
Athens Journal of Technology and Engineering - Volume 9, Issue 1, March 2022 –

Pages 9-24

https://doi.org/10.30958/ajte.9-1-1 doi=10.30958/ajte.9-1-1

Flexible Robot Programming using Solid Edge’s

“Alternative Assemblies”

By Norman Urs Baier
*
 & Joel Costan Zovi

±

Many assembly processes in small and medium-sized enterprises are still

performed by human labour. One reason for this is the need for another expert

to program the robot, which would simply not fit into the company structure. To

address this issue a solution is developed, which allows to program the robot

directly out of the CAD software. The positions of the parts are read out of the

CAD file. Specific assembly instructions have to be given by the assembly

developer and integrated in the tree structure of the CAD. To avoid collisions

and ensure correct insertion angles, additional waypoints are given by alternate

assemblies, a functionality within Solid Edge to create and use variations of an

assembly.

Keywords: assembly, task planning, intelligent and flexible manufacturing,

CAD

Introduction

The classical use of an industrial robot is within a repetitive process. It is taught

a few positions with the teach panel or by other means and then it starts doing its

task. If the process is a manufacturing or assembly process, then most often a single

robot performs tiny subtasks of the whole process and most often the production

volume is high. Markis et al. (2016) distinguish four different production paradigms,

namely fixed automation, robotic automation, human-robot collaboration, and manual

assembly. As production costs do not scale with lot size for manual assembly this

is the solution for smallest lot sizes, whereas fixed automation is for rather large lot

sizes. For lot sizes in between, though, robots may also be deployed profiatinerly.

Depending on lot size and complexity of the manufacturing process different

strategies have been developed.

For some manufacturing processes of more complex nature, the robot will

need to cowork with a human operator even in the foreseeable future. This situation

requires different programming paradigms than situations in which the robot alone

is capable of completing the tasks, but some single elements change after very

small batch sizes. Wang et al. (2019a) have identified and named four different

forms of human-robot relationships: coexistence, cooperation, interaction, and

collaboration. Clearly, in case of collaboration the robot needs to understand the

human and hence appropriate programming paradigms need to be available. These

need to include on one hand the ability to learn quickly from human interaction

*
Professor for Control Engineering and Mechatronics, Bern University of Applied Sciences,

Switzerland.
±
Microcut Ltd, Switzerland.

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
1
6
6
7
0

|

d
o
w
n
l
o
a
d
e
d
:

2
2
.
7
.
2
0
2
2

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

10

despite possible ambiguity (Thomaz and Breazeal 2008, Wang et al. 2019b) and on the

other hand they need to establish possible ways the human can express himself

toward the robot (Tsarouchi et al. 2016, Cserteg et al. 2018).

In contrast, many manufacturing processes performed in small and medium

sized enterprises (SME) could be performed by a robot without the help of a

human co-worker. There are several reasons why often manual labour is preferred

in SMEs. One of them is that classical robots take up too much space, because

they need to be behind fences (Perzylo et al. 2016), a problem solved to a large

extent with collaborative robots in a coexistence scenario. Another reason is the

programming effort and the apprehension an expert might be needed to perform

the programming (Perzylo et al. 2016). The usability of the user interfaces of

collaborative robots has been analysed by Schmidbauer et al. (2020). To address

the need for effortless deploying of robots, software has been proposed by fortiss,

for example: Perzylo et al. (2019) describe a software which allows to program a

robot by manipulating physical parts and drawings of them on screen. The

assembly itself can be divided in subtasks, each of which is capable of performing

a particular action. These are called skill primitives and depending on robot and

sensors installed, different skill primitives can be realised (Watson et al. 2020).

Alternatively, manufacturing or assembly data can be extracted directly out of

existent CAD files; an approach which has been identified as promising by von

Drigalski et al. (2020). Known in literature is a strategy called “assembly by

disassembly”, it proved to work for the assembly of different types of housings

(Michniewicz et al. 2016). Recently, strategies have been published in which the

tree structure in the CAD file is used to harbour instructions for assembly (Linnerud

et al. 2019, Transeth et al. 2020).

A link still not duly carved out to or opinion is how existing work processes in

SMEs may be altered such that in the end a robot can assemble the designed item.

Particularly, it may not be necessary or not even desired that the assembly

sequence is generated automatically. Instead, usually the product designer has a

clear idea already how the item shall be assembled, and the robot should do, the

way the designer intended it to go on. Hence, it should blend in with existing

development and design processes, which most often are amended CAD files.

Furthermore, to increase the acceptance of robots in SMEs the robot itself should

blend in with existing workplaces traditionally designed for humans. It should be

able to use those tools, which humans use as well. In this paper we present a set-up

to perform assembly with a robot, which addresses the problems within the above-

mentioned frame.

Bin picking, on the other hand, is not considered as within the frame: all

objects and items are provided at known locations. Provisioning is an important

part in a complete assembly process; however, it can be solved detached from the

actual assembly process.

Methodology

An example item is assembled with an off-the-shelf collaborative robot. In

Athens Journal of Technology & Engineering March 2022

11

this section we give all the details of the example item, the robot, the tools, and

software, which were used for the task.

Example Item: Spur Gear Unit

To develop and assess the automatic programming, an example item was

selected. The requirements for the example item were:

 size such that an ordinary collaborative robot can handle it,

 composed of a manageable number of parts,

 different assembly tasks involved during assembly,

 preferably an item, which is publicly available for purchase.

Figure 1. Exploded Drawing of the Spur Gear Unit

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

12

Figure 2. Spur Gear Unit before Assembly, Arranged on the Mounting Plate

The choice fell on a spur gear unit of Hilba, more precisely the model

GOBUN5713FR100-01. It consists of a housing with bearings, 3 gearwheels on

axes fitted to the bearings and a lid screwed on the housing. Its assembly consists

of inserting the gearwheels into the bearings. For the second and third gearwheel

the correct interleaving has to be observed. Furthermore, posing of the lid is an

involved process. It includes three steps and screwing. The lid comprises the

bearings for the axes of the gearwheels. First, it has to be posed and then the

correct insertion of all three axes has to be verified. For the screwing of the lid, a

tool (screwdriver) needs to be used. Figures 1 and 2 show the spur gear unit in a

disassembled state and as an exploded drawing.

Robotic Arm, Gripper, Sensors and Tools

There are no particular requirements for the robot, on the contrary, the less

particular the robot is, the better the results can be ported to other installations. For

reasons of availability, the choice fell on a F&P Robotics P-Rob 2. This is a 6

DOF industrial robot with a straight idle position. It is originally equipped with a

servo gripper, but for this work a custom hand with three separate pneumatic

grippers is installed.

Furthermore, the HEX-E force torque sensor of On Robot A/S is installed on

the robotic arm and an electric screwdriver is mounted within the reach of the

robotic arm. The screwdriver can be switched on and off through the digital

connections of the robotic arm and hence controlled through the proprietary robot

software myP (F&P Robotics 2018a, Mišeikis et al. 2020).

Communication with and triggering of routines within the robotic arm was

Athens Journal of Technology & Engineering March 2022

13

done through a TCP-socket. Through the socket myP provides possibilities to

trigger functions and procedures written in Python. With the help of those the

adoption of poses can be triggered, and the digital IO-connections can be read or

set. myP offers an extensive set of functions to do so (F&P Robotics 2018b). The

functions that are used in the proposed realisation are:

 write_digital_outputs(): to control attached electrical equipment

like the screwdriver or the pneumatic valves to close the grippers,

 read_digital_inputs(): to observe the feedback on torque and

general errors of the screwdriver,

 run_advanced_path(): to make the robotic arm move like required

by the assembly program,

 read_tcp_pose(): to read out the current position of the tool center

point and correspondingly continue with the assembly.

Other functions like close_gripper() and open_gripper() are also

implemented in myP, but have not been used. These two functions in particular

because other grippers have been installed. No myP-functions are used to read out

the HEX-E force torque sensor, it is connected directly to the PC running the

assembly program.

CAD Software

In order to blend in as good as possible with existing workflows, the interface

to the CAD-data is set up on application layer, not on file layer. This means Step-

files or similar files are not considered as input source, but an appropriate and

existing API towards a widespread CAD software suite is used. Here Solid Edge

was used for the implementation; among the more important softwares according

to market share (Warfield 2020), it proved to be most easy to interface to: Through

the libraries Interop.SolidEdge and SolidEdge.Community data contained in a

Solid Edge design can be extracted and manipulated in a straightforward manner

from any C# software project.

Product Development and Assembly Development

For our method we started from the working assumption that product

development and assembly development are two separate steps in the workflow of

the manufacturer. The method does not aim at eliminating assembly development

by the help of artificial intelligence or other means. So, for the assembly itself it is

assumed that the assembly developer performing the actual development will

receive all data concerning the product to be assembled in form of a CAD file and

that the technician then starts to plan in which order the individual components

need to be aligned and merged and what particular steps are involved.

In fact, assembly development is always involved in conjunction with product

development, however it can take a different appearance depending on the

company carrying out the product development. The method presented here

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

14

requires the assembly development to be carried out in the CAD software as

opposed to more manual workflows involving text documents and photos of an

example assembly, which is still very common in smaller companies.

Performing the assembly development in CAD is advantageous for a work

process where assembly development is performed by a constructing engineer and

most advantageous if it is performed right after product development by the same

engineer, who has performed the product development. The engineer can then

exploit all the skills already used during design phase. Such a process would

ideally fit very small companies.

Results

In the current implementation a software procedure written in C# (the

program) connects to the CAD data on one side and the robotic arm on the other

side. Before focusing on how information is processed and transmitted from one

element of the installation to the other, it is important to specify some of the details

of Solid Edge, which are important for the implementation.

Alternate Assemblies for Additional Waypoints or Movements

In common industrial workflows the assembly developer has the crucial task

to assure that gripping the part to be added to the assembly is possible and the

joining position can be reached with the defined grip, independent of the fact if the

assembly is performed by humans or robots. To verify if the grip is possible, the

gripper is represented in the CAD tool. To define the actual joining movement,

additional waypoints may be necessary. Here, alternate assemblies are used to

define these waypoints. “Alternate assemblies” is the name of a functionality within

Solid Edge, which can be used to manage variations of an assembly (Siemens

Product Lifecycle Management Software Inc. 2011). It allows to store an assembly

in different configurations, showing the parts, out of which it is assembled, in

different locations and orientations. It can also be used to store configurations, in

which some parts differ. Without this functionality, it would be less convenient to

mark parts as identical and keep the different variants of the assembly in place.

With this functionality, the presence and location of the assembled parts can be

stored in a single file for different configurations. Within Solid Edge, the different

assembly configurations are called members.

Athens Journal of Technology & Engineering March 2022

15

Figure 3. Member2 Showing Two Different Intermediate Positions of the First

Gearwheel

In our implementation the members are used to define subsequent poses of the

element to be joined. Hence, in one member the assembly is shown with the part

currently to be joined in its final location, while it is shown in other members in

intermediate positions. Figure 3 shows two different alternate assemblies in an

overlay: In one alternate assembly (shown in transparent blueish) the first

gearwheel has an intermediate position, in another (shown solid) it has its final

position. With these means, the assembly developer can harness the robot very

precisely. Furthermore, through commands written into the placement name

(described below) the program can be informed that a particular skill is necessary

to complete the assembly step. Instancing the step shown in Figure 3, most often

mounting an axis into its bearing cannot be done with a simple linear movement

but requires a sequence of movements and measurements. One way to give the

robot the ability to exhibit more elaborate behavior than simple linear movements

is skills (Thomas et al. 2003). The skills, which are necessary to assemble the spur

gear unit, and hence are now already implemented in the program are also

described below.

Individual parts in the CAD file can have a different origin. It is common

practice to use third party parts in assemblies and import the corresponding part

from a CAD library of the supplier of the part and the library. Therefore, the origin

of the coordinate system of a part cannot reliably be used to determine the gripping

pose, because the supplier can put it anywhere. As a solution the gripper is

introduced into the CAD drawing. The task of the assembly developer becomes

then to align the gripper with the part to be handled, which can be done with few

clicks by a trained designer. Display the gripper in the assembly is recommended

anyway, as it also allows to check for collision free gripping and releasing while

planning the assembly procedure. The assembly showing the part to be handled

together with the gripper is shown in Figure 4.

In our implementation the numbering scheme of the members and the parts

within the members are used to specify the assembly order.

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

16

Figure 4. Member1 Showing Gripper Mounting Plate and Final Joining Position

of the First Gearwheel

Interfaces & Structure

Figure 5 shows all involved elements of the installation used in the current

implementation. The central element is the above-mentioned C# program, which

connects

 to Solid Edge with the help of the corresponding libraries,

 to the software “myP” on the robotic arm through TCP sockets, and

 to the force torque sensor through its USB interface.

The robotic arm connects

 to the electrical screwdriver with its control box, and

 to the valve controlling the three pneumatic grippers,

both through its digital IO ports.

Figure 5. Interfaces and Structure of the Hardware and Software Components

Athens Journal of Technology & Engineering March 2022

17

The interface of the program to the robotic arm and accessories is

straightforward: Through this channel merely pose and gripping instructions are

transmitted in an implicit way by triggering the functions described in the previous

section. The data processing, which breaks down the complex assembly task to

single poses to reach and gripping instructions, takes place beforehand when the

program reads out the instructions of the assembly developer stored in the CAD

file.

Instructions in the CAD File

During assembly development, necessary information to successfully perform

the assembly is created. This information is stored in the CAD file. This includes

information on possible tools that are used during the joining, where individual

parts are located and the pose with which the gripper has to reach for those parts.

Solid Edge provides a “placement name” to describe a particular entity of the

component used. It can be user defined and here, it is used to store information on

the assembly process. The existing placement name is augmented with key-value

pairs describing the action that needs to be performed. All implemented keys are

shown in Table 1. The key-value pairs are separated by a semicolon. How this

looks in Solid Edge is shown by the screenshot in Figure 6.

Figure 6. Screenshot Showing the Highlighted Member in the Edgebar and the

Pathfinder with Parts Having a Custom Placement Name

Table 1. Possible Qualifiers in Placement Name

Key Meaning
nr Sequential number of the assembly step

ve Velocity
ac Acceleration

oig 1: Gripping outward, 2: Gripping inward

he Tool use, 1: Screwdriver
pb Intermediate position

oc Gripper open or closed, 1: Open, 2: Closed
to Skill primitive, 1: bolt into bearing, 4: gearwheel

gnr Gripper number
orr Retraction

The order in which parts have to be gripped and joined is specified by the

value given with the key nr. Furthermore, ve and ac keys can be given to limit

velocities and accelerations during that step. Whether or not the part has to be

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

18

gripped outward or inward is specified by key oig.

In case the part is not gripped or handled directly by the gripper, the key he is

used to specify which tool has to be used. Currently only the screwdriver is

implemented. With the key pb intermediate positions can be specified: The part

will be moved successively from the position with the highest pb number to the

position with the lowest pb number. Hence, a trajectory with angles can be forced.

This may be necessary to fit the gearwheels or the lid onto the assembly, or

whenever elements of the assembly have to be avoided during joining. The key oc

allows to close or open the gripper at particular position.

To specify how the joining has to be performed, the key to is used. With this

key, the program is told what substeps are involved during the joining. Currently

two different situations are implemented: A bolt has to be fit into a bearing (value

1) and a gearwheel has to be interlocked (value 4). The solutions involve skill

primitives and are detailed in the next section.

Which gripper shall be used to grip the part can be specified with the help of

the key gnr. The key orr is most useful in conjunction with the key pb. With its

help a retraction distance can be specified. The gripper is then retraced for the

specified distance along the final axis and does not rewind the path specified by

the intermediate positions given by pb.

Skill Primitives

The skill primitives and the associated transitions are usually organised in nets

like the one shown in

Figure 7 (Thomas et al. 2003). In the context of the assembly considered here,

skill primitive nets were created for mounting axes, interlocking gear wheels and

mounting the cover lid. In these tasks the skill primitive nets are a way to handle

the uncertainty, which could prevent the task from finishing successfully

otherwise. They are triggered through particular commands described above.

When the assembly developer declares for example that the current part is an axle,

which should go into a bearing, then the program calls the associated skill

primitive net implemented in the C# code.

Figure 7. Skill Primitive Net for Mounting an Axle

Athens Journal of Technology & Engineering March 2022

19

The skill primitive net for mounting an axle is composed of four skill

primitives. A block diagram for it is shown in Figure 7.

Skill primitive 1 involves moving the axle along the mounting direction.

Either until a critical depth is reached, or the force measurement increases. More

precisely, if the measured position exceeds the position, which can be reached

when the axle hits the edge, the transition T1 is taken and skill primitive 3 “move

the axle vertically until fully inserted” is activated. Otherwise, transition T2 is

taken and skill primitive 2 “moving the axle in the shape of a rectangular spiral” is

activated first, before skill primitive 3 is activated via transition T3. This happens

when the vertical force decreases significantly. The last skill primitive in this net is

“reduce inserting force” and the transition between skill primitives 3 and 4 occurs

when force measurements increase while position measurements stall. The skill

primitive net is left when the force measurement confirms the relaxed pose.

Figure 8. Skill Primitive Net for Aligning Gear Wheels

When gear wheels are successively assembled in a spur gear unit, the

subsequently added gear wheels have to be aligned to the previously mounted gear

wheel. For this situation we created another skill primitive net, which is shown in

Figure 8. The outline is quite similar to the first skill primitive net for mounting an

axle. In our application the skill primitive net for mounting an axle is always

executed before the skill primitive net described here. The defined skill primitives

are:

1. move gear wheel in axle direction,

2. lift, rotate and press gear wheel in axle direction again,

3. move in axle direction until final position is reached,

4. reduce inserting force.

The possible transitions are from skill primitive 1 to skill primitive 2 when

force measurements increase while not having reached the required vertical

position or to skill primitive 3 in case the gear wheels were already aligned and the

vertical position was reached without a significant increase in vertical force the

same criterion forms the transition from skill primitive 2 to skill primitive 3 and

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

20

the transition from skill primitive 3 to 4 occurs when the force increases while the

position measurement is reached the final state. The skill primitive net is left from

skill primitive 4, when the force measurement has reached a relaxed state.

Calibration of the Mounting Plate

In our example, the assembly takes place on a mounting plate. It serves as a

reference for all parts that take place in the assembly. The different joining

operations during the assembly require the positions of the joined part to be known

with an appropriate precision. The worse the precision is, the longer the joining

can take, as the robotic arm has to search for the correct mechanical stops.

The assembly performance benefits when the physical pose of the mounting

plate coincides precisely with the pose of its digital representation, such that

tolerances in mounting plate and robot links are compensated for either by

mechanical manipulation or by calculations. For the purpose of calibration, the

mounting plate has a number of holes in it that can be used in the process of

calibration. The precise process of calibration we adopted for consists of both a

mechanical adjustment and a computational correction.

First the orientation of the mounting plate around its vertical axis is set

mechanically. The robot gripper is lowered so that the mounting plate can be

oriented flush with the yaw angle of the gripper. Next, rods are used to align the

gripper with the mounting plate for pitch and roll angles of the gripper (Figure 9).

In the end correction angles for pitch and roll for each gripper are known. These

depend heavily on the individual robot and the force-torque-sensor.

Figure 9. Procedure to Calibrate Mounting Plate: First the Yaw Angle around the

Blue Arrow is Adjusted Mechanically (Left, Hatched Surface), then the Pitch Angle

A r o u n d t h e R e d A r r o w (M i d d l e) a n d
t h e R o l l A n g l e a r o u n d t h e G r e e n A r r o w
(R i g h t) Are Measured with the Help of a Bolt

With the previous steps the orientation of the mounting plate with respect to

the CAD data has been assessed, however, discrepancies in the position data are

still possible. To close that gap the robot is again made holding a rod, which this

time is inserted into three of the holes in the mounting plate. When inserted in the

hole, the robot pose is tuned such that the force measures zero and the corresponding

Athens Journal of Technology & Engineering March 2022

21

positions from the robot control are read out and hence the position vectors of the

three centres of the holes are known. By simple vector subtraction and

normalisation, the coordinate system of the mounting plate can be calculated.

Now, given a pose of a part in the CAD system, the corresponding pose of the part

on the mounting plate easily calculated.

Sequences of the Program in Chronological Order

To read out the position information and to prepare them for use in the

assembly command for the robot, the alternate assemblies are run through in order.

The libraries Interop.SolidEdge and SolidEdge.Community are used to access

Solid Edge through the API and load the alternate assemblies to read out the

position of the part whose turn it is.

The alternate assemblies are named Member and numbered through in our

implementation: “Member1, Member2, …”. In the first member (Member1) the

assembly is drawn in its final assembled state. The assembly program begins by

reading out Member1. One fundamental position information which is currently

stored in Member1 is the position of the gripper itself: The position of the gripper,

when the robot is in its rest position is drawn in Member1.

The order of the assembly is given in the placement name by the attribute

“nr” visible in Figure 6. In steps of 10 this attribute directly gives the order of the

assembly, whereas the final assembled position is given in the alternate assembly

with the name “Member1”. If there is another alternate assembly showing the

same part in another pose, then the robot has first to reach this pose before it brings

the part to the final pose.

In the end of that step all data has been extracted from Solid Edge and has

been stored in an array. The data in the array are insertion and final positions and

the command string, the assembly engineer had put in the placement name.

To make the data accessible and store them for future use, they are stored in a

file in JSON-format.

Next, the position data together with the instructions in the placement name

need to be processed, with the aim to generate a sequence of commands the robot

understands. The sequence will then be sent to the robot to perform the assembly.

The table previously stored in JSON-format is already ordered according to

the succession of the assembly. To get the assembly commands for the robot the

command string from the placement name (Table 1) has to be interpreted and

broken down to commands for the robot (section Robotic Arm, Gripper, Sensors

and Tools). As programming paradigm, we used skill primitives, with which we

divided the assembly tasks in subtasks.

Discussion

A complete workflow from product design through assembly development to

automated assembly has been implemented and tested. The aims pursued were in

order of importance

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

22

1. blend in with existing product development workflows,

2. blend in with existing workplaces designed for humans,

3. be flexible and allow for assembly of a large variety of products.

To blend in with existing workflows it was sought to link directly the most

common tool for product design and development (the CAD software) and the

most common tool for automated assembly (the industrial robot with its control

software). Both have been linked through an additional piece of software, a

program written in C#. This requires the assembly development to take place

within the CAD environment. As such this solution targets companies, who do not

perceive this requirement as limiting, and hence it is certainly suited for smaller

companies, which do have rather simple processes for assembly development.

The solution employs the placement name of Solid Edge and its member

structure, to store the information, which was generated during assembly

development. As such it depends on Solid Edge, though it can easily be ported to

other CAD tools if the necessary interfaces are available. The solution shows a

simple way to augment the raw CAD file with information on how to assemble the

unit. It also shows a possible way how tools can be used, which is one requirement

if the robot should be able to blend in with workplaces for humans. In the current

solution the use of tools is controlled by the corresponding key-value-pair in the

placement name. How the tool is used is hard coded in the program. Only the use

of a screwdriver has been implemented.

Valuation from industrial partners has been positive. Deleting parts from the

CAD assembly and rerun the program will result in the robot not taking up that

part during the next assembly procedure. Moving the part to another location will

result in the robot picking up that part at another location or performing the joining

steps at another location, which will work when the other joining parts are

prepared for the new location or bring the system to an error state if for example

the fitting is at the wrong location. There are no limits other than those of the robot

and the fact that only a limited number of joining operations are already

implemented. Likewise, the speed of the assembly procedure is only limited by the

usual safety aspects and the speed of the robot. The program execution to extract

the data from the CAD and to generate the assembly steps happens virtually

instantly.

An important aspect is the skill primitive nets. The level of abstraction of the

instruction which can be given as instruction in the tree structure, depends on the

implemented skills. With the current implemented skills, the assembly of the

gearbox can be accomplished, and expected tolerances can be overcome, however,

the instructions for the assembly have to be laid out on a very low level. A more

extensive skill set would allow for a more comfortable assembly development

experience.

Concerning the flexibility in general, the current solution shows where the

biggest open issues are to find. These are most of all gripping issues. In the current

solution three pneumatic grippers with fingers with positive-locking grip each

dedicated to a particular part are installed. This ensures safe grip and precise

Athens Journal of Technology & Engineering March 2022

23

positioning for all projected parts, but fails to handle parts, which deviate from

what has been projected by the time of finger design. As alternatives to positive-

locking grip regripping (Tajima et al. 2020), visual servoing (Watson et al. 2020),

haptic feedback (Chin et al. 2019) and novel gripper configurations (Angelini et al

2020) may be considered. How these can be combined to offer efficient new skills

needs to be investigated.

Conclusions

With the proposed software, a robot can perform an assembly without the

need for being programmed. In the case of the gripper and parts considered here, a

collaborative robot could perform the assembly without fences, however a non-

collaborative robot behind fences would be able to perform the assembly faster.

The assembly development is carried out by the product designer and not by the

robot or its controller. As such the operator still has full control over the assembly

process without the need to be trained in robot programming. For a comprehensive

control of the robot’s movements, alternate assemblies have been used to specify

intermediate positions. These proved to be a viable way to avoid collisions and

reach the right positions before inserting axes, screws, and other parts, which have

to be inserted from a defined angle.

Furthermore, during assembly development no further software or tools are

used than the CAD software and the program presented here. This is a first step in

making the robots blend in better in existing work processes. With a more versatile

set of skill primitives, other types of input sources might be considered. Especially

documents in human readable format could boost acceptance of robots SMEs.

The flexibility of the solution is limited by the positive locking grip, which

was adopted to reach the precision necessary for the peg-in-hole and gearwheel-

aligning tasks. Hence, to improve the method, the research focus on that subject

should be intensified.

References

Angelini F, Petrocelli C, Catalano MG, Garabini M, Grioli G, Bicchi A (2020)

SoftHandler: an integrated soft robotic system for handling heterogeneous objects.

IEEE Robotics & Automation Magazine 27(3): 55–72.

Chin L, Yuen MC, Lipton J, Trueba LH, Kramer-Bottiglio R, Rus D (2019) A simple

electric soft robotic gripper with high-deformation haptic feedback. In 2019

International Conference on Robotics and Automation (ICRA), 2765–2771.

Cserteg T, Erdős G, Horváth G (2018) Assisted assembly process by gesture controlled

robots. In Procedia CIRP, 51–56.

F&P Robotics (2018a) Git repository for myP additions to ROS. Retrieved from: https://

github.com/fp-robotics/myp_ros. [Accessed 18 February 2021]

F&P Robotics (2018b) myP Script Functions Manual Version 1.3.2. Glattbrugg, Switzerland.

Linnerud ÅS, Sandøy R, Wetterwald LE (2019) CAD-based system for programming of

robotic assembly processes with human-in-the-loop. In 2019 IEEE 28th International

Symposium on Industrial Electronics (ISIE), 2303–2308.

Vol. 9, No. 1 Baier & Zovi: Flexible Robot Programming using Solid Edge’s…

24

Markis A, Montenegro H, Neuhold M, Oberweger A, Schlosser C, Schwald C, et al.

(2016) Sicherheit in der Mensch-Roboter- Kollaboration. (Safety in human-robot

collaboration). Wien.

Michniewicz J, Reinhart G, Boschert S (2016) CAD-based automated assembly planning

for variable products in modular production systems. In Procedia CIRP, 44, 44–49.

Mišeikis J, Caroni P, Duchamp P, Gasser A, Marko R, Mišeikiene N, et al. (2020) Lio-A

personal robot assistant for human-robot interaction and care applications. IEEE

Robotics and Automation Letters 5(4): 5339–5346.

Perzylo A, Nikhil S, Profanter S, Kessler I, Rickert M, Knoll A (2016) Intuitive instruction

of industrial robots: semantic process descriptions for small lot production. In 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2293–

2300.

Perzylo A, Rickert M, Kahl B, Somani N, Lehmann C, Kuss A, et al. (2019) SMErobotics:

Smart robots for flexible manufacturing. In IEEE Robotics & Automation Magazine

26(1): 78–90.

Schmidbauer C, Komenda T, Schlund S (2020) Teaching cobots in learning factories -

User and usability-driven implications. Procedia Manufacturing 45(Apr): 398–404.

Siemens Product Lifecycle Management Software Inc. (2011) Alternate assemblies.

Retrieved from: http://support.industrysoftware.automation. siemens.com/training/se

/en/ST4/pdf/spse01685-s-1040_en.pdf. [Accessed 19 February 2020]

Tajima S, Wakamatsu S, Abe T, Tennomi M, Morita K, Ubata H, et al. (2020) Robust bin-

picking system using tactile sensor. Advanced Robotics 34(7–8): 439–453.

Thomas U, Finkemeyer B, Kroger T, Wahl FM (2003) Error-tolerant execution of

complex robot tasks based on skill primitives. In Proceedings - IEEE International

Conference on Robotics and Automation 3, 3069–3075.

Thomaz AL, Breazeal C (2008) Teachable robots: understanding human teaching behavior

to build more effective robot learners. Artificial Intelligence 172(6–7): 716–737.

Transeth AA, Stepanov A, Linnerud ÅS, Ening K, Gjerstad T (2020) Competitive high

variance, low volume manufacturing with robot manipulators. In 2020 3rd

International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS),

1–7.

Tsarouchi P, Athanasatos A, Makris S, Chatzigeorgiou X, Chryssolouris G (2016) High

level robot programming using body and hand gestures. Procedia CIRP 55(Dec): 1–

5.

von Drigalski F, Schlette C, Rudorfer M, Correll N, Triyonoputro JC, Wan W, et al.

(2020) Robots assembling machines: learning from the World Robot Summit 2018

Assembly Challenge. Advanced Robotics 34(7–8): 408–421.

Wang L, Gao R, Vánca J, Krüger J, Wang X, Makris S, et al. (2019a) Symbiotic human-

robot collaborative assembly. CIRP Annals 68(2): 701–726.

Wang T, Li D, Liu X, Zhou X (2019b) Gesture control for human-robot interaction based

on three-way decision model. In 2019 IEEE 16th International Conference on

Networking, Sensing and Control (ICNSC), 311–316.

Warfield B (2020, September 22) CNCCookbook 2016 CAD survey results, part 1: market

share - CNCCookbook: be a better CNC'er. CNC Cookbook.

Watson J, Miller A, Correll N (2020) Autonomous industrial assembly using force, torque,

and RGB-D sensing. Advanced Robotics 34(7–8): 546–559.

