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CHAPTER I 

Th1s paper is to develope and show some of the relations between 

coefficient and roots of polynomials of degree N. 

The following definitions, facts and assumed theorems will be used 

throughout this paper. 

Definition I: An integral domain D 1s a set of elements a,b,c, ••• 

having two operations,+ and• and an equal relation, which satisfies 

the following postulates. 

1. Closure: For each pair a,b of elements of integral 

domain D, a+ band a• bare also elements of the 

integral domain O and are unique. 

2. Conmutat1ve: For each pair a,b of elements of the 

domain D, a+ b • b + a and a• b • b • a 

3. Associative: For each set of three elements a,b,c 1n D 

a+ (b + c) •(a+ b) + c and a• (b • c) •(a• b) • c 

4. Additive Identity (Zero): There exist an element Z 1n D 

such that for every element b, b + z • z + b •band 

b • z • z • b • z. 

5. Multiplfcatfve Identity (Unfty): There exist an element 

U fn D such that for every element b, b • u • u • b • b. 

6. Addftfve Inverse: For each element b 1n ~ there exfst 

an element b* such that b + b* • b* + b • z where z fs 

the zero of postulate 4. 

7. Cancellation: If a and bare elements fn o. and ff c I z 
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is an element such that c •a• c • b then a• b. 

8. Distributive: If a,b and care elements 1n D, then 

a• (b + c) •a• b +a• c, and (a+ b) c • a • c + 

b • c. 

Deff nition I. 1: A ffeld F has the same postulates as the integra 1 

domain with the addition of multiplicative inverse. Multiplicative 

Inverse: b, z there exist a corresponding element b-l such that 

b • b-l • b-l • b • u. 

Definition 1.2: A polynomial over a field C is denoted by F(x) • 

a
0

xn + a1x0- 1 + .•• an• a
0

, O, can also be used to define a function 

of real or complex variables over a field C. 

Definition 1.3: A polynomial F(x) over D(x] is irreducible over 

O (or prfme) if and only 1f ft has no proper dfvfsors in D[x]: F(x) 1s 

reducible over O 1f it has a proper divisor in D[x]. 

Oeffnftion 1.4: Let F(x) be a polynomial of degree N over a field 

F. We say that the equation F(x) • 0 1s an equation over the field F, 

and N 1s the degree of the equation. 

Oefin1tion 1.5: If F(x) I g(x) and g(x) I F(x), then F(x) and g(x) 

are associates. 

Oefinft1on I.6: 

1.6 (a): 

I.6 (b): 

1.6 (c): 

S denotes sum or product of roots depending 

on the subscript of S. 

s1 • negative sum of the roots. 

s2 • positive sum of the product of roots 

taken 2 at a tfme. 

s3 • negative SllTI of the product of the 

roots taken 3 at a time. 
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I.6 (d): s1 • (-1)1 (sum of the product of the 

roots taken i at a time}. 

I.6 (e): Sn• (-1)" (product of the roots). 

Def1nftfon I.7: A polynomial Fis d1v1sible by polynomial g if 

g, O and there exists a polynomial h such that F • gh. 

Fact I.8: Every polynomial of degree N over the field of complex 

numbers has all its roots 1n the field of complex numbers. That is the 

only 1rreduc1ble, non constant polynomials over the field of complex 

nutrbers are those of degree 1. 

Fact 1.9: The only irreducible polynomial over the field of real 

numbers are of degree 1 and 2. 

Theorem 1: The factor theorem. If x
0 

is a root of the equation, 

F(x) •ax"+ a xn-l + •• • a1x + a
0 

• o. then x - x
0 

divides F(x) and n n-1 

convers 1 ey. 

Theorem 1.2: The number of positive roots of F(x) e O cannot 

exceed the number variations of signs in F(x). 

Theorem 1.3: Every polynomial F(x) of degree n, wfth real coef

ficient denoted by F(x} • a
0
x" + a1xn-l + ••• +an• a

0
, 0 can be factor 

in two n linear factor. 

Theorem 1.4: If F(x) ~ O has real coefficients of F[x] and a root 

a+ bi where a and bare real and b IO of multiplicity k, then a - bj 

1s a root of F(x) of multiplicity k. 

Theorem 1.5: If F(x) •ax"+ axn-l + ••• a 1x + a where a • 
o n- n1 o 

a1, ••• , an-l' an are integers and a
0

, 0, an~ o. has a rational root 
p 
/q, where P and q are relatively prime integers, then p 1s a factor of 
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•n and q a factor of a
0

• 

Theorem 1. 6: If F (x) is a polynomial of degree one or greater, 

with coefficients in field C of complex n1.1nbers, then the equation 

F (x) • O has at least one root 1n C. 

Theorem 1. 7: If H (x) 1s a H.C.F. of F (x) and g (x), !. 1s a 

conwnon root of F (x) and g (x) if and only if!. is a root of M (x). 



CH/lJ>TER II 

ARITHf.ETIC IN POLYNOMIALS 

0ef1n1t1on II . 1: An 1nf1n1te sequence of elements of a set S 

1s a function whose domain 1s the set of nonnegative integers and 

whose range 1s a subject of S. Such a sequence 1s represented by the 

symbol (a
0

, a1, a2, .•• ), where each aicS for every nonnegative 

integer 1. 

Oef1nft1on II. 2: If F 1s a field, a polynomial over Fis an 

infinite sequence of elements in F such that only a f1n1te number of 

terms are different from zero. The set of all polynomials over Fis 

referred to as the domain of polynomials over F and 1s denoted F[x]. 

Oef1n1t1on II. 3: If F 1s a field and if x • (1
0

, a1, a2, ••• ) 

and y • {b
0

, b1• b2, •• • ) are any two elements of F[xJ. then (1) x • 

y only ff a1 • b1 for every nonnegative integer 1. (2) xSy • (c
0

, c1, 

c2~ ••• ) were c1 • a1 + b1 for every nonnegative integer 1. (3) -Hy• 

(d0 , d1, d2, •.• ) where di• a
0
Pb1S a1Pbi_1s ... a1Pb0 for every non

negative integer 1. 

Oef1n1tion II. 4: The notation iSl-maiPbj means the Sllll of all tenns 

a1Pbj which can be fon:ied with f and j nonnegative integers whose sum 1s 

m. 

Example II. 4: The terms of 15j.4aiPbj can be written out as 

fol lows: 

EaiPbj • a0Pb4Sa1Pb3Sa,tb25afb1sa4Pb
0 

A co~ar1son of definitions of addition and multiplfcat1on of poly

nomials written as sequences with familiar rules for operations with 
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polynomials written in tenns of x will reveal that these operations 

are identical. 

The five basic laws of Algebra 

(1) U + V • V + U 

(2) U • V • V • U 

(3) u + (V + W) • (U + V) + W 

(4) u • (V • W) • (U • V) • W 

(5) u • (V + W) • U • V + U • W 

Now we w111 establish 5 basic laws of algebra using the operations 

Sand P. 

(1.1) usv • vsu 

{2.2) UPV • VPU 

(3.3} US(VSW) • (USV)SW 

(4.4) UP(VPW) • (UPV)PW 

(5.5) UP(VSW) • (UPV) S {UPW} 

It is necessary to use different signs for addition and multiplica

tion. Otherwise, we find ourselves assuming things 1n algebra that have 

only been proved for arithmetic. There is every reason to believe that 

laws (1.1) through (5.5) will work for polynomials because the operations 

Sand Pare defined so that they give a formal statement of what is done 

1n traditional algebra. The idea here is to show that an algebra can be 

built on any arithmetic. The arithmetic used here 1s over field F [x], 

and a set of synbols obeying the axioms of a field. 

The following is a pr~of of laws (1.1) through (5.5) for polynomials 

over a field F [x]. In these proofs it will become apparent that many of 

the steps taken in algebraic calculations can be justified by appeal to 
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to the co1JJT1Utative, associative and distributive laws, starting by 

assuming these laws for the ar1thmet1c of the field F[x]. It w111 

be shown by establishing (1.1) through (5.5) that these same pr1n

c1ples also hold for polynomials over F[x]. 

Theorem (1.1): USV • VSU 

Proof: 

Let u • (a
0

, ••• a.nJ ••• ) and V • (b
0

, ••• b
0

, ••• ) 

USV • (a
0

Sb
0

, ••• , ,anSb
0

• • •• ) 

• (b
0
Sa

0
, •••• b

0
Sa

0
, ••• ) • VSU 

Theorem 2.2: lJ>V • VPU 

Proof: 

lPV • (a
0

, ••• an• ••• ) P (b
0

, ••• b
0

, ••• ) 

• a/bo• · · ·' fSl•n 1lbj · · ·) 

• (bl•o• ..• • t bla1, .•. ) 

• (bo' .... bn• ••• } P (ao, ···• an, ••• ) 

• WU 

Theorem 3.3: US(VSW) • (USV)SW 

Proof: 

Let W • (c
0

, .•• , c
0

, ••• ) 

US(VSW) • (a
0

, •.•• a
0

, ••. ) S (b
0
Sc

0
, ••. , b

0
Sc

0
, ••• ) 

• (a0S [b0Sc0 ], •••• ans [b0Scn]• ••• ) 

• ([a0Sb0 ] Sc0 ••••• [a0Sb0 ] Sen• ••• ) 

• (a
0

Sb
0

, •••• a
0

Sbn• ••• ) S {c
0

, ••• c
0

, ••• ) 

• (USV) SW 
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Theorem 4.4: lP (WW) • (lPV )PW 

Proof: 

lP(VPW) • (a
0

, ••• , •n• ... ) P[b
0

, ••• , bn, ••• ) P (c0 , •••• ~- ... )] 
• <10 • • • ·, 1 n' · · ·) P (blco' · · · • jSf•n bjPck • • ·) 

• (alblco• ···• 1S)Sk•n 81Pblck, .•. ) 

S1m1 larly • 

(LPV)PW • [(a
0

, ••• , an, ... ) P (b
0

, •••• bn' ••• )] P (c0 •••• en, ••• ) 

• (aoPbo• ••• , 1Sj~n albj, ... ) P (co, •. ·• en• ••• ) 

• (alblco• · · • • 1s}sk•n albjPck' · · ·) 

Theorem 5.5: lP(VSW) • (lJ>V) S (lJ>W) 

Proof: 

lP(VSW) • (a
0

, ..• , an, .•. ) P[(b
0

, ••• , bn' ••• ) S (c
0 
•••• c0 , ••• )] 

• (a
0

, •.. , a
0

, ••• ) P (b
0
Sc

0
, •••• bnSc

0
, ••• ) 

• al [b0Sc0 J •••• , 15j.n<a/ (bjScj), ••• ) 

• (a0Pb0Salc0 , •••• fs}■n (atbJSalcJ), .•. ) 

• (aoPboSalco, .•. , 1S]•n atbjS 1sl■naiPcj, ••• ) 

• (a
0

, •••• an, ••• ) P (b
0

, •••• bn• ••• ) S (a
0

, •.• , 

an, ••• ) P (co• •.. , en, ••• ) 

• (tJ>V) S (lPW) 

Theorem II. 5 xm Px" • xmsn 

Proof: 

Let xm be (a
0

, a1, a2, ••• am) where am• 1, and all other 

terms are zero's. 
n Let x be (b

0
, b1• b2, ••• b

0
) where b

0 
• 1, and all other 

terms are zero's. 
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Let xm Pxn be {c
0

, c1, c2, •••• ck) where ck• 1, and all 

other tenllS are zero's. Then ck - 1i0 a1Pbk-l' ck 1s zero 

1f a1 • O, or bk-l 1s zero, but a1 , O if 1 • m and bk-l 

, o. Therefore the sun of (1• ra) and (k - 1 • n) 1s 

(k • nSm). Hence ck• cmsn• then cmsn • 1. Therefore 

xm Px" • xmsn. 



CHJV>TER III 

ROOTS AHO CCEFFICIENTS OF POLYNOMIALS 

Theorem III, If f(x) and g(x) are 1n F[x], and the f(x), O, 

g(x) irreducible over F, and f(x) and g(x) have a corm10n root, then 

f(x) • g"(x) h(x) where n fs a positive integer, h(x) is 1n F(x], 

and g(x) and h(x) have no coownon roots. 

Proof: Let H(x) be HCF of f(x) and g(x) fn F[x]. Every corrmon 

root of f(x) and g(x) 1s a root of M(x) by theorem 1.7. 

Since f(x) and g(x) have a conman root, M(x) 1s of degree 

at least one. But g(x) 1s irreducible over F, so that 

its only factor 1n F[x] are constants and associates by 

Defin1t1on 1.3 and 1.5. Since M(x) 1s a factor of f(x), 

g(x) which 1s associate H(x) is also a factor of f(x). 

Leth be the highest power of g(x) wh1ph divides f(x), 

then f(x} • gh(x) h(x) where h(x) 1n F[x] by Oef1n1tfon 

1.8. 

g(x) and h(x) have no coomon root, for ff they did 

have, then the same arglDTient as above would show that h(x) 

is divisible by g(x), but by definition of n this is im

possible. 

Theorem III. 1: If f(x) 1s of degree n > 2 and has real coef

ficients, then f(x) is reducible over the real numbers. 
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By theorem 1.6 f(x) has a root r. By theorem 1, x - r is 

a factor f(x). 

If r 1s real, then f(x) has factor with real coefficients. 

If r • Q + bi 1s complex, then by theorem 1.4 [x - (a+ 

b;)] [x - (a - bi)], which has real coeff1cfents fs a factor 

with real coefficient and of lower degree than f(x). Hence 

f(x) is reducible over F(x], and the theorem follows. 

Theorem III. 2: A quadratic equation cannot have more than two 

roots. 

Proof by contrad1ct1on: 

Consider the quadratic equation ax2 +bx+ ca O. Let a, p, 

y be three different roots. Now since each root wfll satisfy 

the equation we have, (1) aa2 + ba + c • o, (2) a&2 + b8 + 

c • 0 and (3) ay2 +by+ c • o. 
Subtracting (2) from (1) gives a (a2- a2) + h (a - a)• 0 

or (a - B) [a(a ~a)+ b) • 0 

but a - a, 0, hence a (a - a) 

+ b • 0 

Subtracting (3) from (1) gfves a (a2 - y2) + b (a - y) • o 

or (a - y) [a(a + y) + b) • 0 

but a - y ~ O, hence a(a + y) + 

b • 0 

Therefore. a(a + B) + b - a (a+ y) • O. 

a(a + B - a - y] • 0 
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a(B - y) • 0 

efther a• 0 or B - y • 0, 

but a, O 1f so then the quadratic becomes 

linear, therefore a• y, then our assumption 

1s wrong that all three are d1st1nct. Hence 

a quadratic can have only two roots. 

Statement: a + 13 • - ~ and a • B • f. a a 

Theorem III. 3: Every integral rational equation of degree n, 

f(x) • a
0

x" + a1xn-l + a2x"-2 + ••• +an• o. a
0 

has at most n roots. 

Proof: 

1) f(x) • c(x - r1) (x - r2) ••• (x - rn) conversely, ff 

2) (x - r9), (x - r2), ..• , (x - rn) are d1vfsors of f(x), 

then each r1 for 1 • 1, 2, ••• , n fs a zero of f{x). 

3) The second statement fn proof follows 1med1ately from 

the factor theorem. That 1s ff x - r1 is a d1v1sor of 

f(x), then f(r1) • o. 

4) The first statement of the proof w111 be proven by 

fnduct1on on n. If f(x) has degree one, f(x) •ex+ d, 

c + d c F. If r1 is a zero of f(x), f(r1) • 0 and cr1 + d 

• 0 or d • - cr1, then f(x) •ex+ d • ex - cr1 • c(x-r1). 

5) Suppose that the theorem holds for all polynomials of degree 

k and let f(x) be of degree k + 1, with leading coefffcfent 
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c; O and distinct zeros, r 1, r 2, ••• , rk+l· Since 

rk+l is a zero of f(x) • (x - rk+l> g(x) for some g(x) 

& F. By theorem 1. the degree of g(x) must be k and 

that g(x) has leading coefficient c, 0. For any zero 

r; of f(x). with f(r; ) • (r1 - rk+l ~ g{ri ). 

6) Since the zero of f(x) are distinct, r1 - rk+l; O 

therefore, g(r1) • 0 so that r 1 1s also a zero of g(x). 

7) Thus g(x) has k distinct zero's r1 , r 2 , .•• , rk' by 

induction hypothesis, g(x) • c(x - r1)(x - r2) ••• 

(x - rk) substitute this 1n the expression for f(x), 

gives 

8) f(x) • c(x - r1) (x - r2) . .• (x - rk) (x - rk+l> 

Relation between roots and coefficients: 

Let n • 1 

f(x) • x" + a1x~:~ .+ an_1x +an• (x - r1) (x - r2) ••• (x - rn) 

By multiplying the linear factors and comparing the resulting 

coefficients with a1 , a2, • •• , an, we obtain a relation among the 

roots and the coeff1c1ants of f(x). 

If n • l then f(x) • x + a1, so that r1 • -a
1 

If n • 2 then f(x) • x2 + a1x • a2 • (x - r1) (x - r 2) • x2 -

{r1 + r2) x + r 1r2, so that r1 + r2 • -a
1

, r
1
r
2 

• a
2 

If n • 3 then 

f(x) • x3 + a1x2 + a2x + a
3 

• (x • r 1) (x - r
2
) (x - r

3
) 

• 3 ( ) 2 x - r1 + r 2 + r3 x + (r1r2+ r1r 3 + r 2r
3
) x - r

1
r
2
r
3 

so that r1 + r
2 

+ r
3 
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• - 1 1' r1r2 + rlr3 + r2r3 • 12• rlr2r3 • - a3. 

The generalization is stated as follows: 

Theorem III. 4: If the coefficient of the highest-degree tenn 

fn an equation is unity. the coefffcfent of the second-highest-degree 

tenn 1s the negative of the sum of the roots. The coefff c1ent of the 

thfrd-hfghest-degree term 1s the sun of the roots multiplied two at a 

til'!le, etc., and finally the constant tenn is plus or minus the product 

of the roots accordfng as the nunt>er is even or odd. 

Proof: 

We have already proved this for n • 1, 2, 3. Proceeding 

by mathematical induction, suppose ft true for n • k, let 

n•k+l. 

If g(x) • (x - r1) (x - r2) ••• {x - ~k) • xk + b1xk-l + 

Hence, a1 • b1 - rk+l' a1 • bi - rk+lb1_1 for 1 • 2, 3, •••• 

k, 1 k+1 • rk+lbk. 

By the hypothesis of the induction applied to g(x), bf ■ (-1)1s1 

{f • 1. 2, ••• , k) where s1
1 is the sum of the products of r1, 

r2, ••• , rk taken 1 at a time. 

Therefore, 
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k k+l 
ak+l • - rk+lbk • - rk+l[(-l) rlr2 ••• rk] • (-l) 5k+l 

a1 • br rk+lbi-l (1 • 2, 3, ••• , k) 
1 1 f 1 1 

• (-l) 5 1-1 • (-l) (s 1 + rk+ls 1-1) 
1 s 1_1 contains all the products of r1, r2, ••• , rk taken 1-1 

at a time. Therefore rk+1s1
1_1 contains all those products 

of r1, r2, .•• , rk, rk+l taken 1 at a time which have rk+l as 

a factor. All the products of r1, r2, ••• , rk' rk+l taken 1 

at a time which do not have rk+l as a factor are 1n s
1
1• 

1 1 Thuss + rk+ls 1_1 ts the sun of all the products of r1,r2, 
1 1 

••• , rk' rk+l taken 1 at a time. Hences 1 + rk+ls 1_1 • si' 

which proves the theorem for n • k+l. By the principle of 

mathematical induction, the theorem follows. 

Example 1. 3x4 - sx3 + 4x2 + 12x - 15 • O. Reducing the coefff

ctent of x4 to 1, we have x4 - } x3 + j x2 + 4x - 5 • 0 

(-5) 5 Therefore: s1 • - 3 • 3 
4 

52. 3 

s3 • -(4) • -4 

Example 2. Find a root of the equation when all the roots are 

given except one. 

Two roots of 2x3 - 3x2 - 23x - 12 •Oare 3 and -4 the remaining 
-~ [ 1 1 root 1 s 2 - 3 + (-4)] • - 2 or 6 + 3 (-4) • - 2 

Example 3. Find the roots of the equation x3 + sx2 + Sx - 50 • O 

havtng given that it has a double root: 
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Represent the roots a, a, b. Then 2a + b • -8, a2 + 2ab • s. 
and a2b • 50, solvfng the second of these equations for a and 

1 -22 we have a• -5, b • 2 and a• - 3, b • 3 , the numbers a• -s. 
b • 2 satisfy the equation a2b • 50, but the ntlnbers a• -1, 
b • -2~ do not satisfy this equation hence the required roots are 

-5, -5 and 2. 

Example 4. Find the roots of the equation x3 + 6x2 + 7x - 2 • 0 

fn ar1thr.let1c progression. 

Let the roots of the equation x3 + 6x2 + 7x - 2 • 0 be a - d, a, 

a + d. The sum of the roots is 3a, hence 3a • -6 and a • -2. 

The product of the roots gives (a2 - d2) a• 2. Substftut1ng 

a• -2 and solving ford we ffnd d • ~ 15" the roots are then 

-2 - IS", -2, - 2 + 15. 

Theorem III. 5: If n is an integer greater than 2, and k 1s a 

non zero integer, prove that~ (rk+l>xn•r has no integral zeros. 
r■O 

Proof: By contradfctfon. 
n 

Suppose that for n > 2 and k, o, the polynomial t 
r■O 

( ) n-r rk+l x has an integral zero x • a, then 

1) a"+ (k+l) an-l + (2k+1) a"-2 + ••• + nk+l • 0 

2) a"+ kan-l + an-l + 2ka0 - 2 + a"·2 + ••• + nk+l • O 

3) an + an-1 n-2 +a + ••• +1 

4) a"+ an•l + an-2 + ••• + 1 

5) a"+ an-1 + an-2 + .•• + 1 

+ kan•l + kan-2 + ••• n • 0 

+ k(an-l + 2a"-2 + ••• n) • O 

• -k (an-1 2 n-2 ) + a + ••• + n 

since k, o. ft follows that a, -1 
. ' . 

I 
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6) 1 • -k (an•l + 2a0- 2 + ••• + n} + (-a - an-l - a"-2 - ... ) 

7) 1 • -k (an-l + 2a"·2 + ••• + n) + (a" - a"+ 2an-l - an-l + 

Ja"-2 - a"-2 + •.• n) + (-a" - 2an-l - 3a"-2 ••. n) 

8} n + 1 • (-k + 1 - a) (an-l + 2a"-2 + ..• + o} 

9) (an-l + 2a0- 2 + ••• + n} divides (n + 1). By inspection 

a~ -2. 

10) Statement 9) hold except for a• -2, n • 3 and a• -2, 

n • 4 when n ~ 3 and a ~ -2. 



CIWTER IV 

SUJ-1-!ARY 

Th1s paper was presented 1n order that someone might be given 

an insight on the solution of equations of various degrees. 

Abel, a mathematfcfan who has proved that no real solution ex

ists between roots and coefficients of equations of degrees higher than 

four. 

Thfs paper can be used to solve various equations of degrees wfth 

certain infonnation given about the equation. 

Th1s paper also gives means and ideas about how mathematical sys

tems are built 1n usfng axioms and properties. 

It can be ut111zed to serve as check on roots of equations. 

The mafn Theorem 1s proven by mathematical induction. 
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