1.

Definition II. 4: The notation 155 ain means the sum of all terms
‘1”3 which can be formed with {1 and j nonnegative integers whose sum is
M.

Example II. 4: The terms of ,o% ja.Pb, can be written out as
follows:

:a.lej = aPb,Sa,Pb,Sa,Pb,Sa Pb,Sa P

A comparison of definitions of addition and multiplication of poly-

nomfals written as sequences with familiar rules for operations with
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polynomials written in terms of x will reveal that these operations
are identical.

The five basic laws of Algebra

(1) U+Vv=V+U

(2) v-VvV=y .U

(3) U+ (V+W)=(U+V)+W
(4) U-(V-W)=(-V)-H
(5) U« (V+UH)=U. .V+U . W

Now we will establish 5 basic laws of algebra using the operations

S and P,
(1.1) USV = VSU
(2.2) UPV = VPU
(3.3) us(vsw) = (USV)SW
(4.4) uP(vPW) = (UPV)PHW
(5.5) UP(vSW) = (UPV) S (UPW)

It is necessary to use different signs for addition and multiplica~
tion. Otherwise, we find ourselves assuming things in algebra that have
only been proved for arithmetic. There is every reason to believe that
laws (1.1) through {5.5) will work for polynomials because the operations
S and P are defined so that they give a formal statement of what is done
in traditional algebra. The idea here is to show that an algebra can be
built on any arithmetic. The arithmetic used here is over field F [x],
and a set of symbols obeying the axioms of a field.

The following is a proéf of laws (1.1) through (5.5) for polynomials
over a field F [x]. In these proofs it will become apparent that many of
the steps taken in algebraic calculations can be justified by appeal to
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to the commutative, associative and distributive laws, starting by
assuming these laws for the arithmetic of the field F[x]. It will
be shown by establishing (1.1) through (5.5) that these same prin-
ciples also hold for polynomials over F{x].
Theorem (1.1): USY = VSU
Proof:
L‘t u - (.op D.I.n‘ .ll) Iﬂd v L (b°| ...bn' oon)
Usv - (.osbo' (IR EE ] ‘n“nl o'l)
= (bQS%. TSN bns'n' ves) = VSU

Theorem 2.2: WPV = YPU
Proof:
WV e (2, ...2, eed) P Abos vee by one)
=aPb, cees 155-:: a;Pb, aes)
« (bPa ., «.on I bj"i’ vas)
= (bo’ chsn bn’ cee) P (ao. vees By RS |
= WU

Theorem 3.3: US(VSW) = (USV)SW
Proof:
Let W = (c 0 covn €0 voi)

US(vsw) = (ao. cees B ssx) 9 (bOSco. .
r {los [b°$c°]. seny InS%-[bnScn]. as)
= ([a Sb,] Seys «uvs [ Sb 7 8c s o00)
= (t°Sh°. cees ,SD o, san b B (co, cer Cpo v}
= (Usv) sw

vey bnscn. ato)



Theorem 4.4: P(WH) & (UPV)PU
Proof:

w(WH) = (lo. vees B, eov) PFIB s aeen B

€pe =eel]
= (850 cves Bgs vo) P (BPCL, suns gofay BSPC, Ll)

= (aPbPeys «oes 13§Sk-n aPbPey, ...
Similarly,
(WPV)PW = [(ag, «oos @ps o0} P (Dgs sovs Bps +00)] P (cgs cnucps ess)
= (aPbys <ves 1535" aPbys woa) P oegs cees €ps vil)
= (aPbPec s vous 1S§Sk-n ‘1%_1":5:' P |
Theorem 5.5: WP (VSR) = (UPV) S (WPW)
Proof:
W(VSH) = (a s «vvn 2, o+ ) P[(bo. vees by sl 8 (€gs ++eCps 202)]
= (ao, cvvs Aps asa) P (hOSco. ees b SC, snid
= ap [bSc,1s «ens 'l!j-n(':lp (bJScJ). 23 )
* (aPb SaPey, +.us ,sj.ﬂ(aipbjs.,nj), sva)
= (aPbSaPc . ..us 155_,‘ aPbys 15jen®iPCys ov)
= (855 oo ps oes) P (bgs veus by id) S (ag, oen,
as viny P (eo. cans Cos “io s}
= (PV) S (WPW)

s dan} P (co. heh

Theorem 1I. 5 x" Px" = x™"
Proof:
Let ¥" be (no. s gy oes lm) where a_ = 1, and all other
terms are zero's.
Let x" be (bys bys by, «uub) where b = 1, and all other

terms are zero's.
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tet X Px" be (co. Cys €5 wees ck) where ¢ = 1, and all
other terms are zero's. Then ¢, -120 aPby 10 € is zero
if a; = 0, or b, s zero, but 2, # 0 if1=mand b, ,

# 0. Therefore the sum of (1= m) and (k - 1 = n) is

(k = nSm). Hence €y ® Cpgn» then ¢ = 1. Therefore

JF Px“ = x"“.



CHAPTER III
ROOTS AND COEFFICIENTS OF POLYNOMIALS

Theorem III. If f(x) and g(x) are in F[x], and the f(x) # 0,
g{x) irreducible over F, and f(x) and g(x) have a common root, then
f(x) = g"(x) h(x) where n is a positive integer, h(x) 1s in F[x],

and g{x) and h(x) have no common roots.

Proof:

Let M(x) be HCF of f(x) and g(x) in F[x]. Every common
root of f(x) and g(x) is a root of M(x) by theorem 1.7.
Since f(x) and g(x) have a common root, M(x) is of degree
at least one. But g(x) is irreducible over F, so that
its only factor in F[x] are constants and associates by
Definftion 1.3 and 1.5. Since M(x) 1s a factor of f(x),
g(x) which is associate M(x) is also a factor of f(x).

Let h be the highest power of g(x) whikh divides f(x),
then f(x) = gh(x) h(x) where h(x) in F[x] by Definition
1.8.

g{x) and h(x) have no common root, for if they did
have, then the same argument as above would show that h(x)
is divisible by g(x), but by definition of n this 1s im-
possible.

Theorem III, 1: 1If f(x) 1s of degree n > 2 and has real coef-
ficients, then f(x) is reducible over the real numbers.
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Proof:

By theorem 1.6 f(x) has a root r. By theorem 1, x - r is
a factor f(x).

1f r is real, then f(x) has factor with real coefficients.
Ifr=qQ + b is complex, then by theorem 1.4 [x - (a +
bi)] [x - (a - bi)], which has real coefficients is a factor
with real coefficient and of lower degree thah f(x). Hence
f(x) is reducible over F[x], and the theorem follows.

Theorem III, 2: A quadratic equation cannot have more than two

roots.

Proof by contradiction:

Consider the quadratic equation axz +bx+c=0. Leta, 8,

y be three different roots. MNow since each root will satisfy
the equation we have, (1) sa° tbat e o, (2) aaz + bg +
¢ =0 and (3) ay’> ¢ by + ¢ = 0,
Subtracting (2) from (1) gives a (a®- 6%) + b (a - 8) = 0
or (a ~8) [a(a # 8) +b) =0
but « - g # 0, hence a (a - 8)
+b=0
Subtracting (3) from (1) gives a (az - 72) +bla-y)=0
| or (o - %) [ala +y) ¢+ b]=0
but @ - y # 0, hence afa + y) +
b=0
Therefore, a(a + 8) + b - a (a + y) = 0,

afla+g-a-y]l=0
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a(B-y)=0

efther a=0org-y=20,

but a # 0 if so then the quadratic becomes
1inear, therefore g = y, then our assumption
is wrong that all three are distinct. Hence
a quadratic can have only two roots.

Statement: “s-_l:..n“.a.%

Theorem I1I. 3: Every integral rational equation of degree n,

f(x) = aox" + alx"" 24 ..

+ azx“' . #+a =0, a has at most n roots.
Proof:
1) f(x) = elx - ri) (x - Fo)ees (x - rn) conversely, if

2) (x - r&), (x - rz). PO rn) are divisors of f(x),

then each y for i=1,2, ..., n is a zero of f(x).

3) The second statement in proof follows immediately from
the factor theorem. That is if x - 4 is a divisor of
f(x), then f(ry) = 0.

4) The first statement of the proof will be proven by
induction on n. If f(x) has degree one, f(x) = ¢x + d,
c+deF. Ifr, is a zero of f(x), f(ry) = 0 and cr; + d
=0ord=-cry, then f(x) = cx +d = ex - ery = e(x-rq).

5) Suppose that the theorem holds for all polynomials of degree
k and let f(x) be of degree k + 1, with leading coefficient
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¢ # 0 and distinct zeros, ry, vy, ..., ryp .. Since
i+l is a zero of f(x) = (x - rk+1) g(x) for some g(x)
€ F. By theorem 1. the degree of g(x) must be k and
that g(x) has leading coefficient c # 0. For any zero
ry of f(x), with f(rﬂ) B (r1 - rk+1) g(ri).
6) Since the zero of f(x) are distinct, Py =Py F O
therefore, g(r;) = 0 so that ry is also a zero of g(x).
7) Thus g(x) has k distinct zero's Fys Fps wees Ty by
induction hypothesis, g(k) = c(x - r])(x - rz) s
(x - rk) substitute this in the expression for f(x),
gives

8) f(x) = c(x - r]) (x - rz) e () rk) (x - rk+])

Relation between roots and coefficients:

Let n =1

1

f(x) = x" + alxﬂf..+ a x*ta = (x-r) (x- o) eoe (x - o)

By multiplying the linear factors and comparing the resulting
coefficients with 815 855 ..., @, we obtain a relation among the
roots and the coefficiants of f(x).
If n=1 then f(x) = x + ay» 50 that ry = -ay
If n= 2 then f(x) = xz tax+a,s (x - rl) (x - rz) - xz -
(ry +r5) x + ryry, so that rptry = ca, e, = a,
If n= 3 then

2

f(x) = x3 +agx” o+ ax + a,

(x - r1) (x - rz) (x = r

3)

3 2
X" - (r1 ey + r3) x© 4+ (r]r2+ Pyt r2r3) X = Pyr,rs

so that r, + r_+p

o R
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The generalization is stated as follows:

Theorem III. 4: If the coefficient of the highest-degree term
in an equation is unity, the coefficient of the second-highest-degree
term is the negative of the sum of the roots. The coefficient of the
third-highest-degree term is the sum of the roots multiplfed two at a
time, etc., and finally the consfmt term 1s plus or minus the product
of the roots according as the number is even or odd.

Proof:

We have already proved this for n = 1, 2, 3. Proceeding
by mathematical induction, suppose it true for n = k, let

ne=k+1,
k k-1
If 9(!)'(!-"1) (l-f‘z) “nw (X-I"k)‘! +b]x >
cep @ hk' then
) = X wapk e v e - (x-r)eni(x - ry,)
o (0T e b)) (x -y
rkﬂb.l) =1 4 (b3 - rkﬂsz X2 4

eest (b = Fpaby q) X = Pab.
Hence, a; = by - ri q» a5 = b, - Pe4Pyq for 1= 2,3, ...,
ks B ® Pearbye
By the hypothesis of the induction applied to g(x), by = (-1)'51
W27, 2, ..., k) where !‘.11 is the sum of the products of r,,
Pas «sey ¥y taken 1 at a time.
Therefore,

l-l'b-l-rkﬁ'-(I‘,*l"z*...rk)-l'b"%
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k k+1
..1 = bi- rk+1bi_1’ ; (1 - 2’ 3’ ssey k)
« (D' sl DT sl sty

’]1-1 contains all the products of r,, ry,..., r, taken i-1
at a time. Therefore rk+1311_] contains all those products
of Fys Posenen Fio Py taken 1 at a time which have e 35
a factor. All the products of Fys Pos eoes Pps Ty taken 1
at a time which do not have Tee 35 2 factor are in 511.

1

1
Thus s° + ry s, ¢ is the sum of all the products of r,.r,,

1 1 i
savs T Pryq taken 1 at a time. Hence s, + rp .8, 4 = Sy,
which proves the theorem for n = k+1. By the principle of

mathematfcal induction, the theorem follows.

Example 1. 3x4 - 5x3 + 4x2 + 12x - 15 = 0. Reducing the coeffi-

4

cient of x" to 1, we have x4 - %-x3 + %-xz +4x -5=0

Therefore: s, = - ('-g) = -g-

o Ll
Sy " -(4) = -4

Sy = -5
Example 2. Find a root of the equation when all the roots are

given exéept one.

3 2

Two roots of 2x™ - 3x" - 23x - 12 = 0 are 3 and -4 the remaining

root 15 "3 - [3+ (-4)]= - zor6+ 3 (-4) = -1

Example 3. Find the roots of the equation x3 + 8x2 +5x -50=0
having given that it has a double root:
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Represent the roots a, a, b. Then 2a + b = -8, .2 + 2ab = 5,
and azb = 50, solving the second of these equations for a and
wehlvea--S.b-Zanda--%.b-'?—g-. the numbers a = -5,
b = 2 satisfy the equation a’h = 50, but the numbers a = ¥,
b = 'g%do not satisfy this equation hence the required roots are
~5, -5 and 2.

3

Example 4. Find the roots of the equation x™ + 6x2 +7x~-2=10

in ariihmetic progression.

Let the roots of the equation x3 + 6x2 +7x~-2=0bea-d,a,
a + d. The sum of the roots is 3a, hence 3a = -6 and a = -2,
The product of the roots gives (a° - d%) a = 2. Substituting

a = -2 and solving for d we find d = 2 /5 the roots are then

-2-5, -2, -2+,

Theorem III. 5: If n is an integer greater than 2, and k 1s a

n -
non zero integer, prove that ::‘0 (rkﬂ)x“ " has no integral zeros.

Proof: By contradiction.

n
Suppose that for n > 2 and k # 0, the polynomial &z
r=0

(rkﬂ)x""r has an integral zero x = a, then

1) a"+ (k#1) a1 4 (2k+1) "2 4 . 4 kel = 0

2) "ok e a™ e ™24 ™24 ke = 0

3 P e s e ™Y "2+ ...n=0
§ a2y Leren®™ ety n)y=o
O e a2, s (™ 2™, a0

since k # 0, 1t follows that a # -1



6)
7)

8)
9)

10)

16
1 = -k (.n-.] L zaﬂ-z + “es + l'l) + (". - a“-] » ln-z - ono)

n-1 _ n-1

1=-k (a"'l +2a"2%4 ... 4n) 4 (a" - a" + 2a
™22y ) e (" - 2™ - 32 )

n+l1e=(-k+1-a) (a“" +28m24 .4 o)

(a7 + 22"2 4 .., + n) divides (n + 1). By inspection

a < -2,

Statement 9) hold except for a = -2, n= 3 and a = -2,

n=4when n> 3 and a < -2.



CHAPTER IV
SUMMARY

This paper was presented in order that someone might be given
an insight on the solution of equations of various degrees.

Abel, a mathematician who has proved that no real solution ex-
ists between roots and coefficients of equations of degrees higher than
four,

This paper can be used to solve various equations of degrees with
certain information given about the equation.

This paper also gives means and ideas about how mathematical sys-
tems are built in using axfoms and properties.

It can be utilized to serve as check on roots of equations.

The main Theorem is proven by mathematical induction.
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