

UNIVERSIDAD TÉCNICA DE COTOPAXI FACULTAD DE CIENCIAS DE LA INGENIERÍA Y APLICADAS CARRERA DE INGENIERÍA ELÉCTRICA

PROPUESTA TECNOLÓGICA

DESARROLLO DE UN SISTEMA SCADA DEL INVERNADERO EXPERIMENTAL # 2 DE LA UNIVERSIDAD TÉCNICA DE COTOPAXI CAMPUS SALACHE EN EL PERIODO 2021

Propuesta Tecnológica presentado-previa a la obtención del Título de Ingeniero Eléctrico en Sistemas Eléctricos de Potencia

Autores:

Anacleto Medina John Jairo

Yatampala Cunachi Bryan Rafael

Tutor:

Ing. Rommel Eusebio Suárez Vinueza. MSc.

LATACUNGA – ECUADOR

DECLARACIÓN DE AUTORÍA

Los postulantes, Anacleto Medina John Jairo y Yatampala Cunachi Bryan Rafael declaran ser

autores de la presente propuesta Tecnológica: "Desarrollo de un sistema SCADA del

invernadero experimental # 2 de la Universidad Técnica de Cotopaxi Campus Salache en

el periodo 2021", siendo el Ing. Rommel Eusebio Suárez Vinueza. MSC., tutor del presente

trabajo; se excluye expresamente a la Universidad Técnica de Cotopaxi y a sus representantes

legales de posibles reclamos o acciones legales.

Además, se certifica que las ideas, conceptos, procedimientos y resultados vertidos en el

presente trabajo de investigativo, son de exclusiva autoría.

Latacunga, Abril 2021

Anacleto Medina John Jairo

CC: 172272277-2

Yatampala Cunachi Bryan Rafael

CC: 180496088-6

ii

AVAL DEL TUTOR DEL PROYECTO DE TITULACIÓN

En calidad de Tutor del Trabajo de investigación sobre el título: "Desarrollo de un sistema

SCADA del invernadero experimental # 2 de la Universidad Técnica de Cotopaxi Campus

Salache en el periodo 2021", del Sr. Anacleto Medina John Jairo y Yatampala Cunachi

Bryan Rafael, de la carrera de Ingeniería Eléctrica, considero que dicho informe investigativo

cumple con los requerimientos metodológicos y aportes científico-técnicos suficientes para ser

sometidos a la evaluación del Tribunal de Validación de Proyecto que el Honorable Consejo

Académico de la Facultad de Ciencias de la Ingeniería y Aplicadas de la Universidad Técnico

de Cotopaxi designe, para su correspondiente estudio y calificación.

Latacunga, Abril 2021

TUTOR

Ing. Rommel Eusebio Suárez Vinueza. MSC.

CC: 180416535-3

iii

APROBACIÓN DEL TRIBUNAL DE TUTILACIÓN

En calidad de Tribunal de Lectores, aprueban el presente informe de Investigación de acuerdo

a las disposiciones reglamentarias emitidas por la Universidad Técnico de Cotopaxi, y por la

Facultad de Ciencias de la Ingeniería y Aplicadas; por cuanto, los postulantes: Anacleto

Medina John Jairo y Yatampala Cunachi Bryan Rafael con el título de Proyecto de

Investigación: "Desarrollo de un sistema SCADA del invernadero experimental # 2 de la

Universidad Técnica de Cotopaxi Campus Salache en el periodo 2021", han considerado

las recomendaciones emitidas oportunamente y reúne los méritos suficientes para ser sometido

al acto de Sustentación del Proyecto.

Por lo antes expuesto, se autoriza realizar los empastados correspondientes, según la normativa

institucional.

Latacunga, Abril 2021

Ing. MSc. Jiménez Jiménez Diego Leonardo

CC: 0503493702

Lector 1 (Presidente)

Ing. MSc. León Segovia Marco Anibal

CC: 0502305402

Lector 2

Ing. MSc. Salazar Achig Edgar Roberto

CC: 0502847619

Lector 3

iv

AVAL DE IMPLEMENTACIÓN DE LA PROPUESTA TECNOLÓGICA

Latacunga, Abril 2021

MsC. Xavier Proaño

DIRECTOR DE LA CARRERA DE INGENIERÍA ELÉCTRICA EN SEP

Facultad de Ciencias de la Ingeniería y Aplicadas

Universidad Técnica de Cotopaxi

Ciudad.

Quien suscribe, en calidad de Director de la Carrera de Ingeniería Eléctrica de la Universidad

Técnico de Cotopaxi, CERTIFICO que los postulantes Anacleto Medina John Jairo con CC:

172272277-2 y Yatampala Cunachi Bryan Rafael con CC: 18096088-6, implementaron en las

instalaciones de la institución del campus Salache el proyecto de propuesta tecnológica titulado:

"Desarrollo de un sistema SCADA del invernadero experimental # 2 de la Universidad

Técnica de Cotopaxi Campus Salache en el periodo 2021". En la ejecución de dicho proyecto

los Sres. demostraron habilidades y conocimientos en su especialidad; así como también

generaron resultados que le serán de gran utilidad al área de electricidad, por cuanto se

enfocaron en solucionar problemas inherentes al monitoreo de la calidad de energía.

Durante su trabajo los Sres. en mención se hicieron acreedores de nuestra confianza por la

responsabilidad, honestidad y profesionalismo demostrado.

Atentamente.

Ing. Xavier Proaño MsC.

CC:

v

AGRADECIMIENTO

Primero a Dios, por haberme dado la sabiduría y fortaleza para culminar con éxito esta etapa de mi formación académica.

A mis padres Ángel Anacleto y Gladys Medina quienes fueron mi pilar fundamental, en mi vida académica quienes me apoyaron en todo momento, teniendo en mente el objetivo principal el cual fue mi titulación.

A la universidad TÉCNICA DE COTOPAXI por brindarme la apertura para realizar mis estudios y obtener unos conocimientos sólidos para la vida laboral.

John Jairo

AGRADECIMIENTO

Agradezco primero a Dios por darme salud y vida, por guiarme con sabiduría, fortaleza e inteligencia para poder culminar una etapa anhela, y muy importante para formarme como persona y profesional. A mi madre que es el pilar fundamental la cual dio todo de ella, y se esforzó de distintas maneras para cumplir con esta meta. A mis abuelitos por apoyarme en todo momento, por los valores que me inculcaron desde pequeño, por enseñarme que todo se puede con esfuerzo y dedicación, y sobre todo por estar ahí siempre siendo un ejemplo de persona. A mis hermanos por siempre confiar en mí y brindarme su apoyo incondicional en todo momento.

Bryan Rafael

DEDICATORIA

Este proyecto de titulación dedico a mis padres, quienes siempre creyeron en mis capacidades dándome la confianza y empuje que necesitaba para culminar mi carrera, a mi esposa y a mi pequeño hijo el cual estará muy orgulloso de su padre en todo momento y de manera muy especial a toda mi familia que siempre supieron alentarme hasta terminar mi carrera universitaria.

John Jairo

DEDICATORIA

Mi tesis va dedicado a mis abuelitos y a mi madre por ser mi motivación y el pilar fundamental, en mi crecimiento como persona y profesional, por ayudarme comprender que la humildad y el esfuerzo es lo más importante para llegar a cumplir con todas tus metas propuestas, por brindarme siempre su amor, paciencia y cariño, por guiarme por el buen camino y darme la oportunidad de estudiar para poder cumplir con todos mis objetivos de todo corazón mil gracias

Bryan Rafael

UNIVERSIDAD TÉCNICA DE COTOPAXI

FACULTAD DE CIENCIAS DE LA INGENIERÍA Y APLICADAS

TÍTULO: DESARROLLO DE UN SISTEMA SCADA DEL INVERNADERO

EXPERIMENTAL # 2 DE LA UNIVERSIDAD TÉCNICA DE COTOPAXI CAMPUS

SALACHE EN EL PERIODO 2021

Autores:

Anacleto Medina John Jairo – Yatampala Cunachi Bryan Rafael

RESUMEN

El proyecto realizado en la Universidad Técnica de Cotopaxi Campus Salache con el objetivo

de desarrollar un sistema SCADA para el monitoreo de las variables utilizadas en plántulas del

invernadero #2 para un óptimo desarrollo y producción de los cultivos. Para lo cual se desarrolló

el sistema SCADA para el monitoreo de las variables de temperatura, humedad y nivel de agua

con una interfaz gráfica. El sistema está conformado por equipos eléctricos y electrónicos tales

como PLC, analizador de parámetros eléctricos Sentron PAC 2200, Simatic IOT 2040, sensores

de humedad, temperatura y caudal, que permiten el monitoreo de las variables de manera

manual o automática. El funcionamiento del sistema consta de 3 electroválvulas distribuidas

por secciones, dos bombas de 1 Hp que abastecerá con la presión ideal, para optimizar el consumo de agua, la operación del sistema se realizó mediante una interfaz gráfica (HMI). En

cuanto a los resultados, para obtener los valores de humedad y temperatura, se realizó la

conexión de un sensor hibrido en una de las hileras del invernadero, y de acuerdo a los datos

adquiridos se considera que el valor de humedad tiene un rango de 89% y un 11 % que es

prácticamente la humedad nula, la temperatura muestra un rango que varía desde los 9 °C a 20

°C, y para la adquisición de los parámetros eléctricos tales como voltaje, corriente, frecuencia,

potencia, se utilizó un SIMATIC IOT 2040 los cuales se almacenan en un servidor web

(Ubidots).

Palabras clave: servidor web, sensor de caudal, humedad, temperatura, HMI.

X

TECHNICAL UNIVERSITY OF COTOPAXI

FACULTY OF ENGINEERING AND APPLIED SCIENCES

TITLE: DEVELOPMENT OF A SCADA SYSTEM FOR THE EXPERIMENTAL

GREENHOUSE # 2 OF THE TECHNICAL UNIVERSITY OF COTOPAXI SALACHE

CAMPUS IN THE PERIOD 2021

Authors:

Anacleto Medina John Jairo - Yatampala Cunachi Bryan Rafael

ABSTRAC

This research study was carried out at the Technical University of Cotopaxi Campus Salache with the purpose of developing a SCADA system for monitoring the variables used in seedlings in greenhouse #2 for optimal development and production of crops. Therefore, a SCADA system was developed to monitor temperature, humidity and water level variables with a graphic interface. The system consists of electrical and electronic equipment such as PLC, electrical parameter analyzer Sentron PAC 2200, Simatic IOT 2040, humidity, temperature and flow sensors, which allow monitoring of the variables manually or automatically. The operation of the system consists of 3 solenoid valves distributed by sections, two 1 Hp pumps that will supply with the ideal pressure to optimize water consumption, the operation of the system was done through a graphical interface (HMI). Regarding the results, to obtain the humidity and temperature values, a hybrid sensor was connected to one of the rows of the greenhouse, and according to the data acquired, it is considered that the humidity value has a range of 89% and 11% which is practically zero humidity, the temperature shows a range that varies from 9 °C to 20 °C, and for the acquisition of electrical parameters such as voltage, current, frequency, power, a SIMATIC IOT 2040 was used, which are stored in a web server (Ubidots).

Keywords: web server, flow sensor, humidity, temperature, HMI.

хi

AVAL DE TRADUCCIÓN

En calidad de Docente del Centro de Idiomas de la Universidad Técnica de Cotopaxi; en forma legal **CERTIFICO** que:

La traducción del resumen de tesis al Idioma Ingles presentado por los señores egresados de la Carrera de INGENIERÍA ELÉCTRICA de la Facultad de Ciencias de la Ingeniería y Aplicadas; ANACLETO MEDINA JOHN JAIRO y YATAMPALA CUNACHI BRYAN RAFAEL cuyo título versa "DESARROLLO DE UN SISTEMA SCADA DEL INVERNADERO EXPERIMENTAL # 2 DE LA UNIVERSIDAD TÉCNICA DE COTOPAXI CAMPUS SALACHE EN EL PERIODO 2021", lo realizaron bajo mi supervisión y cumple con una correcta estructura gramatical del idioma.

Es todo cuanto puedo certificar en honor a la verdad y autorizo los peticionarios hacer uso del presente certificado de la manera ética que estimare conveniente.

Latacunga, Abril 2021

INDICE DE CONTENIDOS

DECLARACIÓN DE AUTORÍAii	į
AVAL DEL TUTOR DEL PROYECTO DE TITULACIÓNiii	i
APROBACIÓN DEL TRIBUNAL DE TUTILACIÓNiv	7
AVAL DE IMPLEMENTACIÓN DE LA PROPUESTA TECNOLÓGICAv	7
AGRADECIMIENTOvi	i
AGRADECIMIENTOvii	i
DEDICATORIAviii	i
RESUMENx	Ĺ
ABSTRACxi	i
AVAL DE TRADUCCIÓNxii	i
INDICE DE CONTENIDOSxiii	i
INDICE DE FIGURASxvii	i
INDICE DE TABLASxix	Ĺ
1. INFORMACION GENERAL1	L
2. INTRODUCCIÓN:	;
2.1. EL PROBLEMA:	;
2.1.1. Situación Problemática:	;
2.1.2. Formulación del problema:	ŀ
2.3. OBJETO Y CAMPO DE ACCIÓN:4	ŀ
2.3.1. Objeto de estudio	ŀ
2.3.2. Campo de acción	ŀ
2.4. BENEFICIARIOS:5	į
2.4.1. Beneficiarios directos:	į
2.4.2. Beneficiarios indirectos:	į
2.5. JUSTIFICACIÓN:	,
2.6 HIPÓTESIS:	í

	2.7. OBJETIVOS	6
	2.7.1. Objetivo General:	6
	2.7.2. Objetivos Específicos:	6
	2.8. SISTEMA DE TAREAS	6
3.	FUNDAMENTACIÓN TEÓRICA	9
	3.1. Antecedentes	9
	3.2. Invernadero.	11
	3.2.1. Tipos de invernaderos.	11
	3.2.1.1. Plano	11
	3.2.1.2. Capilla.	11
	3.2.1.3. Tipo sierra	12
	3.2.1.4. Parral o tienda de campaña	12
	3.2.1.5. Túnel	13
	3.2.1.6 Asimétricos	13
	3.3. Sistema de riego para invernaderos	14
	3.3.1. Sistema de riego aéreo.	14
	3.3.2. Sistema de riego localizado	14
	3.3.3. Sistema de riego por goteo	15
	3.3.4. Sistema de riego programado	15
	3.3.5. Sistema de riego por nebulización	15
	3.4. Tubería para el sistema de riego	15
	3.5. Temperatura.	15
	3.6. Humedad.	16
	3.7. Sistema de comunicación Industrial	16
	3.7.1. Internet	16
	3.7.2. Protocolo TCP (Transmission Control Protocol).	17
	3.7.3 Protocolo ID (Internet Protocol)	17

3.7.4. Ethernet industrial	17
3.8. Sistema de monitoreo	18
3.9. Sistemas SCADA	19
3.9.1. Tipos de sistemas SCADA	20
3.9.4 Sistemas de comunicación y software	23
3.9.5. TIA PORTAL	23
3.9.5.1. Simatic WinCC	24
3.9.5.2. Características	24
3.9.6. Topologías de red	24
3.9.7. Buses de campo	25
3.9.7.1. Modbus	25
3.9.7.2. Powerlink	26
3.10. Elementos que se aplicaron en la investigación	26
4. MATERIALES Y METODOS:	31
4.1. Tipo de investigación	31
4.2. Métodos de investigación	31
Diagrama de flujo de monitoreo del sistema SCADA	31
4.3. MATERIALES	34
Comunicación punto a punto	34
Software WINCC	34
Interfaz Gráfica HMI	34
Equipos	34
Multímetro	34
Motores	34
Sensores de humedad y temperatura:	34
Medidor Sentron PAC 2200	35
ΤΙΛ ΡΟΡΤΛΙ	35

5. ANALISIS Y DISCUSIÓN DE RESULTADOS	35
5.15. PRESUPUESTO Y ANALISIS DE IMPACTO	54
5.16. Análisis de impactos.	55
6. CONCLUSIONES Y RECOMEDACIONES	56
6.1. Conclusiones	56
6.2. Recomendaciones	57
7. BIBLIOGRAFIA	57
8. ANEXOS	62
MANUAL DE OPERACIÓN	77

INDICE DE FIGURAS

Figura 1.	Invernadero tipo plano.	11
Figura 2.	Invernadero tipo cepilla	12
Figura 3.	Invernadero tipo Sierra	12
Figura 4.	Parral o tienda de campaña	13
Figura 5.	Invernadero tipo túnel	13
Figura 6.	Invernaderos Asimétricos	14
Figura 7.	Arquitectura Sistema SCADA	21
Figura 8.	Sentron Pac 2200.	26
Figura 9.	Pantalla Simatic HMI KTP400	27
Figura 10.	SIMATIC IOT2040	28
Figura 11.	PLC	28
Figura 12.	Sensor S-Soil MT-02	29
Figura 13.	Sensor transmisor LWGY-25	30
Figura 14.	Invernadero N° 2 del campus Salache	36
Figura 15.	Curva de humedad vs tiempo	38
Figura 16.	Configuración de la dirección IP	39
Figura 17.	IP de fábrica de la antena ubiquiti	39
Figura 18.	Interfaz gráfica de la antena	40
Figura 19.	Interfaz gráfica de la antena	40
Figura 20.	Configuración de la antena con las IPs	40
Figura 21.	Asignación de las direcciones IP de las antenas	41
Figura 22.	Rangos de Internet de la antena	41
Figura 23.	Comunicación con Tia Portal	42
Figura 24.	Comprobación de comunicación	43
Figura 25.	Curva de humedad	44
Figura 26.	Curva de temperatura	46

Figura 27.	Curva de consumo de agua en litros	46
Figura 28.	Curva de consumo de agua en litros	49
Figura 29.	Relación de la humedad y la temperatura	51
Figura 30.	Pantalla principal	51
Figura 31.	Subpantalla del sistema SCADA del invernadero #2	52
Figura 32.	Pantalla para el control y monitoreo de forma manual	52
Figura 33.	Subpantalla de monitoreo de humedad y temperatura de forma automática	53
Figura 34.	Subpantalla de datos de parámetros eléctricos	53

INDICE DE TABLAS

Tabla 1.	Datos para la obtención de humedad vs tiempo	36
Tabla 2.	Especificaciones de las IP de los equipos	43
Tabla 3.	Almacenamiento de datos de las variables	44
Tabla 4.	Datos obtenidos para obtener el consumo de agua	47
Tabla 5.	Almacenamiento de datos de humedad y temperatura	50
Tabla 6.	Presupuesto del proyecto	54
Tabla 7.	Presupuesto total del proyecto	55
Tabla 8.	Calculo del Tir y Van	55
Tabla 9.	Datos adquiridos cada segundo en el servidor web	71
Tabla 10.	Parámetros eléctricos adquiridos cada segundo	73
Tabla 11.	Almacenamiento de datos de parámetros eléctricos	76

1. INFORMACION GENERAL

Titulo:

Desarrollo de un sistema SCADA del invernadero experimental # 2 de la Universidad Técnica de Cotopaxi Campus Salache en el periodo 2021.

Fecha de inicio:

05 de Abril del 2021

Fecha de finalización:

06 de Agosto del 2021

Lugar de ejecución:

Región Sierra, Provincia de Cotopaxi, Cantón Latacunga, Parroquia Eloy Alfaro, Barrio Salache Bajo, Universidad Técnica de Cotopaxi

Facultad que auspicia:

Ciencias de la Ingeniería y Aplicadas

Carrera que auspicia:

Ingeniería Eléctrica mención Sistemas Eléctricos de Potencia

Equipo de trabajo:

Tutor

Nombres: Rommel Eusebio

Apellidos: Suárez Vinueza

Nacionalidad: Ecuatoriana

Numero de Cedula: 180416535-3

Dirección: Ambato

E-mail: rommel.suarez @utc.edu.ec

Teléfono: 0984535832

Estudiante 1

Nombres: John Jairo

Apellidos: Anacleto Medina

Nacionalidad: Ecuatoriana

Fecha de nacimiento: 6 de Noviembre 1989

Numero de Cedula: 172272277-2

Dirección: Machachi (Urbanización los Ilinizas)

E-mail: john.anacleto2772@utc.edu.ec

Teléfono: 0985492821

Estudiante 2

Nombres: Bryan Rafael

Apellidos: Yatampala Cunachi

Nacionalidad: Ecuatoriana

Fecha de nacimiento: 17 de Noviembre de 1996

Numero de Cedula: 180496088-6

Dirección: Ambato (Atocha Calle Himno Nacional y Cumanda)

E-mail: bryan.yatampala0886@utc.edu.ec

Teléfono: 0987315359

Área de Conocimiento: Sistemas de Control, Control Industrial

07 Ingeniería, Industria y	071 Ingeniería y Profesiones	0713 Electricidad y energía
Construcción	Afines	

Línea de investigación:

Energías Alternativas y Renovables, Eficiencia Energética y Protección Ambiental

Sub líneas de investigación de la Carrera:

Control y optimización en el uso de la energía del sector industrial, comercial y residencial

2. INTRODUCCIÓN:

El siguiente proyecto está enfocado en la necesidad que presentan los estudiantes como también el personal que se encuentra a cargo del invernadero #2 del Centro Experimental Académico Salache de la Universidad Técnica de Cotopaxi localizado en la Provincia de Cotopaxi Cantón Latacunga, debido a la falta del correcto manejo de datos en los sistema de automatización de los invernaderos, capaz de realizar el monitoreo y adquisición de datos de forma remota y poder tener un registro de las diferentes variables como la temperatura, humedad y nivel de agua que son necesarias para el desarrollo de los diferentes cultivos.

En la actualidad el proceso de automatización se relaciona con la optimización de escenarios fundamentales, por lo cual se propone el monitoreo a través de un sistema SCADA, que es una alternativa para el mejoramiento tanto de la producción y desarrollo de los diferentes cultivos de manera que el operador encargado pueda tener un registro de la temperatura, humedad y nivel de agua que se necesita para el riego de los cultivos en el invernadero.

Uno de los beneficios de este sistema es que a través de la comunicación entre los dispositivos de campo, de manera local o remota se puede monitorear e inspeccionar el proceso desde la pantalla del ordenador mediante una interfaz gráfica que es configurada por el usuario.

Por lo cual se pretende monitorear las variables a través de la programación de un nuevo sistema con el software WinCC en el cual presenta interfaces gráficas, de igual manera se pretende realizar el almacenamiento de los datos obtenidos en un servidor web

2.1. EL PROBLEMA:

2.1.1. Situación Problemática:

En la actualidad la construcción e implementación de invernaderos con procesos, técnicas y sistemas eficientes, es fundamental para el desarrollo de diversos cultivos, en las diferentes zonas del Ecuador. La variabilidad climática hace necesario que mediante los invernaderos se controlen los ambientes y elementos necesarios para los cultivos, garantizando una mejor producción.

El proyecto requiere un correcto manejo de la adquisición de datos de humedad y temperatura obtenidos por el sensor hibrido que se encuentra conectado al módulo ya existente del invernadero #2 del centro experimental Salache de la Universidad Técnica de Cotopaxi, y de esta manera poder monitorear las variables que controla el módulo en tiempo real, el cual será

muy útil ya que ayudara a los estudiantes y personal que se encuentren a cargo de estos invernaderos a tener un mejor monitoreo del sistema, y así mejorar la producción de los cultivos de rosas.

El campus Salache de la Universidad Técnica de Cotopaxi, cuenta con un invernadero experimental, donde se encuentra cultivos de rosas, las cuales para su correcta producción y desarrollo es necesario contar con el correcto manejo de los datos adquiridos dentro del sistema SCADA. Este sistema SCADA es una de las nuevas alternativas para el mejoramiento de la producción y desarrollo de los diferentes cultivos, ayudando al incremento de la calidad y cantidad de los mismos.

Si bien es cierto que anteriormente existía un sistema de monitoreo y control de humedad y temperatura el cual presentaba un inconveniente en cuanto al manejo de datos y al no contar con el almacenamiento de los mismos para posteriormente realizar el análisis de las respectivas variables.

En vista a lo planteado anteriormente se hace necesario el desarrollo de un sistema SCADA para el monitoreo de las variables de temperatura, humedad y nivel de agua con una interfaz gráfica que facilite la ejecución de manera remota a los estudiantes y personal encargado, los mismos que serán los beneficiarios directos del proyecto.

2.1.2. Formulación del problema:

Como incide en la operación del invernadero #2 del campus Salache el desarrollo de un sistema SCADA para el monitoreo de las variables de temperatura, humedad y nivel de agua, y el correcto manejo de los datos obtenidos.

2.3. OBJETO Y CAMPO DE ACCIÓN:

2.3.1. Objeto de estudio

La implementación del sistema Scada en el invernadero #2

2.3.2. Campo de acción

330000 Ciencias	3306 Ingeniería y	330602 Aplicaciones
Tecnológicas	Tecnología Eléctricas	Eléctricas

2.4. BENEFICIARIOS:

2.4.1. Beneficiarios directos:

Estudiantes y docentes de la carrera de Ingeniería Agronómica de la Universidad Técnica de Cotopaxi.

2.4.2. Beneficiarios indirectos:

Personal encargado del invernadero, estudiantes en general del Campus Salache por la facilidad de utilización del sistema.

2.5. JUSTIFICACIÓN:

Los invernaderos constituyen una variable de crucial importancia en el desarrollo de los diferentes cultivos, el monitoreo del ambiente climático que se da dentro de los mismos ayudando de manera correcta al desarrollo adecuado de las plántulas que se encuentran dentro del mismo, el presente proyecto contribuirá con información real que se obtendrá del monitoreo de las variables que se manejan dentro de este ambiente como lo son la temperatura, humedad y nivel de agua.

El presente proyecto reside debido a que no existe un correcto manejo de los datos obtenidos gracias a los sensores de temperatura, humedad con los cuales se podrá conocer el nivel de riego que necesitan los cultivos en el invernadero #2 del centro experimental de Salache.

Sobre la base de lo antes mencionado el presente proyecto implementará el sistema Scada el cual permitirá monitorear y generar una base de datos los cuales son obtenidos mediante sensores que se encuentran ubicado en el invernadero, llevando un registro de información en tiempo real almacenándolos en un servidor remoto en el sitio web que se haya elegido, permitiendo al usuario acceder y observar el comportamiento de estos en un tiempo determinado.

Finalmente se precisó que la tecnificación de los invernaderos pretende ayudar particularmente a los estudiantes de la carrera de agronomía ya que al tener un tener un monitoreo constante de los dos sistemas se garantizara un ambiente propicio para la cultivación de los productos.

2.6. HIPÓTESIS:

El sistema SCADA en el Invernadero Experimental del Campus Salache ayudara al monitoreo eficaz de las variables de temperatura, humedad y nivel de agua de forma remota, el cual permitirá almacenar de manera correcta los datos obtenidos en un servidor web.

2.7. OBJETIVOS

2.7.1. Objetivo General:

 Desarrollar un sistema SCADA para el monitoreo de variables utilizadas en plántulas del invernadero #2 de la Universidad Técnica de Cotopaxi.

2.7.2. Objetivos Específicos:

- Determinar el estado del arte de los sistemas de monitoreo para conocer las variables de temperatura, humedad y nivel de agua
- Determinar los protocolos y topologías necesarias para el desarrollo de un sistema SCADA
- Diseñar un sistema SCADA, utilizando las variables de temperatura, humedad y nivel de agua con el fin de monitorear los cultivos en el invernadero #2
- Realizar el análisis de la factibilidad técnica y económica de la implementación del sistema

2.8. SISTEMA DE TAREAS

Objetivos	Actividades	Resultados	Técnicas, medios e
específicos		esperados	Instrumentos
Determinar el estado	Determinación de las	Adquisición de datos	Investigación
del arte de los	características,	relevantes de los	bibliográfica y
sistemas de	elementos, requisitos	diferentes	documental.
monitoreo para	y limitaciones del	fundamentos tanto	
conocer las variables	sistema SCADA a	técnicos como	
de temperatura,	través de múltiples	teóricos necesarios	
humedad y nivel de	fuentes	para el desarrollo del	
agua	bibliográficas	proyecto.	
	confiables.		

	Evaluación de la investigación realizada para la obtención de datos importantes y relevantes.		
Determinar los	Identificación de las		
protocolos y	diferentes topologías		
topologías necesarias	de red utilizadas en		
para el desarrollo de	un sistema SCADA.	Selección adecuada	Investigación
un sistema SCADA		de los aspectos	bibliográfica y
	Determinación de los	necesarios para un	documental.
	protocolos a	buen funcionamiento	
	utilizarse en un	del sistema.	
	sistema Industrial.		
	Análisis de variables		
	energéticas a través		
	del Sentron		
	PAC2200.		
Diseñar un sistema			
SCADA, utilizando	Levantamiento de		
las variables de	condiciones iniciales	Recopilación de	Exportación de datos
temperatura,	del invernadero #2.	datos de las variables	de los invernaderos
humedad y nivel de		analizadas necesarias	#1 y #2 a una
agua con el fin de	Determinar las	para el desarrollo del	computadora matriz.
monitorear los	características físicas	proyecto.	
cultivos en el	y técnicas de cada		
invernadero #2	uno de los elementos		

	que se van a utilizar	Programación del	
	en el sistema.	sistema de	
		monitoreo.	
	Realización de		
	pruebas de la		
	programación del		
	sistema SCADA con		
	los datos adquiridos.		
Realizar el análisis			
de la factibilidad	Verificación del	Presupuesto total del	
técnica y económica	óptimo	sistema	
de la implementación	funcionamiento del	implementado para	
del sistema	sistema SCADA.	el control y	
		monitoreo del	Análisis técnico y
	Cotización del	proyecto.	económico final del
	proyecto.		proyecto.
	Análisis de modelos	Tabulación de la	
	estadísticos para la	información y	
	obtención de base de	aplicación adecuada	
	datos de los	de las variables.	
	parámetros		
	(temperatura,		
	humedad y nivel de		
	agua)		

3. FUNDAMENTACIÓN TEÓRICA

3.1. Antecedentes

El sistema de control del consumo de agua mediante un sistema Scada realizado en la Universidad Técnica de Cotopaxi el cual trata del control eficaz del agua, lo que ayudara para garantizar el correcto manejo de riego y la evaluación adecuada de comportamiento del indicador de consumo de agua en el invernadero atendiendo a los diferentes cultivos [1].

El diseño e implementación de un sistema automatizado para el control de humedad y temperatura en un invernadero desarrollado en la Universidad Técnica de Cotopaxi, el cual permite controlar las variables climatológicas que varían de acuerdo al tipo de cultivo y es capaz de recolectar los datos mediante sensores ubicados dentro de los invernaderos que determinan la acción que se debe ejecutar para mantener los niveles adecuados dentro del rango óptimo de los cultivos [2].

En los últimos años se han desarrollado varios proyectos alrededor de la instrumentación y monitoreo en invernaderos el cual se encontró un proyecto que es la implementación de un sistema Scada para integrar varios dispositivos de automatización en el monitoreo y control de un prototipo de invernadero de rosas, el cual radica en que no se cuenta con la tecnología necesaria en los invernaderos, que permita la optimización del proceso, la mejora de la calidad de productos y el aumento de la producción de dicho sector [3].

En un proyecto de titulación se realizó la implementación de un sistema Scada para el control, monitoreo y análisis de indicadores de operación del invernadero de la Universidad Técnica de Cotopaxi Campus Salache, este sistema ayuda al control y monitoreo de forma remota y al análisis de indicadores energéticos de operación que sirven para verificar el desarrollo óptimo de los diferentes cultivos [4].

En el año 2010 se realizó el diseño de un sistema Scada de control automático de temperatura y humedad para los lechos de producción de humus de lombriz, este sistema ayuda con la adquisición de datos de las variables como la temperatura y humedad en cada uno de los lechos para lograr la optimización de recurso y sobre todo tecnificar la forma en que produce el humus de lombriz [5].

La utilización de sensores de temperatura y humedad dentro del sistema SCADA, permite que el usuario final ya no realice el riego de forma manual, sino que mediante la configuración del PLC se consigue que el riego se haga de forma automática cuando sea necesario [6].

En la Universidad Tecnológica de Pereira en el año 2016 se desarrolló un diseño de un sistema de monitoreo, registro y control de temperatura y humedad para el cultivo de invernadero, el cual consiste en el desarrollo de una aplicación a través de la implementación de varios dispositivos para la obtención de las variables más relevantes en el proceso de desarrollo del cultivo [7].

En una tesis de la Universidad Politécnica Salesiana de Cuenca se realizó el diseño de un prototipo de sistema sacada para el monitoreo y control de consumo de agua el cual busca automatizar el proceso de adquisición de datos de consumo de agua en la ciudad, que se basa en un sistema Scada por medio del cual ayuda a la recolección y uso correcto de datos, que cuenta con una etapa de capacitación, procesamiento y transmisión de datos [8].

En la ciudad de México se publicó en la Revista Ciencias Agrícolas, un artículo que trata de un prototipo para automatizar un sistema de riego multicultivo, este sistema integra el componente de entrada el cual consiste en la información meteorológica, y el componente de salida compuestos por dispositivos electrónicos, este sistema presenta un control por medio de un balance hídrico a partir de las variables meteorológicas además de la información de los suelos y los cultivos [9].

En la Universidad Politécnica Salesiana se encontró una tesis en donde se realizó un diseño e implementación de un sistema de monitoreo y control distribuido a través de la nube, de micro-unidades de regulación de humedad y temperatura para invernaderos que trata sobre la combinación de múltiples tecnologías para la optimización del proceso de cultivos dentro de los invernaderos mediante la regulación de diferentes parámetros característicos como la humedad y la temperatura, con ellos se busca establecer enlaces con un servidor de aplicaciones en la nube, de manera que los datos del proceso siempre estén disponibles para los beneficiaros del proyecto [10].

La agricultura es muy vulnerable a cambios climáticos cada vez con más frecuencia, por lo cual en la Revista Siembra publicaron un Artículo donde se realizó una revisión orientada en sistemas automatizados, utilizando sistemas Scada para la tecnificación de los procesos de control y monitoreo en invernaderos, demostrando un mejor control y monitoreo en tiempo real gracias a la utilización d sensores que permiten alcanzar una mayor eficiencia en los procesos de producción [11].

3.2. Invernadero.

Los invernaderos son instalaciones las cuales se encuentran cubiertas y abrigadas artificialmente estas son construidas por estructuras metálicas, hormigón armado, madera y materiales que son transparentes los cuales se utilizan para defender a las plantas de las condiciones climáticas externas, garantizando la producción durante cualquier época del año, con este tipo de instalaciones se puede tener el control de determinados parámetros de producción como los son: temperatura del ambiente y suelo, la humedad relativa, la concentración de anhídrido carbónico en el aire y luz etc. El interior de los invernaderos permite su desarrollo adecuado de los cultivos en todo su ciclo vegetativo [12].

3.2.1. Tipos de invernaderos.

3.2.1.1. Plano.

Estos invernaderos de tipo plano se utilizan en las zonas poco lluviosas, por su forma es no es aconsejable realizar este tipo de construcción.

Figura 1. Invernadero tipo plano. **Fuente:** [12]

3.2.1.2. Capilla.

Estos invernaderos tienen la techumbre los cuales forman uno o dos planos inclinados, estos pueden ser a un agua o dos aguas. Estos invernaderos son bastantes útiles cuando el horticultor es quien los fabrica, teniendo en cuenta que se lo puede construir de una manera sencilla en el cual se puede plástico de tipo rígido o flexible [13].

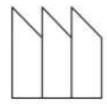


Figura 2. Invernadero tipo cepilla **Fuente:**[13]

3.2.1.3. Tipo sierra.

Estos invernaderos fueron diseñados básicamente para resolver problemas de ventilación los cuales son causados extremadamente calientes, el cual está construido por un techo arqueado, debido a su forma son denominados sierra, los cuales deben tener una evacuación correcta de aguas lluvia, debe poseer una canaleta en la vertiente en cada uno de los planos inclinados para poder evitar que el agua pueda ingresar en los invernaderos [14].

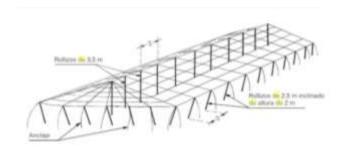

Tipo diente de sierra

Figura 3. Invernadero tipo Sierra **Fuente:** [14]

3.2.1.4. Parral o tienda de campaña.

Estos invernaderos tienen una estructura de madera y se encuentran cimentados de hormigón, su parte superior soporta una parrilla de alambres, este es económico y tiene una ventilación apropiada debido a su forma física el cual permite tener varios ingresos [13]

Figura 4. Parral o tienda de campaña Fuente: [13]

3.2.1.5. Túnel.

Esta estructura está formada por pies derechos y arcos, los cuales por su pendiente acusada tienen la capacidad de tener una mayor captación de radiación solar [15].

Figura 5. Invernadero tipo túnel **Fuente:**[15]

3.2.1.6 Asimétricos.

Estos invernaderos son fabricados con la finalidad de mejorar la transmisión de luz tanto en cantidad como homogeneidad, para ello son ubicados en sentido este – oeste, logrando que se encuentre paralelo al recorrido del sol, así se obtiene radiación asimétrica que se obtiene a dos aguas aprovecha la radiación incidente sobre las plantas es superior en comparación con las tradicionales [16].

Figura 6. Invernaderos Asimétricos **Fuente:**[16]

3.3. Sistema de riego para invernaderos

En la actualidad existen varios los sistemas de riego los cuales son utilizados en los invernaderos, estos sistemas tienen en común la reutilización del agua, así teniendo un control estricto del riego, fertilización e intentando generar un menor impacto ambiental.

En los sistemas más utilizados de riego pueden ser clasificados por el alcance y al tamaño de la gota [17].

3.3.1. Sistema de riego aéreo

Los sistemas de riego aéreo son los que el agua se aplica a los cultivos en forma de la lluvia, el cual va mojando la totalidad de la planta, de toda la superficie cultivada, se clasifican en.

- Aspersión
- Miniasperción
- Nebulización
- Pulverización
- Tren de riego.

3.3.2. Sistema de riego localizado

Este sistema de riego se encarga de humedecer una parte del suelo, donde la planta podrá obtener el agua y los nutrientes que necesita, estas son.

- Goteo
- Cintas de exudación
- Microasperción.

3.3.3. Sistema de riego por goteo

El sistema de riego por goteo consiste en soltar el agua gota a gota, según la necesidad del usuario donde ira humedeciendo sólo la parte del suelo a tratar, llevando el agua hasta las raíces de las plantas, también es llamado riego localizado o alta frecuencia, dependiendo del cultivo se aplica el agua casi a diario o en ocasiones más de una vez al día. Teniendo una ventaja principal que permite la aplicación de fertilizantes a través del mismo sistema, de manera localizada, otra es el ahorro significativo del volumen del agua que se usa, de esta forma al proporcionar el agua a las plantas se obtiene incrementos significativos mejorando la producción agrícola [18].

3.3.4. Sistema de riego programado

Este se lo puede realizar a través de un PCL, con el cual es posible establecer que cantidad definida de riego necesaria bajo las condiciones del suelo, temperatura o estado del cultivo que pueden proceder al horario que manualmente según lo requiera el ingeniero agrónomo en base a las horas sincronizadas [19].

3.3.5. Sistema de riego por nebulización

En este sistema los emisores expulsan agua en forma de neblina sobre los cultivos el cual puede poseer agua o fertilizante el cual contribuye a disminuir la temperatura del ambiente y así elevar la humedad relativa, esto provee un riego uniforme y el tamaño de la gota no ocasiona ningún tipo de daño a los cultivos, garantizando un ahorro de agua [20].

3.4. Tubería para el sistema de riego

Es una instrumento fundamental la que se encarga de la distribución del agua, en un espacio determinado el cual es apropiado específicamente para los cultivos de rosas, para el funcionamiento de este sistema constituye de dos tuberías la principal que transporta el recurso hídrico desde la fuente hacia el interior del invernadero. La secundaria es aquella que transporta el agua desde la tubería principal hacia las diferentes subdivisiones. Finalmente la tubería lateral que se conecta los goteros para el posterior regadío [21].

3.5. Temperatura.

Los cultivos poseen rangos diferentes de temperatura el cual es necesario para tener un adecuado desarrollo y crecimiento, la mayor parte de cultivos necesitan temperaturas idóneas, esto se obtiene gracias al recubrimiento el cual deja pasar radiación solar dentro de los

invernaderos el cual es necesario para la vida de las plantas, dentro de la radiación solar se encuentra radiaciones visibles e invisibles al ojo humano, las dos son necesarias para los procesos biológicos vegetales [22].

La temperatura que se tiene en el interior de un invernadero, afecta directamente para el proceso de fotosíntesis de las plantas, de tal manera que el equilibrio respiración – transpiración es afectada. Cuando existe temperaturas muy altas estas provocan afectación en la producción debido a las altas temperaturas [23]. Al tener una variación de temperatura la misma se encuentra relacionada directamente con la humedad. Sin embargo, la variación de la temperatura se encuentra estrechamente relacionada con la humedad.

3.6. Humedad.

La humedad es esencial para obtener un correcto desarrollo y producción, debido que es un factor determinante tomando en cuenta que la humedad ambiental debe ser específica y diferente para cada una de las plantas que se esté cultivando, tomando en cuenta que si la humedad del ambiente es elevada se puede dar la aparición de plagas y enfermedades las cuales son malignas para para el desarrollo de las mismas, cuando la humedad es baja se tiene como resultado la muerte y perdidas de los cultivos [22].

En un invernadero las oscilaciones higrométricas son elevadas, el cual produce condiciones de saturación durante toda noche (condensación) el mismo que disminuye durante el día. La humedad en exceso provocan el desarrollo de un sin número de enfermedades, y cuando existen cambios prolongados de humedad los cuales pueden producir situaciones de estrés en las plantas [24].

3.7. Sistema de comunicación Industrial

3.7.1. Internet.

Nace de la necesidad de transportar información, la cual se conseguiría al interconectar computadoras con un conjunto de protocolos en donde los más utilizados son el TCP/IP, el protocolo es la parte fundamental ya que este permite realizar el intercambio entre computadoras el TCP/IP, significa Transmission Control Protocol / Internet protocol, más utilizado en la red [25].

3.7.2. Protocolo TCP (Transmission Control Protocol).

El protocolo TCP se encarga de fraccionar en paquetes independientes la información y los numera para que pueda llegar a su destino final se ordenen correctamente, también incluye la denominada suma de comprobación, en el cual coincide el número total de datos que contiene el paquete, la misma que servirá para averiguar en el punto de destino se haya producido alguna perdida de información [26].

3.7.3. Protocolo IP (Internet Protocol)

La IP proporcionara a cada paquete, otras informaciones donde se encontraran las IP de origen y destino, según la información es enviada cada paquete ira escogiendo el camino más adecuado para llegar a su destino, de esta manera el internet se consolida como una red estable [27].

3.7.4. Ethernet industrial

Ethernet es un estándar que especifica la construcción y funciones de redes abiertas para transmisión de datos accesibles según el proceso CSMA/CD (Carrier Sense Multiple Access with Collision Detection) ampliamente utilizado en el ambiente de oficinas. Debido a la creciente necesidad de comunicaciones en el medio de la industria muchos fabricantes han respondido al llamado y han propuesto una plataforma ampliamente probada, que con algunas modificaciones se ha ajustado a las necesidades de la industria [25].

Medios de transmisión inalámbricos para redes de área local.

Dentro de estos medio de transmisión se pueden encontrar tres tipos: radio frecuencia, infrarrojos y laser, de estos tipos el de radio frecuencia es el más utilizado tomando en cuenta que las otras aplicaciones son muy limitadas [26].

Tipos de conexión a internet.

Existen diferentes tipos de conexiones cuando se habla de internet las cuales son basadas genealmente en la tegnologia, algunas de estas siguen creciendo por su uso y otras han caiso en deuso [28].

Por linea telefonica.

RTB: línea telefónica convencional o RTB, red telefónica básica, esta conexión aprovechaba la red de telefonía, en la cual no era necesario una instalación adicional ya que podía ser aprovechada la red de telefonía [28].

RDSI: Línea telefónica digital RDSI, esta tenía la capacidad de mantener una conversación y conexión a internet.

ADSL: línea telefónica digital ADLS, esta aprovecha las ventajas de RTB Y RDSI, la cual se convirtió en la señal preferida por su versatilidad y capacidad.

Por fibra óptica cable.

Presenta una mayor capacidad de transmisión de información, esta necesita una infraestructura especial por ese motivo no se encuentra disponible en todos los lugares, es la más segura y adquirida por los usuarios [28].

Por satélite.

Es necesario tener una instalación que posea una antena parabólica digital y un acceso telefónico a internet, software específico y un proveedor por satélite [28].

Por Wifi.

Son redes inalámbricas o llamadas Wireless, estas utilizan señales luminosas infrarrojas u ondas de radio para transmitir información [28].

Por Móvil.

Esta se encuentra en la telefonía móvil, en la actualidad los teléfonos funcionan con una tecnología 3G Y 4G y a futuro se espera 5G [28].

3.8. Sistema de monitoreo

Un sistema de monitoreo es de suma importancia ya que ayuda a tomar decisiones tanto económicas como correctas, como objetivo principal se busca prever ciertos problemas que se pueden dar en el sistema y facilita el estudio sobre el estado climático que se puede dar dentro del invernadero tomando en cuenta la temperatura, humedad. Estas son obtenidas por medio de sensores y los datos, podrán ser almacenados en un servidor para realizar un correcto análisis [29].

Algo esencial del sistema consiste en detectar la temperatura y la humedad del medio ambiente del invernadero, El software de monitoreo del sistema permite obtener información de los sensores inalámbricos, su función principal es el ajuste de parámetros, visualización, consulta, análisis, reporte de procesamiento y alarma para los datos en tiempo real, monitoreo online en tiempo real, visualización de curva en tiempo real mediante un gráfico y la comunicación en tiempo real a distancia [29].

3.9. Sistemas SCADA

Los sistemas SCADA se denomina en español Control Supervisor y Adquisición de Datos, son un conjunto de aplicaciones de software, creadas para funcionar sobre ordenadores de control de producción, proporcionando comunicación en tiempo real con los dispositivos de campo, y controlando el proceso automáticamente mediante la comunicación digital, así como también envía la información que se obtiene en el proceso de producción de los usuarios [30].

Se destacan varios aspectos técnicos y funcionales de la implementación de sistemas SCADA el cual permite al ser humano interactuar con los procesos en los diferentes tipos de industrial sin necesidad de asumir riesgos en la planta, ya que facilitan el control y toma de decisiones de manera remota desde una cabina de mando [30].

El software SCADA es un gran avance de gran impacto en la automatización industrial, ya que es un sistema central que monitorea y controla un sitio completo o un sitio especifico, el cual permite ilustrar gráficamente en la pantalla cada una de las estaciones remotas utilizando un protocolo determinado, también puede crear alarmas y advertencia en tiempo real para el correcto manejo del proceso que se desea controlar [31].

Los sistemas Scada es principalmente una herramienta de supervisión y mando. Entre los cuales tenemos los siguientes objetivos que podemos destacar [32]:

- **Economía:** ventaja que tiene el sistema para reducir los tiempos de supervisión personal al tener toda la información accesible en un solo punto [32].
- Accesibilidad: capacidad que presenta el sistema para que se puedan ejercer acciones de control directas sin necesidad de desplazarse a la planta
- Mantenimiento: se refiere a la facilidad en la obtención y visualización de datos para cualquier usuario que no se experto, con elementos como el anuncio de fechas de mantenimiento y de las posibles fallas que se estén presentando acorde a las estadísticas [32].

- Ergonomía: se refiere a la comodidad y buena presentación de los datos y los controles necesarios de tal forma que al supervisar no se canse o se vuelva monótono la utilización del sistema. Aquí es necesario tomar en cuenta tema de distribución de color, tamaño de letras, simbología de los instrumentos y elementos de campo entre otros aspectos [32].
- Gestión: se refiere a la capacidad del sistema de presentar gráficos estadísticos y de manera comparativa de tal forma que se genere información útil para el análisis del proceso
- **Flexibilidad:** capacidad del sistema para añadir piezas graficas con indicadores y otros elementos de control y monitoreo de manera intuitiva y rápida.
- Conectividad: capacidad del sistema para ser compatible y ofrecer protocolos de comunicación claros que permitan articularse con otros sistemas [32].

3.9.1. Tipos de sistemas SCADA

Existen diferentes tipos de sistemas SCADA los cuales los mencionamos a continuación:

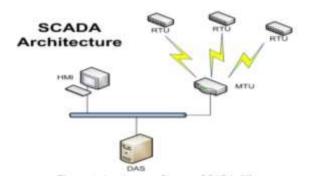
3.9.1.1. Sistemas Scada abiertos y propietarios

Los sistemas abiertos son aquellos desarrollados para poder ser aplicados a cualquier tipo de tecnología o dispositivo de control, esto quiere decir que para enlazar un equipo de distintos fabricantes es necesario contar con los drivers que interpreten los distintos códigos de comunicación [33]. Los sistemas propietarios son aquellos desarrollados por los fabricantes de equipos, los cuales se comunican entre sí con sus propios drivers y su desventaja principal en la gran dependencia que tiene el proveedor del sistema.

3.9.1.2. Sistemas Scada comerciales y gratuitos

Los sistemas comerciales son los que están a cargo de su compañía la cual se encarga de crear todas las interfaces necesarias para comunicar los diferentes dispositivos y una vez finalizado entregar al usuario un producto de fácil uso [33]. Los sistemas gratuitos por lo general fue creado como el sistema comercial, y en el transcurso de tiempo se vino dando mayores ventajas en poner estos sistemas con su código de programación en forma abierta a disposición de diferentes desarrolladores del mundo.

3.9.2. Características principales de los sistemas SCADA


Los sistemas Scada presentan varias características las cuales son [30]:

- Adquisición y almacenamiento de datos para la recoger, procesar y almacenar la información recibida en forma continua y confiable [30].
- Representación gráfica y animada de variables de proceso y su monitorización por medio de alarmas.
- Ejecutar acciones de control para modificar la evolución del proceso, actuando ya sea sobre los reguladores autónomos básicos (alarmas, menús, consignas, etc.) o directamente sobre el proceso mediante las salidas conectadas.
- Conectividad con diferentes aplicaciones y bases de datos, locales o distribuidos en redes de comunicación.
- Supervisión, para observar desde un monitor la evolución de las variables de control
- Base de datos, gestión de datos con bajos tiempos de acceso.
- Alertar al operador sobre los cambios detectados en la planta tanto aquellos que no se consideren alarmas como los que produzcan en su operación diaria. Estos cambios son almacenados en el sistema para su posterior análisis [30].

3.9.3. Arquitectura de un sistema Scada

Las primeras investigaciones en el campo de la automatización localizaban todo el control en el PC y tendían progresivamente a la distribución del control en planta [34]. Por tal motivo el sistema queda dividido en tres bloques principales:

- Software de adquisición de datos y control (SCADA)
- Sistemas de adquisición y mando (Sensores y Actuadores)
- Sistemas de interconexión (Comunicaciones)

Figura 7. Arquitectura Sistema SCADA

Fuente: [34]

El usuario, tiene el acceso al sistema de control de proceso, mediante herramientas de visualización y control, que casi siempre reside en un ordenador. La comunicación entre estos dos sistemas se suele realizar a través de comunicaciones corporativas tales como Ethernet [34]. Los sistemas SCADA están formados por los siguientes elementos básicos:

Interface hombre-máquina (HMI, MMI)

Los procesos en la industria requieren de dispositivos electrónicos de repuestas rápidas y eficientes para cumplir dichas expectativas, se han creado varios sistemas de automatización entre ellos los llamados HMI. Los HMI son un dispositivo o sistema que permite realizar la interfaz ente el operador y la máquina. Además son interfaces graficas sencillas de complementar y capaces de desplegar la información del proceso en tiempo real de manera sencilla y amigable al usuario [1].

Unidad central MTU

Es donde se centraliza el mando del sistema, allí se debe permitir la interoperabilidad de multiplataforma y multisistemas, posibilitando el intercambio de información entre los centros de control y subestaciones [32]. El cual se encarga de los siguientes aspectos:

- Gestionar las comunicaciones
- Recopilar y enviar datos a las RTU
- Comunicación con los operadores del sistema
- Análisis impresión y visualización del sistema
- Realizar el mando del sistema
- Garantizar la seguridad del sistema

Unidad remota RTU

Por unidad remota RTU se denomina al conjunto de elementos dedicados a labores de control y supervisión de un sistema, alejados del centro de control, y comunicaciones con este mediante algún canal de comunicación [34]. Dentro de esta clasificación podemos encontrar diferentes elementos a continuación:

RTU (Remote Terminal Unit): especializados en comunicación

PLC (Programmable Logic Controller): se encarga de las tareas generales de control

IED (Intelligent Electronic Device): se encarga de las tareas específicas de control

RTU: las unidades remotas se utilizaban para la recopilación de datos de los elementos de campo y transmitirlos hacia la unidad central a la vez que envían los comandos de control a estos, los cuales se les denomina procesadores de comunicación [34].

PLC (Programmable Logic Controller)

El PLC es un controlador lógico programable que está conformado por un microprocesador que lo asimila a un computador, son equipos utilizados dentro del mundo de la automatización industrial de la ingeniería para automatizar eventos o procesos electromagnéticos. Está compuesto por varias señales tanto de entradas como de salidas que pueden ser análogas o digitales [35].

IED: son los periféricos inteligentes (Intelligent Electronic Devices), que trata de elementos con características de decisión propia los cuales se ocupan de tareas de comunicación, regulación y control [34].

3.9.4 Sistemas de comunicación y software

Los sistemas de comunicación son el intercambio de información entre diferentes servidores y clientes, el cual gestiona que los instrumentos de campo envían a la red de unos computadores desde el sistema. El tipo de bus utilizado en las comunicaciones puede ser muy diverso según las necesidades del sistema y del software escogido para el diseño del SCADA, ya que no todas las aplicaciones pueden trabajar con los diferentes tipos de bus [25].

El servidor de datos puede presentar varios protocolos de forma sincrónica, estando delimitado por la capacidad física de aguantar las interfaces de hardware. Estos permiten el intercambio de datos bidireccionales entre la unidad central y las unidades remotas mediante un protocolo de comunicaciones determinado y un sistema de transporte de información para mantener el enlace entre los diferentes elementos de la red [25].

3.9.5. TIA PORTAL

Este software es un sistema innovador de los sistemas de ingeniería, el cual ayuda a configurar de manera intuitiva y eficiente los procesos industriales. Es una aplicación modular que permite agregar nuevas funcionalidades y su utilidad es integrar diferentes aplicaciones en una misma interfaz. La principal función que ofrece el TIA Portal es la posibilidad de integrar varias aplicaciones de software industrial para procesos de producción de en una misma interfaz, lo cual facilita mucho el aprendizaje, la conexión y la gestión. Una de sus principales ventajas es la factibilidad y escalabilidad con la que se pueden migrar distintos sistemas [36].

3.9.5.1. Simatic WinCC

Es un sistema que se encuentra en el TIA Portal y es parte de un nuevo concepto de ingeniería integrado que ofrece un campo único para la programación y configuración de soluciones de control, visualización y accionamiento [37].

WinCC es un sistema de visualización con estructura modular la cual permite el monitoreo y control de procesos técnicos de plantas y maquinas. Es utilizado como un sistema Scada con HMI (Human Machine Interface) que significa interfaz hombre máquina. El autómata programable PLC en si tiene el control sobre el proceso. Podemos decir que hay una comunicación entre WinCC y el operador, y por otro lado entre WinCC y PLC [38].

3.9.5.2. Características

El entorno de WinCC proporciona las siguientes características:

- En su calidad de componente del concepto TIA de Siemens (Automatización totalmente integrada), WinCC opera con autómatas programables de la serie de productos SIMATIC con un grado de coordinación y cooperación especialmente eficaz [39].
- WinCC puede ser adaptado de modo óptimo a los requisitos de cada proceso. Se soporta un gran número de configuraciones, desde un sistema monopuesto (un solo OS) hasta los sistemas redundantes distribuidos que tienen varios servidores pasando por sistemas cliente-servidor [39].
- WinCC es un sistema HMI apto para utilizarlo con Internet, pudiendo implementar soluciones del usuario basadas en la Web.

3.9.6. Topologías de red

Es la forma en que se interconecta las computadoras para el intercambio de información y datos mutuamente, lo que quiere decir que es como una familia de comunicación que señala los parámetros para el diseño de red [2]. Las diversas combinaciones de los elementos que se comunican dan lugar a unas topologías mencionadas a continuación:

• Estrella

La adquisición de información es en base a un nodo como lo es una computadora central, en donde cada dispositivo es servido por su propia conexión. El intercambio de datos entre

periféricos inicialmente centralizado o desde la periferia, es siempre empleado vía el nodo central. Una de las ventajas de esta topología es que si una de las líneas está sujeta a interferencia, solo será afectado el dispositivo conectado [40].

Anillo

La información es enviada de dispositivo a dispositivo. En el cual cada dispositivo asume el rol de controlador a intervalos estrictamente definidos porque el anillo no tiene un control central. Teóricamente no existe límite para el número de dispositivos permitidos. Para evitar esto, se incorporan interruptores de baypass que automáticamente conmutan cuando un dispositivo falla [40].

Bus

La información llega al receptor sin la ayuda de ningún otro dispositivo, ya que todos los dispositivos están interconectados en la misma red de datos. Si se incrementa un dispositivo al bus, no se necesita interfaces adicionales en las estaciones existentes. Así el inconveniente de un número limitado de usuarios relacionados con la estructura estrella no aparece. Una estructura en bus permite una comunicación cruzada objetiva para cualquiera de los dispositivos conectados [40].

Node red

Es sistema de programación que se utiliza para conectar dispositivos de hardware, Apis y servicios de internet. Apropiado para los equipos dedicados al Internet de las cosas Industrial (IoT) y personal dedicado al diseño y prueba de soluciones ara la comunicación de equipos de planta con aplicaciones IT. Dado que la mayor parte de dispositivos IoT para industria 4.0 facilitan realizar un programa de control con la herramienta Node-Red [41].

3.9.7. Buses de campo

3.9.7.1. Modbus

Es una especificación de mensajes, funciones utilizadas para la comunicación con los PLC. El cual puede implementarse en cualquier línea de comunicación serie y accede la comunicación por medio de tramas binarias o ASCII con un proceso interrogación-respuesta simple [25]. En Modbus los datos pueden intercambiarse en dos modos de transmisión y una extensión del protocolo:

- Modo RTU (Remote Terminal Unit), donde se envía cuatro caracteres de control de redundancia cilica (CRC)
- MDBUS TCP/IP, es una variante de la familia MODBUS de protocolos de comunicaciones simples y neutrales para supervisión y control de equipos de automatización. Particularmente, cubre el uso de la mensajería MODBUS en un entorno Intrnet o Internet utilizando protocolos TCP/IP
- Modo ASCII, enviando 2 bytes para cada mensaje, pudiendo haber hasta 1 segundo de tiempo de diferencia entre ellos. Utiliza una suma de control de redundancia longitudinal (LRC) [25].

3.9.7.2. Powerlink.

Es un protocolo determinista real-time basado en el estándar Ethernet el objetivo del desarrollo de este protocolo consistió en aplicar la tecnología Ethernet a las aplicaciones de automatización industrial donde varios elementos de control (PLC, pantallas de operador, módulos de E/S, módulos de seguridad, sensores) tengan que comunicar entre ellos de forma rápida en condiciones de tiempo real adversas garantizando que el proceso de comunicación sea fiable y repetitiva [25].

3.10. Elementos que se aplicaron en la investigación

3.10.1. SENTRON PAC 2200

Es un equipo que hace referencia a un multímetro tipo central de medida para la visualización de todos los principales parámetros de red en la distribución de energía eléctrica en baja tensión. El cual puede realizar mediciones monofásicas, bifásica, trifásicas que son utilizadas en sistemas en esquema TN, TT e IT de dos, tres o cuatro conductores [2].

Como se detalla en la siguiente figura:

Figura 8. Sentron Pac 2200 Fuente:[2]

3.10.2. Pantalla simatic HMI KTP 400

En un panel táctil denominadas como panels o basic, cuya función se basa en la aplicación de máquinas pequeñas ideales para el control industrial, y comprende los paneles con pantallas panorámicas de alta resolución de 4",7",9" y 12", y el manejo tiene la combinación de teclas táctiles [2].

Figura 9. Pantalla Simatic HMI KTP400 **Fuente:** [42]

3.10.3. SIMATIC IOT 2040 24VDC 1GB RAM 2 ETHERNET INDUSTRIAL

SIMATIC IOT 2020 es una pasarela inteligente que se estandariza la comunicación entre diferentes fuentes de datos, luego analiza y reenvía las comunicaciones a los destinatarios correspondientes, y es fácil de implementar. Es ideal como puerta de enlace entre la nube o el nivel de TI de la empresa de producción [2]. La apertura del sistema permite soluciones personalizadas. Entre las principales características de la plataforma, se tiene que:

- Soporte Yocto Linux
- Ampliado fácilmente con protectores Arduino y tarjetas miniPCIe
- Diseño industrial compacto y montaje en carril DIN
- Procesador Intel Quark de alto rendimiento y ahorro de energía y numerosas interfaces:
 Inter Quark x1020 (+ arranque seguro), 1GB de RAM, 2 puertos Ethernet, 2 puertos
 RS232/485 reloj en tiempo real respaldado por batería
- Calidad SIMATIC probada y extremadamente robusta.

Figura 10. SIMATIC IOT2040 Fuente: [43]

3.10.4. PLC (Controlador Lógico Programable)

Un controlador lógico programable es un instrumento electrónico que utiliza memoria programable para guardar instrucciones sobre la implementación de determinadas funciones, como operaciones lógicas, secuencias de acciones, especificaciones temporales, contadores y cálculos para el control mediante módulos de E/S analógicos o digitales sobre diferentes tipos de máquinas y de procesos [2].

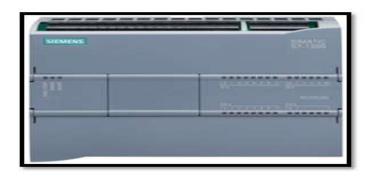


Figura 11. PLC Fuente: [44]

3.10.5. SENSOR DE HUMEDAD Y TEMPERATURA S-Soil MT-02

Es un sensor que presenta un alto nivel de precisión, confiabilidad, estabilidad y durabilidad, ya que es de grado industrial con protocolo Morbos- RTU RS485 y presenta una clasificación IP68, puede utilizarse ampliamente para monitorear a largo plazo la temperatura y humedad del suelo. Estos sensores incorporan dos sensores, uno de humedad y otro de temperatura [45].

Las principales características del sensor son:

- Protocolo universal: MODBUS-RTU RS485
- Fuente de alimentación de amplio rango: 3.6V ~ 30v
- Alto rendimiento : alta precisión, confiabilidad y estabilidad
- Robustez de grado industrial: clasificación IP68, adecuada para aplicaciones a largo plazo
- Fácil de usar, instalar e integrar
- Seguridad: diseñado con protección de voltaje inverso

Tabla 1. Especificaciones del sensor de humedad y temperatura

Modelo	S-Suelo MT- 0.2A
Interfaz	RS-485
Protocolo	Modbus-RTU RS485
Fuente de alimentación	3.6V ~ 30v
Consumo actual	Max. 40 mA a 24 VCC
Temperatura de funcionamiento	-40 °C∼ +85 °C
Temperatura de almacenamiento	-40 °C∼ +85 °C
Tiempo de respuesta	<1 segundo
Área de medición	Diámetro: 7cm Altura: 7cm
Peso del Dispositivo	270 gr.

Figura 12. Sensor S-Soil MT-02 **Fuente:** [45]

3.10.6. SENSOR TRANSMISOR LWGY-A type

Es un medidor de flujo de turbina que está conformado por un sensor de flujo y un instrumento de visualización y si principal función es medir el flujo líquido [46]. Es aplicable para su uso en tuberías cerradas para medir el flujo líquido que no erosiona el acero inoxidable. Estos sensores presentan varias características las cuales son:

- Estructura simple y firme, fácil de instalar y desmontar
- Tipo de cojinete aleación dura que garantiza y mera el rendimiento de resistencia al desgaste
- Amplio rango de medición con un límite de velocidad de flujo
- Alta precisión y capacidad de repetición fina
- Alta resistencia a interferencias electromagnéticas y vibraciones

Figura 13. Sensor transmisor LWGY-A type **Fuente:** [46]

Especificaciones del sensor

 Tabla 2.
 Características del sensor de caudal

1 4 5 14 2 1	Curactoristicas der sensor de cadadi
Salida de señal:	Normal 4-20mA (0-5V, 0-10)
Fuente de alimentación:	12-24VDC
Nivel de precisión:	±0.5% / ±1.0%
Rango de flujo:	Rango de flujo normal (rango extendido)
Material del cuerpo:	SS304 normal (SS316L)
Temperatura media:	-100-100 ° C (120 ° C / 150 ° C)
Temperatura ambiental:	-30-60 ° C

4. MATERIALES Y METODOS:

4.1. Tipo de investigación

Investigación exploratoria: consiste en obtener información inicial para continuar con la investigación, esto quiere decir que para la realización del proyecto es necesario efectuar un levantamiento de condiciones iniciales del lugar de ejecución del proyecto, donde se conocerá los parámetros físicos del invernadero como parámetros eléctricos, datos de temperatura, humedad y nivel de agua, así como también los sistemas tanto eléctricos como electrónicos y el sistema que se encuentra implementado.

Investigación descriptiva: se definirán las diferentes variables a utilizarse en el proyecto, estableciendo los sistemas a monitorear y controlar de forma remota, las cuales son humedad, temperatura y nivel de agua, por medio del software SCADA para así tener un mejor manejo de los datos obtenidos del invernadero y realizar la comunicación con el invernadero #1.

Investigación de campo: se desarrollará en el invernadero #2 del campus Salache de la Universidad Técnica de Cotopaxi, en el cual se obtendrá datos como los de humedad, temperatura y nivel de agua, necesarios para la realización del sistema SCADA y mejora de la producción de los cultivos.

Investigación experimental: con la adquisición de datos de humedad, temperatura y nivel de agua en el invernadero se pretende realizar el control manual y automático para el diseño del sistema SCADA y el correcto funcionamiento del módulo.

4.2. Métodos de investigación

Método analítico: utilizando los sensores específicos se obtendrá el monitoreo de las variables de medición de humedad, temperatura, y nivel de agua, para el almacenamiento de datos el cual permitirá observar los rangos de variación de humedad y temperatura y nivel de agua.

Método de medición: se obtendrá datos técnicos como humedad, temperatura y nivel de agua, mediante la utilización de equipos adecuados como sensores específicos para cada una de las variables.

Diagrama de flujo de monitoreo del sistema SCADA.

La presentación del diagrama de flujo del sistema SCADA, se revela en la figura 14, en el cual se puede observar el comportamiento de las variables de temperatura y humedad que son monitoreadas, por medio de un sensor hibrido que llega al plc.

En el diagrama de flujo se ingresan todas las variables necesarias para el correcto funcionamiento del sistema, tomando en cuenta que puede actuar de manera automático o manual, al elegir el sistema de manera manual SI cumple con el requerimiento los elementos (bomba 1, bomba 2, electroválvula 1, electroválvula 2, electroválvula 3, sensor caudal) == 1, se encenderán si No cumple los elementos del sistema (bomba 1, bomba 2, electroválvula 1, electroválvula 2, electroválvula 3, sensor caudal) == 0, no se encienden, este patrón se repetirá para cada elemento del sistema, estos valores de temperatura y humedad pueden ser visualizados en la KTP del sistema, todos estos datos son guardados en un servidor web llegando al Fin del funcionamiento.

Al elegir el sistema de modo automático se debe verificar el nivel de humedad en el que se encuentre trabajando el sistema, cuenta con un set point y los rangos van a depender del usuario y así este puede realizar las comparaciones de humedad y al tener una Humedad == Hmin el sistema se activa automáticamente es decir los elementos (bomba 1, bomba 2, electroválvula 1, electroválvula 2, electroválvula 3, sensor caudal) == 1 se encuentran encendidos por un tiempo indeterminado hasta llegar a la Hmax, en el cual el sistema se apagara automáticamente. Si la Humedad >= Hmax los elementos del sistema (bomba 1, bomba 2, electroválvula 1, electroválvula 2, electroválvula 3, sensor caudal) == 0 no se enciende ya que se encuentra dentro del rango establecido, estos valores de temperatura y humedad pueden ser visualizados en la KTP del sistema, todos estos datos son guardados en un servidor web llegando al Fin del funcionamiento.

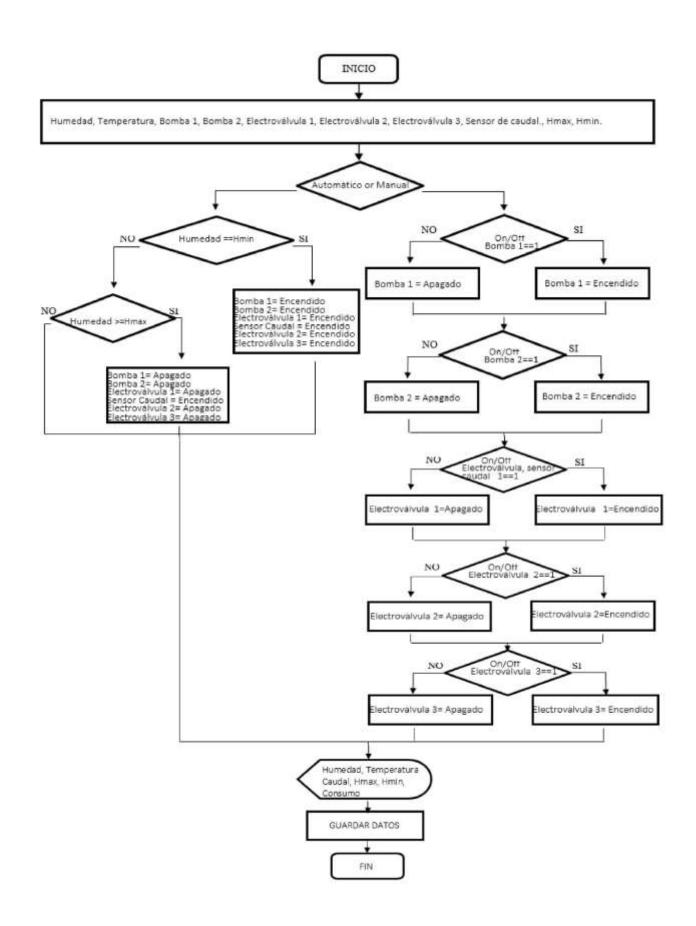


Figura 14. Diagrama de flujo del sistema Scada

4.3. MATERIALES

Comunicación punto a punto: El proyecto se realizó mediante un canal de datos que es el medio por el cual existe comunicación con el PLC S7 1200 y analizador de energía Sentron PAC 2200 entre un servidor OPC y este se comunicará con el software WinCC y de esta manera se monitorea el sistema.

Software WINCC: En este software se realizó la programación para el sistema, con el cual se hace el monitoreo de los datos obtenidos del invernadero #2 los mismos que servirán para llevar un adecuado manejo de los mismos.

Software Siemens: en el cual se realizará la programación para el sistema SCADA, y será el encargado de realizar la recepción de datos, los sensores que a su vez analizarán las variables necesarias para así enviar señales a los actuadores para que entren en funcionamiento.

Interfaz Gráfica HMI: Es la interfaz hombre-máquina, el cual proporcionara la visualización de los datos obtenidos por los sensores y a su vez permitir el accionamiento manual o automático de los actuadores del sistema.

Equipos: Los equipos que se utilizaran en el proyecto son fundamentales ya que gracias a estos se realizara la comprobación del correcto funcionamiento de los elementos eléctricos del sistema de control.

Multímetro: este es de gran utilidad ya que se podrá comprobar los niveles de voltaje, amperios, continuidad, de los elementos que se encuentran conectados en el sistema de control, monitoreando el voltaje y amperaje de los motores, bombas, sensores, etc.

Motores: estos son utilizados para realizar una acción específica, como es la activación del sistema de riego.

Electroválvulas: son válvulas electromecánicas, las cuales se encargan del paso del recurso hídrico, esta se mueve mediante una bobina solenoide y tiene dos posiciones abierto o cerrado.

Sensores de humedad y temperatura: son los encargados de recopilar la información entre las variaciones de humedad y temperatura, enviando estos datos al PLC para que así en base a su programación determine la actuación de los sistemas de riego.

Medidor Sentron PAC 2200: Será el encargado de realizar las mediciones de los parámetros eléctricos como son voltaje, corriente, potencia y energía que son necesarios para saber el consumo energético del invernadero.

Sensor de caudal: Es un dispositivo el cual es instalado directamente en la tubería de agua, el mismo que permitirá conocer la cantidad de líquido que atraviesa a través de él enviando la información al PLC.

SIMATIC IOT 2040 24VDC: Es un dispositivo inteligente encargado de realizar la comunicación entre diferentes fuentes de datos, el cual analiza y reenvía las comunicaciones a los receptores correspondientes.

TIA PORTAL: es un Software de ingeniería el cual permite manejar y configurar los procesos que se requiera automatizar este debe ser robusto, confiable y eficiente, su programación es basada en lenguaje KOP (Lenguaje de escaleras) y FUP (lenguaje por funciones), convirtiéndolo en uno de los software más utilizados en el ámbito industrial.

El TIA PORTAL es uno de los software más utilizados para la realización de procesos de automatización, para el presente proyecto se utilizó su última versión, la V15, ya que ofrece acceso rápido y fácil a todos los componentes de automatización y funciones complejas en una sola plataforma.

5. ANALISIS Y DISCUSIÓN DE RESULTADOS

En el proyecto de tesis realizado en el periodo (2020-2021) ejecutaron la implementación de un sistema de monitoreo de temperatura, humedad y agua para cultivos del invernadero N° 2, en donde utilizaron el software LabView para el control y el monitoreo de las variables, nuestro criterio sobre este software es que tiene un inconveniente en cuanto a la licencia, lo cual se vio la necesidad de utilizar una diferente herramienta como es el software WinCC, ya que este no presenta ninguna dificultad en cuanto a licencias y nos permite tener un mejor monitoreo de nuestro sistema Scada a través de una interfaz gráfica.

5.1 Ubicación del invernadero campus Salache

El invernadero N° 2 de la Universidad Técnica de Cotopaxi campus Salache perteneciente a los estudiantes de la carrera de Ingeniería Agronómica se encuentra ubicado en la Provincia de Cotopaxi Cantón Latacunga, el cual es delimitado para el cultivo de rosas.

Figura 15. Invernadero N° 2 del campus Salache

5.2 Levantamiento de Condiciones Iniciales

Para la realización del proyecto se tomó como valores iniciales los datos obtenidos por la tesis del periodo (2020-2021), para saber el estado en el que se encuentra, de igual manera realizamos las pruebas con lo que obtuvimos valores de humedad que se presentan a continuación:

5.3. Datos de condiciones iniciales

Curva de humedad vs tiempo

Tabla 3. Datos para la obtención de humedad vs tiempo

NUMERO	HORA	HUMEDAD (%)
1	9:15	20,2
2	9:20	20,7
3	9:25	21,2
4	9:30	21,7
5	9:35	22,2
6	9:40	22,7
7	9:45	23,2
8	9:50	23,7
9	9:55	24,2
10	10:00	25

11	10:05	39,9
12	10:10	40,05
13	10:15	40,2
14	10:20	40,35
15	10:25	40,5
16	10:30	40,65
17	10:35	40,8
18	10:40	40,95
19	10:45	39
20	10:50	38,4
21	10:55	37,8
22	11:00	37,2
23	11:05	39,5
24	11:10	40,2
25	11:15	40,9
26	11:20	41,6
27	11:25	42,3
28	11:30	43
29	11:35	43,7
30	11:40	44,4
31	11:45	45,1
32	11:50	45,8
33	12:00	52,2
34	12:05	55,4
35	12:10	58,6
36	12:15	61,8
37	12:20	65,4
38	12:25	72,6
39	12:30	80,5

Fuente: [2]

Figura 16. Curva de humedad vs tiempo

5.4. Rango de humedad

Tomando en cuenta referencias anteriores aprobadas se pone en consideración que se necesita un porcentaje de 85% de humedad en los invernaderos y hasta un 25% es considerado humedad nula.

El funcionamiento de las bombas de agua y accionamiento de las electroválvulas se llevara a cabo cuando el cultivo se encuentre bajo el porcentaje adecuado de los cultivos el cual será el 85% hasta llegar al mismo garantizando un correcto desarrollo de los cultivos en esta ocasión las rosas.

Conocer el porcentaje de humedad del cultivo es de suma importancia, he ahí la eficiencia de un sistema automatizado que ayude a controlar la humedad de los cultivos, gracias al monitoreo de las variables se mantendrá el porcentaje requerido de humedad.

5.5. Rango temperatura

Para el monitoreo de temperatura en el invernadero se debe establecer los rangos de temperatura que van desde los 18 a 35 °C, si al tomar la medición la temperatura es superior a la ya establecida, el sistema disminuirá de manera automática el valor, tomando en cuenta que si la temperatura excede 36 °C el sistema activa sus electroválvulas activando el riego en las secciones disminuyendo así la temperatura.

5.6. Verificación del sistema de control y monitoreo implantados

La comprobación del sistema de control y monitoreo de las variables de temperatura y humedad se realizó en el tablero de control, en el cual se encontró con varias irregularidades que son:

- Sensores de temperatura y humedad obsoletos
- Falta de acceso a la red
- Falta de obtención y almacenamiento de datos

Con las irregularidades encontradas en el tablero de control ya implementado se analizó varios

5.7Configuración del internet

Para la conexión de la red en el invernadero realizamos un enlace Punto a Punto ya que estas redes son un tipo de arquitectura de red que permite interconectar varias redes remotas como si fuera una sola red, por lo cual debemos conocer la configuración de los equipos utilizados.

Para configurar la antena ubiquiti se debe conocer la configuración básica de la misma, debemos verificar que la pc en la que se esté trabajando se encuentre en las mismas IP.

Figura 17. Configuración de la dirección IP

Una vez verificado que la pc se encuentre con las direcciones IP que vamos a trabajar, para ingresar a la interfaz del usuario se debe acceder en el navegador a la IP de **192.168.1.20**, en donde su usuario y contraseña será ubnt.

Figura 18. IP de fábrica de la antena ubiquiti

Al ingresar a la interfaz gráfica se debe ingresar el usuario y contraseña de fábrica ubnt. En el proyecto se utilizó el usuario ubnt y contraseña ubnt1.

Figura 19. Interfaz gráfica de la antena

Una vez ingresado a la interfaz se abre la pestaña del menú el cual muestra el estado de la red.

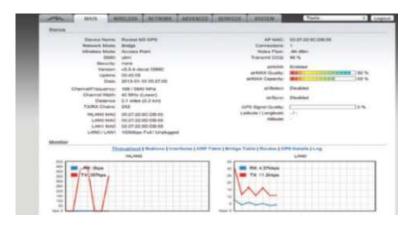


Figura 20. Interfaz gráfica de la antena

En la pestaña WIRELESS, podemos conectarnos a nuestra red con la cual vamos a enlazarnos.

Figura 21. Configuración de la antena con las IPs

En NETWORK se debe asignar las IP con las que estamos trabajando, y las antenas queden configuradas en la misma red.

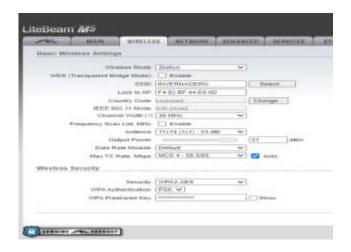


Figura 22. Asignación de las direcciones IP de las antenas

Una vez configurada la red se observa los valores a la cual está trabajando las antenas.

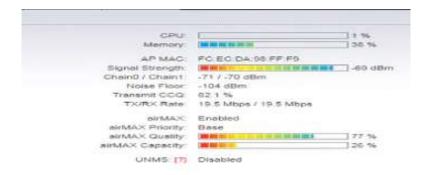


Figura 23. Rangos de Internet de la antena

5.8. Diseño de la comunicación y software TIA Portal

Para el diseño de la comunicación se podo realizar mediante las direcciones IP de la pc y el PLC 1212 AC/DC/Rly, de esta manera acceder al TIA PORTAL.

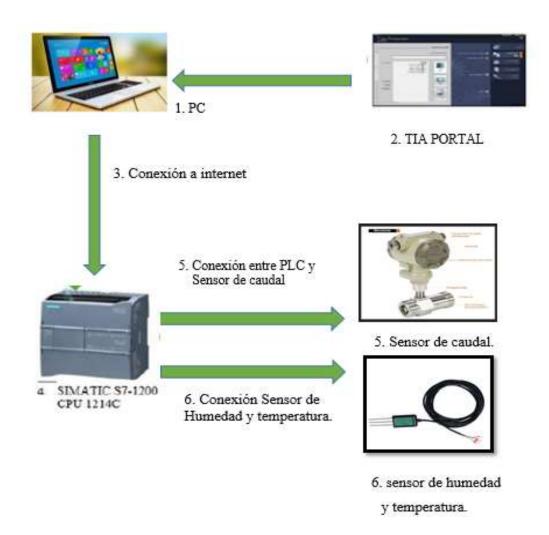


Figura 24. Comunicación con Tia Portal

Los sistemas SCADA se definen mediante la realización de actividades de control, monitoreo y adquisición de datos que permiten a los operadores ver la información del proceso en tiempo real. Este sistema se considera obsoleto porque se programa durante la fase de adquisición de datos a través de sensores tanto de humedad como de caudal. El monitoreo también se puede ver en el servidor web ubidots que muestra los datos obtenidos de consumo diario del invernadero.

5.9. Configuración de las direcciones IP

Para la configuración de los dispositivos del PLC es necesario añadir una PC y los módulos necesarios al proyecto así como las IP. La dirección IP utilizada se debe agregar manualmente durante la configuración de los dispositivos ya que cada uno debe tener su respectiva dirección IP como se muestra en la tabla 3.

Tabla 4. Especificaciones de las IP de los equipos

Dirección IP	Equipo
10.10.11.136	Pantalla Simatic HMI KTP 400
10.10.11.138	PLC
10.10.11.139	Sentron PAC 2200
10.10.11.140	Antena ubiquiti
10.10.11.141	SIMATIC IOT2040
10.10.11.142	SIMATIC IOT2040
10.10.11.145	Router
255.255.252.0	Puerta de enlace
10.10.10.248	Máscara de red

Fuente:

Todo equipo debe tener su respectiva dirección IP, esta dirección permite tener comunicación y transferir datos a través de una red. La máscara de red sirve para delimitar la subred IP de ordenadores ya que es la agrupación lógica de dispositivos de red conectados.

Una vez establecidas las respectivas direcciones IP a cada uno de los dispositivos, se procedió a comprobar que el sistema se encuentre en red ver figura 24, para ello se busca en el computador el sistema cmd, en el cual se verifica si existe comunicación entre los dispositivos mediante el comando ping.



Figura 25. Comprobación de comunicación

5.10. Adquisición de datos del registro de humedad del invernadero

Para obtener estos valores medidos por el sistema SCADA, se realizó el direccionamiento de tags en el servidor y luego se realiza una base de datos en donde se almacenara todos los datos obtenidos de las variables de temperatura, humedad, nivel de agua y parámetros eléctricos en una carpeta, en el cual se indica la fecha y la hora de registro en una hoja de Excel.

La humedad que se presenta en la siguiente figura, se obtuvo mediante la base de datos del sistema SCADA, para la obtención de estos datos se realizó la conexión de un sensor en una de las hileras del invernadero. De acuerdo con lo realizado y con asesoramiento técnico de expertos de la materia, se ha puesto en consideración que el valor de la humedad será 85% y un 25% es prácticamente humedad nula.

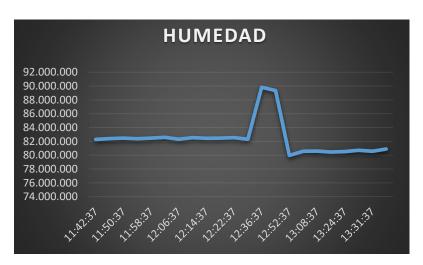


Figura 26. Curva de humedad

Para la realización de las curvas de humedad, temperatura y nivel de agua tenemos adquiridos los siguientes datos obtenidos mediante el servidor web Ubidots.

Tabla 5. Almacenamiento de datos de las variables

Tuesta C. Timina Timina de datos de las Tarias les						
REGISTRO	FECHA	HORA	HUMEDAD	TEMPERATURA	CONSUMO_LITROS	
1	7/23/2021	11:42:37	82.273.440	13.906.130	927.000.000	
2	7/23/2021	11:46:37	82.406.250	13.906.130	927.000.000	
3	7/23/2021	11:50:37	82.476.560	13.865.480	927.000.000	
4	7/23/2021	11:54:37	82.375.000	13.762.010	927.000.000	
5	7/23/2021	11:58:37	82.476.560	13.762.010	927.000.000	

6	7/23/2021	12:02:37	82.585.940	13.606.800	927.000.000
7	7/23/2021	12:06:37	82.312.500	13.603.100	927.000.000
8	7/23/2021	12:10:37	82.539.060	13.595.710	927.000.000
9	7/23/2021	12:14:37	82.453.130	13.614.190	927.000.000
10	7/23/2021	12:18:37	82.476.560	13.621.580	955.700.000
11	7/23/2021	12:22:37	82.539.060	13.555.060	955.700.000
12	7/23/2021	12:28:37	82.304.690	13.603.100	955.700.000
13	7/23/2021	12:36:37	89.835.940	13.636.360	1.028.000.000
14	7/23/2021	12:44:37	89.343.750	13.540.280	1.113.200.000
15	7/23/2021	12:52:37	79.976.560	13.621.580	1.113.200.000
16	7/23/2021	13:00:37	80.570.310	13.610.500	1.113.200.000
17	7/23/2021	13:08:37	80.585.940	13.603.100	1.175.300.000
18	7/23/2021	13:16:37	80.445.310	13.621.580	1.175.300.000
19	7/23/2021	13:24:37	80.523.440	13.547.670	1.192.800.000
20	7/23/2021	13:29:37	80.703.130	13.529.190	1.192.800.000
21	7/23/2021	13:31:37	80.562.500	13.573.540	1.192.800.000
22	7/23/2021	13:33:37	80.890.630	13.381.380	1.192.800.000

5.11. Adquisición de datos de temperatura

En la figura # se visualiza los datos de temperatura que se obtuvo mediante la base de datos del sistema SCADA como también los datos enviados al servidor web Ubidots, temperatura censada mediante un Sensor S-Soil MT-02.

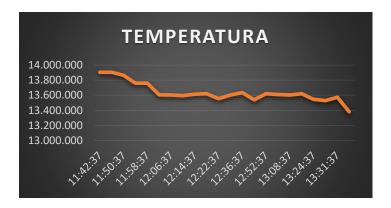


Figura 27. Curva de temperatura

5.12. Adquisición de datos del consumo de agua

El consumo de agua en el invernadero se obtuvo mediante la obtención de datos del sistema SCADA ya que la humedad está directamente relacionada con la cantidad de riego dentro del invernadero, cuanto mayor sea el tiempo de riego mayor será la humedad.

El riego dentro del invernadero muchas de las veces es regado por los estudiando o encargados mediante mangueras, las rosas en si necesitan abundante agua por eso se necesita un riego constante ya que el suelo es relativamente seco



Figura 28. Curva de consumo de agua en litros

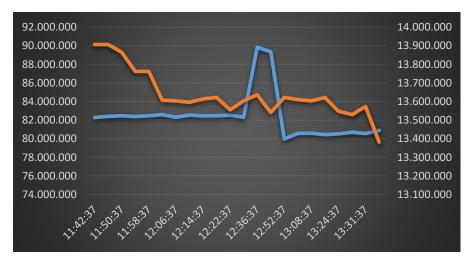
Para observar el comportamiento del sensor de caudal se obtiene la siguiente tabla de datos el cual ayuda a cuantificar el valor del consumo de agua, en la tabla 4 encontramos los datos de las variables humedad, temperatura, caudal y el consumo de agua en litros cada dos segundos,

el tanque del invernadero abastece 2500 litros y es de vital importancia ya que el cultivo de rosas necesita abundante agua.

Tabla 6. Datos obtenidos para obtener el consumo de agua					
FECHA	HORA	HUMEDAD	TEMPERATURA	CAUDAL	CONSUMO
22/7/2021	8:00:37	86.250.000	13.492.240	134.214.300	0.000000E+00
22/7/2021	8:00:39	86.359.380	13.429.420	134.142.900	0.000000E+00
22/7/2021	8:00:41	86.210.940	13.418.330	133.928.600	0.000000E+00
22/7/2021	8:00:43	86.210.940	13.495.940	133.928.600	0.000000E+00
22/7/2021	8:00:45	86.296.880	13.444.200	134.214.300	0.000000E+00
22/7/2021	8:00:47	86.289.060	13.451.590	134.142.900	0.000000E+00
22/7/2021	8:00:49	86.351.560	13.466.370	134.214.300	0.000000E+00
22/7/2021	8:00:51	86.421.880	13.414.630	134.214.300	0.000000E+00
22/7/2021	8:00:53	86.203.130	13.484.850	134.214.300	0.000000E+00
22/7/2021	8:00:55	86.281.250	13.429.420	134.214.300	0.000000E+00
22/7/2021	8:00:57	86.328.130	13.422.030	134.357.100	0.000000E+00
22/7/2021	8:00:59	86.171.880	13.488.540	134.142.900	0.000000E+00
22/7/2021	8:01:01	86.343.750	13.410.940	134.071.400	0.000000E+00
22/7/2021	8:01:03	86.359.380	13.451.590	134.142.900	0.000000E+00
22/7/2021	8:01:05	86.375.000	13.466.370	134.071.400	0.000000E+00
22/7/2021	8:01:10	86.257.810	13.481.150	134.071.400	101.200.000
22/7/2021	8:01:11	86.335.940	13.436.810	134.285.700	101.200.000
22/7/2021	8:01:13	86.375.000	13.407.240	134.285.700	101.200.000
22/7/2021	8:01:15	86.179.690	13.503.330	134.071.400	101.200.000
22/7/2021	8:01:17	86.398.440	13.418.330	134.071.400	101.200.000
22/7/2021	8:01:19	86.359.380	13.436.810	134.214.300	101.200.000

22/7/2021	8:01:21	86.375.000	13.473.760	134.214.300	101.200.000
22/7/2021	8:01:23	86.609.380	13.381.380	134.071.400	101.200.000
22/7/2021	8:01:25	86.289.060	13.470.070	134.142.900	101.200.000
22/7/2021	8:01:27	86.289.060	13.440.500	134.357.100	101.200.000
22/7/2021	8:01:29	86.437.500	13.392.460	134.071.400	101.200.000
22/7/2021	8:01:31	86.164.060	13.499.630	134.142.900	101.200.000
22/7/2021	8:01:33	86.289.060	13.466.370	134.214.300	101.200.000
22/7/2021	8:01:35	86.257.810	13.444.200	121.142.900	101.200.000
22/7/2021	8:01:37	86.328.130	13.484.850	87.214.290	101.200.000
22/7/2021	8:01:39	86.625.000	13.377.680	111.357.100	101.200.000
22/7/2021	8:01:41	86.445.310	13.447.890	125.857.100	101.200.000
22/7/2021	8:01:43	86.312.500	13.447.890	131.285.700	101.200.000
22/7/2021	8:01:45	86.437.500	13.399.850	133.214.300	101.200.000
22/7/2021	8:01:47	86.234.380	13.499.630	133.785.700	101.200.000
22/7/2021	8:01:49	86.312.500	13.422.030	134.071.400	101.200.000
22/7/2021	8:01:51	86.414.060	13.436.810	134.214.300	101.200.000
22/7/2021	8:01:53	86.187.500	13.477.460	134.285.700	101.200.000
22/7/2021	8:01:55	86.515.630	13.396.160	134.214.300	151.800.000
22/7/2021	8:01:57	86.406.250	13.458.980	134.071.400	153.300.000
22/7/2021	8:01:59	86.328.130	13.455.290	134.071.400	153.300.000
22/7/2021	8:02:01	86.445.310	13.399.850	134.285.700	153.300.000
22/7/2021	8:02:03	86.148.440	13.488.540	134.214.300	153.300.000
22/7/2021	8:02:05	86.445.310	13.436.810	134.214.300	153.300.000
22/7/2021	8:02:07	86.460.940	13.425.720	134.071.400	153.300.000
22/7/2021	8:02:09	86.234.380	13.477.460	134.142.900	153.300.000

22/7/2021	8:02:11	86.335.940	13.392.460	133.928.600	153.300.000
22/7/2021	8:02:13	86.335.940	13.466.370	134.214.300	153.300.000
22/7/2021	8:02:15	86.273.440	13.466.370	134.142.900	153.300.000
22/7/2021	8:02:17	86.382.810	13.388.770	134.071.400	153.300.000
22/7/2021	8:02:19	86.203.130	13.484.850	134.142.900	153.300.000
22/7/2021	8:02:21	86.328.130	13.429.420	134.214.300	153.300.000
22/7/2021	8:02:23	86.390.630	13.381.380	134.142.900	153.300.000
22/7/2021	8:02:25	86.273.440	13.503.330	134.071.400	153.300.000
22/7/2021	8:02:27	86.554.690	13.410.940	134.142.900	153.300.000
22/7/2021	8:02:29	86.382.810	13.444.200	134.214.300	153.300.000
22/7/2021	8:02:31	86.328.130	13.462.680	134.071.400	153.300.000
22/7/2021	8:02:33	86.507.810	13.381.380	134.000.000	153.300.000
22/7/2021	8:02:35	86.382.810	13.429.420	134.214.300	153.300.000
22/7/2021	8:02:37	86.429.690	13.444.200	134.142.900	153.300.000


Figura 29. Curva de consumo de agua en litros

5.13. Relación de la humedad y la temperatura

Para la relación se tomó el valor de la base de datos de las anteriores figuras que son registradas en el sistema. Como se observa en la siguiente figura en esta relación se determina que cuando la humedad.

Tabla 7. Almacenamiento de datos de humedad y temperatura

Tabla 7. Annacenamento de datos de numedad y temperatu					
REGISTRO	FECHA	HORA	HUMEDAD	TEMPERATURA	
1	7/23/2021	11:42:37	82.273.440	13.906.130	
2	7/23/2021	11:46:37	82.406.250	13.906.130	
3	7/23/2021	11:50:37	82.476.560	13.865.480	
4	7/23/2021	11:54:37	82.375.000	13.762.010	
5	7/23/2021	11:58:37	82.476.560	13.762.010	
6	7/23/2021	12:02:37	82.585.940	13.606.800	
7	7/23/2021	12:06:37	82.312.500	13.603.100	
8	7/23/2021	12:10:37	82.539.060	13.595.710	
9	7/23/2021	12:14:37	82.453.130	13.614.190	
10	7/23/2021	12:18:37	82.476.560	13.621.580	
11	7/23/2021	12:22:37	82.539.060	13.555.060	
12	7/23/2021	12:28:37	82.304.690	13.603.100	
13	7/23/2021	12:36:37	89.835.940	13.636.360	
14	7/23/2021	12:44:37	89.343.750	13.540.280	
15	7/23/2021	12:52:37	79.976.560	13.621.580	
16	7/23/2021	13:00:37	80.570.310	13.610.500	
17	7/23/2021	13:08:37	80.585.940	13.603.100	
18	7/23/2021	13:16:37	80.445.310	13.621.580	
19	7/23/2021	13:24:37	80.523.440	13.547.670	
20	7/23/2021	13:29:37	80.703.130	13.529.190	
21	7/23/2021	13:31:37	80.562.500	13.573.540	
22	7/23/2021	13:33:37	80.890.630	13.381.380	

Figura 30. Relación de la humedad y la temperatura

5.14. Funcionamiento del sistema SCADA

El software utilizado para el desarrollo del sistema SCADA es el software WinCC el cual lo escogimos porque no presente dificultades con la licencia, y nos permite controlar y monitorear todas las variables del sistema a través de una interfaz gráfica.

Para la etapa de programación encontramos la pantalla principal del sistema SCADA, donde el software WinCC es el que permite realizar todas las actividades de configuración necesarias y mediante la simulación se emplea una interfaz gráfica entre el usuario el WinCC.

El sistema SCADA está conformado por una pantalla principal con dos cuadros de diálogos, en el que encontramos en el primer cuadro invernadero 1, el cual nos lleva a ver el monitoreo del mismo y en el segundo cuadro tenemos invernadero 2, donde se despliega al momento de presionarlo para realizar la función que sea necesaria por los encargados de los invernaderos.

Figura 31. Pantalla principal

Una vez seleccionada el cuadro de dialogo invernadero 2 se despliega una subpantalla como se muestra en la Figura 31, donde tenemos cuatro cuadros de diálogos que son control manual de humedad y temperatura, control automático de humedad y temperatura, parámetros eléctricos y gráficas, también encontramos en la pantalla el modo de operación este puede ser manual o automático.

Figura 32. Subpantalla del sistema SCADA del invernadero #2

Si presionamos en el cuadro de dialogo control manual de humedad y temperatura, se despliega una subpantalla que se indica en la Figura 32, donde se muestra la programación gráfica y por diagramas se muestra el porcentaje de las variables para el monitoreo de humedad, temperatura y nivel de agua de forma manual en donde podemos activar la bomba y las electroválvulas para el riego, así como también encontramos un cuadro de dialogo de la curva de las variables. De igual manera encontramos las diferentes alarmas del sistema.

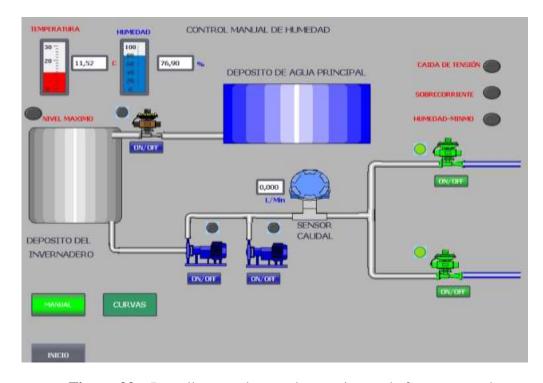


Figura 33. Pantalla para el control y monitoreo de forma manual

A continuación, se muestra la subpantalla de monitoreo de las variables de humedad y temperatura de forma automática, la cual está construido mediante gráficas y cuadros de información donde se muestra los valores de las variables y las curvas de las mismas. En un cuadro de dialogo tenemos para guardar los datos, debemos seleccionar crear archivo colocar el tiempo en que se genere y guarde cada dato y seleccionar guardar, encontramos diagramas el cual presenta el porcentaje de la temperatura y humedad donde se puede ingresar el valor de la humedad máxima o mínima teniendo en cuenta el rango de la humedad.

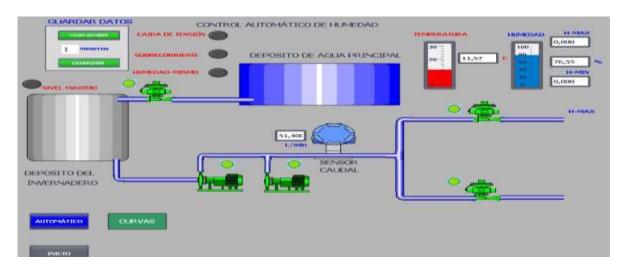


Figura 34. Subpantalla de monitoreo de humedad y temperatura de forma automática

De igual manera se realiza cuadros de información y gráficas para la visualización de los parámetros eléctricos y curvas de los valores emitidos por el Sentron PAC 2200 presentados en la subpantalla de datos

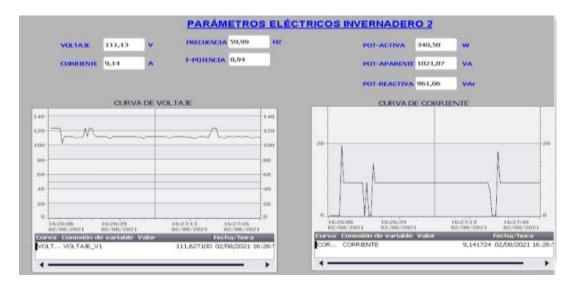


Figura 35. Subpantalla de datos de parámetros eléctricos

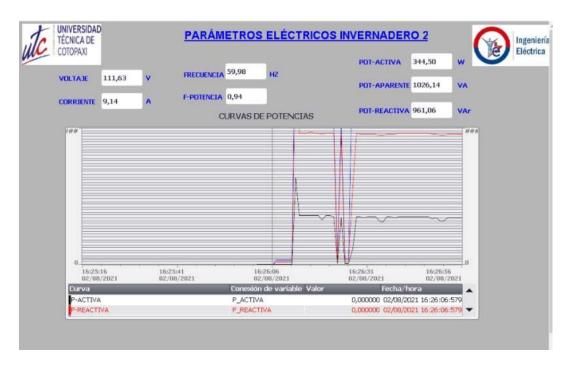


Figura 36. Subpantalla Curva de Potencias

5.15. PRESUPUESTO Y ANALISIS DE IMPACTO

Tabla 8. Presupuesto del proyecto

		I	I J	
METERIALES				
ITEM	DESCRIPCIÓN	CANTIDAD	V.UNITARIO	V.TOTAL
1	Router tp link	1	\$20,00	\$20,00
2	Memoria de 16 Gb	4	\$15,00	\$60,00
4	Sensor de caudal	1	\$350,00	\$350,00
6	Sensor de temperatura	1	\$200,00	\$200,00
7	Cable sucre 4X18	30	\$1,30	\$39,00
8	Cable UTP	30	\$0,40	\$12,00
9	POE 25 V - 0.2 A	2	\$18,00	\$36,00
10	Acoples para tubería	4	\$1,00	\$4,00
11	Antenas Ubiquiti	2	\$150,00	\$300,00
12	Toma Corriente	2	\$2	\$4,00
Total			Subtotal	\$1.025,00
			IVA 12 %	\$123,00
			TOTAL	\$1.148,00

Tabla 9. Presupuesto total del proyecto

PRESUPUESTO DEL SISTEMA

	Tipo de recurso		SUBTOTAL	
Rubro	Efectivo	En especie		
Gastos directos compra de equipos	\$1.148,00	-	\$1.148,00	
Instalación y mantenimiento de internet	\$200,00		\$200,00	
Gastos indirectos	600	-	600	
7	TOTAL			

Tabla 10. Calculo del Tir y Van

AÑO	INVERSION	INGRESOS	MANTENIMIENTO	TOTAL
ANO	INVERSION	INGRESOS	IVIAIVILIVIILIVI	TOTAL
	-1948,20	500	20	-1948,20
1		500	20	480
2		500	20	480
3		500	20	480
4		500	20	480
5		500	20	480
		TASA	0,085	480
			VAN	237,52
			TIR	12%

5.16. Análisis de impactos.

Impacto técnico.

El impacto técnico se lo lleva a cabo dado las diferentes variaciones climáticas que existen en el invernadero, evitando una considerable pérdida de tiempo cuando el personal que se encuentra a cargo de estos, trate de verificar la temperatura y humedad en las q se encuentran los invernaderos, por este motivo se ha implementado un sistema Scada con el cual se pudo monitorear las variables de temperatura y humedad que se encuentran dentro de este ambiente,

beneficiando a la facultad de Ciencias Agropecuarias con el aporte técnico de la carrera de Ingeniería Eléctrica.

Impacto social.

El impacto social que se obtiene con la implementación del sistema Scada para el monitoreo de las variables dentro del invernadero N° 2 del centro experimental del Campus Salache, beneficiando principalmente a los estudiantes como así también a los docentes, ya que al contar con un sistema automatizado para el control de las variables que se manejan dentro de este ambiente, se aprovechara al máximo las ventajas de conocer los parámetros de humedad y temperatura en los que se encuentran los cultivos garantizando una mejor producción.

Impacto ambiental.

Al implementar el sistema Scada tiene un impacto ambiental ya que esta se considera ligada al medio ambiente al tener un control y monitoreo de variables climatológicas que existen dentro de los invernaderos, con el cual se garantizara un ambiente controlado produciendo un entorno adecuado para el crecimiento de las plántulas que se encuentren en el interior de este ambiente.

Impacto económico.

El sistema implementado beneficiara directamente a la institución, garantizando el ahorro energético y mano de obra, gracias a la automatización del sistema con el cual se logró controlar en tiempo real las variables existentes dentro de este ambiente, reduciendo considerablemente el deterioro de los equipos eléctricos y mecánicos de los invernaderos, convirtiendo así en ahorro técnico y financiero para la Universidad técnica de Cotopaxi.

6. CONCLUSIONES Y RECOMEDACIONES

6.1. Conclusiones

- Gracias a la investigación realizada se adquirió diferentes conocimientos referentes al sistema SCADA y se analizó cuáles son las principales variables a monitorear y controlar de forma remota para el funcionamiento del invernadero.
- De acuerdo a los datos obtenidos en la culminación del presente proyecto se concluye que un sistema automatizado dentro de un invernadero es de vital importancia ya que gracias a esto se puede mejor la producción así como también la calidad de los cultivos de rosas a través del monitoreo y control las variables de humedad, temperatura y nivel de agua.

 Con la instalación de nuevas tecnologías dentro de invernaderos, los encargados de realizar las actividades agronómicas pueden llegar a mejorar sus ingresos económicos, ya que al analizar la factibilidad del proyecto muestra un valor positivo y viable para la implementación del sistema.

6.2. Recomendaciones

- El sistema de monitoreo y control contiene diferentes elementos y equipos, los cuales deben ser supervisados y controlados por personal capacitado para la realización del respectivo mantenimiento cuando sea necesario.
- Se recomienda a la Universidad Técnica de Cotopaxi la adquisición de la licencia del software WinCC ya que el software utilizado anteriormente era Labview que presentaba complicaciones con respecto a la licencia, y el WinCC no presenta ninguna dificultad en cuanto a licencias
- El módulo de control está diseñado para tener una alimentación trifásica lo que se recomienda implementar la acometida trifásica para la operación eficiente del sistema.
- Realizar el correcto dimensionamiento del sistema hidráulico, ya que al utilizar las bombas específicamente para el sistema de riego se puede forzar el sistema lo cual puede ocasionar múltiples problemas a largo plazo.

7. BIBLIOGRAFIA

- [1] A. P. Rojano Tituaña and W. A. Toapanata Ortega, "Sistema de control del consumo de agua, mediante el sistema Scada para el invernadero #1 en el campus Salache," 2020.
- [2] J. R. Chango Ortiz, Rolando Rigoberto; Llanez Iñiguez, "Sistema de monitoreo de temperatura, humedad y control de agua para cultivos del invernadero N°2 del campus Salache.," Universidad Tecnica de Cotopaxi, 2021.
- [3] T. E. Castillo Sánchez, "Implementacion De Un Sistema Scada Para Integrar a Varios Dispositivos De Automatizacion En El Monitoreo Y Control De Un Prototipo De Invernadero De Rosas Para La Facultad De Ingenieria En Sistemas, Electronica E Industrial," 2010.
- [4] E.; Alvarez Pastuña and B. S. Masabanda, Mosquera, "Implementación Del Sistema Scada Para El Control, Monitoreo Y Análisis De Indicadores De Operación Del

- Invernadero Del Campus Salache," 2020.
- [5] M. X. Aillón Abril, "Diseño de un sistema Scada de control automático de temperatura y humedad para los lechos de producción de humus de lombriz," 2010.
- [6] G. López Ajila and A. P. Sanchez Espinoza, "Desarrollo e implementación de un sistema Scada para invernaderos, utilizando un sistema de control Plc y un sistema de comunicación basado en red GPRS y de localización GPS.," 2012.
- [7] J. Perea, "Diseño de un sistema de monitoreo, registro y control de temperatura y humedad para un cultivo de invernadero.," 2016.
- [8] T. C. F. D. Palacios Ochoa Lissy Janneth, "Universidad Politécnica Salesiana Sede Cuenca Carrera De Ingeniería Electrónica "Diseño De Un Prototipo De Sistema Scada Para El Monitoreo Y Control De Consumo De Agua En," 2018.
- [9] O. Lugo Espinosa, A. Quevedo Nolasco, J. R. Bauer Mengelberg, D. H. Del Valle Paniagua, E. Palacios Vélez, and M. Águila Marín, "Prototipo Para Automatizar Un Sistema De Riego Multicultivo," *Rev. Mex. Ciencias Agrícolas*, vol. 2, no. 5, pp. 659– 672, 2018, doi: 10.29312/remexca.v2i5.1616.
- [10] M. I. Gomez Gavilanes, "Diseño e implementación de un sistema de monitoreo y control de humedad Snmp, Temperatura para invernaderos con administración," 2016.
- [11] S. X. Toro Melendez, H. I. Tangarife Escobar, and C. V. Carmona Cadavid, "Implementación del sistema SCADA, aplicación a invernaderos para optimizar el control y la monitorización del microclima en el cultivo de hortalizas," *56 Rev. Siembra CBA*, vol. 1, no. 2019, pp. 55–63, 2018.
- [12] A. Vega Moreno, Manejo y Mantenimiento de Invernaderos, Mundi-Pren. Madrid, 2017.
- [13] E. M. Barrerra, R. V. Herrero Niño, and A. R. Mera Garcia, "Invernaderos Inteligentes," Instituto Politecnico Nacional, 2014.
- [14] S. Lozano García, *UF0016 Mantenimiento y manejo de invernaderos*. España: Elearning S.L., 2014.
- [15] A. Rodríguez Nájera, "Diseño de un sistema de instrumentación y medición para los parámetros físicos de un módulo de invernadero," Universidad Autónoma del estado de Hidalgo, 2017.

- [16] A. García, W. Martínez, and B. Ruiz, "Diseño de un sistema automatizado de producción para el Invernadero de la Cruz, Cotuí, Provincia Sánchez, Periodo 2015.," Universidad Apec, 2015.
- [17] E. B. ARISTU, Operaciones básicas de producción y mantenimiento de plantas en viveros y centros de jardinería. España, 2014.
- [18] V. A. Franco Ortega, "Evaluación de la eficiencia del método de riego por goteo," Universidad Técnica de Ambato, 2018.
- [19] B. Peña, G. Reyes, and P. Pariona, "Lectura Remota De Las Variables De Un Invernadero Usando Telemetría," p. 2, 2000, [Online]. Available: http://www.radiocomunicaciones.net/pdf/telemetria/lectura-remota-invernadero-telemetria.pdf.
- [20] E. Amaya García, "Diseño e implementación de sistema de riego automatizado en un invernadero de la Escuela Nacional de Agricultura, ENA," no. 1, pp. 0–5, 2015.
- [21] N. Mendez Clara, "Invernaderos Automatizados para El Desarrollo de La Agricultura Familiar en El Marco de La Seguridad Alimentaria," vol. 6, 2017.
- [22] H. V. Suntasig Guilcaso, "Diseño e Implementeion de un sistema de control y monitoreo de temperatura ambiental y humedad relativa del suelo, para el mejoramiento de la calidad de un invernadeero ubicado en la ciudad de Pujilí, periodo 2017," Universidad Técnica de Cotopaxi, 2018.
- [23] J. Baltazar, D. Enciso, and M. Vargas, "Diseño e implementacion de un dispositivo digital para el control de la temperatura en un invernadero de tomate.," 2014.
- [24] Y. López Molina, "Control climático en invernaderos," Horticultura, 2005.
- [25] C. Salazar and L. Correa, "Buses de campo y protocolos en redes industriales," *Vent. Informática*, vol. 25, pp. 83–109, 2011, [Online]. Available: http://revistasum.umanizales.edu.co/ojs/index.php/ventanainformatica/article/viewFile/126/184.
- [26] I. Berral Montero, *Instalación y mantenimiento de redes para transmisión de datos*, 1st ed. S.A, Paraninfo, 2014.
- [27] A. Rodriguez Avila, *Iniciación a la Red de Internet*, 1st ed. 2007.

- [28] J. L. Martin Hernando and L. F. Rondon, *Iniciación Informática Windows*.
- [29] A. N. A. Ortiz, "Monitoreo (' Scouting ') y la Agricultura Orgánica," [Online].

 Available: https://academic.uprm.edu/aalvarado/HTMLobj181/Scounting_y_AgricOrganica.pdf.
- [30] E. Pérez-López, "Los sistemas SCADA en la automatización industrial," *Rev. Tecnol. en Marcha*, vol. 28, no. 4, p. 3, 2015, doi: 10.18845/tm.v28i4.2438.
- [31] D. A. Zapata, "Desarrollo de un sistema Scada para uso de pequeñas y medianas empresas," Universidad de Piura, 2013.
- [32] A. Giraldo Quintero, "Diseño de un Sistema SCADA para un invernadero destinado a la investigación Escolar," 2017.
- [33] G. B. Carlozama Flores, "Scada para invernadero sobre software libre," 2018.
- [34] M. F. Bustos Castillo, "DiseNo e Implementacion del sistema Scada WinCC de Siemens a una maquina prototipo empacadoras de galletas," 2012.
- [35] X. M. Lopez Flores, "Industria 4.0 para la monitorización de un proceso industrial," Universidad Tecnica de Ambato, 2019.
- [36] Tecnople, "TIA Portal: Utilidades del Sotwre," Tenco PLC, 2015.
- [37] J. P. Torres Vásquez and A. R. Vega Soto, "Diseño E Implementación De Un Laboratorio De Redes De Comunicación Industrial Para La Universidad Politécnica Salesiana, Cuenca," 2015.
- [38] I. A. Pulley Muñoz and J. E. Flores Heras, "Automatizacion del proceso de generacion de vapor mediane un PLC y una HMI para el departamento de esterilizacion del Hospital Leon Becerra de Guayaquil," Universidad Politecnica Salesiana, 2019.
- [39] A. Rosado, "Entornos SCADA. Introducción a WinCC.," 2011.
- [40] A. Diaz and D. Albert, "Sistema De Monitoreo a Traves De Protocolo Modbus Para La Eficiencia Energética De Planta Arequipa," 2015.
- [41] D. E. Moreta Corella and E. E. Venegas Paute, "Sistema de Monitoreo y Recopilacion de datos para evaluar la calidad de energia y consumos en la camara de Transformacion N°2 en la Univerisdadd Tecnica de Cotopaxi, Campus Salache, periodo 2020," 2020.

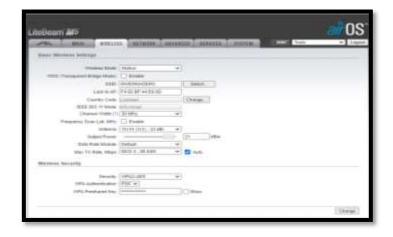
- [42] Siemens, "Soluciones para Formación," p. 126, 2020, [Online]. Available: https://sie.ag/3qoyPk9.
- [43] Siemens, "SIMATIC IOT2040: Primera instalación y primer programa en," vol. 1, pp. 1–29, 2018, [Online]. Available: https://sie.ag/3qoyPk9.
- [44] Siemens, "Lista de Precios Productos Eléctricos Industriales," *Sist. Bombeo*, vol. 2019, no. 1, p. 42, 2020, [Online]. Available: https://sie.ag/3gZQ8UE.
- [45] Seeed, "RS485 Soil Moisture & Sensor industrial de temperatura y humedad del suelo MODBUS-RTU RS485 (S-Soil MT-02A)," vol. 1, pp. 2–3, 2020, [Online]. Available: https://bit.ly/2UCzNxF.
- [46] SMERI, "Turbine Flowmeter User Manual," p. 34, 2019.

8. ANEXOS

ANEXO I

Anexo I. Levantamiento de condiciones iniciales del modulo

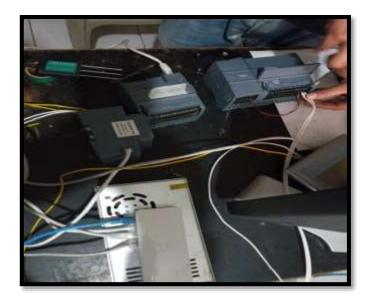
ANEXO II


Anexo II .Instalación de antenas ubiquiti punto a punto

ANEXO III

Anexo III. Instalación de router tp-link

ANEXO IV


Anexo IV. Configuración de antenas ubiquiti

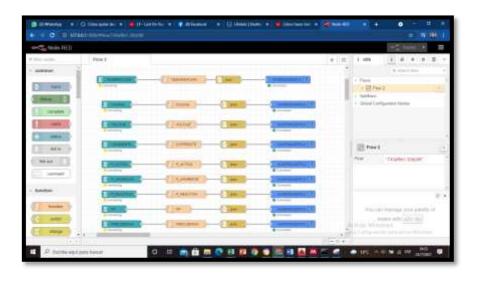
ANEXO V

Anexo V. Pruebas de conexión de internet

ANEXO VI

Anexo VI. Comprobación del funcionamiento del PLC

ANEXO VII


Anexo VII. Comprobación del funcionamiento de la pantalla HMI

ANEXO VIII

Anexo VIII. Pruebas de electroválvulas

ANEXO IX

Anexo IX. Programación en Node-red

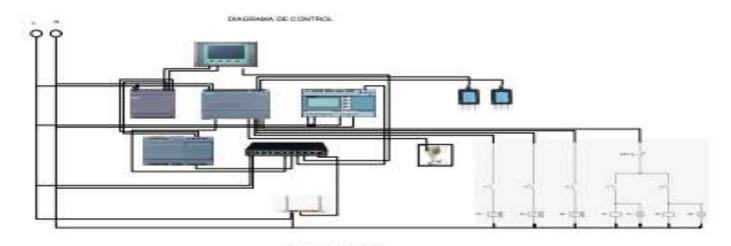
ANEXO X

Anexo X. Creación de cuenta en el servidor web Ubidots

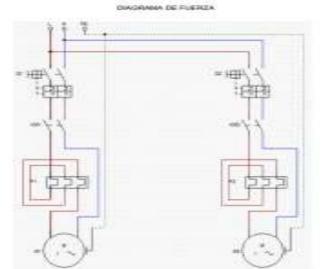
ANEXO XI

Anexo XI. Almacenamiento de datos en el servidor web ubidots

ANEXO XII

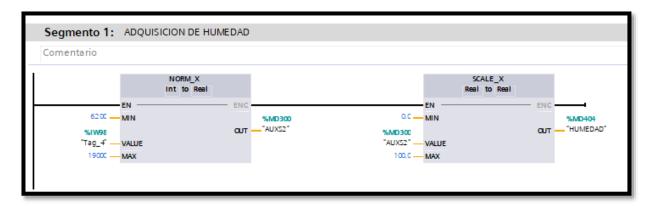

Anexo XII. Conexión del sensor de caudal

ANEXO XIII


Anexo XIII. Conexión y ubicación del sensor de temperatura y humedad

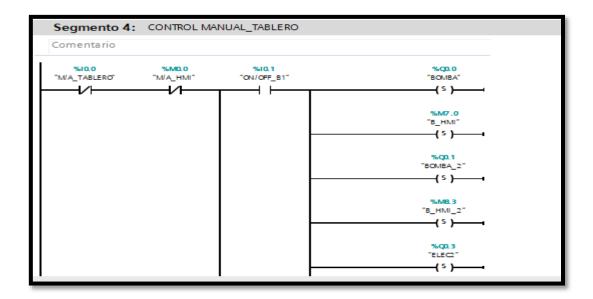
ANEXO XIV

SMEOLOGIA

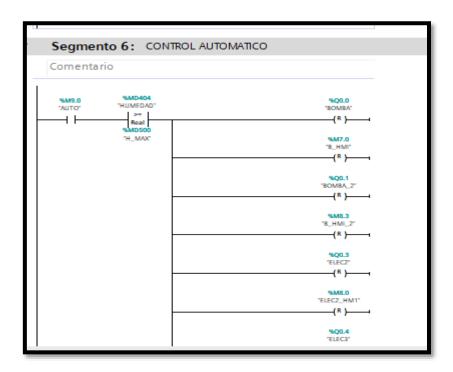


Anexo XIV. Esquema de control automático y manu

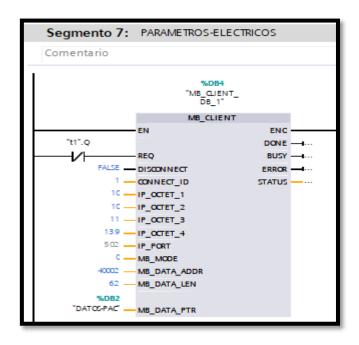
ANEXO XV


Programación en el TIA Portal

En la fase de la programación en el TIA Portal se realiza en los primeros segmentos, los cuales se definen las variables de entradas así como también de salidas, y se eligen los respectivos nombres a cada uno de los elementos que estarán involucrados.


Anexo XV. Segmento 1 programación- adquisición de humedad

En la siguiente figura tenemos el segmento 4 en el cual encontramos el control manual de la bomba de agua así como también el indicador de funcionamiento de la bomba, con sus respectivas condiciones.


Anexo VV.1. Segmento 2 – control manual de la bomba.

En el segmento 6 encontramos el control automático de la bomba con su respectiva configuración, de igual manera se realiza las condiciones respectivas para el accionamientos de la bomba.

Anexo XV.2. Segmento 3– control automático de la bomba.

En el siguiente segmento se muestra los parámetros eléctricos obtenido por el Simatic IOT 2040

Anexo XV.3. Segmento 7– Para metros Eléctricos.

ANEXO XVI

Tabla 11	. Dat	os adquiridos	cada segundo en el se	rvidor web
FECHA	HORA	HUMEDAD	TEMPERATURA	CAUDAL
22/7/2021	7:15:46	86.437.500	13.410.940	134.285.700
22/7/2021	7:15:47	86.539.060	13.366.590	134.285.700
22/7/2021	7:15:49	86.570.310	13.337.030	134.000.000
22/7/2021	7:15:51	86.562.500	13.344.420	134.000.000
22/7/2021	7:15:53	86.437.500	13.396.160	134.071.400
22/7/2021	7:15:55	86.531.250	13.362.900	134.142.900
22/7/2021	7:15:57	86.507.810	13.373.980	134.071.400
22/7/2021	7:15:59	86.546.880	13.370.290	134.000.000
22/7/2021	7:16:01	86.546.880	13.325.940	134.214.300
22/7/2021	7:16:03	86.484.380	13.359.200	134.142.900
22/7/2021	7:16:05	86.468.750	13.385.070	134.000.000
22/7/2021	7:16:07	86.656.250	13.303.770	134.071.400
22/7/2021	7:16:09	86.437.500	13.399.850	134.142.900
22/7/2021	7:16:11	86.640.630	13.307.470	134.214.300
22/7/2021	7:16:13	86.515.630	13.362.900	134.071.400
22/7/2021	7:16:15	86.414.060	13.414.630	134.071.400
22/7/2021	7:16:17	86.593.750	13.325.940	134.142.900
22/7/2021	7:16:19	86.546.880	13.351.810	134.285.700
22/7/2021	7:16:21	86.546.880	13.385.070	134.142.900
22/7/2021	7:16:23	86.539.060	13.337.030	134.071.400
22/7/2021	7:16:25	86.460.940	13.388.770	134.071.400
22/7/2021	7:16:27	86.609.380	13.307.470	134.071.400
22/7/2021	7:16:29	86.523.440	13.325.940	134.071.400
22/7/2021	7:16:31	86.476.560	13.370.290	134.142.900
22/7/2021	7:16:33	86.742.190	13.303.770	134.214.300
22/7/2021	7:16:35	86.609.380	13.359.200	134.142.900
22/7/2021	7:16:37	86.507.810	13.348.120	134.142.900
22/7/2021	7:16:39	86.554.690	13.340.720	134.071.400
22/7/2021	7:16:41	86.460.940	13.377.680	134.142.900
22/7/2021	7:16:43	86.625.000	13.318.550	134.142.900
22/7/2021	7:16:45	86.734.380	13.329.640	134.142.900
22/7/2021	7:16:47	86.484.380	13.373.980	134.142.900
22/7/2021	7:16:49	86.585.940	13.337.030	134.142.900
22/7/2021	7:16:51	86.468.750	13.392.460	134.142.900
22/7/2021	7:16:53	86.523.440	13.392.460	134.000.000
22/7/2021	7:16:55	86.609.380	13.344.420	134.142.900
22/7/2021	7:16:57	86.492.190	13.381.380	134.142.900
22/7/2021	7:16:59	86.585.940	13.325.940	134.142.900
22/7/2021	7:17:01	86.531.250	13.362.900	134.071.400

22/7/2021	7:17:03	86.468.750	13.388.770	134.142.900
22/7/2021	7:17:05	86.562.500	13.337.030	134.000.000
22/7/2021	7:17:07	86.578.130	13.340.720	134.000.000
22/7/2021	7:17:09	86.437.500	13.403.550	134.071.400
22/7/2021	7:17:11	86.640.630	13.303.770	134.142.900
22/7/2021	7:17:13	86.406.250	13.422.030	134.000.000
22/7/2021	7:17:15	86.476.560	13.377.680	134.071.400
22/7/2021	7:17:17	86.500.000	13.351.810	134.071.400
22/7/2021	7:17:19	86.445.310	13.396.160	133.928.600
22/7/2021	7:17:21	86.648.440	13.292.680	134.071.400
22/7/2021	7:17:23	86.492.190	13.388.770	134.142.900
22/7/2021	7:17:25	86.429.690	13.407.240	134.000.000
22/7/2021	7:17:27	86.523.440	13.314.860	134.071.400
22/7/2021	7:17:29	86.328.130	13.422.030	133.928.600
22/7/2021	7:17:31	86.437.500	13.381.380	134.142.900
22/7/2021	7:17:33	86.562.500	13.314.860	134.285.700
22/7/2021	7:17:35	86.437.500	13.399.850	134.142.900
22/7/2021	7:17:37	86.539.060	13.355.510	134.071.400
22/7/2021	7:17:39	86.492.190	13.373.980	134.071.400
22/7/2021	7:17:41	86.429.690	13.399.850	134.071.400
22/7/2021	7:17:43	86.648.440	13.314.860	134.071.400
22/7/2021	7:17:45	86.406.250	13.407.240	134.071.400
22/7/2021	7:17:47	86.468.750	13.388.770	134.142.900
22/7/2021	7:17:49	86.570.310	13.340.720	134.000.000
22/7/2021	7:17:51	86.429.690	13.399.850	134.142.900
22/7/2021	7:17:53	86.523.440	13.303.770	134.071.400
22/7/2021	7:17:55	86.507.810	13.373.980	134.000.000
22/7/2021	7:17:57	86.414.060	13.414.630	134.214.300
22/7/2021	7:17:59	86.609.380	13.329.640	134.142.900
22/7/2021	7:18:01	86.546.880	13.396.160	134.000.000
22/7/2021	7:18:03	86.562.500	13.344.420	134.142.900
22/7/2021	7:18:05	86.664.060	13.296.380	134.142.900
22/7/2021	7:18:07	86.445.310	13.399.850	134.071.400
22/7/2021	7:18:09	86.617.190	13.311.160	134.142.900
22/7/2021	7:18:11	86.476.560	13.366.590	134.071.400
22/7/2021	7:18:13	86.460.940	13.373.980	134.142.900
22/7/2021	7:18:15	86.656.250	13.303.770	134.071.400
22/7/2021	7:18:17	86.398.440	13.392.460	134.285.700
22/7/2021	7:18:19	86.531.250	13.348.120	134.071.400
22/7/2021	7:18:21	86.593.750	13.322.250	134.071.400
22/7/2021	7:18:23	86.421.880	13.403.550	134.071.400
22/7/2021	7:18:25	86.609.380	13.322.250	134.000.000
22/7/2021	7:18:27	86.492.190	13.381.380	134.142.900
22/7/2021	7:18:29	86.468.750	13.388.770	134.071.400

22/7/2021	7:18:31	86.656.250	13.300.070	134.142.900
22/7/2021	7:18:33	86.390.630	13.385.070	134.071.400
22/7/2021	7:18:35	86.492.190	13.392.460	134.214.300
22/7/2021	7:18:37	86.601.560	13.333.330	134.071.400
22/7/2021	7:18:39	86.343.750	13.414.630	134.071.400
22/7/2021	7:18:41	86.585.940	13.325.940	134.071.400
22/7/2021	7:18:43	86.500.000	13.355.510	134.142.900
22/7/2021	7:18:45	86.437.500	13.385.070	134.285.700
22/7/2021	7:18:47	86.679.690	13.292.680	134.071.400
22/7/2021	7:18:49	86.429.690	13.381.380	134.142.900
22/7/2021	7:18:51	86.406.250	13.351.810	133.928.600
22/7/2021	7:18:53	86.507.810	13.314.860	134.000.000
22/7/2021	7:18:55	86.296.880	13.418.330	134.142.900
22/7/2021	7:18:57	86.445.310	13.373.980	134.071.400
22/7/2021	7:18:59	86.468.750	13.351.810	134.142.900
22/7/2021	7:19:01	86.265.630	13.388.770	134.000.000
22/7/2021	7:19:03	86.375.000	13.351.810	134.071.400

Anexo XVI. Almacenamiento de datos de variables de temperatura, humedad y caudal.

ANEXO XVII

Tabla 12. Parámetros eléctricos adquiridos cada segundo						
HORA	VOLTAJE	CORRIENTE	P_ACTIVA	P_APARENTE		
7:15:46	124.122.000	247.322	30.657.010	18.093.090		
7:15:47	124.122.000	235.603	29.282.000	17.342.680		
7:15:49	124.122.000	244.392	30.282.010	17.843.030		
7:15:51	123.622.000	235.603	29.157.000	17.217.580		
7:15:53	123.622.000	246.345	30.407.010	17.843.030		
7:15:55	123.622.100	252.457	31.157.020	18.343.150		
7:15:57	123.622.000	245.369	30.407.010	17.717.980		
7:15:59	123.622.100	252.457	31.407.020	18.343.140		
7:16:01	123.622.000	247.322	30.532.010	17.968.080		
7:16:03	123.622.000	237.556	29.407.000	17.342.750		
7:16:05	123.622.100	248.299	30.782.010	18.093.110		
7:16:07	123.622.000	237.556	29.407.000	17.342.750		
7:16:09	123.622.000	246.345	30.532.010	17.968.020		
7:16:11	123.622.100	250.503	31.157.020	18.343.140		
7:16:13	124.122.000	241.463	29.907.010	17.592.860		
7:16:15	123.622.100	250.503	31.032.010	18.093.160		
7:16:17	124.122.000	246.345	30.657.010	17.968.140		
7:16:19	123.622.000	237.556	29.407.000	17.342.810		
7:16:21	123.622.000	242.439	30.657.010	17.843.290		

,	•			
7:16:23	123.622.000	237.556	29.407.000	17.342.720
7:16:25	123.622.000	241.463	29.907.010	17.592.790
7:16:27	123.622.100	250.503	31.032.010	18.218.110
7:16:29	123.622.000	246.345	30.532.010	17.843.040
7:16:31	124.122.100	250.503	31.157.010	18.218.150
7:16:33	123.622.000	240.486	29.782.010	17.592.880
7:16:35	123.622.000	235.603	29.157.000	17.217.810
7:16:37	123.622.100	249.275	30.782.010	18.093.120
7:16:39	123.622.000	237.556	29.407.000	17.342.700
7:16:41	124.122.000	243.416	30.157.010	17.717.890
7:16:43	123.622.100	250.503	30.907.010	18.093.120
7:16:45	123.622.000	245.369	30.407.010	17.843.020
7:16:47	123.622.000	240.486	29.782.000	17.467.820
7:16:49	123.622.000	245.369	30.532.010	17.968.070
7:16:51	123.622.000	237.556	29.532.000	17.342.690
7:16:53	124.122.100	249.275	30.907.010	18.093.150
7:16:55	124.122.000	246.345	30.657.010	17.968.110
7:16:57	123.622.000	242.439	30.032.010	17.717.970
7:16:59	123.622.100	249.275	30.907.010	18.093.130
7:17:01	124.122.000	236.580	29.407.000	17.342.570
7:17:03	124.122.000	240.486	29.907.010	17.592.740
7:17:05	123.622.000	245.369	30.407.010	17.843.100
7:17:07	124.122.000	236.580	29.282.000	17.217.720
7:17:09	124.122.000	245.369	30.407.010	17.843.050
7:17:11	123.622.100	252.457	31.282.020	18.343.140
7:17:13	124.122.100	249.275	30.907.010	18.093.140
7:17:15	123.622.100	252.457	31.282.020	18.343.090
7:17:17	123.622.000	238.533	29.532.000	17.342.520
7:17:19	123.622.000	241.463	29.907.010	17.592.790
7:17:21	123.622.000	238.533	29.532.000	17.467.460
7:17:23	124.122.000	239.509	29.782.010	17.592.640
7:17:25	124.122.000	245.369	30.407.010	17.967.950
7:17:27	124.122.000	246.345	30.657.010	17.968.030
7:17:29	123.622.100	248.299	30.782.010	18.093.110
7:17:31	123.622.000	246.345	30.532.010	17.968.070
7:17:33	124.122.000	241.463	30.032.010	17.717.850
7:17:35	122.622.000	243.416	29.907.010	17.593.060
7:17:37	122.622.100	252.457	31.157.010	18.218.220
7:17:39	123.122.000	242.439	29.782.010	17.592.900
7:17:41	123.622.000	246.345	30.532.010	17.968.010
7:17:43	123.622.000	245.369	30.407.010	17.843.030
7:17:45	124.121.900	234.626	29.157.000	17.217.590
7:17:47	123.622.100	250.503	31.157.020	18.343.120
7:17:49	123.622.000	235.603	29.282.000	17.342.630
		1 22.23		1 12 12 1300

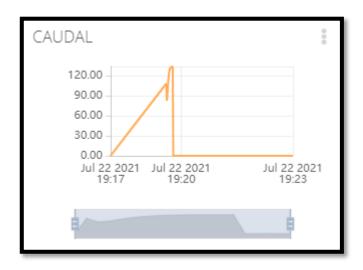
7:17:51 123.622.000 242.439 30.032.010 17.717.850 7:17:53 123.622.100 252.457 31.282.020 18.343.120 7:17:55 123.622.000 241.463 29.907.010 17.592.710 7:17:57 124.122.000 246.345 30.532.010 18.093.070 7:18:01 124.121.900 233.650 29.032.000 17.217.590 7:18:03 124.122.000 244.392 30.282.010 17.968.070 7:18:05 124.122.000 244.392 30.282.010 17.592.670 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:07 123.622.000 243.416 30.157.010 17.717.810 7:18:07 123.622.000 244.463 29.907.010 17.717.810 7:18:11 123.622.000 244.392 30.282.010 17.7842.860 7:18:15 123.622.000 244.392 30.282.010 17.2842.860 7:18:19					
7:17:55 123.622.000 241.463 29.907.010 17.592.710 7:17:57 124.122.000 246.345 30.532.010 18.093.070 7:17:59 123.622.100 243.416 30.157.010 17.843.030 7:18:01 124.121.900 233.650 29.032.000 17.217.590 7:18:03 124.122.000 244.392 30.282.010 17.968.070 7:18:05 124.122.000 240.486 29.782.010 17.592.670 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:09 123.622.000 241.463 29.907.010 17.717.810 7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.217.900 7:18:17 123.621.900 234.626 29.032.000 17.217.500 7:18:21 123.622.000 244.392 30.407.010 17.717.910 7:18:23	7:17:51	123.622.000	242.439	30.032.010	17.717.850
7:17:57 124.122.000 246.345 30.532.010 18.093.070 7:17:59 123.622.100 243.416 30.157.010 17.843.030 7:18:01 124.121.900 233.650 29.032.000 17.217.590 7:18:03 124.122.000 244.392 30.282.010 17.968.070 7:18:05 124.122.000 240.486 29.782.010 17.592.670 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:09 123.622.000 241.463 29.907.010 17.717.810 7:18:11 123.622.000 244.392 30.282.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.622.000 244.392 30.407.010 17.968.030 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.622.000 244.392 30.157.010 17.717.910 7:18:23	7:17:53	123.622.100	252.457	31.282.020	18.343.120
7:17:59 123.622.100 243.416 30.157.010 17.843.030 7:18:01 124.121.900 233.650 29.032.000 17.217.590 7:18:03 124.122.000 244.392 30.282.010 17.968.070 7:18:05 124.122.000 240.486 29.782.010 17.592.670 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:09 123.622.100 252.457 31.282.020 18.468.100 7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.622.000 244.392 30.157.010 17.717.910 7:18:23 123.622.000 242.439 30.032.010 17.717.830 7:18:25	7:17:55	123.622.000	241.463	29.907.010	17.592.710
7:18:01 124.121.900 233.650 29.032.000 17.217.590 7:18:03 124.122.000 244.392 30.282.010 17.968.070 7:18:05 124.122.000 240.486 29.782.010 17.592.670 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:09 123.622.100 252.457 31.282.020 18.468.100 7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.830 7:18:24 123.622.000 242.439 30.032.010 17.717.830 7:18:27	7:17:57	124.122.000	246.345	30.532.010	18.093.070
7:18:03 124.122.000 244.392 30.282.010 17.968.070 7:18:05 124.122.000 240.486 29.782.010 17.592.670 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:09 123.622.100 252.457 31.282.020 18.468.100 7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.100 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:31	7:17:59	123.622.100	243.416	30.157.010	17.843.030
7:18:05 124.122.000 240.486 29.782.010 17.592.670 7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:09 123.622.100 252.457 31.282.020 18.468.100 7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.622.000 244.392 30.407.010 17.968.030 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.000 242.439 30.032.010 17.717.830 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31	7:18:01	124.121.900	233.650	29.032.000	17.217.590
7:18:07 123.622.000 243.416 30.157.010 17.717.900 7:18:09 123.622.100 252.457 31.282.020 18.468.100 7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.000 242.439 30.032.010 17.717.830 7:18:27 123.622.000 244.392 30.282.010 17.717.880 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 244.392 30.282.010 17.717.880 7:18:35	7:18:03	124.122.000	244.392	30.282.010	17.968.070
7:18:09 123.622.100 252.457 31.282.020 18.468.100 7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.000 242.439 30.032.010 17.717.830 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 244.392 30.282.010 17.717.800 7:18:33 123.622.000 246.345 30.532.010 17.968.060 7:18:41	7:18:05	124.122.000	240.486	29.782.010	17.592.670
7:18:11 123.622.000 241.463 29.907.010 17.717.810 7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.000 242.439 30.032.010 17.717.830 7:18:27 123.622.000 242.439 30.032.010 17.717.880 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 244.392 30.282.010 17.217.620 7:18:33 123.622.000 246.345 30.532.010 17.217.530 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:41	7:18:07	123.622.000	243.416	30.157.010	17.717.900
7:18:13 124.122.100 250.503 31.157.020 18.343.050 7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.000 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 246.345 30.532.010 17.217.620 7:18:35 123.622.000 244.392 30.282.010 17.217.530 7:18:41 123.622.000 244.392 30.282.010 17.217.530 7:18:43	7:18:09	123.622.100	252.457	31.282.020	18.468.100
7:18:15 123.622.000 244.392 30.282.010 17.842.860 7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.000 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.621.900 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:41 123.622.000 244.392 30.282.010 17.843.040 7:18:41	7:18:11	123.622.000	241.463	29.907.010	17.717.810
7:18:17 123.621.900 234.626 29.032.000 17.217.090 7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.100 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 234.626 29.032.000 17.217.520 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:41 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.000 241.463 29.907.010 17.717.880 7:18:43	7:18:13	124.122.100	250.503	31.157.020	18.343.050
7:18:19 123.622.000 245.369 30.407.010 17.968.030 7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.100 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 246.345 30.532.010 17.968.060 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:41 123.622.000 244.392 30.282.010 17.843.040 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:43 123.622.100 252.457 31.282.020 18.343.130 7:18:49	7:18:15	123.622.000	244.392	30.282.010	17.842.860
7:18:21 123.621.900 234.626 29.157.000 17.217.500 7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.100 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.000 244.392 30.282.010 17.717.880 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.000 243.416 30.032.010 17.717.920 7:18:49	7:18:17	123.621.900	234.626	29.032.000	17.217.090
7:18:23 123.622.000 244.392 30.157.010 17.717.910 7:18:25 123.622.100 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.622.000 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:41 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.000 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51	7:18:19	123.622.000	245.369	30.407.010	17.968.030
7:18:25 123.622.100 252.457 31.157.020 18.343.140 7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.621.900 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:49 123.622.000 243.416 30.032.010 17.717.920 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:55	7:18:21	123.621.900	234.626	29.157.000	17.217.500
7:18:27 123.622.000 242.439 30.032.010 17.717.830 7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.621.900 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:55 123.622.100 252.457 31.282.020 18.343.140 7:18:55	7:18:23	123.622.000	244.392	30.157.010	17.717.910
7:18:29 124.122.100 250.503 31.157.020 18.343.130 7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.621.900 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 245.363 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:55 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.100 252.457 31.282.020 18.343.140 7:18:55	7:18:25	123.622.100	252.457	31.157.020	18.343.140
7:18:31 123.622.000 244.392 30.282.010 17.717.880 7:18:33 123.621.900 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:55 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.100 252.457 31.157.020 18.343.110	7:18:27	123.622.000	242.439	30.032.010	17.717.830
7:18:33 123.621.900 234.626 29.032.000 17.217.620 7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.100 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:29	124.122.100	250.503	31.157.020	18.343.130
7:18:35 123.622.000 246.345 30.532.010 17.968.060 7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:31	123.622.000	244.392	30.282.010	17.717.880
7:18:37 124.121.900 234.626 29.032.000 17.217.530 7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:33	123.621.900	234.626	29.032.000	17.217.620
7:18:39 123.622.000 244.392 30.282.010 17.843.040 7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:35	123.622.000	246.345	30.532.010	17.968.060
7:18:41 123.622.100 252.457 31.282.020 18.343.160 7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:37	124.121.900	234.626	29.032.000	17.217.530
7:18:43 123.622.000 241.463 29.907.010 17.717.880 7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:39	123.622.000	244.392	30.282.010	17.843.040
7:18:45 123.622.100 252.457 31.282.020 18.343.130 7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:41	123.622.100	252.457	31.282.020	18.343.160
7:18:47 123.622.000 243.416 30.032.010 17.717.920 7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:43	123.622.000	241.463	29.907.010	17.717.880
7:18:49 123.622.000 235.603 29.282.000 17.342.690 7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:45	123.622.100	252.457	31.282.020	18.343.130
7:18:51 123.622.000 246.345 30.532.010 17.968.080 7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:47	123.622.000	243.416	30.032.010	17.717.920
7:18:53 123.622.100 252.457 31.282.020 18.343.140 7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:49	123.622.000	235.603	29.282.000	17.342.690
7:18:55 123.622.000 245.369 30.407.010 17.843.000 7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:51	123.622.000	246.345	30.532.010	17.968.080
7:18:57 123.622.100 252.457 31.157.020 18.343.110	7:18:53	123.622.100	252.457	31.282.020	18.343.140
	7:18:55	123.622.000	245.369	30.407.010	17.843.000
7:18:59	7:18:57	123.622.100	252.457	31.157.020	18.343.110
	7:18:59	123.622.000	242.439	30.032.010	17.717.710
7:19:01 123.622.000 238.533 29.532.000 17.342.390	7:19:01	123.622.000	238.533	29.532.000	17.342.390
7:19:03 123.622.100 248.299 30.782.010 18.093.040	7:19:03	123.622.100	248.299	30.782.010	18.093.040

Anexo XVII. Almacenamiento de datos de los parámetros eléctricos.

ANEXO XVIII

Tabla 13. Almacenamiento de datos de parámetros eléctricos						
VOLTAJ	CORRIEN	P_ACTIV	P_APAREN	P_REACTI	FRECUENC	ED
E	TE	A	TE	VA	IA	FP
120.122.1 00	252.456	30.407.010	17.280.640	379.388	60.022.200	594.76 4
120.122.1 00	258.316	31.032.020	18.280.480	230.709	60.009.120	586.95 1
120.622.1 00	250.503	30.157.010	17.905.440	210.202	59.986.090	594.76 4
119.122.1 00	258.316	30.782.020	18.342.510	-60.607	60.026.520	590.85 8
120.122.0 00	240.486	28.907.000	17.280.370	176.022	60.012.240	594.76 4
120.122.0 00	246.345	29.657.010	17.530.340	161.374	59.985.310	590.85 7
119.622.0 00	236.580	28.406.990	16.780.430	203.366	59.994.960	590.85 7
119.622.0 00	243.416	29.157.000	17.155.650	385.247	59.978.950	586.95 1
120.122.2 00	279.801	33.564.180	23.031.470	3.831.981	60.008.810	684.60 8
121.122.2 00	291.520	35.314.190	23.406.630	6.257.710	60.024.490	661.17 0
120.622.0 00	239.509	29.032.000	17.155.660	400.872	59.983.760	586.95 1
120.622.0 00	241.462	29.157.000	17.155.550	281.731	60.028.070	586.95 1
121.122.1 00	252.456	30.657.010	18.030.610	348.138	59.973.250	586.95 1
121.122.1 00	256.363	31.282.020	18.467.640	-91.429	60.000.640	586.95 1
122.122.1 00	248.298	30.282.010	17.841.340	-2.232	59.970.370	583.04 5
110.627.1 00	9.329.225	1.034.139.0 00	965.057.900	360.495.600	60.030.910	934.60
122.622.1 00	250.503	30.782.010	17.780.300	140.866	59.981.930	579.13 9
110.127.1 00	9.454.226	1.042.139.0 00	969.058.200	370.495.500	60.032.880	930.70 1
122.122.1 00	252.456	31.032.010	18.092.620	-84.593	59.979.550	583.04 5
121.122.1 00	264.175	32.064.040	18.593.030	-264.153	60.000.330	579.13 9
121.122.1 00	248.298	30.157.000	17.467.670	-97.777	59.985.160	579.13 9
121.622.1 00	258.316	31.407.010	18.218.060	-289.544	59.984.230	579.13 9

ANEXO XIX


Anexo XIX. Curva de humedad adquiridas en el servidor web Ubidots

ANEXO XX

Anexo XX. Curva de temperatura adquiridas en el servidor web Ubidots

ANEXO XXI

Anexo XXI. Curva de caudal obtenido por el servidor web

MANUAL DE OPREPARADO

MANUAL

DESARROLLO DE UN SISTEMA SCADA DEL INVERNADERO EXPERIMENTAL #2 DE LA UNIVERSIDAD TECNICA

DE COTOPAXI CAMPUS SALACHE EN EL PERIODO 2021.

AUTORES:

- ANACLETO MEDINA JOHN JAIRO
- YATAMPALA CUNACHI BRYAN RAFAEL

ÍNDICE MANUAL

- 1. INSTRUCCIONES DE SEGURIDAD
- 2. INTRODUCCIÓN
- 3. GUÍA DE UTILIZACIÓN DEL SISTEMA
 - 3.1. IDENTIFICACIÓN DE SEÑALÉTICAS
 - 3.2. PANTALLA PRINCIPAL
 - 3.3. SELECCIÓN DEL SISTEMA MANUAL
 - 3.4. SISTEMA AUTOMÁTICO
 - 3.5. PARÁMETROS ELÉCTRICOS

INSTRUCCIONES DE SEGURIDAD

- **Precauciones:** leer detenidamente el presente guía de usuario, para tener un correcto uso del equipo instalado.
- Maneje adecuadamente la alimentación del módulo y así evitar el riesgo de una descarga eléctrica o incendio en el tablero principal.
- Para reducir el riesgo de una descarga eléctrica, desconectar la alimentación principal antes de manipular los elementos del módulo.
- NOTA. Al apagar el modulo sigue existiendo energía en la alimentación principal.

INTRODUCCIÓN

Con el presente proyecto se puede monitorear las variables de temperatura, humedad y nivel de agua los cuales se presentan en el invernadero, el cual es de suma importancia ya que se garantizara una mejor producción de los cultivos que se encuentran dentro del invernadero #2.

GUÍA DE UTILIZACIÓN DEL SISTEMA

El presente manual muestra de forma detalla cada uno de los pasos a seguir para el correcto funcionamiento del sistema, garantizando que el operador pueda tener un mejor conocimiento con la interfaz gráfica de la pantalla KPT, de esta manera el operador pueda operar el sistema de monitoreo y control sin dificultades.

3.1 IDENTIFICACIÓN DE SEÑALÉTICAS.

Paso 1:

Identificar las señaléticas que se encuentran en el tablero en el que se va a realizar el monitoreo de las variables existentes como son: temperatura, humedad y nivel de agua del invernadero #2 del Centro experimental Salache.

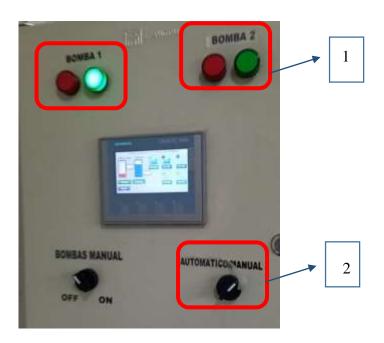
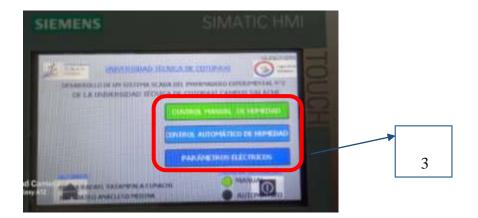



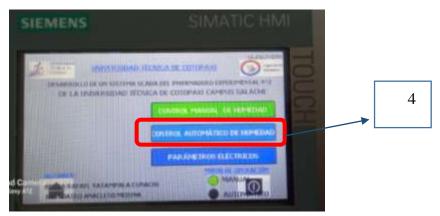
Imagen 2. Indicadores de luz y selector.

Paso 2.

- 1.- En el tablero existen dos indicadores de luz el cual nos va a indicar si la bomba se encuentra encendida o apagada.
- 2.- En el tablero existe un selector de tres posiciones, el cual permite operar el sistema de control de manera manual y automática, cuando el selector se encuentra en la posición central hace referencia a un punto neutro de operación.

Para verificar si el sistema está funcionando se encuentran colocadas luces piloto (rojas y verdes), las mismas que se encenderán de acuerdo al funcionamiento por lo cual cuando se observe las luces rojas encendidas, estas estarán indicando que las bombas se encuentran apagadas (Off), si las luces verdes se encuentran encendidas, significa que las bombas se encuentran funcionando (On).

Imagen 3. Botones para ingresar a las sub pantallas.


3.2 PANTALLA PRINCIPAL.

Paso 3:

La pantalla KTP400, entra en funcionamiento cuando el tablero se energizar.

Esta pantalla una programación amigable con los operadores la cual facilitara el manejo de la misma.

3.- Al seleccionar uno de los botones que se encuentran en la KTP400, se puede ingresar a las diferentes sub pantallas elegidas.

Imagen 4. Botón para ingresar al sistema de control Manual.

Imagen 5. Pantalla del sistema de control Manual.

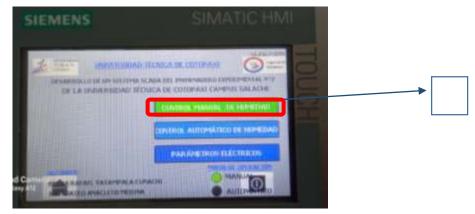
3.3 SELECCIÓN DEL SISTEMA MANUAL.

Paso 4:

Sistema Manual.

- 4.- Al presionar el botón número 4, nos despliega a la sub pantalla del control manual.
- 5.- Al ingresar a la pantalla del control manual podemos observar los valores de temperatura y humedad que se encuentran enviando el sensor hibrido y los elementos que estamos controlando en nuestro sistema.

Imagen 6. Funcionamiento sistema de control Manual.


Paso 5:

- 6.- Al tener acceso a esta pantalla se debe presionar el botón que se encuentra con el nombre de MANUAL, una vez encendido este botón.
- 7.- Se procederá a controlar las electroválvulas y las bombas que se encuentran

conectados al sistema, dependiendo las necesidades del operario puede elegir cualquier

botón de esta pantalla.

8

Imagen 7. Botón para ingresar al sistema de control automático.

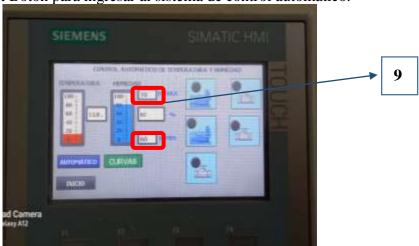


Imagen 8. Set point del sistema automático.

3.4 SISTEMA AUTOMÁTICO.

Paso 6.

AUTOMÁTICO.

8.- Al elegir la opción "Control Automático de Humedad", se desplegará la siguiente pantalla.

En esta se puede observar el porcentaje de los valores que se encuentran los sensores, colocados en el interior del invernadero.

9.- Este monitoreo automático tiene la facilidad de introducir manualmente los valores que el usuario desee que el sistema funcione.

Imagen 9. Funcionamiento del sistema con los valores establecidos.

10.- al colocar los valores máximos y mínimos de nuestro sistema automático el sistema comienza a funcionar si la humedad mínima es igual a la del sensor medido y se activa el sistema.

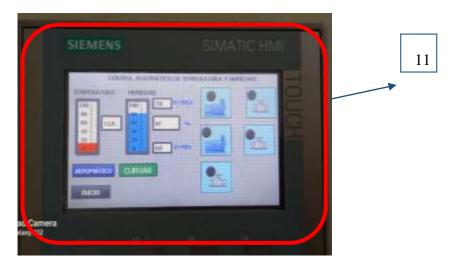


Imagen 10. Desactivación del sistema al llegar al valor de la humedad máxima.

11.- Al llegar al límite máximo de humedad el sistema se apagara automáticamente.

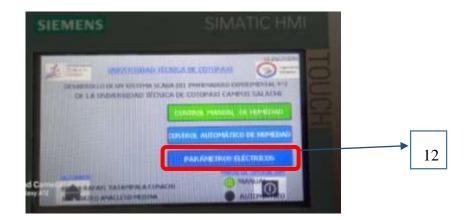


Imagen 11. Botón para ingresar a Parámetros Eléctricos.

3.5 PARÁMETROS ELÉCTRICOS.

Paso 7.

12.- Al ingresar al botón de parámetros eléctricos se puede verificar los valores que están siendo tomados por el Sentron Pac.

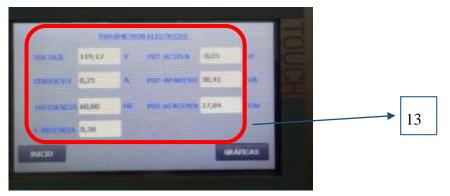


Imagen 12. Visualización de Parámetros Eléctricos.

13- En esta sub pantalla podemos visualizar los parámetros eléctricos con los cuales se están manejando en el sistema.

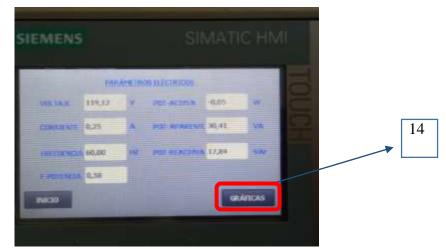


Imagen 13. Botón para ingresar a Graficas.

14.- En esta misma sub pantalla al presionar el botón de "GRÁFICAS" nos despliega la

siguiente pantalla.

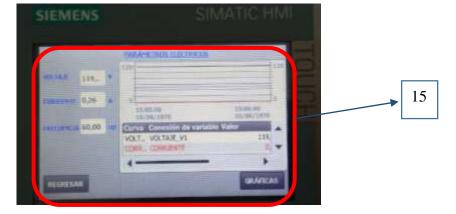


Imagen 14. Graficas de Parámetros Eléctricos.

15. Podemos observar el comportamiento de los parámetros eléctricos.

Nota: Para volver al menú de inicio, se debe seleccionar la opción "Regresar".