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In future conditionally automated driving, drivers may be asked to take over control of the

car while it is driving autonomously. Performing a non-driving-related task could degrade

their takeover performance, which could be detected by continuous assessment of

drivers’ mental load. In this regard, three physiological signals from 80 subjects were

collected during 1 h of conditionally automated driving in a simulator. Participants were

asked to perform a non-driving cognitive task (N-back) for 90 s, 15 times during driving.

The modality and difficulty of the task were experimentally manipulated. The experiment

yielded a dataset of drivers’ physiological indicators during the task sequences, which

was used to predict drivers’ workload. This was done by classifying task difficulty (three

classes) and regressing participants’ reported level of subjective workload after each task

(on a 0–20 scale). Classification of task modality was also studied. For each task, the

effect of sensor fusion and task performance were studied. The implemented pipeline

consisted of a repeated cross validation approach with grid search applied to three

machine learning algorithms. The results showed that three different levels of mental load

could be classified with a f1-score of 0.713 using the skin conductance and respiration

signals as inputs of a random forest classifier. The best regression model predicted the

subjective level of workload with a mean absolute error of 3.195 using the three signals.

The accuracy of the model increased with participants’ task performance. However,

classification of task modality (visual or auditory) was not successful. Some physiological

indicators such as estimates of respiratory sinus arrhythmia, respiratory amplitude, and

temporal indices of heart rate variability were found to be relevant measures of mental

workload. Their use should be preferred for ongoing assessment of driver workload in

automated driving.

Keywords: automated driving, classification, driver, indicators, physiology, regression, workload, non-driving

related task
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1. INTRODUCTION

A recent study of critical reasons for traffic crashes found that
the driver was at fault in 94% of the cases (Singh, 2015). It
includes recognition errors (including driver inattention and
distractions), decision errors (driving too fast, misjudging the
gap), performance errors, and non-performance errors (such
as sleeping). To address this issue, car manufacturers are
automating several functions of the driving task to assist the
driver. In 2021, the last cars sold on the market are defined
as partially automated vehicles and classified as Level 2 in the
Society of Automotive Engineers (SAE) taxonomy (Society of
Automotive Engineers, 2018). These vehicles automate certain
functions such as maintaining speed, keeping distance from the
car in front, or keeping the vehicle in the lane laterally. However,
automotive manufacturers are already preparing for the next
step by developing conditionally automated cars (Level 3), but
also highly and fully automated cars (Levels 4 and 5) (Society
of Automotive Engineers, 2018). At higher levels of automation,
the car will be responsible for performing the dynamic driving
task and monitoring the driving environment. It frees drivers
from the primary task of driving and allows them to engage
in a non-driving related task (NDRT). However, performing a
NDRT may distract them and increase their mental workload
(MWL; Mehler et al., 2009). Previous research has shown that
an underloaded or overloaded state impacts the performance of
a user interacting with automation (Wickens et al., 2014). The
increase in automation in cars should therefore prompt solutions
to intelligently and non-intrusively measure the mental load of
drivers. The use of machine learning techniques coupled with
the increasing amount of available data allows the development
of intelligent models that can accurately predict the level of
workload (Mehler et al., 2009). Depending on the level of driver
workload, the driver-vehicle interaction must be continuously
adapted to ensure safe use of the automation and improve the
user experience.

2. RELATED WORK

2.1. Definition of Mental Workload
The tasks performed by drivers will change as cars increase
in automation. Some secondary tasks may lead to an increase
in MWL, which needs to be evaluated in this context. MWL
is defined as a balance between the exigencies of a situation
and the resources available to the operator to deal with that
situation. (Wickens, 2008). Multiple dimensions play a role in
this complex construct such as operator characteristics (skills
and attentional resources), task characteristics difficulty and
modality) and environmental context (Young et al., 2015).

In the driving context, MWL is of great importance because
a suboptimal level of MWL (mental underload or overload) can
lead the driver to errors in attention, which can result in accidents
(Brookhuis and De Waard, 2001). Three categories of measures
are effective for assessing MWL: task performance measures
(primary and secondary task), subjective questionnaire-based
assessments and psychophysiological measures (Paxion et al.,
2014; Gawron, 2019).

The primary-secondary task paradigm has proven to be a
good indicator of MWL in experimental research, specifically
in the context of driving (Engstrm et al., 2005; Mehler et al.,
2009). In general, the assessment of task performance is done on
the primary task (dynamic driving task) and the secondary task
(NDRT). An acceptable level of performance can be maintained
in the primary task under high workload conditions. It is typically
measured by longitudinal (speed and distance from the car in
front) and lateral (direction and position in the lane) parameters
computed from driving data collected in simulators or road
experiments (Engstrm et al., 2005; Mehler et al., 2009). The
secondary task performance is highly correlated with MWL since
it is associated with a spare capacity not used for completion
of the primary task (Young et al., 2015). Thus, secondary task
performance (e.g., NDRT) is an indicator of MWL in the context
of driving (Engstrm et al., 2005; Mehler et al., 2009). However,
measuring MWL by task performance presents some downsides,
including control of the task scenarios, monitoring of task
performance and artificial configuration of the test environment
(Fisk et al., 1986).

Operators’ can also report the perceived MWL with subjective
ratings. There are several standardized questionnaires for
subjectively measuring MWL such as the NASA Task Load Index
(NASA-TLX; Hart and Staveland, 1988), the SubjectiveWorkload
Assessment Technique (SWAT; Reid and Nygren, 1988) or the
Workload Profile (WP; Tsang and Velazquez, 1996). Two other
questionnaires can evaluate, respectively, the mental effort and
the mental workload generated by the dynamic driving task
: the Rating Scale Mental Effort (RSME; Zijlstra and Doorn,
1985) and the Driving Activity Load Index (DALI; Pauzié, 2008).
These questionnaires are easy to apply and implement (Rubio
et al., 2004) but present some methodological drawbacks. The
subjective nature of the measure, as well as the recall bias due
to post-task assessment can lead to a discrepancy between the
subjective report and the actual level of MWL (Bulmer et al.,
2004; Paxion et al., 2014). In addition, a subjective post-task
assessment of the MWL does not capture the MWL variation
during the task, which could be of great interest (Paxion et al.,
2014).

Another approach to measure MWL is the use of
psychophysiological indicators. It includes indicators of the
central and autonomic nervous system s, such as measures
of cardiac activity (heart rate and heart rate variability),
electrodermal activity (tonic and phasic skin conductivity), and
brain activity through electroencephalography (EEG). Previous
research showed that they are reliable indicators of MWL
(DeWaard, 1997; Dornhege et al., 2007; Haapalainen et al., 2010;
Ferreira et al., 2014; Hogervorst et al., 2014; Paxion et al., 2014).
Recently, near-infrared spectroscopy (NIRS) has shown great
potential as source of data for evaluating driver’s MWL (Le et al.,
2018). However, EEG and NIRS might not be used in real-world
driving conditions, as many drivers may be reluctant to wear a
headset while driving. There are some disadvantages to assessing
MWL using physiological indicators, such as tedious and delicate
placement of electrodes on the user’s body, noise in the signal and
the spurious influence of physical activity (Huigen et al., 2002).
Recent advances in smart wearable devices and clothing (Baek
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et al., 2009) may help democratize the use of physiological signals
to measure MWL in real-world driving conditions. Physiological
signals could thus be collected in a continuous, non-intrusive
manner to provide a robust assessment of driver’s MWL.

2.2. Assessment of MWL Through
Physiological Indicators
2.2.1. Relevant Physiological Indicators of MWL
Similarly, as indicators of Electrodermal activity (EDA)
(Boucsein, 2012), indices of cardiac activity computed from an
electrocardiogram (ECG), such as heart rate (HR) and heart
rate variability (HRV), are widely used to assess changes in the
autonomic nervous system. Previous research has shown that
EDA and HRV indicators are sensitive to increases in MWL
(Brookhuis et al., 2004; Engstrm et al., 2005; Collet et al., 2009;
Mehler et al., 2009, 2012; Brookhuis and de Waard, 2010).
Indicators can be temporal measures (SDNN, RMSSD..), or
frequency measures such as the ratio of power in the low and
high frequency bands of the HRV (Malik and Terrace, 1996).
Recent studies have shown that 10–60 s may be sufficient to
obtain reliable time-based measurements of HRV, whereas 20–90
s may be sufficient to capture changes in the autonomic nervous
system using frequency-based measures (Salahuddin et al., 2007;
Baek et al., 2015). Besides, the respiratory system can influence
both EDA and cardiac activity. The close coupling of ECG and
respiration (RESP) signals is no longer in question (Cacioppo
et al., 2007). This phenomenon is referred to as Respiratory
Sinus Arrhythmia (RSA) and describes how the respiratory
pattern modulates the heart rate (Hirsch and Bishop, 1981).
Several methods can be used to quantify this phenomenon, but
its assessment by the Porges-Bohrer method may be the most
appropriate measure of RSA according to Lewis et al. (2012).

2.2.2. Effect of Task Difficulty and Modality
Task difficulty has been shown to have an effect on mental
workload measured by physiological indicators. Whether in a
simulation environment or a real-world driving environment,
MWL has been shown to increase with task difficulty (Engstrm
et al., 2005; Mehler et al., 2009, 2012). Physiological indicators
that were found to be sensitive to increased workload were
mean skin conductance level (Engstrm et al., 2005; Mehler et al.,
2009, 2012), heart rate (Collet et al., 2009; Mehler et al., 2009),
some HRV indicators such as beat-to-beat intervals (Engstrm
et al., 2005) or frequency-based measures (Brookhuis et al.,
2004; Brookhuis and de Waard, 2010), and respiratory rate
(Mehler et al., 2009). An increase in MWL is accompanied by
an increase in heart rate, skin conductance, and respiratory rate
(Mehler et al., 2009, 2012). Among these previous studies, only
a non-significant effect was found for the task difficulty on skin
conductance during an auditory task in the work of Engstrm
et al. (2005). This could be due to low driver engagement in
the non-driving task, as suggested later by Mehler et al. (2012).
Therefore, task performance should be carefully recorded if
the workload is measured using physiological indicators. This
ensures that the participants are engaged in the non-driving-
related task, and possibly uses performance as a control variable
in statistical analysis. The effect of task modality on workload

was not analyzed. Yet, results of increased workload due to
task difficulty have been shown using different tasks involving
various modalities such as visual (Engstrm et al., 2005), auditory
(Engstrm et al., 2005; Collet et al., 2009; Mehler et al., 2009, 2012)
or verbal (Engstrm et al., 2005; Collet et al., 2009; Mehler et al.,
2009, 2012) tasks. In other words, regardless of task modality, the
same increase in workload is observed as task difficulty increases,
based on different physiological measures. This suggests that it
might be more difficult to predict task modality with this source
of data. This hypothesis will be tested in this work.

2.3. Workload Evaluation Using
Physiological Signals and Machine
Learning
One of the objectives of this paper is to predict drivers’ MWL
using physiological indicators and artificial intelligence (AI)
techniques. Previous studies that predicted subjects’ MWL using
physiological signals and machine learning were reviewed. Only
studies that used at least 2 signals among ECG, EDA, and RESP
as inputs of machine learning models were reviewed. The studies
considered are presented in Table 1. They are compared and
discussed on several parameters that can affect the accuracy of
a model trained with machine learning techniques, including
the environmental settings, the task used to induce MWL, the
time intervals used for calculating physiological indicators, the
number of classes, and the evaluation approach. Previous studies
were conducted in different environments, such as laboratories
(Haapalainen et al., 2010; Ferreira et al., 2014; Hogervorst et al.,
2014), driving simulators (Son et al., 2013; Darzi et al., 2018;
Meteier et al., 2021) or on roads (Solovey et al., 2014). For the
driving studies, participants were required to drive manually
and perform an additional NDRT to manipulate the level of
MWL, except for Meteier et al. (2021) study in which the car
drove in conditional automation, and participants were required
to count backward orally. Different cognitive tasks were used
to manipulate MWL, such as the Pursuit test, the Scattered X
(Ferreira et al., 2014), or the N-back task. The latter can involve
visual resources with letters displayed on a screen (Hogervorst
et al., 2014) or auditory and verbal when the letters are auditory
stimuli and participants have to respond verbally (Son et al., 2013;
Solovey et al., 2014). Also, the difficulty of the task has an impact
on the workload, suggesting that the task used to manipulate the
MWL experimentally should be chosen carefully (Mehler et al.,
2009, 2012).

The time window used to calculate features can also influence
the models’ performance in time-series classification tasks. The
length of time windows differed between studies, ranging from
30 to 240 s. Solovey et al. (2014) and Meteier et al. (2021)
investigated the influence of time window length on model
accuracy. For windows shorter than 30 s, Solovey et al. (2014)
showed that model accuracy increases with time window size. For
longer time windows (30 s–20 min), Meteier et al. (2021) showed
that model accuracy increases up to a size of 4 min but decreases
if it is longer.

As shown in Table 1, previous studies only classified the
user’s MWL at two levels. Model performance were evaluated
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TABLE 1 | State of the art of previous similar studies.

Reference Only physio Study Task Time

window

Classes Evaluation Perf. (%)

Haapalainen et al.

(2010)

Yes, with EEG In lab, on a computer
6 tasks, testing speed of closure,

flexibility of closure and perceptual speed

43 s (easy task),

106 s (hard task)
2 Within-subject 83.7

Son et al. (2013) Yes
Driving simulator :

Manual driving on a highway
Auditory N-Back task 30 s 2 Between-subject 82.9

Ferreira et al.

(2014)

Yes, with EEG In lab, on a computer
2 tasks: testing perceptual speed (Pursuit Test)

and visio-spatial capacities (Scattered X)
60 s 2 Within-subject 86.0

Hogervorst et al.

(2014)

Yes In lab, on a computer Visual N-Back task 120 s 2 Within-subject 75.0

Solovey et al.

(2014)

Yes
Manual driving on a highway Auditory stimuli verbal prompt N-back 30 s (sliding) 2

Within-subject 75.7

Yes Between-subject 90.0

Darzi et al. (2018) Yes
Moving-base driving simulator :

manual driving
Cell phone use 240 s 2 Between-subject 82.3

Meteier et al.

(2021)

Yes
Driving simulator :

Conditionally automated driving
Oral backwards counting 240 s 2 Between-subject 95.0

Perf. column is the best score achieved in the study, using mean accuracy as metric.

using the mean accuracy as a metric. Accuracy scores range
from 75 to 95%, either using between-subject or within-subject
evaluation. A three-level workload classification was done with
EEG signals (Plechawska-Wojcik et al., 2019), but not using only
physiological signals.

Complex and recent approaches of time series classification
can be used in order to classify continuously the user’s state
(Bagnall et al., 2016). The recent emergence of deep learning
offers new possibilities to build even more efficient models for
time series classification (Ismail Fawaz et al., 2019). The ResNet
model (He et al., 2016) showed to outperform other models
on different categories of datasets, but not on ECG datasets
(Ismail Fawaz et al., 2019). A fully convolutional network (FCN)
might be a best option for classification with physiological signals
(Wang et al., 2017; Ismail Fawaz et al., 2019). However, these
types of deep architectures require to have a large dataset to
achieve good accuracy. Other recent models such as XGBoost are
also efficient for predicting cognitive workload with physiological
signals (Momeni et al., 2019).

3. PRESENT STUDY

The present study aims to classify drivers’ MWL at three
different levels (low vs. medium vs. high) based on physiological
indicators. These different levels of MWL are induced by
NDRTs performed by the drivers during conditionally automated
driving. To obtain a more refined assessment of MWL, post-
task subjective reports are used to regress drivers’ MWL (on a
0–20 scale). Task modality is also classified at two levels (visual
vs. auditory task). For these classification and regression tasks,
the effect of sensor fusion and task performance are investigated,
because some drivers might disengage from the tasks (mental
fatigue or task too difficult) and thus result in lower physiological
activation (Mehler et al., 2012).

The main novelty of this work is to perform a finer evaluation
of drivers’ MWL than in previous studies, by doing three-class
classification and regression tasks only with physiological signals.
This work uses ECG, EDA, and RESP for assessing drivers’
workload as EEG or NIRS may be considered less suitable for
real-world condition. Also, the effect of drivers’ task performance
on models’ accuracy has not been done in previous research.
Finally, using a data-driven approach with an explainable AI
(xAI) technique to find the most relevant indicators of MWL
has not been done so far. To summarize, the following are the
contributions made in this manuscript:

• Statistical analysis of the effect of task difficulty, modality,
measurement time and interaction of them on three
physiological measures (one for each signal).

• Analysis of task performance and sensor fusion on the
performance of classification and regression models to predict
MWL.

• Use of an xAI approach to find the most relevant indicators of
MWL in the context of conditionally automated driving.

Drivers’ MWL prediction is done in the specific context of
automated driving, while most of previous studies focused on
assessing MWL in manual driving scenarios. Only one recent
study focused on the evaluation of MWL in conditionally
automated driving (Meteier et al., 2021), but authors used a
verbal task to induce MWL and suggested that it might have
induced a bias in the classification of the driver’s state. For this
reason, the manipulation of drivers’ MWL was done at three
different levels, with participants performing a succession of
short non-verbal tasks (90 s each). Previous research showed
that indicators of skin conductance and heart rate variability are
reliable measures of MWL (Engstrm et al., 2005; Collet et al.,
2009; Mehler et al., 2009, 2012), so we expect to see higher
performance when EDA and ECG signals are used to train
the models.
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4. MATERIALS AND METHODS

4.1. Experimental Method
4.1.1. Participants and Experimental Design
For this study, 80 participants were recruited. 67.5% consider
themselves as female (N = 54) and 32,5% as male (N = 26).
The sample of drivers was rather young (M = 23,9 years old,
SD = 8.2), ranging from 19 to 66 years old. They reported
holding their driving license for 5.42 years (SD = 8.08 years)
and driving 6312 kilometers per year on average (SD = 14
415 km). 76.3% of participants did not have an accident in
the last 3 years and 36% indicated that they have already used
an automated car. 25% of them reported that they drove in
a simulator before. Most of the participants were students at
the university. They were recruited by e-mail and advertising
flyers. The participants needed a driving license and adequate
knowledge of German, French, or Italian to participate in the
study. Thirty-eight were German native speakers, 18 were French
native speakers, 21 were Italian native speakers, and 2 had
another mother tongue. As compensation for participating in
the experiment, the participants received 2 experimental hours
counting for their study program. Before taking part in the study,
all participants were informed in detail about the automated
driving systems, the purpose of the study and the procedure. They
agreed to our consent form based on the ethics committee of the
university and the federal law on data protection. Participants
were randomly assigned to the experimental groups.

The study consisted of an experimental mixed design with
four independent variables. Two of were within-subject variables:
the task difficulty (low vs. medium vs. high cognitive task) and the
task modality (no task vs. auditory vs. visual task). To manipulate
these two factors, the N-back task was chosen (Kirchner, 1958).
It is a continuous performance task that has been widely used in
research as a tool to induce various levels ofMWL to participants,
through different modalities (either visual or auditory). “N” is
the factor that can be varied to make the task more or less
difficult. The participant has to press a button if the current letter
is the same as the one presented N-steps before, as shown in
Figure 1. In this study, the 1-back and 3-back tasks, respectively,
correspond to the condition of the medium and high cognitive
tasks. For the task modality, the sequence was either presented
visually on a screen or played through audio files. Bothmodalities
were done on the same tablet. Audio files were recorded before
the experiment and played in the participant’s native language.
Additionally, a control variable was used and common to both
variables. It is a condition in which participants did not perform
the N-back task. During these periods, they were only asked to
monitor the driving environment while the car was driving in
conditional automation. The order of the non-driving related
task sequences was randomized throughout the experiment but
controlled before the takeover situations by following a Latin
Square design (Kirk, 2013).

There were two other between-subject factors in the
experimental design: the information on automated cars
limitations before the experiment (information vs. no
information) and the presence of a mobile application giving
context-related information of the driving situation on the

FIGURE 1 | Illustration of the N-back task operation according to the difficulty

modality (1-back vs. 3-back).

FIGURE 2 | Top: The icons showing the state of the automation. Gray icon:

Autopilot OFF, Green icon: Autopilot ON, Red icon: Takeover Request (TOR).

Bottom: The display of the dashboard, showing the state of automation mode,

the speed and the number of engine’s revolutions per minute of the car.

tablet (application vs. no application). Also, participants had
to react to five different takeover situations. The effect of these
two between-subject factors and takeover situations are not
presented in this work, see the work of Meteier et al. (2020) for
more details.

4.1.2. Material and Instruments
The experiment was carried out in a fixed-base driving simulator.
It was a semi-enclosed cabin with low luminosity, with two car
seats, a steering wheel (Logitech G27), and the pedals (throttle
and brake). The orientation and position of the seats were
adjustable. The scenario was a 2-lane road passing through a
national park (Yosemite National Park, USA) without traffic. The
car used conditionally automated driving features. The driving
simulation was projected on a large screen (62 x 83 inch) using
a beamer (Epsilon EH-TW3200). Two speakers behind the seats
played sounds of the driving environment to immerse the driver
in the simulation. The drivers could steer the wheel (more than 26
degrees), brake, or press a button on the steering to turn off the
autopilot and regain full control of the vehicle. The dashboard
(speed, engine rotations per minute, and autopilot mode) was
run on a laptop and was displayed to the participant on a screen
behind the steering wheel (cf. Figure 2).

Besides, a data acquisition unit (Biopac MP36) recorded
the physiological signals of drivers at a sample rate of 1,000
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Hz. A digital low pass filter (cut-off frequency: 66.5Hz, Q-
factor: 0.5) removed the noise from the signals. The filters
had a respective gain of 2,000 and 1,000 gain for EDA and
RESP signals. Disposable Ag/AgCl pre-gelled electrodes (EL507
and EL503, Biopac) plugged on lead sets (SS57LA and SS2LB,
Biopac) collected the EDA and ECG signals. Three electrodes
were attached to record the ECG, two above both ankles and
one at the right wrist. Two electrodes for recording EDA were
attached to the non-dominant hand (one on the ring finger and
one on the little finger) to ensure easy use of the tablet and the
steering wheel during the experiment. The SS5LB respiratory
effort transducer (Biopac) was attached to the participants’
chest to collect the respiration signal. The Biopac Student
Lab 3.7.7 software recorded the signals on a computer with
a 17-inch display for a visual check of signals before starting
the experiment.

Participants performed the successive sequences of non-
driving-related tasks and answered midterm questionnaires on
a tablet (10). An Android mobile application was developed to
administer the N-back task and collect data on task performance.
The N-back task was constructed using the design from Jaeggi
et al. (2007). They used the letters “C,” “G,” “H,” “K,” “P,”
“Q,” “T,” and “W.” In this study, the letters “G” and “W”
were replaced by “N” and “F” due to the translations into
French, German and Italian letters, to ensure that all letters
were pronounced as differently as possible from the other
letters in all three languages. It was important for the correct
comprehension and recall of letters during sequences of auditory
n-back. Each sequence lasted 90 s and contained 28 letters,
with four letters considered as correct answers (targets) on
which the participant had to press a button located on the
middle of the screen. Each letter was displayed/played for 2.5
s, with an inter-stimulus of 500 ms. In the visual condition,
the letter was displayed in the middle of the screen, above
the red button, while in the auditory condition, the letter was
only announced orally through the audio file and no letter
was displayed.

4.1.3. Measures
Physiological signals (EDA, ECG, RESP) of participants were
recorded continuously during the experiment. Based on these
raw signals, physiological indicators could be calculated during
the baseline phase (rest) and during each N-back task sequence.
The tonic level of skin conductance, heart rate, and respiration
rate during task epochs (with baseline correction) were used
to evaluate the effect of task difficulty and modality on drivers’
MWL (Mehler et al., 2009).

After each N-back task sequence, the participants reported
their level of MWL through the mental demand item of
the NASA-TLX questionnaire (Hart and Staveland, 1988).
Participants rated it on a Likert scale from 0 (low) to 20 (high).
Also, the performance on the N-back task was recorded by the
mobile application. For each participant and each task sequence,
the number of correct, wrong, and missed answers as well as
the mean reaction time was saved. Each task sequence contained
28 items, but the participants could achieve a maximum of 27
correct answers for the 1-back task and 25 for the 3-back task.

To take that into account, an indicator of performance was
computed according to this formula:

TaskScore = (TotalAnswers−WrongAnswers−MissedTargets)

∗100/TotalAnswers (1)

withWrongAnswers the number of wrong answers,MissedTargets
the number of missed targets, and TotalAnswers the total number
of letters that could be a target in a sequence. This aggregated
score was computed to allow a fair comparison of performance
between 1- and 3-back tasks. Each measure was computed
15 times because every five types of tasks (medium/high and
visual/auditory + no task) was performed three times. Other
dependent variables such as trust in automation, situation
awareness, takeover quality, and user experience about the
mobile application and the driving simulator were measured but
the results are not presented in this work.

4.1.4. Procedure
Figure 3 shows the experimental procedure of the study. After
initial instructions about the experiment, participants answered
a questionnaire containing socio-demographic questions.
Electrodes and respiration belt were then attached on the
participant’s body.

The experiment consisted of three main periods, which took
place in the same environment: baseline, training and main
driving session. During the baseline (5 min), participants were
only asked to monitor the environment of the car while it was
driving in conditional automation for 5 min. No takeover could
be requested by the car during this period. Indicators computed
during this period corresponded to the physiological baseline of
each participant.

During the training period, (5 min) participants had to
familiarize themselves with the driving functions (steering
wheel and pedals) and the takeover process. The experimenter
reminded that the car was a conditionally automated vehicle and
explained the meaning of icons on the dashboard (cf. Figure 3).
When a takeover was requested, the car displayed a red icon
on the dashboard and played an audio chime in the speakers.
Participants also received instructions on different ways for
taking over control. In this practice session, three false alarms
(e.g., no stimuli on the road) were triggered. The experimenter
made sure that participants understood the takeover process and
then they could drive manually until the end of the 5 min. The
classification and regression tasks did not consider data from that
training phase.

The main driving session lasted about an hour. The
participants were given a tablet. The mobile application led them
through the whole driving session and presented sequentially
the instructions, the N-back tasks, and the questionnaires.
Participants were asked to focus on completing the N-back task
while the car was driving. No specific instruction regarding visual
attention was provided for the auditory task. Participants were
instructed to react accordingly to takeover requests and drive the
car manually until the critical situation was handled. They were
instructed to activate the automation again when they estimated
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FIGURE 3 | Global experimental procedure of the study.

FIGURE 4 | Top: The experimental procedure during the whole driving session. Captions below images correspond to the cause of takeover request sent by the car in

each block. Bottom: The experimental procedure in one block of the main driving session. TOR, Take-Over Request; SART, Situation Awareness Rating Technique.

The TOR did not appear in the same position in each block.

that the situation was safe after a takeover situation. Figure 4
shows an overview of the procedure during the main session. It
consisted of five blocks, each composed of a takeover situation.
During each block, the participant had to perform three N-
back task sequences. The same Figure 4 shows the procedure
in one block. Each N-back task sequence was followed by a
questionnaire and 60 s of rest. After the NDRT sequence in
which the takeover occurred, participants had to answer the
questionnaire on the tablet. At the end of the session, participants
were asked to stop the car and leave the simulator to fill in
the last part of the questionnaire. Electrodes were removed and
participants were thanked and discharged.

4.1.5. Statistical Analysis
To check for the success of MWL manipulation, repeated
measures analyses of variances (ANOVAs) were calculated using
mental demand ratings and task performance for each task
sequence. For both dependant variables, instructions before
driving and mobile application while driving were included as
between-subject factors, while task difficulty, task modality, and
measurement time (2 measures) were included as within-subject
factors in the statistical analysis. For the task performance, two
levels were used for the task difficulty as a between-subject
factor (1- vs. 3-back). For the mental demand and physiological
indicators (corrected with baseline), three levels were used for
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FIGURE 5 | Procedure employed for the classification and regression tasks. RF, Random Forest; NN, Neural Network; KNN, k-Nearest Neighbors.

the task difficulty as a between-subject factor (no task vs. 1-
vs. 3-back). The Bonferroni method was used for adjusting
the significance level (p < 0.05) in pairwise comparisons. The
analyses were done on IBM SPSS Statistics 25.

4.2. Classification Method
This section describes the methodology used to predict the
task difficulty (no task vs. low cognitive task vs. high cognitive
task) and the task modality (visual cognitive task vs. auditory
cognitive task), based on physiological indicators. In that regard,
classification and regression tasks were both performed using
machine learning techniques. As mentioned before, the effect of
sensor fusion and task performance on the model’s performance
was also explored. The tasks performed in this study are
summarized below:

• Task 1: Classification of task difficulty: effect of task
performance

• Task 2: Classification of task difficulty: effect of sensor fusion
• Task 3: Regression of task difficulty: effect of task performance
• Task 4: Regression of task difficulty: effect of sensor fusion
• Task 5: Classification of task modality: effect of task

performance
• Task 6: Classification of task modality: effect of sensor fusion.

For each task, the procedure employed is shown in Figure 5,
which is similar to the one employed by Meteier et al. (2021).
The following subsections explain in more detail each step
of that procedure. For the classification, the model had to
predict the conditions manipulated experimentally, while for the
regression, the model had to predict the level of MWL on a
scale between 0 and 20 (using subjective ratings as ground truth).
An additional goal is to find out what are the most important
features in the classification and regression processes, using an
xAI technique. This might help researchers to select the most
relevant physiological indicators to evaluate MWL.

4.2.1. Data Preprocessing
The process of raw physiological signals collected during
the experiment was automated using the Neurokit library
(Makowski et al., 2021) in a pipeline coded in Python. Raw
signals from the baseline and each N-back task sequence

were processed separately. Physiological data corresponding to
takeover situations was used to provide the model with more
training samples and potentially increase the performance. EDA,
ECG, and RESP signals were all filtered with either low-pass
(EDA) or band-pass (ECG and RESP) filters with adequate cut-
off frequencies. The EDA signal was downsampled to 50 Hz and
processed using a recent convex optimization method (Greco
et al., 2016). Heartbeats were extracted from the ECG signal
using a QRS-detector algorithm (Hamilton, 2002). Additional
RSA features were calculated from the RESP and ECG processed
signals, using the peak-to-trough (P2T) and the Porges-Bohrer
methods (Lewis et al., 2012).

4.2.2. Feature Engineering and Dataset Preparation
At the end of the processing step, a large range of physiological
features described in Table 2 were computed with Neurokit
(Makowski et al., 2021). For each indicator, two features
were created:

• the value of the indicator while performing the N-back task
(for instance, the heart rate during a task sequence)

• the difference between the value while performing the N-back
task and the value during baseline (for instance, heart rate
during N-back subtracted by heart rate during baseline).

The purpose of this process was to remove the physiological
individual differences between drivers. Overall, 162 features from
81 indicators (10 from EDA, 48 from ECG, 16 from RESP, 7 from
RSA) were calculated, for the all N-back task sequences. The size
of the dataset was 162 features * 15 sequences * 80 participants=
162 x 1,400.

To test the sensor fusion, the classification with features
computed from each signal alone (ECG, EDA, RESP), each
possible pair of signals (EDA + ECG, EDA + RESP, ECG + RESP)
and all signals combined (EDA + ECG + RESP). To investigate
the effect of task performance, features from the three signals
were used (EDA + ECG + RESP) and a varying threshold (from
70 to 100 by steps of 5) was applied to each task epoch. A
sample (e.g., row in the dataset) was considered for training the
model if the performance corresponding to that task sequence
was at least higher than the chosen threshold (e.g., TaskScore in
Equation 1, section 4.1.3). The number of samples considered
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TABLE 2 | Indicators calculated from raw physiological signals collected from participants.

Signal Indicator Domain Description

EDA

Mean raw EDA level The mean value of filtered EDA signal

Min raw EDA value The minimum value of filtered EDA signal

Max raw EDA value The maximum value of filtered EDA signal

Std raw EDA value The standard deviation of filtered EDA signal

Mean tonic EDA level The mean value of tonic EDA signal

Max tonic EDA value The minimum value of tonic EDA signal

Min tonic EDA value The maximum value of tonic EDA signal

Std tonic EDA value The standard deviation of tonic EDA signal

Mean amplitude of

NS-SCRs

The mean amplitude of NS-SCRs (computed from phasic EDA signal)

Frequency of NS-SCRs The number of NS-SCRs per minute (computed from phasic EDA signal)

ECG/RESP

Mean Rate

Time domain

The mean number of cardiac cycles per minute

Mean The mean time of IBIs/BBs

Median The median of the absolute values of the successive differences between adjacent IBIs/BBs

MAD The mean absolute deviation of IBIs/BBs

SD The standard deviation of IBIs/BBs

SDSD The standard deviation of the successive differences between adjacent IBIs/BBs

CV The Coefficient of Variation, i.e., the ratio of SD divided by Mean

mCV Median-based Coefficient of Variation, i.e., the ratio of MAD divided by Median

RMSSD The square root of the mean of the sum of successive differences between adjacent IBIs/BBs

CVSD The coefficient of variation of successive differences; the RMSSD divided by Mean IBI

HF Frequency domain The spectral power density pertaining to high frequency band (.15 to .4 Hz)

SD1

Non-linear domain

Measure of the IBIs/BBs spread on the Poincar plot perpendicular to the line of identity

(short-term fluctuations)

SD2 Measure of the IBIs/BBs spread on the Poincar plot along the line of identity (long-term

fluctuations)

SD2/SD1 Ratio between long and short term fluctuations of IBIs (SD2 divided by SD1)

ApEn Approximate entropy

ECG

pNN50

Time domain

The proportion of successive IBIs greater than 50 ms, out of the total number of IBIs

pNN20 The proportion of successive IBIs greater than 20 ms, out of the total number of IBIs

TINN The baseline width of IBIs distribution obtained by triangular interpolation

HTI The HRV triangular index, measuring the total number of IBIs divided by the height of the IBIs

histogram

IQR The interquartile range (IQR) of the RR intervals

VHF

Frequency domain

Variability, or signal power, in very high frequency (0.4–0.5 Hz)

HFn The normalized high frequency, obtained by dividing the low frequency power by the total

power

LnHF The log transformed HF

CSI

Non-linear domain

The Cardiac Sympathetic Index

CVI The Cardiac Vagal Index

CSI_modified The modified CSI obtained by dividing the square of the longitudinal variability by its transverse

variability.

S Area of ellipse described by SD1 and SD2

SampEn Sample entropy

PIP Percentage of inflection points of the RR intervals series.

IALS Inverse of the average length of the acceleration/deceleration segments

PSS Percentage of short segments

PAS Percentage of IBIs in alternation segments

GI Guzik’s Index

SI Slope Index

AI Area Index

PI Porta’s Index

(Continued)
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TABLE 2 | Continued

Signal Indicator Domain Description

C1d/C1a Indices of respectively short-term HRV deceleration/acceleration

SD1d/SD1a Short-term variance of contributions of decelerations and accelerations

C2d/C2a Indices of respectively long-term HRV deceleration/acceleration

SD2d/SD2a Long-term variance of contributions of decelerations and accelerations

Cd/Ca Total contributions of heart rate decelerations and accelerations to HRV

SDNNd/SDNNa Total variance of contributions of heart rate decelerations and accelerations to HRV

RESP Mean amplitude Time domain The mean respiratory amplitude.

RSA

Mean (P2T) Mean of RSA estimates (peak-to-trough method)

Mean Log (P2T) The logarithm of the mean of RSA estimates (peak-to-trough method)

SD (P2T) The standard deviation of all RSA estimates (peak-to-trough method)

Mean (Gates) Mean of RSA estimates (Gates method)

Mean Log (Gates) The logarithm of the mean of RSA estimates (Gates method)

SD (Gates) The standard deviation of all RSA estimates (Gates method)

PorgesBohrer The Porges-Bohrer estimate of RSA, optimal when the signal to noise ratio is low, in ln(ms^2)

Those computed from both ECG and respiration (RESP) signals are grouped in the same section (ECG/RESP). IBIs, interbeat intervals; BBs, breath-to-breath intervals.

TABLE 3 | Number of samples in each class used for training the algorithms at each threshold value of task performance.

Threshold for task performance

70 75 80 85 90 95 100

Task difficulty (Task 1 and 2) 453 446 442 434 393 341 254

Task modality (Task 5 and 6) 442 429 416 348 278 208 137

for training the models was hence different for each threshold
value. Also, there was not an equal number of samples in each
class for classifying task difficulty, because the No Task condition
had twice fewer samples than the other classes. To address this
imbalanced dataset issue, the minority classes were oversampled
using the Synthetic Minority Oversampling Technique (Chawla
et al., 2002). To summarize, the number of samples used for each
threshold value can be found in Table 3.

4.2.3. Feature Normalization and Selection
A feature normalization process has been applied to feature
scale sensitive models, using the RobustScaler function of the
scikit learn machine-learning framework (Pedregosa et al., 2011).
For each feature, the median was subtracted to all samples,
which were scaled according to the interquartile range (between
the first quartile and the third quartile of data distribution
for each feature). For all models, a univariate feature selection
process reduced the dimension of the feature space and so
the computation time. The main goal of this process was also
to optimize models’ performance by selecting only the most
relevant features. The 20 best features were selected based on
univariate statistical tests, using the SelectKBest method of the
scikit learn framework.

4.2.4. Selected Algorithms
The selected features are used as input of machine learning
algorithms for training these models and then validating their
performance. Three algorithms were selected because they can
be used for both classification and regression tasks. They were

implemented in Python using the scikit learn machine learning
framework (Pedregosa et al., 2011). The selected algorithms
were Random Forest (RF), Neural Network (NN), k-Nearest
Neighbors (KNN).

4.2.5. Model Evaluation and Explanation
For each task performance threshold or combination of
physiological signals, a repeated k-fold procedure was employed.
The training and evaluation procedure was run 5 times, to report
accurate results over several iterations. For each iteration, the
dataset was randomly split into a training set (80%) and a test
set (20%). To optimize the performance of models, the grid
search approach was employed during the training phase. The
goal was to find the set of hyperparameters that maximizes the
performance of each algorithm (Claesen and De Moor, 2015). A
k-fold cross-validation approach was selected to train the models.
The training set was split into k = 4 folds, each fold acting as
the validation set once. Each set of hyperparameters shown in
Table 4 was tested for each split of the dataset. The best model
(e.g., the one that gave the best score over the 4 folds) was
then evaluated on the test set. For the classification tasks, the
weighted f1-score was used as an evaluation metric, since Task
1 and Task 2 are multi-label classification tasks (3 classes). For
the regression tasks (Task 3 and 4), the mean absolute error
(MAE) was computed to evaluate the performance of models. To
compare the models’ performance to a reference, the following
baseline metrics were calculated:

• Random : a random value between 0 and 20
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• MeanScale : mean value of NASA-TLX scale (10)
• MeanParticipants : the mean of mental demand score reported

by participants for NASA-TLX (M = 8.625)
• MeanGroup : Mean of participants in each condition (no task

vs. 1- vs. 3-back); the mean of mental demand score reported
by participants in each condition (Mnotask = 3.247, M1−back =

5.852, M3−back = 14.099).

Results are reported in graphs and tables, which are the best
mean weighted f1-score or MAE achieved by each algorithm
on the test set over the 5 iterations. The effect of sensor fusion
was tested with a threshold value of 100, while the effect of
task performance was tested using the three signals (EDA +

ECG + RESP). To find the most relevant indicators of MWL,
the most important features (e.g., physiological indicators) in
the classification/regression process had to be extracted using
the SHAP (SHapley Additive exPlanations) library in Python
(Lundberg and Lee, 2017). By assigning an importance value
to each feature for a particular prediction, it helps visualize the
values of the most important features depending on the predicted
class. After the training and evaluation procedure for classifying
task difficulty, the best model was saved and used for generating
SHAP values. The 10 most significant features were extracted, in
descending order (ordered by absolute mean of SHAP value).

5. RESULTS

5.1. Statistical Validation of MWL
Inducement
5.1.1. Performance on Task
The correct implication of participants in the non-driving related
task was assessed using the aggregated score of task performance.
Data analysis revealed only a significant effect of task difficulty
on task performance [F(1,76) = 228.83, p < 0.001, η2p = 0.75].
Participants performed better at doing the 1-back task (M =

97.6, SD = 0.5%) than the 3-back task (M = 86.2, SD = 0.6%).
Otherwise, there was no significant effect of task modality [F(1,76)
= 2.90, p > 0.05, η2p = 0.04] and measurement time [F(1,76) =

1.14, p > 0.05, η2p = 0.01]. The double and triple interaction
effects were not significant (Fs < 1).

5.1.2. Subjective Reports of MWL
The success of the MWL manipulation was evaluated using
subjective ratings of workload from the mental demand item
of thr NASA-TLX questionnaire. Figure 6 shows the ratings of
participants, depending on the modality and difficulty of the
task. Data analysis revealed a significant effect of task difficulty
on MWL of drivers [F(2,152) = 338.39, p < 0.001, η2p = 0.82].
Pairwise comparisons showed that participants found the 3-back
task significantly more demanding (M = 14.26, SE = 0.40) than
the 1-back task (p < 0.001; M = 5.18, SE = 0.38) or when
performing no secondary task (p < 0.001;M = 2.46, SE = 0.39).
Interestingly, the effect of measurement time (first vs. second
task epoch) was significant on subjective reports of MWL from
the drivers [F(1,76) = 4.57, p < 0.05, η2p = 0.06]. Participants
reported that the first epoch of each task was significantly more
demanding (M = 7.53, SE = 0.33) than the second one (M =

7.07, SE= 0.27). Otherwise, there was no significant effect of task
modality [F(1,76) = 2.56, p > 0.05, η2p = 0.03] alone. Also, there
was a significant interaction effect of task difficulty and modality
[F(2,152) = 4.15, p < 0.05, η2p = 0.05]. Pairwise comparisons
showed that participants reported that the visual 1-back task (M
= 5.52, SE = 0.40) was significantly more demanding (p < 0.01)
than the auditory 1-back task (M = 4.84, SE = 0.40), while the
visual 3-back task (M = 14.24, SE = 0.41) was not significantly
more demanding (p < 0.05) than the auditory 3-back task (M =

14.28, SE= 0.44). A significant interaction effect of task difficulty
and measurement time on MWL [F(2,152) = 3.70, p < 0.05,
η2p = 0.05] was also found. Pairwise comparisons showed that
participants reported higher mental demand the first time they
did not perform any secondary task (M = 3.05, SE = 0.54) than
the second time (p < 0.05; M = 1.86, SE = 0.38), while it was
not the case for 1-back and 3-back tasks (p > 0.05). Besides, the
interaction effect of measurement time and modality, as well as
the triple interaction effect were not significant (Fs < 1).

5.1.3. Physiological Indicators
Figure 7 shows the change in EDA tonic level, heart rate and
respiratory rate of participants, depending on the task difficulty
and modality. Data analysis revealed a significant effect of task
modality [F(1,73) = 7.23, p < 0.01, η2p = 0.09] and measurement

time [F(1,73) = 4.83, p < 0.05, η2p = 0.06] on EDA tonic level
of drivers, but no significant effect of task difficulty [F(2,146) =
0.869, p > 0.05, η2p = 0.01]. Drivers had a higher change in EDA
tonic level when performing the auditory tasks (M = 2.78, SE =

0.22) compared to the visual tasks (M = 2.65, SE = 0.20). They
also showed a higher change in the second epoch of each type
of task (M = 2.82, SE = 0.22) compared to the first one (M =

2.61, SE = 0.20). The double and triple interaction effects were
not significant (p < 0.05).

Data analysis revealed a significant effect of task difficulty
[F(2,146) = 8.82, p < 0.001, η2p = 0.11] and measurement time

[F(1,73) = 37.96, p < 0.001, η2p = 0.34] on heart rate of drivers,
but no significant effect of task modality (F < 1). Pairwise
comparisons showed that participants that the change in drivers’
heart rate was significantly higher when performing the 3-back
task (M = –0.35, SE = 0.51) than when performing the 1-
back task (p < 0.001; M = –1.67, SE = 0.50) or no task (e.g.,
monitoring the driving environment; p < 0.05;M = –1.46, SE =

0.51). They also had a higher heart rate in the first epoch of each
type of task (M = –0.34, SE = 0.42) compared to the second one
(M = –1.97, SE= 0.54). The double and triple interaction effects
were not significant (p < 0.05).

Identically to heart rate, results show a significant effect
of task difficulty [F(2,146) = 37.72, p < 0.001, η2p = 0.34]

and measurement time [F(1,73) = 8.22, p < 0.001, η2p = 0.10]
on respiratory rate of drivers, but no significant effect of
task modality [F(1,73) = 2.30, p > 0.05, η2p = 0.03]. Pairwise
comparisons showed that participants that the change in drivers’
respiratory rate was significantly different between one condition
to another (p < 0.001). Figure 7 show that the change was the
highest during the 3-back task, followed, respectively, by 1-back
task and no task conditions. Also, participants had a higher
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TABLE 4 | Hyperparameters values tested during the grid search procedure, with chosen ranges and step values for each parameter.

Classifier Parameter name Parameter definition Range

RF

n_estimators Number of trees in the forest. [10, 257, 505, 752, 1,000]

max_features Number of features to consider when looking for the best split. sqrt

max_depth

Maximum depth of the tree.

If None, then nodes are expanded until all leaves are pure

or until all leaves contain less than 2 samples.

[None, 10, 40, 70, 100]

KNN

n_neighbors Number of neighbors considered. [5, 10, 20, 30]

weight weight function used in prediction. [uniform, distance]

algorithm Algorithm used to compute the nearest neighbors. [auto, ball_tree, kd_tree, brute]

NN
alpha L2 penalty (regularization term) parameter. [1e-4, 1] by step of 10

hidden_layer_sizes The number of neurons in the hidden layer. [32, 64, 128, 256]

RBF, Radial Basis Function.

FIGURE 6 | Effect of task modality and difficulty on subjective ratings of mental demand reported after each sequence of N-back task.

respiratory rate in the first epoch of each type of task (M = 1.23,
SE = 0.56) compared to the second one (M = 0.32, SE = 0.48.
The double and triple interaction effects were not significant (p
< 0.05).

5.2. Classification of Drivers’ Workload
Through Task Difficulty
5.2.1. Task 1 : Effect of Task Performance on

Classification Accuracy
As mentioned earlier, task performance may decrease with
increasing task difficulty, either because of drivers’ skills or
because some drivers may be tempted to abandon the task
if it becomes too complicated. In this case, the physiological
activation induced by the task would be reduced. For this reason,
the influence of task performance on the model’s accuracy for
predicting task difficulty was investigated. Table 3 (Task difficulty
row) summarizes the number of samples contained in all classes
for training themodel at each threshold value. Figure 8 shows the
average f1-score (with standard deviation) on the test set over the

5 iterations, as a function of classifier and threshold value used for
the task performance. Features were considered if the participant
performed at least above the performance threshold during the
task.Table 5 summarizes the best score achieved by each classifier
for each threshold value. To better understand the predictions of
the best model (a Random Forest classifier with the three signals
and a task performance threshold of 100), a confusion matrix
is proposed in Figure 9. Figures 10, 11 show the features that
had the most impact on the model predictions for predicting the
MWL of drivers between the three levels. They show the SHAP
values calculated with the bestmodel for all samples of the test set.

5.2.2. Task 2 : Effect of Sensor Fusion on Accuracy
As shown in Figure 8, the task performance affects the
physiological activation of the drivers and thus the accuracy of
the models. Therefore, the effect of sensor fusion was analyzed.
The performance of the models in classifying drivers’ MWL
as a function of task difficulty (no task, 1-back task, 3-back
task) is presented in Figure 12. It shows the weighted average
f1-score (with standard deviation) of each classifier and each

Frontiers in Computer Science | www.frontiersin.org 12 January 2022 | Volume 3 | Article 775282

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Meteier et al. Assessing Workload in Conditionally Automated Driving

FIGURE 7 | EDA tonic level (top left), heart rate (top right) and respiratory rate (bottom) measured during the tasks and corrected with baseline, as a function of task

difficulty and modality. Error bars represent standard error.

FIGURE 8 | Classifiers’ performance for predicting task difficulty (no task vs. 1- vs. 3-back), as a function of classifier and task performance. The three signals (EDA +

ECG + RESP) were used to train the classifiers.

signal combination on the test set over the 5 iterations. Table 6
summarizes the best score obtained for each combination of
input signals.

5.3. Regression of Drivers’ Workload Using
Subjective Reports
5.3.1. Task 3 : Effect of Task Performance on

Regression Error
Regression tasks were performed to obtain a finer assessment of
MWL. The goal was to study whether a machine learning model
can assess the self-reported MWL with low error (on a scale
of 0–20). First, the effect of task performance on the regression
error was tested. Figure 13 shows the model error for the MWL

regression, depending on the algorithm and the threshold value
used for the task performance. It shows the average MAE on the
test set over the 5 iterations. As the MAE is used as a metric, this
means that the lower the score, the better the model (closer to
the ground truth). Table 7 summarizes the best scores obtained
by the algorithm for each threshold value, compared to various
baseline metrics (defined in section 4.2.5).

5.3.2. Task 4 : Effect of Sensor Fusion on Regression

Error
As with the classification tasks, the effect of sensor fusion
was also investigated to see if the model performs better with
a certain combination of signals. Figure 14 shows the model
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TABLE 5 | Best score achieved by the model to predict task difficulty at each

threshold of task performance.

Threshold for task performance Best classifier f1-score [Mean (SD)]

70 KNN 0.519 (0.018)

75 RF 0.548 (0.026)

80 NN 0.549 (0.033)

85 RF 0.602 (0.026)

90 NN 0.688 (0.015)

95 NN 0.705 (0.021)

100 RF 0.710 (0.022)

The value in bold is the best score achieved by the model among all possible

combinations.

FIGURE 9 | Confusion matrix of the best model’s predictions for classifying

task difficulty, using the three signals (EDA + ECG + RESP) and a task

performance threshold of 100. Labels : Low = No task; Medium = 1-back

task; High = 3-back task.

error for MWL regression, as a function of the algorithm and
the combination of signals used for training the algorithm. It
shows the average error on the test set over the 5 iterations
after the quadruple cross-validation training procedure. Table 8
summarizes the best score obtained by the corresponding
algorithm for each combination of signals, compared to various
baseline metrics (defined in section 4.2.5).

5.4. Classification of Task Modality: Visual
vs. Auditory
5.4.1. Task 5 : Effect of Task Performance on

Classification Accuracy
Table 3 (TaskModality rows) summarizes the number of samples
from each class that was considered for training the model at
each threshold value. Figure 15 shows the average performance
of the model over 5 iterations, as a function of the classifier
and the threshold value used for the task performance. Table 9

summarizes the best score obtained by the corresponding
classifier for each threshold value.

5.4.2. Task 6 : Effect of Sensor Fusion on

Classification Accuracy
The accuracy of the model for the classification of the task
modality (visual vs. auditory task) is presented in Figure 16.
It shows the averages (and standard deviations) of the
weighted f1 score obtained by the model for each classifier
and each signal combination on the test set over the 5
iterations. Table 10 summarizes the best result obtained for each
signal combination.

6. DISCUSSION

6.1. Manipulation of MWL : Task
Performance and Subjective Reports
Data analysis revealed only a significant effect of task difficulty
on task performance, which is consistent with previous studies
(Mehler et al., 2009, 2012). Participants were correctly implicated
in the 1-back task (task score of 97.6/100), and performed
worse at the 3-back task (task score of 86.2/100), which is
coherent with the increase in task difficulty. Results obtained
on task performance are in line with subjective reports of
mental demand after the tasks. because the task difficulty had
a significant effect on MWL. Figure 6 shows that the subjective
mental demand increases with task difficulty. This result also
means that according to participants, performing a 1-back task
is more demanding than only monitoring the environment of
the car.

Besides, there was a significant effect of measurement time
(first vs. second epochs) on subjective reports of MWL. The
significant interaction effect of measurement time and task
difficulty suggests that it was only the case while monitoring the
driving environment (no task condition). Participants reported
that the first sequence of No Task was more demanding than
the second one. They might have been used to monitor the
environment of the car and hence it required less mental
resources throughout the experiment. Also, they might have
compared with sequences of 1-back and 3-back tasks, so they
have probably lowered the score associated with mental demand
after the second sequence ofNo Task. Nevertheless, this may only
be a subjective feeling.

Task modality did not show any significant effect on task
performance, meaning that participants performed equally in
auditory and visual tasks. It also did not show an effect on
subjective reports of MWL. However, an interaction effect of task
modality and difficulty was found. Participants felt that at the 1-
back level, the visual task was significantly more demanding than
the auditory task. However, this result was not consistent at the
3-back level, so it is hard to conclude this significant effect.

Since the effect of task difficulty on measures of task
performance and workload was significant, we can say that the
manipulation of workload at three levels was successful. Based
on that, the no task, 1-back, and 3-back conditions can be
considered, respectively to states of a low, medium, and high
MWL in the remaining part of the manuscript.
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FIGURE 10 | Plot bar graph of the 10 most impacting features to predict drivers’ condition based on mean absolute SHAP values, arranged in descending order. The

three signals (EDA + ECG + RESP) and a threshold for task performance of 100 were used. The meaning/description of each feature can be found in Table 2. RRV,

Respiratory rate variability; HRV, Heart Rate Variability; RSA, Respiratory Sinus Arrhythmia.

6.2. Influence of MWL on the Physiological
State of Drivers
Data analysis revealed a significant effect of task difficulty on
the mean heart rate and respiration rate but not on EDA. Heart
rate was higher in periods of high MWL (3-back) compared
to medium and low MWL, while respiration rate was different
between each level of MWL. These results are in line with
previous findings (Collet et al., 2009; Mehler et al., 2009, 2012),
since heart and respiration rates increase with task demand
(e.g., increasing workload). However, there was no difference
in drivers’ heart rate while monitoring the environment and
performing the 1-back task. However, it is unexpected to find
no significant effect of task difficulty of EDA tonic level like
in previous findings (Engstrm et al., 2005; Mehler et al., 2009,
2012). This was most probably due to the low engagement of
some drivers in the NDRTs, as suggested by Mehler et al. (2012)
after the non-significant effect found for task difficulty on EDA
in the work of Engstrm et al. (2005). This unexpected result is
consistent with the claim made in the related work section that
it is important to control task performance when manipulating
the MWL. The non-significant difference of physiological values
between No Task and 1-back task is further discussed below. In
addition, the tonic level of EDA was also higher on the second
occurrence of each type of task, probably due to the repetition
of the cognitive tasks to be performed and the demands for car
pickup throughout the experiment. However, the opposite effect
was found for heart and respiratory rates, which were higher in
the first measurement. This could suggest a habituation effect
to the task, or that heart and respiratory rates do not increase
significantly with a long period of conditionally automated

driving (1 h) and repeated takeover requests (5) to manage. EDA
is also likely to be more sensitive to takeover requests (an audio
sound was played for each request) and the tonic level of EDA
may take longer to return to a “normal” state of physiological
activation (Boucsein, 2012).

6.3. Classification and Regression of
Drivers’ Workload
To further investigate the effect of sensor fusion and task
performance on the physiological state of automated vehicle
drivers, classification and regression tasks were performed using
machine learning techniques. For the 3-level classification task,
the results show that MWL can be predicted with 71% accuracy
(with f1-score as the measure) using the EDA and RESP signals
as input of a random forest classifier and a task performance
threshold of 100. The results are close to those obtained in
some previous studies that classified MWL at only two levels
(Hogervorst et al., 2014), which is encouraging for the future.
The results for the regression task are consistent with those
obtained for the classification. The regression showed that the
level of subjective mental load reported by the participants can
be predicted to plus or minus 3.195 error (on a scale of 0–
20), using the 3 input signals and a task performance threshold
of 100. All models tested outperformed the baseline measures,
which means that the implemented model can be considered
intelligent and more effective than a random prediction of
mental load.

Results for both types of tasks are consistent since they
show an effect of task performance on model performance.
Indeed, model performance increased with better performance
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FIGURE 11 | The 10 most important features to predict drivers’ mental workload at each level : low (top left), medium (top right) and high (bottom) mental workload.

The three signals (EDA + ECG + RESP) and a threshold for task performance of 100 were used. A high SHAP value (to the right on the x-axis) indicates that this

feature influenced positively the model to predict that class. The meaning/description of each feature can be found in Table 2. RRV, Respiratory rate variability; HRV,

Heart Rate Variability; RSA, Respiratory Sinus Arrhythmia.

on the cognitive tasks. This result suggests that participants’
physiological activation is higher when they are properly
involved in a cognitive task Mehler et al. (2012). This also
suggests that task performance must be controlled during
experimental manipulation of the workload in order to obtain
consistent results. The effect of sensor fusion was also similar
for classification and regression. Model performance increases
slightly with signal fusion, although the difference is small
between the models using 2 or 3 signals. From the results,
it is difficult to conclude that one signal is more effective in
predicting mental load than another. Still, the effect of sensor
fusion on models’ performance are in line with a previous
recent study also conducted in conditionally automated driving
Meteier et al. (2021). In both studies, EDA is the input
signal that performed the worst, which is also in line with
the results obtained in the statistical analysis. This unexpected
result can be explained by the fact that the participants were
holding a tablet to perform the task, which may have induced

some noise in the signal. In addition, the repetition of the
takeover requests may have attenuated the increase in skin
conductance due to the increase in cognitive load during
the tasks. The fusion of the three signals (EDA + ECG +
RESP) was always among the best results. This shows the
importance ofmulti-modality, allowing to combine features from
different signals and thus ensuring a robust evaluation of the
mental load.

In this work, the f1-score obtained by the models remains
relatively low. This can be explained by the difficulty of the model
to distinguish between phases of low cognitive task (1-back) and
phases of observation of the vehicle environment (no task). This
is illustrated by the confusion matrix in Figure 9. This suggests
that observing the vehicle environment or performing a mildly
cognitive task on a digital device could induce the same level of
cognitive load to the driver. Thus, this implies that drivers might
be allowed to engage in mildly cognitive NDRTs in conditional
automated driving, with respect to physiological activation.
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FIGURE 12 | Classifiers’ performance for predicting task difficulty (no task vs. 1- vs. 3-back), as a function of classifier and selected physiological signals. A threshold

for task performance of 100 was selected.

TABLE 6 | Best score achieved by the model to predict task difficulty for each

combination of physiological signals.

Selected signal Best classifier f1-score [Mean (SD)]

EDA RF 0.620 (0.027)

ECG RF 0.683 (0.020)

RESP RF 0.684 (0.028)

EDA + ECG RF 0.681 (0.018)

ECG + RESP RF 0.695 (0.023)

EDA + RESP RF 0.713 (0.015)

EDA + ECG + RESP RF 0.710 (0.022)

The value in bold is the best score achieved by the model among all possible

combinations.

6.4. Relevant Indicators of Workload
In order to go even further in the explainability of the machine
learning models, an explainable AI technique was applied to the
best classifier to find the most relevant indicators to measure
MWL. Figure 11 shows that among the 10 indicators with the
highest impact in predicting mental load, 4 are respiratory sinus
arrhythmia indicators, 3 are respiratory rate variability indicators
and 3 are cardiac variability indicators, which is consistent with
the literature (Boyce, 1974; Muth et al., 2012; Hidalgo-Muoz
et al., 2019). In particular, respiratory sinus arrhythmia (corrected
to baseline) according to the Gates method (Gates et al., 2015)
seems to be themost relevant indicator, especially for highmental
load states. According to the results obtained in this experiment,
RSA estimates decrease with increasing mental load (low values
toward the right of the x-axis in Figure 11), which is consistent
with previous studies (Boyce, 1974; Muth et al., 2012). This is
associated with a decrease in cardiac variability and an increase in
respiratory amplitude. Whereas, a previous study indicated that
respiratory amplitude appears to remain stable with increasing
MWL (Grassmann et al., 2016), the results obtained in this study

suggest that participants breathed more heavily in a high mental
load condition. This should be further investigated.

6.5. Classification of Task Modality
An additional goal of this work was to test whether the task
modality performed by the driver could be recognized using
physiological signals and machine learning. The results show
that the model was only able to predict the task modality with
an accuracy of 61.8% measured by the f1-score, using ECG
and RESP as input signals and a threshold of 100 for the task
performance. Most models tested with various combinations of
thresholds for task performance and input signals have often
achieved a performance of around 50%-accuracy. Hence, the
effect of task performance on model performance to predict
task modality is unclear. Only the threshold of 100 significantly
increased model performance. These results suggest that it is
difficult to predict the modality of the task performed by the
driver from physiological signals alone. With the results obtained
in our study, we suggest using other data sources such as cameras
to predict the modality of the task performed by drivers and
support them accordingly. Previous studies have shown that
certain task modalities can negatively impact the driver’s ability
to take control of automated driving (Wandtner et al., 2018;
Roche et al., 2019) and the driver’s awareness of his or her
environment (Meteier et al., 2020). Thus, knowing the type of
task the driver is performing would optimally convey contextual
information about the driving environment and thus increase
situational awareness.

6.6. Limitations and Further Research
This study was conducted with young drivers (average age 24)
in a simulator. This may have influenced the results obtained,
as the mental workload induced in real driving conditions or
with drivers of different ages is certainly not the same. Also, the
scenario did not include traffic, which could have influenced the
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FIGURE 13 | Models’ performance for predicting MWL on a 0–20 scale, as a function of algorithm and task performance. The three signals (EDA + ECG + RESP)

were used to train the classifiers.

TABLE 7 | Best score achieved by the model to predict task difficulty at each threshold of task performance.

Threshold Best model MAE [Mean (SD)] Random MeanScale MeanParticipants MeanGroup

70 KNN 5.123 (0.208) 7.177 5.903 5.831 6.425

75 KNN 5.123 (0.277) 7.197 5.671 5.556 6.339

80 KNN 4.919 (0.146) 7.485 5.892 5.726 6.369

85 KNN 4.7968 (0.177) 7.131 5.917 5.655 6.223

90 RF 4.522 (0.166) 7.700 6.157 5.613 5.748

95 RF 4.113 (0.235) 7.748 6.592 5.854 5.328

100 KNN 3.195 (0.384) 8.085 6.912 5.934 4.438

Scores obtained for baseline metrics are also reported. The value in bold is the best score achieved by the model among all possible combinations.

FIGURE 14 | Models’ performance for predicting MWL on a 0–20 scale, as a function of selected physiological signals and algorithm. A threshold for task

performance of 100 was selected.
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TABLE 8 | Best score achieved by the model to predict task modality for each combination of physiological signals.

Signal(s) Model MAE [Mean (SD)] Random MeanScale MeanParticipants MeanGroup

EDA RF 3.436 (0.154) 7.870 6.981 5.954 4.665

ECG RF 3.425 (0.236) 7.905 6.527 5.562 4.180

RESP RF 3.432 (0.329) 7.871 6.792 5.850 4.772

EDA + ECG KNN 3.348 (0.348) 7.642 6.954 5.923 4.561

ECG + RESP RF 3.206 (0.165) 7.634 6.696 5.691 4.267

EDA + RESP RF 3.249 (0.105) 8.035 6.886 5.832 4.266

EDA + ECG + RESP KNN 3.195 (0.384) 8.085 6.912 5.934 4.438

Scores obtained for baseline metrics are also reported. The value in bold is the best score achieved by the model among all possible combinations.

FIGURE 15 | Classification accuracy for predicting task modality (visual vs. auditory), as a function of classifier and task performance. The three signals (EDA + ECG +

RESP) were used to train the classifiers.

drivers’ MWL. Other factors were experimentally manipulated in
this experiment but were not presented in this work. These may
have influenced the participants’ physiological and mental state.
For example, the presence of a split-screen mobile application on
the tablet for half of the participants throughout the experiment
may have induced additional mental load (Meteier et al., 2020).
In addition, some participants commented on the repetitive and
monotonous nature of the non-driving-related task. They may
have lost motivation during the experiment, which was reflected
in the effect of task performance on the results. To mitigate this
problem, a question could have been administered to them to
subjectively measure their engagement in the NDRT.

For the non-significant effect found for task difficulty on EDA,
one solution would be to take task performance into account in
the statistical analysis. Another possibility would be not to take
into account the periods after each takeover request, as this could
have induced a large increase in EDA and thus biased the results
for the non-driving-related task periods.

Regarding the classification results, we are still far from an
accuracy of 100%. On the other hand, the results obtained for
the regression are encouraging since the model can be considered
as intelligent. However, the results obtained must be interpreted
with caution. Indeed, the label used as ground truth was a

TABLE 9 | Best score achieved by the model to predict task modality at each

threshold of task performance.

Threshold for task performance Best classifier f1-score [Mean (SD)]

70 RF 0.460 (0.050)

75 NN 0.469 (0.015)

80 RF 0.478 (0.021)

85 NN 0.431 (0.045)

90 KNN 0.391 (0.050)

95 RF 0.408 (0.023)

100 RF 0.584 (0.047)

The value in bold is the best score achieved by the model among all possible

combinations.

subjective value. Even if this score was reported just after the
task to limit recall problems, the score predicted by the model
during the regression was perhaps sometimes closer to reality. A
solution to this problem would be to use the performance during
the task to regress the mental load instead, to assess the mental
load more accurately.

To improve the results obtained for the classification and
regression of mental load from physiological indicators, more
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FIGURE 16 | Classification accuracy for predicting task modality (visual vs. auditory), as a function of selected physiological signals and classifier. A threshold for task

performance of 100 was selected.

complex and recent models could be used, such as deep neural
network architecture (Bagnall et al., 2016; Ismail Fawaz et al.,
2019) or gradient boosted decision trees like XGB (Momeni
et al., 2019). Data augmentation would hence be required to train
models with deep architectures. This can be done using sliding
windows to generate more training samples, or recent techniques
of data augmentation such as Gaussian Mixture Models (GMMs)
and Generative Adversarial Networks (GANs) (Hatamian et al.,
2020). However, data augmentation using overlapping windows
does not improve drastically models’ performance to predict
cognitive workload (Solovey et al., 2014; Momeni et al., 2019).
This raises other research questions, such as the length of time
windows used to generate the physiological indicators. Ninety
second may not be the optimal time window for measuring
mental load. The work ofMeteier et al. (2021) shows that 4–5min
were optimal for measuring the mental load induced by a verbal
task, while Solovey et al. (2014) found that 30 s gave the best
results. This should be explored in future studies. The ultimate
goal is to find the best trade-off between model accuracy and the
time window used to predict mental load in a dynamic context
such as automated driving. Another way to improve the results
obtained would be to manipulate the MWL in the laboratory to
limit the influence of external factors. However, the trainedmodel
would then be very efficient but less close to reality, which is less
relevant for the concrete use of these intelligent models in our
future cars.

7. CONCLUSION

This work studied the assessment of mental workload through
physiological data in the specific context of automated driving.
Three physiological signals (EDA, ECG, and respiration) from
80 subjects were collected during 1 h of conditionally automated

TABLE 10 | Best score achieved by the model to predict task modality for each

combination of physiological signals.

Selected signal Best classifier f1-score [Mean (SD)]

EDA RF 0.496 (0.030)

ECG NN 0.582 (0.035)

RESP RF 0.591 (0.553)

EDA + ECG RF 0.601 (0.030)

ECG + RESP RF 0.618 (0.030)

EDA + RESP RF 0.609 (0.027)

EDA + ECG + RESP RF 0.584 (0.047)

The value in bold is the best score achieved by the model among all possible

combinations.

driving in a simulator. The difficulty and modality of the task
were experimentally manipulated with the N-back task. A wide
range of physiological indicators was calculated from the signals
collected during 15 task sequences (90 s each). Statistical analysis
showed an effect of task difficulty on drivers’ heart and respiratory
rates, but not on the tonic level of the EDA. This could be
explained by the low engagement of the drivers in the task or by
the repeated requests to take over control during the experiment.
A machine learning pipeline was set up, using a repeated 4-fold
cross-validation approachwith grid search on three algorithms. A
random forest classified three different levels of mental workload
with a f1-score of 0.713, using skin conductance and respiration
as input signals. The drivers’ subjective level of mental workload
could be predicted with a mean absolute error of around 3 (on a
scale of 0–20) using the three signals. In both the classification
and regression tasks, the models’ performance increased with
task performance. This suggests the importance of controlling
for task performance when using the dual-task paradigm to

Frontiers in Computer Science | www.frontiersin.org 20 January 2022 | Volume 3 | Article 775282

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Meteier et al. Assessing Workload in Conditionally Automated Driving

experimentally manipulate workload. High engagement in the
secondary task resulted in greater physiological activation and
therefore helped the model to better classify or regress driver
workload. In addition, the model had difficulty predicting the
driver’s state between monitoring the environment (no task)
and performing a mild cognitive task (1-back task). The results
suggest that these two tasks might induce a similar amount
of physiological activation in drivers. As expected, classification
of the task modality (visual or auditory) using physiological
signals was not successful. Finally, the most important features
in the classification process were extracted using a technique
of explainable artificial intelligence. Physiological measures such
as estimates of respiratory sinus arrhythmia and indicators of
respiratory and heart rate variability were among the most
relevant measures of mental workload, according to the results
obtained in this study. This is consistent with previous literature
and we suggest that these indicators should be used to assess the
MWL of drivers in automated driving.
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