
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

6-11-2022

Space-Efficient Algorithms and Verification Schemes for Graph Space-Efficient Algorithms and Verification Schemes for Graph

Streams Streams

Prantar Ghosh
Prantar.Ghosh.GR@Dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Ghosh, Prantar, "Space-Efficient Algorithms and Verification Schemes for Graph Streams" (2022).
Dartmouth College Ph.D Dissertations. 81.
https://digitalcommons.dartmouth.edu/dissertations/81

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/81?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

SPACE-EFFICIENT ALGORITHMS AND VERIFICATION SCHEMES FOR

GRAPH STREAMS

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Prantar Ghosh

Guarini School of Graduate and Advanced Studies

Dartmouth College

Hanover, New Hampshire

May 2022

Examining Committee:

Amit Chakrabarti, Chair

Deeparnab Chakrabarty

Peter Winkler

Justin Thaler

F. Jon Kull, Ph.D.
Dean of the Guarini School of Graduate and Advanced Studies

Abstract

Structured data-sets are often easy to represent using graphs. The prevalence of massive

data-sets in the modern world gives rise to big graphs such as web graphs, social networks,

biological networks, and citation graphs. Most of these graphs keep growing continuously

and pose two major challenges in their processing: (a) it is infeasible to store them entirely

in the memory of a regular server, and (b) even if stored entirely, it is incredibly inefficient

to reread the whole graph every time a new query appears. Thus, a natural approach for

efficiently processing and analyzing such graphs is reading them as a stream of edge inser-

tions and deletions and maintaining a summary that can be (a) stored in affordable memory

(significantly smaller than the input size) and (b) used to detect properties of the original

graph. In this thesis, we explore the strengths and limitations of such graph streaming al-

gorithms under three main paradigms: classical or standard streaming, adversarially robust

streaming, and streaming verification.

In the classical streaming model, an algorithm needs to process an adversarially chosen

input stream using space sublinear in the input size and return a desired output at the end

of the stream. Here, we study a collection of fundamental directed graph problems like

reachability, acyclicity testing, and topological sorting. Our investigation reveals that while

most problems are provably hard for general digraphs, they admit efficient algorithms for

the special and widely-studied subclass of tournament graphs. Further, we exhibit certain

problems that become drastically easier when the stream elements arrive in random order

rather than adversarial order, as well as problems that do not get much easier even un-

ii

der this relaxation. Furthermore, we study the graph coloring problem in this model and

design color-efficient algorithms using novel parameterizations and establish complexity

separations between different versions of the problem.

The classical streaming setting assumes that the entire input stream is fixed by an adver-

sary before the algorithm reads it. Many randomized algorithms in this setting, however,

fail when the stream is extended by an adaptive adversary based on past outputs received.

This is the so-called adversarially robust streaming model. We show that graph coloring

is significantly harder in the robust setting than in the classical setting, thus establishing

the first such separation for a “natural” problem. We also design a class of efficient robust

coloring algorithms using novel techniques.

In classical streaming, many important problems turn out to be “intractable”, i.e., prov-

ably impossible to solve in sublinear space. It is then natural to consider an enhanced

streaming setting where a space-bounded client outsources the computation to a space-

unbounded but untrusted cloud service, who replies with the solution and a supporting

“proof” that the client needs to verify. This is called streaming verification or the annotated

streaming model. It allows algorithms or verification schemes for the otherwise intractable

problems using both space and proof length sublinear in the input size. We devise efficient

schemes that improve upon the state of the art for a variety of fundamental graph problems

including triangle counting, maximum matching, topological sorting, maximal indepen-

dent set, graph connectivity, and shortest paths, as well as for computing frequency-based

functions such as distinct items and maximum frequency, which have broad applications

in graph streaming. Some of our schemes were conjectured to be impossible, while some

others attain smooth and optimal tradeoffs between space and communication costs.

iii

Acknowledgements

I am thankful to quite a few people in my life, without whom this thesis would not have

taken shape. First and foremost, I want to express my gratitude to my advisor Amit

Chakrabarti for his excellent guidance and support over the last five years. I fondly cherish

the time we have spent brainstorming over problems and discussing ideas. I remember

many valuable suggestions that he has given me over the years, not only regarding specific

research problems, but about research in general. His mentorship has definitely played a

vital role in my growth as a student of computer science, as a researcher, and as a person.

I greatly appreciate his patience and dedication towards my academic development, from

carefully going through my writing in the earlier days, giving me constructive feedback for

any practice talk that I have done, through giving me detailed feedback about my research

statement and other application materials in the later days. Above all, I would like to thank

Amit for the liberty he has given me for research—the freedom to explore any problem and

research direction that I like—and for showing equal enthusiasm for any research problem

that I have suggested collaborating on, even if some were not in his primary area of exper-

tise. I have learned a lot from him in the last few years, and I feel very fortunate to have

been advised by Amit, a great mentor and a greater human being.

I would like to thank Deeparnab Chakrabarti, Peter Winkler, and Justin Thaler for being

on my thesis committee and for their invaluable feedback and suggestions to improve the

quality of my thesis. I feel lucky to have had Deeparnab as my friend, philosopher, and

guide in the true sense of the words. I have learned a lot from him about research, the

iv

research lifestyle, and the philosophy and the art of teaching. Most importantly, I thank

him for being the person with whom I can discuss the most diverse range of topics ranging

from research and teaching to sports, movies and TV shows. I am grateful to Pete for all the

engaging discussions we have had, and for his ability to make any interaction interesting. I

have immensely enjoyed his countless puzzles and the vast collection of intriguing easy-to-

explain (but not so easy to solve) problems that he has introduced me to. Above all, I would

like to thank Pete for being the wise oracle that I have resorted to, whenever I have encoun-

tered conceptual barriers in my research related to combinatorics or probability. I would

like to express my sincere gratitude to Justin for being a constant support over the last few

years. Of course, I am most thankful to him for making conjectures that I could disprove

so as to increase the significance of my results! Jokes apart, I consider myself fortunate

to have been able to count on him for multiple aspects including collaboration, feedback

on my write-ups, general research and career advise, reference letters, and practically any

academic discussion.

I am grateful to Andrew McGregor, Sofya Vorotnikova, Suman Bera, Manuel Stoeckl,

and Justin, for their collaborations on the works that contributed to this thesis. None of

those works would have been possible without their help, contributions, and sincere en-

gagement. I would also like to thank Sayan Bhattacharya, Jayesh Choudhari, and Sepehr

Assadi for their collaborations on other projects that I have thoroughly enjoyed working on

during my PhD. I have learned a lot from all of them, and they have all contributed signif-

icantly to my academic growth. I would like to specially mention Suman for introducing

me to the wonderful area of graph streaming and spurring my initial interest in the field,

and for being a mentor and “academic brother” to me in the truest sense.

It is crucial to have a good research environment during one’s PhD life for continuous

enrichment and cultivation of one’s ideas and thought process. I would like to thank the

members of the theory group at Dartmouth for providing me with the most amazing work

v

environment: in addition to the group members already mentioned, I thank Hsien-Chih

Chang, Prasad Jayanti, Sebastiaan Joosten, Sagar Kale, Maryam Negahbani, Ankita Sarkar,

and Hang Liao. I cherish our times in TRG (Theory Reading Group) sessions, a big reason

behind my growing interest in research.

Indeed, the life of a PhD student goes beyond just research and lab. I thank everyone

who has contributed to my general well-being, my mental health, and social life, which

have definitely impacted my work life as well. I am deeply grateful to my friends at Dart-

mouth who have been a great support system over the last few years: Varun, Ankita, Suman,

Maryam, Prashant, Linta, Sisira, Shrea, Saifur, Pradipta, Farzana, Ehsanul, Sharanya, Sid-

dhartha, (Dhananjay) Beri, Shruti, Srivamshi, Priyanshu, and Pushpendra. I thank you for

all the memories and all your help and support; I really don’t know what I would have done

without you. I also thank my friends who have been there for me from hundreds or even

thousands of miles away: Soumyajit, Shreejit, Debsuvra, Aneek, Ritwik, (Souvik) Ash,

and Sayantan; thanks for being a support through thick and thin, and especially for regular

video calls, chats, and online games during the pandemic, when maintaining a good men-

tal health was a challenge. Again, thanks to Sougata, (Suman) Sadhukhan, Ritam, Shiuli,

Anirban, Debraj, Arghya, and Rajarshi for all the online board game sessions we have had

during the pandemic, which definitely was a mental boost for me. Finally, I thank Janice

McCabe and other event organizers at Allen house for all the extra-curricular events that

have acted as superb stress relief and I have thoroughly enjoyed them throughout my time

at Dartmouth.

Staying abroad for years might be particularly challenging because one does not have

family around. I am extremely thankful to Andrila for not having to face this challenge

during my PhD life. I can’t thank her enough for genuinely making me feel like I have

family in the Upper Valley who takes care of me. Thanks to Agastya and Anushka for all

the love.

vi

I am grateful to my father Shamik for being my first academic inspiration: he is the

first reason for my interest in math, for me wanting to pursue a PhD, and for my choice

of a career path that I never regret. Finally, I would like to thank my mother Nandita for

literally everything. I dedicate my thesis to her and hope that it makes a convincing case

for why staying away for all these years was kinda worth it.

vii

Contents

Abstract . ii

Acknowledgements . vii

1 Introduction 1

1.1 Overview of Results and Contributions . 7

1.1.1 The Classical Streaming Model 7

1.1.2 The Adversarially Robust Streaming Model 10

1.1.3 The Annotated Streaming Model 11

1.2 Standard Techniques . 15

1.2.1 Sketching . 15

1.2.2 Communication Complexity . 17

1.3 Notations, Terminology, and Basic Tools 19

2 Classical Graph Streaming 21

2.1 Directed Graph Problems . 23

2.1.1 Our Results . 24

2.1.2 Previous Work . 27

2.1.3 Problems and Preliminaries . 28

2.1.4 General Digraphs and the Hardness of Some Basic Problems 30

2.1.5 Sink Finding in Tournaments . 40

2.1.6 Feedback Arc Set in Tournaments 47

viii

2.1.7 Topological Ordering in Random Graphs 56

2.1.8 Rank Aggregation . 61

2.1.9 Subsequent Works . 62

2.2 Graph Coloring . 63

2.2.1 Our Results and Techniques . 65

2.2.2 Related Work and Comparisons 69

2.2.3 Preliminary tools . 75

2.2.4 LDP: A Generic Framework for Coloring 77

2.2.5 Streaming Algorithm for Degeneracy-Based Coloring 81

2.2.6 Streaming Lower Bounds . 84

2.2.7 Applications in Various Space-Conscious Models 92

2.2.8 A Combinatorial Lower Bound 104

2.2.9 Subsequent works . 107

3 Adversarially Robust Streaming 109

3.1 Motivation and Context . 111

3.2 Adversarially Robust Coloring . 117

3.2.1 Our Results and Contributions . 117

3.2.2 Preliminaries . 119

3.2.3 Overview of Techniques . 123

3.2.4 Hardness of Adversarially Robust Graph Coloring 129

3.2.5 Upper Bounds: Adversarially Robust Coloring Algorithms 136

3.2.6 An Algorithm Based on Palette Sparsification 137

3.2.7 Sketch-Switching Based Algorithms for Turnstile Streams 144

4 Streaming Verification 160

4.1 Preliminaries, Setup, and Terminology . 161

ix

4.2 Frequency-Based Functions . 164

4.2.1 Our Results and Techniques . 166

4.2.2 The Misra-Gries Algorithm . 170

4.2.3 Computing Frequency-based Functions in Turnstile Streams 171

4.2.4 Modifications for Longer Streams 178

4.3 Graph Problems . 182

4.3.1 Our Techniques . 184

4.3.2 Triangle Counting . 187

4.3.3 Generalization: Counting Copies of an Arbitrary Subgraph 193

4.3.4 A Technical Result: Counting Edges in Induced Subgraphs 195

4.3.5 Maximum Matching . 198

4.3.6 Applications to Other Graph Problems 203

4.3.7 Path Problems . 207

4.4 Multipass Stream Verification . 217

4.4.1 One-Pass Lower Bounds . 217

4.4.2 Two-pass Scheme for CROSSEDGECOUNT with Applications . . . 218

4.4.3 A Multi-Pass Scheme for Detecting Short Paths 224

5 Conclusions and Future Directions 227

References 233

x

Chapter 1

Introduction

Big data is ubiquitous in the modern world. The underlying structure of a data-set often

conforms to a natural graph representation. For instance, the users of a social medium and

their interactions or connections are easily modeled by the social network graph: make each

user a node and include an edge between two users if and only if they connect or interact

on the social medium. The vast growth of big data has given rise to big graphs or massive

graphs such as social networks, web graphs, citation networks, transportation networks,

communication networks, collaboration networks, and biological networks such as protein

and brain networks. Concrete examples of such real-world graphs include the Facebook

graph containing around a trillion edges [67], the English Wikipedia graph containing more

than 150 million edges1, and the patent citation network of citations made by U.S. patents

between 1975 and 1999 containing more than 16.5 million edges [129] (see SNAP datasets

[130] for more examples of such large real-world networks). To this end, big data analysis

significantly involves big graph processing. The big challenge in big graph processing is

that the size of the input is strikingly larger than the memory of a regular processor. Further,

most of these graphs keep growing over time, making the storage of the entire input even

more infeasible. Even if we can afford the memory to store the whole graph, it is incredibly

1https://law.di.unimi.it/webdata/enwiki-2021/

1

INTRODUCTION INTRODUCTION

inefficient to reread the entire input every time a new query appears or for real-time analysis

when edges are getting inserted and deleted rapidly; think of a viral post proliferating on

social media and a large number of its copies getting deleted upon being detected as fake

news. Hence, a natural approach for processing massive graphs is to process them part

by part. This leads to the idea of reading the input as a stream: an algorithm receives the

input graph as a sequence of edge insertions or deletions and maintains a summary using

the available memory (which is significantly smaller than the input size). At the end of

the stream, it answers certain queries about the input based on the stored summary. This

is called the graph streaming model which we explore in this thesis. Our goal is to design

space-efficient algorithms in this setting for fundamental graph problems and prove their

limitations, e.g., the minimum space required by any streaming algorithm for a certain

problem. Apart from the classical or standard streaming setting described above, we also

study two of its variants, namely adversarially robust streaming and annotated streaming

or streaming verification.

Classical Streaming. In the standard streaming setting, we lay the foundation for di-

rected graph algorithms. Observe that a large number of social media graphs, e.g., fol-

lows on Twitter/Instagram and other real-world big graphs such as citation networks and

web graphs with hyperlinks are directed graphs. However, prior work on graph streaming

focused almost exclusively on undirected graphs. We consider fundamental digraph prob-

lems such as topological sorting, feedback arc set, testing ayclicity and reachability, and

finding source/sink nodes. For practical motivation behind these problems, think of fake

news spreading rapidly over social media, and we seek to find its source. Or, we find a

topological ordering of the nodes of a citation network (which is acyclic assuming that a

paper only cites past papers) to obtain a chronological order of the papers in the network.

In a nutshell, our results show that although most of these problems turn out to be “hard”

in streaming, they do admit efficient algorithms for the special class of tournament graphs

2

INTRODUCTION INTRODUCTION

(digraphs with exactly one arc between each pair of nodes). We consider the case where

the stream-arrival order is adversarial as well as the case where it is random. We exhibit

problems of two categories: (i) ones that are roughly equally hard for both types of stream

orders and (ii) ones that need exponentially larger space for adversarial order as opposed to

random order.

Now, note that all digraph problems that we study deal with vertex orderings. We

demonstrate that vertex orderings can be useful even for undirected graphs as they yield

a simple analysis for a streaming algorithm that we design for a fundamental undirected

graph problem, namely the graph coloring problem. Here, we need to assign colors to

the nodes of a graph such that the end-points of each edge receive different colors. In

real-world big graphs such as social networks, a coloring can be used to detect community

structures [143]: observe that a vertex coloring partitions the graph into independent sets

since each color induces such a set. The presence of large independent sets or cliques

(which are independent sets in the complement graphs) provides crucial information about

the social network. Our algorithm uses significantly fewer colors than the state of the art

for most graphs including real-world graphs and sparse graphs while being much simpler

at the same time. Further, the general framework of the algorithm can be implemented in

multiple other “space-conscious” settings to get improved graph coloring algorithms. To

complement our algorithmic results, we show that any algorithm that significantly improves

on our color bound must store almost the entire graph. We give a summary of our main

contributions and results in the standard streaming model in Section 1.1.1; the full details

appear in Chapter 2.

Adversarially Robust Streaming. The classical streaming setting models worst case in-

puts by having an adversary fix a hard input stream before the algorithm sees it. Thus, the

adversary cannot decide the upcoming stream elements on the fly based on the current out-

put of the algorithm. Consider, however, an online marketing service like Amazon running

3

INTRODUCTION INTRODUCTION

an algorithm that processes the Amazon product-co-purchasing network [128], which has

products as nodes and edges between commonly co-purchased products, and recommends

items to users based on some statistics of the graph. Then, the next purchases of the user,

and hence, the next edges in the said network, are heavily dependent on the past outputs

(recommmendations) of the algorithm. Hence, such a scenario cannot be modeled by the

classical streaming setting. To overcome this, consider a streaming model with a more

powerful adaptive adversary who, at every point in the stream, can query the algorithm,

receive an output, and decide the next stream token based on all past outputs and stream

elements. This model does capture the worst case inputs in the above scenario and other

practical scenarios where the adaptivity can indeed be more “adversarial”: suppose that

Alice looks at the stream of orders in a high frequency stock market and runs an algorithm

on the stream to decide her own order, while her competitor Charlie observes her orders

and buys stocks so as to tamper with the input stream and mislead Alice’s algorithm [97].

It is natural to seek streaming algorithms that work even against such an adaptive adver-

sary. We call such an algorithm adversarially robust. Indeed, deterministic streaming

algorithms are always adversarially robust. A randomized algorithm that works for classi-

cal streaming, however, may not be robust: an adaptive adversary can learn the algorithm’s

random bits and extend the stream in such a way that the final stream turns out to be one

on which those random bits fail. On the other hand, the adversary in classical streaming

that fixes the input in advance is oblivious to the random bits used by the algorithm. Thus,

the contrast between the classical and the robust streaming settings can be simply seen as

oblivious adversary versus adaptive adversary, a well-known concept in various other set-

tings such as the online and dynamic models. To establish a separation between robust and

classical streaming, prior work exhibited a fairly artificial problem that is much harder in

the former setting than in the latter. In this thesis, we show that graph coloring is signifi-

cantly harder against an adaptive adversary than an oblivious one, thus establishing the first

4

INTRODUCTION INTRODUCTION

such separation for a natural and well-studied problem. Further, it exhibits the first separa-

tion between deterministic and randomized streaming algorithms for graph coloring since

any deterministic algorithm must be robust. Whether either of these separations could be

shown were major open questions. Furthermore, we design adversarially robust coloring

algorithms using a reasonably small number of colors. One significance of our algorithms

is that, combined with results from our work as well other ones in the literature, they show

a double-separation for streaming graph coloring: for the optimal space regime, a robust

algorithm requires notably more colors than ordinary randomized algorithms, but signifi-

cantly fewer colors than deterministic algorithms. We state our results and contributions in

more detail in Section 1.1.2, and give the full details in Chapter 3.

Streaming Verification. It can be proven that many natural problems in the classical

streaming setting require storage of almost the entire graph. To surmount this, consider the

following modification of the streaming model motivated by cloud-computing: a space-

bounded client reading a huge input stream outsources the computation to a cloud service

with unbounded space. The cloud returns the desired solution to the client who, however,

refuses to blindly trust it. They fear that the cloud might have encountered some bug,

incurred some hardware or network failure, or might be malicious or compromised, lead-

ing to a corrupted solution. Hence, they ask the cloud for a proof to justify the solution.

The client (now called Verifier) then uses the information that they extracted from the in-

put stream on their own to verify the proof and the solution sent by the cloud (now called

Prover). This model combining Prover-Verifier systems with data streaming was intro-

duced by Chakrabarti, Cormode, and McGregor [55] as the annotated streaming model. A

protocol in this model, called a verification scheme or simply scheme, aims to optimize the

space used for verification and the number of bits used to express the proof. It turns out that

a large number of fundamental problems that are not solvable in sublinear space in classical

streaming do admit schemes with both verification space and proof length sublinear in the

5

INTRODUCTION INTRODUCTION

input size. In this thesis, we design efficient schemes for a variety of graph problems as

well as for computing frequency-based functions that are important primitives for graph

streaming.

Since its inception, data streaming has mostly dealt with statistical problems involving

item frequencies. Consider a very general problem: for any given function, we need to

compute the sum of the functional values of the stream frequencies. Special cases include

fundamental data stream problems such as computing the number of distinct items (F0)

in the stream, the frequency moments (Fk), and heavy-hitters. It can be also applied to

calculate the maximum frequency of an item (F∞). Such frequency-based functions have

wide applications in graph streaming, e.g., F0 can be used to count the number of distinct

edges in a multigraph (or a subgraph of it) and frequency moments Fk for small k have

been used to design efficient algorithms for triangle counting [25]. In the annotated set-

ting, they have been used, for instance, to design protocols for maximum matching [59]

and checking graph connectivity [57]. Thus, apart from being of independent interest,

efficient protocols for frequency-based functions would imply more efficient subroutines

and protocols for graphs streaming problems. We describe a scheme for computing gen-

eral frequency-based functions which is significantly simpler and slightly more efficient

than the previously best-known one. It also implies improved and simpler schemes for the

special cases of computing F0 and F∞.

The most extensively-studied graph problems in streaming are triangle counting, its

generalization to subgraph counting, and maximum matching. The subgraph counting

problem has numerous applications in data mining and large network analysis. In par-

ticular, triangle counting has found use in spam detection [37], motif discovery in protein

networks [117], and in several measures used for community structure analysis in social

networks such as transitivity [167] and clustering coefficients [145]. The maximum match-

ing problem has been applied in ad allocation on the internet. We give efficient schemes

6

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

for each of these problems. Some of these schemes were conjectured to be impossible,

while some others exploit the tool of non-linear sketches, as opposed to the standard linear

sketches, to attain optimal schemes with smooth tradeoffs between the space and proof

length. Further, we design general frameworks that can be applied to obtain efficient

schemes for a variety of graph problems such as topological sorting, acyclicity testing,

maximal independent set, and graph connectivity. We also devise new schemes for a class

of path problems. Furthermore, we introduce the multi-pass annotated streaming model

(analogous to classical multi-pass streaming), where the verifier can make multiple passes

over the input stream before receiving the proof from the Prover. We show that some prob-

lems become provably easier when two passes are allowed rather than a single pass. We

also develop efficient multi-pass schemes for certain problems. We discuss the main re-

sults and contributions more formally in Section 1.1.3 and then present the full details in

Chapter 4.

Section 1.1

Overview of Results and Contributions

In this section, we describe our main results and contributions in each variant of the stream-

ing model that we study.

1.1.1. The Classical Streaming Model

We briefly describe our results for classical graph streaming here. The details appear in

Chapter 2. In Section 2.1, we present our results on directed graph streams, based on a joint

work with A. Chakrabarti, A. McGregor, and S. Vorotnikova [60]. Next, in Section 2.2, we

give an account of our results on graph coloring from a paper with A. Chakrabarti and S.K.

Bera [43].

Digraph problems. Directed graphs had not received much attention in the data streaming

7

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

community until our work [60] laid the foundation for their study. Consider the problem of

topological sorting, where, given a digraph, we need to find an ordering of the nodes such

that all edges go “forward”. This problem, probably the most classical problem exclusive to

directed graphs, has offline algorithms known for more than half a century. But its stream-

ing complexity was open prior to our work. We prove that topological sorting does not ad-

mit any sublinear-space algorithm in a single pass (Theorem 2.1.3). Moreover, for p passes

on an n-vertex graph, it requires roughly Ω(n1+1/p) space (Corollary 2.1.5). We show that

this bound also applies to related problems such as testing acyclicity (Proposition 2.1.4) and

feedback arc set (Corollary 2.1.6). Similar lower bounds were previously known for testing

node-to-node reachability [95]. However, all these lower bounds crucially utilized the fact

that the stream is adversarially ordered. Could it be that these problems become easier if

the edges arrive in a random order? Our main result in this section (Theorem 2.1.9) answers

this question in the negative, thus establishing the first lower bound that precludes semi-

streaming space (i.e, O(n polylog(n)) space) for some graph problem on random-order

streams. This lower bound also applies for widely studied undirected graph problems such

as detecting whether a graph has a perfect matching or a short s-t path (Corollary 2.1.10).

On the other hand, for the problem of finding a sink (or equivalently, source) node

in a tournament graph (where each pair of vertices shares exactly one directed edge), we

show an exponential separation in space complexity between adversarial- and random-

order streaming (Theorems 2.1.14 and 2.1.15). Further, we demonstrate that the spe-

cial class of tournaments allows interesting algorithms for many of the aforementioned

problems. In particular, for feedback arc set in tournaments (FAST), we give two semi-

streaming algorithms: a one-pass (1 + ε)-approximation algorithm with exponential post-

processing time (Theorem 2.1.19), and a poly-time log n-pass 3-approximation algorithm

(Theorem 2.1.22). We also prove a lower bound that implies that an exponential post-

processing time is necessary for any algorithm that uses the natural sketching technique

8

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

that we use (Theorem 2.1.29). Furthermore, for random DAGs over certain natural well-

studied distributions, we showed that there exist efficient sublinear space algorithms for

topological sorting (Theorems 2.1.33 and 2.1.34). This implies that the standard technique,

which establishes randomized lower bounds by proving that a problem is hard for such

distributions over the inputs, does not work for the topological sorting problem. To obtain

such a lower bound, we need to come up with some other involved distributions or more

sophisticated techniques. Finally, we exhibit that our algorithmic techniques can be used

to solve rank aggregation (Theorem 2.1.35), a widely studied problem in practice.

The vertex-coloring problem. We turn to the vertex-coloring problem, another funda-

mental graph problem in theoretical computer science. The task is to color the vertices of

a graph such that no two vertices sharing an edge receive the same color. Given the hard-

ness of coloring with the minimum number of colors, a long line of research has focused

on (∆ + 1)-coloring a graph, where ∆ is its maximum vertex degree. The offline greedy

(∆ + 1)-coloring algorithm takes linear space, which is infeasible for massive graphs. A

breakthrough result by Assadi, Chen, and Khanna [17] gave a (∆ + 1)-coloring semi-

streaming algorithm. However, a (∆ + 1)-coloring is often wasteful, especially for certain

sparse graphs (for instance, think of a star graph). In light of this, we consider coloring

with respect to a “better” parameter called the degeneracy κ of the graph: every graph is

(κ + 1)-colorable and κ is always at most ∆. In fact, it can be arbitrarily smaller than

∆ (1 vs n − 1 for star graphs). We design a semi-streaming algorithm that colors every

graph with κ(1+ o(1)) colors; the algorithm is much simpler and more color-efficient than

previous work for most sparse graphs and real-world massive graphs. An important feature

of our algorithm is that it can be implemented in multiple other space-conscious settings

such as graph query and certain distributed models, improving the state of the art for each

of these settings. Moreover, it attains fewer colors with simpler analysis even compared

to arboricity-based coloring, which is a color-saving regime more popular among prior

9

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

works. Thus, the result also conveys a notable conceptual message: for graph coloring in

multiple settings, degeneracy is a better parameter than the more widely-studied arboricity.

Can we improve the number of colors all the way down to the combinatorially optimal

κ+1? We show lower bounds answering this in the negative: an exact (κ+1)-coloring al-

gorithm cannot achieve sublinear space. In general, we achieve a smooth tradeoff between

the number of colors and the space required, implying that a semi-streaming algorithm must

use at least κ+
√
κ colors, justifying the super-constant additive slack in our upper bound.

This result conveys yet another important conceptual message: there is a large gap between

the space requirements for ∆+ 1 and κ + 1 colorings even though the two parameters are

somewhat analogous. For a detailed discussion on the results, see Section 2.2.1.

1.1.2. The Adversarially Robust Streaming Model

Here, we briefly describe the results presented in Chapter 3, which are from a joint work

with A. Chakrabarti and M. Stoeckl [61]. Recall that Assadi, Chen, and Khanna [17] gave

a semi-streaming algorithm using ∆ + 1 colors in the classical streaming model (where

the adversary is oblivious). We observe that an adaptive adversary can not only break this

algorithm, but all previously known streaming coloring algorithms. This is because all

these algorithms are randomized: the adversary can learn the random bits used by such an

algorithm from its outputs and then extend the stream to one that is bad for those random

bits. In Section 3.2.4, we formally prove that coloring is indeed harder in the robust set-

ting: (a) any robust O(∆)-coloring algorithm must use Ω(n∆), i.e., linear space, and (b)

any robust semi-streaming coloring algorithm must use at least Ω(∆2) colors. Contrasting

with the aforementioned result of Assadi, Chen, and Khanna [17], these results resolve

two important open questions in streaming raised by past work: (i) whether there is a nat-

ural problem that is significantly harder for adversarially robust streaming than classical

streaming, and (ii) whether deterministic streaming algorithms for graph coloring require

much more space than randomized ones. The latter follows from the fact that determinis-

10

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

tic algorithms are always robust. We establish the lower bound using the standard tool of

communication complexity; however, we reduce from a novel communication game called

subset avoidance which might be of independent interest. Further, our reduction uses inno-

vative techniques tailored to show robust streaming lower bounds as opposed to standard

streaming ones.

For the robust coloring problem, the biggest challenge seems to be the following: while

the adaptive adversary can force us to change our output at every step (by introducing an

edge between two like-colored nodes in the current output), prior algorithmic techniques

in the robust streaming literature work only for problems where an algorithm can be forced

to change its output only a small number of times over the course of the stream. We

come up with new techniques to overcome this challenge and design a class of robust col-

oring algorithms using poly(∆) colors. To be precise, we obtain an O(∆2)-coloring in

O(n
√
∆ · polylog(n)) space, and an O(∆3)-coloring in semi-streaming space. Contrasting

the latter with a result of Assadi, Chen, and Sun [16] that shows that a deterministic semi-

streaming coloring algorithm must use exp(∆Ω(1)) colors, we get a separation between ro-

bust and deterministic streaming. Thus, together with the gap shown by our lower bounds,

we get the first double-separation between ordinary randomized, adversarially robust, and

deterministic streaming.

1.1.3. The Annotated Streaming Model

We summarize our results and contributions on streaming verification here. The details

appear in Chapter 4. In Section 4.2, we present the author’s work [89] on frequency-

based functions. The material in Section 4.3 is based on two papers: a joint work with A.

Chakrabarti [59] and another with A. Chakrabarti and J. Thaler [62].

We first define some terminology for ease of presentation of the results. For an anno-

tated streaming scheme, we call the number of bits used to express Prover’s help message

or proof as hcost of the scheme and the number of bits of space used by Verifier as vcost

11

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

of the scheme. An (h, v)-scheme (resp. [h, v]-scheme) denotes a scheme with O(h) (resp.

O(h log n)) hcost and O(v) (resp. O(v log n)) vcost.

Frequency-based functions. Given a stream with elements in universe {1, . . . , n}, let

f denote its frequency vector ⟨f1, f2, . . . , fn⟩, where fj is the frequency (can be negative

in case of turnstile streams) of the jth element. A frequency-based function is a function

G where G(f) :=
∑n

j=1 g(fj) for some integer-valued function g. Setting g accordingly

evaluates G(f) as the answer to fundamental data stream problems such as the number

of distinct items (F0), kth frequency moment (Fk), or number of items with frequency

above a certain threshold (heavy hitters). For any turnstile stream of length m = O(n),

Chakrabarti et al. [57] designed an [n2/3 log4/3 n, n2/3 log4/3 n]-scheme that computesG(f)

for any given function g. Their scheme uses an intricate data structure with binary trees

and calls upon a subroutine for heavy hitters that uses an elaborate framework called hi-

erarchical heavy hitters. Given how general the problem is, with several special cases

having numerous applications, it is important and beneficial to have a simple scheme for

the problem. In Section 4.2, we design such a simple scheme that uses the most basic

and classical frequency estimation data structure for heavy-hitters: the Misra-Gries sum-

mary [141]. At the same time, the scheme improves upon [57]’s complexity bounds: it

is an [n2/3 log n, n2/3 log n]-scheme. No scheme better than the direct application of the

general one was known even for the special cases of computing F0 or F∞. Our result thus

simplifies and improves the bounds for these important problems as well.

This scheme using Misra-Gries works only for stream length m = O(n). Although

Chakrabarti et al. [57] had made the same assumption, their scheme can be made to work

for longer streams as long as the sum of the frequencies ∥f∥1 isO(n). We show that we can

modify our scheme to handle such streams while preserving the same complexity bounds,

albeit at the cost of imperfect completeness. The modification involves replacing the Misra-

Gries subroutine by the Count-Median sketch [72] that gives stronger guarantees at the cost

12

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

of randomization.

Graph problems. Two graph problems that we largely focus on in the annotated stream-

ing setting are triangle counting and maximum matching. For both of these problems on

n-vertex graphs, Thaler [164] gave semi-streaming schemes, i.e., [n, n]-schemes, which

match (up to polylogarithmic factors) a lower bound given by Chakrabarti et al. [57] that

says that any (h, v)-scheme for these problems requires hv ≥ n2. However, even the num-

ber of vertices n might be too large for the verifier to afford Õ(n) bits of space. Hence,

a natural question was whether a o(n)-space protocol could be achieved with sublinear,

i.e., o(n2) proof length. Thaler [164] conjectured that such a scheme does not exist for

either the triangle counting or the maximum matching problem. Our main result in this

work disproved the conjecture giving (o(n2), o(n))-schemes for both of these problems.

Furthermore, for counting general subgraphs of constant size k > 3, we designed the first

sublinear, i.e., (o(n2), o(n2))-scheme.

Towards the goal of fully settling the complexity of these problems in the annotated

setting, we attempt to match the aforementioned lower bound by obtaining [h, v]-schemes

with hv = n2 for all possible settings of h and v. This means we want to get smooth

tradeoffs between h and v over the entire curve hv = n2. Our first class of schemes for

both problems are [t3, s2]-schemes for any t, s satisfying ts = n. They do attain a smooth

tradeoff but clearly do not match the lower bound. Thaler’s [164] [n, n]-schemes did match

the lower bound, but they did not achieve a smooth tradeoff. In fact, on the optimal tradeoff

curve hv = n2, schemes were known only for the settings (h = n2, v = 1) [57], (h =

n, v = n) [164], and the trivial (h = 1, v = n2). We combine the techniques used in our

protocol for with those in Thaler’s protocol and succeed in achieving the best of both of

worlds: we obtain smooth and optimal tradeoffs for the problems that cover a significant

portion of the curve. Specifically, for triangle counting and maximum matching, we gave

[h, v]-schemes for any h, v with hv = n2, provided h ≤ n and h ≥ n respectively. Thus,

13

1.1 OVERVIEW OF RESULTS AND CONTRIBUTIONS INTRODUCTION

these schemes settle the complexity of the triangle counting and the maximum matching

problems in the laconic (i.e., (hcost≤ n, vcost≥ n)) regime and the frugal (i.e., (hcost≥ n,

vcost≤ n)) regime respectively. Furthermore, for triangle counting, we design an improved

[nt2, s]-scheme for any t, s with ts = n.

To solve the maximum matching problem, we use a framework called Induced-Edge-

Count that counts the total number of edges contained in a given collection of vertex-

subsets. We show that this framework can be also applied to get optimal schemes with

smooth tradeoffs for several well-studied problems in the streaming model, namely max-

imal independent set, topological sorting, and acyclicity testing. For any t, s satisfying

ts = n, we obtain [nt, s]-schemes for each of these problems. Note that the first two prob-

lems have output size Θ(n). Hence, a scheme with o(n) space for these problems means

that the prover streams the solution to the verifier who verifies it using only o(n) space.

We also use it to design efficient schemes for triangle counting in sparse graphs and in the

vertex-arrival/adjacency-list model.

We explore a collection of path problems in this model. We give a [kn, n]-scheme

for the (unweighted) shortest s-t path problem, where we need to find the length k of the

shortest path from node vs to node vt. Our scheme is optimal when k is polylogarithmic in n

and also improves upon the proof length of a previous scheme given by Cormode et al. [71].

The more general single-source shortest path (SSSP) problem asks for the distances from

a source node vs to all other nodes in the graph. For any t, s with ts = n, we design

a [Dnt, s]-scheme for the unweighted SSSP problem (where D is the maximum distance

from the source vertex to any vertex reachable from it), which can be adapted to a [knt, s]-

scheme for unweighted shortest vs-vt path (where k is the length of such a path). The latter

result strictly improves upon Cormode et al.’s [Dnt, s]-scheme [71] for the problem (since

k ≤ D always). We also have some results for the weighted SSSP problem that are optimal

for polylogarithmic weights and diameter.

14

1.2 STANDARD TECHNIQUES INTRODUCTION

Next, we introduce the concept of multi-pass schemes. Here, analogous to classical

streaming, Verifier can make several passes over the input stream before he receives the

proof. We showed that some natural problems admit provably better schemes when addi-

tional passes are allowed. For instance, the independent set testing problem, where we need

to determine whether a streamed subset of vertices (arbitrarily interleaved with the edges)

form an independent set in the graph, requires total cost h + v = Ω(n) for any single-pass

(h, v)-scheme. In contrast, we designed a 2-pass scheme with total cost Õ(n2/3) for the

problem. In fact, we obtained a smooth tradeoff by designing a [t2, s]-scheme for any t and

s with ts = n. Finally, for the st-kPath problem that asks whether there exists a path of

length at most k between nodes vs and vt, we showed that one can break the Ω(n) barrier

at the cost of a few passes. To be precise, we gave a ⌈k/2⌉-pass [n1−1/k, n1−1/k]-scheme

for the problem.

Section 1.2

Standard Techniques

Almost all our streaming algorithms use sketching in some way, and all our streaming

lower bounds are proven via communication complexity. In this section, we discuss these

two broad techniques that we use throughout the thesis.

1.2.1. Sketching

To obtain sublinear space streaming algorithms, it is clear that instead of storing the entire

input, we need to maintain a summary or sketch of it while reading the stream. In the

context of streaming algorithms, the word “sketch” means more: a data structure is called

a sketch if its contents for two different streams σ1 and σ2 can be efficiently combined to

obtain what it would store when processing the union of the two streams σ1 ◦ σ2.

Definition 1.2.1 (Sketch). A data structure S(σ) computed when an algorithm S processes

15

1.2 STANDARD TECHNIQUES INTRODUCTION

a stream σ is called a sketch if there exists a space-efficient combining algorithm A such

that, for any two streams σ1 and σ2 (where σ1 ◦ σ2 is a valid input stream for S), we have

A(S(σ1), S(σ2)) = S(σ1 ◦ σ2).

Suppose that our stream arrives from a universe {1, . . . , N}. Thus, a stream of length

m is an element in {1, . . . , N}m. Denote the frequency vector of the stream σ by fσ. For

problems on n-node graphs, we can have some canonical indexing of the edges and take

N =
(
n
2

)
. Then for simple graphs, the frequency vector is an N -length binary string. A

sketch processing stream σ can be seen as maintaining a function of fσ. A particular case

of interest is when it maintains a linear function of fσ. We call such a sketch to be a linear

sketch.

Definition 1.2.2 (Linear Sketch). The sketch S(σ) maintained by an algorithm S process-

ing stream σ, where S(σ) =: S ′(fσ) ∈ X for some vector space X , is called a linear sketch

if for any two streams σ1 and σ2 (where σ1 ◦ σ2 is a valid input stream for S), we have

S ′(fσ1 + fσ2) = S ′(fσ1) + S ′(fσ2), i.e., S(σ1 ◦ σ2) = S(σ1) + S(σ2).

Observe that for linear sketches, the combining algorithm mentioned in Definition 1.2.1

simply adds the sketches (in the underlying vector space). In fact, upon receiving a new

stream token j, it simply updates the sketch by adding S(⟨j⟩) to the current vector.

A linear sketch S processing a stream on universe {1, . . . , N} using space s (roughly)

is popularly interpreted as left multiplication by a matrix in Rs×N . Assume that the sketch

S maintains a vector v ∈ Rs while processing the stream. Then, we have S(σ) = Sfσ = v

for a suitable sketch matrix S ∈ Rs×N . Thus, S(⟨j⟩) that is added upon arrival of token

j is simply the jth column of the matrix S. Indeed, a sketching algorithm performs the

multiplication implicitly: the matrix S cannot be stored explicitly in sublinear space.

We use linear sketching in many of our algorithms. In Chapter 4, though, we heavily use

non-linear sketches and demonstrate how they turn out to be crucial in designing efficient

verification schemes.

16

1.2 STANDARD TECHNIQUES INTRODUCTION

1.2.2. Communication Complexity

Communication complexity is a standard tool used in the streaming literature to show space

lower bounds. It also has wide applications beyond streaming. Across all the chapters in

this thesis, we use results and techniques in communication complexity to establish our

streaming lower bounds. Here, we give a brief introduction to the basic tools that are

relevant to this thesis. For details, we refer the reader to the book by Kushilevitz and

Nisan [125].

Two-party communication model. The two-party communication model introduced by

Yao [170] is as follows. The two parties or players Alice and Bob possess inputs a ∈ A and

b ∈ B respectively, for some arbitrary sets A and B. Given some relation (equivalently, a

problem) P ⊆ A × B × C for some set C, Alice and Bob need to compute c ∈ C such

that (a, b, c) ∈ P . For this purpose, they decide on some communication protocol Π. The

protocol Π proceeds in rounds: it determines the player in the first round to send a message

to the other player, who looks at the message and replies according to Π in the second

round, and then they go back and forth. After some rounds of communication, the proto-

col Π terminates when one of the players announces an output denoted by Π(a, b). The

communication cost of a protocol is measured by the total number of bits communicated

over all the rounds in the worst case (assume that Alice and Bob are computationally un-

bounded, and so no other complexity parameters are taken into account). Formally, denote

the total number of bits communicated in protocol Π on inputs a and b by CCa,b(Π). Then,

the communication cost of the protocol Π is given by CC(Π) := max(a,b)∈A×B CCa,b(Π).

If for any pair of inputs (a, b), the output Π(a, b) is always correct, i.e., if (a, b,Π(a, b)) ∈

P always, then we say that the protocol Π deterministically solves P . We are now ready to

define the deterministic communication complexity of a problem.

Definition 1.2.3 (Deterministic Communication Complexity). The deterministic commu-

nication complexity of a problem P is defined as D(P) := min
Π: Π deterministically solves P

CC(Π).

17

1.2 STANDARD TECHNIQUES INTRODUCTION

Now consider the setting where the players Alice and Bob can design their messages

in the communication protocol based on the outcomes of random coin tosses. In a private

coin protocol, each player can only see the outcomes of their own coin tosses. Formally,

Alice and Bob have private random strings RA and RB respectively in addition to and

independent of their inputs. A message that a player sends is a function of their input and

their random string (and the messages in the earlier rounds of the protocol). In a public

coin protocol, the players have access to a sufficiently long shared random string R that

they can use to construct their messages. By randomized communication protocols, we

refer to this stronger public coin version. In this case, the output of the protocol Π is a

random variable denoted by Π(a, b, R). We say that a randomized protocol Π with public

random string generated from distribution DΠ “solves a problem P with error δ” if

∀(a, b) ∈ A×B : Pr
R∼DΠ

[(a, b,Π(a, b, R)) ̸∈ P] ≤ δ .

We now define the randomized communication complexity of a problem.

Definition 1.2.4 (Randomized Communication Complexity). The δ-error randomized com-

munication complexity of a problem P is defined as Rδ(P) := min
Π: Π solves P with error δ

CC(Π).

For proving our streaming lower bounds, we are mostly interested in the 1/3-error

randomized communication complexity of a problem, and hence we simply define R(P) :=

R1/3(P).

For proving one-pass streaming lower bounds, we shall focus on the one-way commu-

nication complexity of a problem, which refers to its communication complexity restricted

to single-round protocols. The one-way deterministic and the one-way δ-error randomized

communication complexities of a problem P are denoted by D→(P) and R→δ (P) respec-

tively. The corresponding r-round complexities are denoted by Dr(P) and Rr
δ(P).

Let us now describe the general framework that establishes a streaming lower bound

18

1.3 NOTATIONS, TERMINOLOGY, AND BASIC TOOLS INTRODUCTION

using communication complexity. Suppose that we want to show a space lower bound for

a streaming problem S. Let A be a p-pass streaming algorithm that solves S. We consider

a two-party communication problem P such that the players Alice and Bob can simulate

A to solve P: Alice feeds some stream tokens to A based on her input and then sends the

resulting memory state of A to Bob, who continues the input stream to A by feeding it

tokens based on his input. If p > 1, he sends Alice the updated memory state of A, and

then they similarly emulate the next p−1 passes ofA. At the end of the pth pass, Bob looks

at the output of A to announce a corresponding output for the communication problem P ,

which is known to be correct if A succeeds. Then, the total number of bits communicated

is (2p − 1) times the space S(A) used by A. Thus, if A is a randomized algorithm and

succeeds with probability at least 2/3, it must be that (2p− 1) · S(A) ≥ R2p−1(P), which

implies that S(A) ≥ R2p−1(P)/(2p − 1). Observe that for one-pass algorithms, we have

that S(A) ≥ R→(P). Thus, the one-way communication complexity is useful in showing

one-pass streaming lower bounds. Also, if we do not know R2p−1(P), but know R(P), then

we can weakly lower bound the former by the latter and obtain that S(A) ≥ R(P)/(2p −

1). The same framework gives analogous relations between deterministic-streaming space

complexity and deterministic communication complexity.

Section 1.3

Notations, Terminology, and Basic Tools

Notations and Terminology. We fix some notations and terminology that we will be using

throughout the thesis. In considering a graph coloring problem, the input graph will usually

be called G = (V,E), where V := V (G) is the set of vertices and E := E(G) is the set of

edges of G (unless stated otherwise). We usually denote the number of vertices |V (G)| by

n and the number of edges |E(G)| by m. When considering insert-delete graph streams,

however, we usually denote the stream length by m (which is same as the number of edges

19

1.3 NOTATIONS, TERMINOLOGY, AND BASIC TOOLS INTRODUCTION

for insert-only graph streams). The notation “log x” stands for log2 x. For an integer k, we

denote the set {1, 2, . . . , k} by [k]. We use the Õ() notation to hide factors polylogarithmic

in the input size. We say that an event holds with high probability (w.h.p.) if the probability

is at least 1− 1/ poly(n).

By semi-streaming space, we mean a space bound of O(n · polylog(n)) bits. Semi-

streaming model refers to the streaming model where the space is restricted to O(n ·

polylog(n)) bits.

Basic Tools. We shall use the following form of the Chernoff bound to prove high proba-

bility statements throughout the thesis.

Fact 1.3.1. Let X be a sum of mutually independent indicator random variables. Let µ

and δ be real numbers such that EX ≤ µ and 0 ≤ δ ≤ 1. Then, Pr [X ≥ (1 + δ)µ] ≤

exp (−µδ2/3).

Communication Complexity Problems for Proving Lower Bounds. Space lower bounds

for data streaming algorithms are most often proven via reductions from standard problems

in communication complexity. We recall two such problems, each involving two players,

Alice and Bob. In the INDEXN problem, Alice holds a vector x ∈ {0, 1}N and Bob holds

an index k ∈ [N]: the goal is for Alice to send Bob a message allowing him to output xk.

In the DISJN problem, Alice holds x ∈ {0, 1}N and Bob holds y ∈ {0, 1}N : the goal is for

them to communicate interactively, following which they must decide whether x and y are

disjoint, when considered as subsets of [N], i.e., they must output ¬
∨N
i=1 xi ∧ yi. In the

special case DISJN,s, it is promised that the cardinalities |x| = |y| = s. In each case, the

communication protocol may be randomized, erring with probability at most δ. We shall

use the following well-known lower bounds.

Fact 1.3.2 ([3]). The one-way randomized complexity R→(INDEXN) = Ω(N).

Fact 1.3.3 ([153]). The general randomized complexity R(DISJN,N/3) = Ω(N).

20

Chapter 2

Classical Graph Streaming

A data stream is a sequence ⟨a1 . . . , am⟩ where each ai comes from a universe U . A data

streaming algorithm reads such a stream and maintains a summary using space sublinear in

the input size, i.e., o(m), so as to compute some given function of the stream. An algorithm

can make one or a few passes over the stream to compute the summary. At the end of the

last pass, it does some post-processing on the summary to return an output. The time taken

for post-processing or for processing an update are usually not the focus of optimization

for this model; it just aims to optimize the space usage and the number of passes.

In this chapter, we study graph streaming, i.e., we focus on graph problems in this

model. Suppose that the input graph G = (V,E) is on n nodes. To define a graph stream

most generally, each stream token ai is of the form ((u, v), c) which denotes that c edges

are inserted (resp. deleted) between vertices u, v ∈ V if c > 0 (resp. c < 0). The simplest

case is when c is always 1, i.e., the graph is simple and the input stream is insert-only.

In this case, the stream length m = O(n2). We mostly consider this case while trying to

establish lower bounds, since such lower bounds would be strong. When c = ±1, i.e., the

graph is simple but both edge insertions and deletions are allowed, the stream length m can

be potentially much larger than Θ(n2). In this case, rather than o(m), we naturally aim for

o(n2) space (since we can always store the entire graph in Θ(n2) space in the worst case).

21

CLASSICAL GRAPH STREAMING CLASSICAL GRAPH STREAMING

We call such streams as dynamic or insert-delete graph streams. For some problems, we

allow multigraphs, i.e., a vertex pair can share multiple parallel edges. Here, c can be any

integer. Some of our algorithms can even handle such graphs. However, we do not allow

the rather impractical case of “negative edges” casued by a stream trying to delete an edge

that does not exist in the current graph.

It often helps to look at a streaming graph as updates made to its characteristic vector

e of length
(
n
2

)
(for undirected graphs) or n(n − 1) (for directed graphs), where for some

canonical indexing of the vertex pairs, ei represents the number of edges shared between

the ith vertex pair. In the case that the graph is simple, the vector is a binary string. Since

we do not allow deletion of an edge before it is inserted, the entries of the characteristic

vector are always non-negative (even for the most general multigraph case) and hence, we

are considering the so called strict turnstile data streaming model.

Ideally, we would like to solve a problem using space polylog(n), but for most graph

problems, this is too much to ask for. Instead, a space bound that we usually aim for is

Õ(n) = O(n · polylog(n)). This makes many graph problems tractable as it allows us to

store non-zero (though small) information about each node. At the same time, the bound is

sublinear in Θ(n2), the worst-case size of the graph. As noted in Section 1.3, an algorithm

using this much space is called a semi-streaming algorithm and the graph streaming model

restricted to this much space is called the semi-streaming model [81]. For the last two

decades, the semi-streaming model has been the most popular setting for the study of graph

streaming. That said, space complexity of O(n1+α) for α < 1 is also an interesting regime

to study.

The order of the input stream often turns out to be crucial. In Section 2.1, we consider

both cases: (i) adversarial order, where the order of the stream is determined by an adver-

sary before the algorithm reads it, and (ii) random order, where the stream order is taken

uniformly at random from the set of m! possible permutations of the stream. We exhibit

22

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

problems whose complexity drastically changes with the stream order as well as problems

whose complexity does not undergo any significant change. Note that for most problems

(even for those on random-order streams), we assume that the underlying input is a fixed

adversarially chosen graph; the order of presentation of its edges can then be either adver-

sarial or random. We, however, consider a couple of cases where the graph itself is drawn

from a random distribution.

In Section 2.1, we present results on a collection of problems on directed graph streams.

A common theme for these problems is that they deal with vertex orderings. In Section 2.2,

we study an undirected graph problem where vertex orderings turn out to be important.

This is the graph coloring problem with respect to a graph parameter called degeneracy

(see Section 2.2 for definition), for which we devise efficient algorithms and prove space

lower bounds.

Section 2.1

Directed Graph Problems

While there has been a large body of work on undirected graphs in the data stream model

[137], the complexity of processing directed graphs (digraphs) in this model was relatively

unexplored prior to our results. The handful of exceptions include multipass algorithms

emulating random walks in directed graphs [107,156], establishing prohibitive space lower

bounds on finding sinks [103] and answering reachability queries [81], and ruling out semi-

streaming constant-pass algorithms for directed reachability [95]. This is rather unfortunate

given that many of the massive graphs often mentioned in the context of motivating work

on graph streaming are directed, e.g., hyperlinks, citations, and social media “follows” all

correspond to directed edges.

In this section, we consider the complexity of a variety of fundamental problems related

23

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

to vertex ordering in directed graphs. For example, one basic problem that motivated1 much

of the work in this section is as follows: given a stream consisting of edges of an acyclic

graph in an arbitrary order, how much memory is required to return a topological ordering

of the graph? In the offline setting, this can be computed in O(m + n) time using Kahn’s

algorithm [110] or via depth-first trees [162] but nothing was known in the data stream

setting.

As another example, consider the related minimum feedback arc set problem, i.e., esti-

mating the minimum number of edges (arcs) that need to be removed to make the resulting

graph acyclic. This problem is NP-hard and to the best of our knowledge, the best known

approximation factor is O(log n log log n) for arbitrary graphs [78], although a PTAS is

known in the case of tournaments [118]. Again, nothing was known in the data stream

model. In contrast, the analogous problem for undirected graphs is well understood in

streaming. The number of edges required to make an undirected graph acyclic is m−n+ c

where c is the number of connected components. The number of connected components

can be computed in O(n log n) space by constructing a spanning forest [5, 81].

2.1.1. Our Results

We describe our results for digraph problems. A summary is given in Table 2.1.

Arbitrary Graphs. In Section 2.1.4 we present a number of negative results for the case

when the input digraph can be arbitrary. In particular, we show that there is no one-pass

sublinear-space algorithm for such fundamental digraph problems as testing whether an

input digraph is acyclic, topologically sorting it if it is, or finding its feedback arc set if it

is not. These results set the stage for our later focus on specific families of graphs, where

we can do much more, algorithmically.

For our lower bounds, we consider both arbitrary and random stream orderings. In Sec-

1The problem was explicitly raised in an open problems session at the Shonan Workshop “Processing Big
Data Streams" (June 5-8, 2017) and generated considerable discussion.

24

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Problem Passes Space Bound Notes

ACYC 1 Θ(n2)

ACYC p n1+Ω(1/p)/pO(1)

mult. approx. FAS-SIZE 1 Θ(n2)

mult. approx. FAS-SIZE p n1+Ω(1/p)/pO(1)

TOPO-SORT 1 Θ(n2)

TOPO-SORT p n1+Ω(1/p)/(p+ 1)O(1)

mult. approx. FAS 1 Θ(n2)

mult. approx. FAS p n1+Ω(1/p)/(p+ 1)O(1)

STCONN-DAG (RO) p n1+Ω(1/p)/pO(1) error prob. 1/pΩ(p)

ACYC (RO) p n1+Ω(1/p)/pO(1) error prob. 1/pΩ(p)

mult. approx. FAS-SIZE (RO) p n1+Ω(1/p)/pO(1) error prob. 1/pΩ(p)

TOPO-SORT (RO) p n1+Ω(1/p)/(p+ 1)O(1) error prob. 1/pΩ(p)

mult. approx. FAS (RO) p n1+Ω(1/p)/(p+ 1)O(1) error prob. 1/pΩ(p)

(1 + ε)-approx. FAS-T 1 Õ(ε−2n) exp. time post-processing
3-approx. FAS-T p Õ(n1+1/p)

ACYC-T 1 Õ(n)

ACYC-T p Ω(n/p)

SINK-FIND-T 2p− 1 Õ(n1/p)

SINK-FIND-T p Ω(n1/p/p2)

SINK-FIND-T (RO) 1 Õ(1)

TOPO-SORT (RO) 1 Õ(n3/2) random DAG + planted path
TOPO-SORT O(log n) Õ(n4/3) random DAG + planted path

(1 + ε)-apx. RANK-AGGR 1 Õ(ε−2n) exp. time post-processing

Table 2.1: Summary of our algorithmic and space lower bound results. These problems
are defined in Section 2.1.3. The input stream is adversarially ordered unless marked with
(RO) which stands for “Random Order”. Besides the above results, we also give an oracle
(query complexity) lower bound in Section 2.1.6.

tion 2.1.4, we concentrate on arbitrary orderings and show that checking whether the graph

is acyclic, finding a topological ordering of a directed acyclic graph (DAG), or any multi-

plicative approximation of feedback arc set requires Ω(n2) space in one pass. The lower

bound extends to n1+Ω(1/p)/pO(1) when the number of passes is p ≥ 1. In Section 2.1.4, we

show that essentially the same bound holds even when the stream is randomly ordered. This

25

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

strengthening is one of our more technically involved results and it is based on generalizing

a fundamental result by Guruswami and Onak [95] on s–t connectivity in the multi-pass

data stream model.

As a by-product of our generalization, we also obtain the first random-order lower

bounds refuting semi-streaming space for undirected graph problems; these include decid-

ing (i) whether there exists a short s–t path, and (ii) whether there exists a perfect matching.

Tournaments. A tournament is a digraph that has exactly one directed edge between

each pair of distinct vertices. In Section 2.1.5, we consider the problem of finding a sink

in a tournament which is guaranteed to be acyclic. Obviously, this problem can be solved

in a single pass using O(n) space by maintaining an “is-sink” flag for each vertex. Our

results show that for arbitrary order streams this is tight. We prove that finding a sink in p

passes requires Ω(n1/p/p2) space. For upper bounds, we provide an O(n1/p log(3p))-space

sink-finding algorithm that uses O(p) passes, for any 1 ≤ p ≤ log n. In contrast, we show

that if the stream is randomly ordered, then just a single pass using only polylog n space

is sufficient. This is a significant separation between the arbitrary-order and random-order

data stream models.

If we assume that the input graph is a tournament, it is trivial to find a topological

ordering, given that one exists, by considering the in-degrees of the vertices. Furthermore,

it is known that ordering the vertices by in-degree yields a 5-approximation to feedback arc

set [69]. In Section 2.1.6, we present an algorithm which computes a (1+ε)-approximation

to feedback arc set in one pass using Õ(ε−2n) space. In the post-processing step, however,

it estimates the number of back edges for every permutation of vertices in the graph, thus

resulting in exponential post-processing time. Despite its “brute force” feel, our algorithm

is essentially optimal, both in its space usage (unconditionally) and its post-processing time

(in a sense we shall make precise later). We address these issues in Section 2.1.6. On the

other hand, in Section 2.1.6, we show that with O(log n) additional passes it is possible to

26

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

compute a 3-approximation to feedback arc set while using only polynomial time and Õ(n)

space.

Random Graphs. In Section 2.1.7, we consider a natural family of random acyclic graphs

(see Definition 2.1.2 below) and present two algorithms for finding a topological ordering

of vertices. We show that, for this family, Õ(n4/3) space is sufficient to find the best

ordering given O(log n) passes. Alternatively, Õ(n3/2) space is sufficient given only a

single pass, on the assumption that the edges in the stream are randomly ordered. These

results show that for proving stronger lower bounds for topological sorting, the standard

technique showing hardness for such random inputs and then applying Yao’s lemma would

not work; we need more involved input distributions or more sophisticated techniques.

Rank Aggregation. In Section 2.1.8, we consider the problem of rank aggregation (for-

mally defined in the next section), which is closely related to the feedback arc set problem.

We present a one-pass Õ(ε−2n)-space algorithm that returns (1 + ε)-approximation to the

rank aggregation problem. The algorithm is very similar to our (1 + ε)-approximation

of feedback arc set in tournaments and has the same drawback of using exponential post-

processing time.

2.1.2. Previous Work

Some versions of the problems we study here have been considered previously in the query

complexity model. For example, Huang et al. [104] consider the “generalized sorting prob-

lem" where G is an acyclic graph with a unique topological order. The algorithm is pre-

sented with an undirected version of this graph and may query any edge to reveal its direc-

tion. The goal is to learn the topological ordering with the minimum number of queries.

Huang et al. [104] and Angelov et al. [11] also studied the average case complexity of var-

ious problems where the input graph is chosen from some known distribution. Ailon [6]

studied the equivalent problem for feedback arc set in tournaments. Note that all these

27

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

query complexity results are adaptive and do not immediately give rise to small-space data

stream algorithms.

Perhaps the relative lack of progress on streaming algorithms for directed graph prob-

lems stems from their being considered “implicitly hard” in the literature, a point made in

the recent work of Khan and Mehta [119]. Indeed, that work and the also-recent work

of Elkin [75] provide the first nontrivial streaming algorithms for computing a depth-

first search tree and a shortest-paths tree (respectively) in semi-streaming space, using

O(n/ polylog n) passes. Notably, fairly non-trivial work was needed to barely beat the

trivial bound of O(n) passes.

Some of our work here applies and extends the work of Guruswami and Onak [95],

who gave the first lower bounds precluding semi-streaming space for decision problems

on graphs. In particular, they showed that solving reachability in n-vertex digraphs using

p passes requires n1+Ω(1/p)/pO(1) space. Via simple reductions, they then showed similar

lower bounds for deciding whether a given (undirected) graph has a short s–t path or a

perfect matching.

2.1.3. Problems and Preliminaries

Vertex Ordering Problems in Digraphs. An ordering of an n-vertex digraphG = (V,E)

is a list consisting of its vertices. We shall view each ordering σ as a function σ : V → [n],

with σ(v) being the position of v in the list. To each ordering σ, there corresponds a set of

back edges BG(σ) = {(v, u) ∈ E : σ(u) < σ(v)}. We say that σ is a topological ordering

if BG(σ) = ∅; such σ exists iff G is acyclic. We define βG = min{|BG(σ)| : σ is an

ordering of G}, i.e., the size of a minimum feedback arc set for G.

We now define the many interrelated digraph problems studied in this work. In each of

these problems, the input is a digraph G, presented as a stream of its edges. The ordering

of the edges is adversarial unless specified otherwise.

28

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

ACYC: Decide whether or not G is acyclic.

TOPO-SORT: Under the promise that G is acyclic, output a topological ordering of its

vertices.

STCONN-DAG: Under the promise that G is acyclic, decide whether it has an s-to-t

path, these being two prespecified vertices.

SINK-FIND: Under the promise that G is acyclic, output a sink of G.

FAS-SIZE (α-approximation): Output an integer β̂ ∈ [βG, αβG].

FAS (α-approximation): Output an ordering σ such that |BG(σ)| ≤ αβG.

FAS-T: Solve FAS under the promise that G is a tournament. In a similar vein, we

define the promise problems ACYC-T, TOPO-SORT-T, SINK-FIND-T, FAS-SIZE-T.

For randomized solutions to these problems we shall require that the error probability be at

most 1/3.

We remark that the most common definition of the minimum feedback arc set problem

in the literature on optimization is to identify a small set of edges whose removal makes

the graph acyclic, so FAS-SIZE is closer in spirit to this problem than FAS. As we shall see,

our algorithms will apply to both variants of the problem. On the other hand, lower bounds

sometimes require different proofs for the two variants. Since βG = 0 iff G is acyclic, we

have the following basic observation.

Observation 2.1.1. Producing a multiplicative approximation for any of FAS, FAS-T, FAS-

SIZE, and FAS-SIZE-T entails solving (respectively) TOPO-SORT, TOPO-SORT-T, ACYC,

and ACYC-T.

For an ordering π of a vertex set V , define Eπ = {(u, v) ∈ V 2 : π(u) < π(v)}. Define

Tou(π) = (V,Eπ) to be the unique acyclic tournament on V consistent with π.

As mentioned above, we will also consider vertex ordering problems on random graphs

from a natural distribution. This distribution, which we shall call a “planted path distri-

29

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

bution,” was considered by Huang et al. [104] for average case analysis in their work on

generalized sorting.

Definition 2.1.2 (Planted Path Distribution). Let PlantDAGn,q be the distribution on di-

graphs on [n] defined as follows. Pick a permutation π of [n] uniformly at random. Retain

each edge (u, v) in Tou(π) with probability 1 if π(v) = π(u) + 1, and with probability q,

independently, otherwise.

Rank Aggregation. The feedback arc set problem in tournaments is closely related to

the problem of rank aggregation (RANK-AGGR). Given k total orderings σ1, . . . , σk of n

objects we want to find an ordering that best describes the “preferences” expressed in the

input. Formally, we want to find an ordering that minimizes cost(π) :=
∑k

i=1 d(π, σi),

where the distance d(π, σ) between two orderings is the number of pairs of objects ranked

differently by them. That is,

d(π, σ) :=
∑
a,b∈[n]

1{π(a) < π(b), σ(b) < σ(a)} ,

where the notation 1{ϕ} denotes a 0/1-valued indicator for the condition ϕ.

In the streaming model, the input to RANK-AGGR can be given either as a concatena-

tion of k orderings, leading to a stream of length kn, or as a sequence of triples (a, b, i)

conveying that σi(a) < σi(b), leading to a stream of length k
(
n
2

)
. Since we want the length

of the stream to be polynomial in n, we assume k = nO(1).

2.1.4. General Digraphs and the Hardness of Some Basic Problems

In this section, our focus is bad news. In particular, we show that there is no one-pass

sublinear-space algorithm for the rather basic problem of testing whether an input digraph

is acyclic, nor for topologically sorting it if it is. These results set the stage for our later

focus on tournament graphs, which do allow interesting algorithms for these problems.

30

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Arbitrary Order Lower Bounds. To begin, note that the complexity of TOPO-SORT-T is

easily understood: maintaining in-degrees of all vertices and then sorting by in-degree

provides a one-pass O(n log n)-space solution. However, the problem becomes maximally

hard without the promise of a tournament.

Theorem 2.1.3. Solving TOPO-SORT in one pass requires Ω(n2) space.

Proof. We reduce from INDEXN , where N = p2 for a positive integer p. Using a canonical

bijection from [p]2 to [N], we rewrite Alice’s input vector as a matrix x = (xij)i,j∈[p] and

Bob’s input index as (y, z) ∈ [p]2. Our reduction creates a graph G = (V,E) on n = 4p

vertices: the vertex set V = L0⊎R0⊎L1⊎R1, where each |Lb| = |Rb| = p. These vertices

are labeled, with ℓ0i being the ith vertex in L0 (and similarly for r0i , ℓ
1
i , r

1
i).

Based on their inputs, Alice and Bob create streams of edges by listing the following

sets:

Ex = {(ℓbi , rbj) : b ∈ {0, 1}, i, j ∈ [p], xij = b} , Eyz = {(r0z , ℓ1y), (r1z , ℓ0y)} .

The combined stream defines the graph G, where E = Ex ∪ Eyz.

We claim that G is acyclic. In the digraph (V,Ex), every vertex is either a source or

a sink. So the only vertices that could lie on a cycle in G are ℓ0y, r
0
z , ℓ

1
y, and r1z . Either

(ℓ0y, r
0
z) /∈ E or (ℓ1y, r

1
z) /∈ E, so there is in fact no cycle even among these four vertices.

Let σ be a topological ordering of G. If xyz = 0, then we must, in particular, have

σ(ℓ0y) < σ(ℓ1y), else we must have σ(ℓ1y) < σ(ℓ0y). Thus, by simulating a one-pass algorithm

A on Alice’s stream followed by Bob’s stream, consulting the ordering σ produced by A

and outputting 0 iff σ(ℓ0y) < σ(ℓ1y), the players can solve INDEXN . It follows by Fact 1.3.2

that the space used by A must be at least R→(INDEXN) = Ω(N) = Ω(p2) = Ω(n2).

For our next two results, we use reductions from STCONN-DAG. It is a simple exer-

cise to show that a one-pass streaming algorithm for STCONN-DAG requires Ω(n2) space.

31

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Guruswami and Onak [95] showed that a p-pass algorithm requires n1+Ω(1/p)/pO(1) space.2

Proposition 2.1.4. Solving ACYC requires Ω(n2) space in one pass and n1+Ω(1/p)/pO(1)

space in p passes.

Proof. Given a DAG G and specific vertices s, t, let G′ be obtained by adding edge (t, s) to

G. Then G′ is acyclic iff G has no s-to-t path. By the discussion above, the lower bounds

on ACYC follow.

Corollary 2.1.5. Solving TOPO-SORT in p passes requires n1+Ω(1/p)/(p+ 1)O(1) space.

Proof. Given a p-pass S-space algorithm A for TOPO-SORT, we can obtain a (p + 1)-

pass (S + O(n log n))-space algorithm for ACYC as follows. Run algorithm A, store the

ordering it outputs, and in another pass, check if the ordering induces any back-edge. If it

does, we output NO, and otherwise, we output YES. In case of any runtime error, we return

NO. For correctness, observe that if the input graph G is acyclic, then A returns a valid

topological ordering w.h.p.. Hence, the final pass doesn’t detect any back-edge, and we

correctly output YES. In case G is not acyclic, the promise that the input graph for TOPO-

SORT would be a DAG is violated, and hence, A either raises an error or returns some

ordering that must induce a back-edge since G doesn’t have a topological ordering. Thus,

we correctly return NO in this case. Finally, Proposition 2.1.4 implies that S+O(n log n) ≥

n1+Ω(1/p)/(p+ 1)O(1), i.e., S ≥ n1+Ω(1/p)/(p+ 1)O(1).

Corollary 2.1.6. A multiplicative approximation algorithm for either FAS-SIZE or FAS

requires Ω(n2) space in one pass. In p passes, such approximations require n1+Ω(1/p)/pO(1)

space and n1+Ω(1/p)/(p+ 1)O(1) space respectively.

Proof. This is immediate from Observation 2.1.1, Theorem 2.1.3, Proposition 2.1.4, and

Corollary 2.1.5.
2Although their paper states the lower bound for s-t connectivity in general digraphs, their proof in fact

shows the stronger result that the bound holds even when restricted to DAGs.

32

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Remark. Subsequent works have improved the multipass lower bound for adversarial order

STCONN-DAG, which in turn, improves the above lower bounds for TOPO-SORT, ACYC,

FAS, and FAS-SIZE. See Section 2.1.9 for a detailed discussion.

Random Order Lower Bounds. We consider the STCONN-DAG, ACYC, and FAS problems

in a uniformly randomly ordered digraph stream. Recall that for adversarially ordered

streams, these problems require about n1+Ω(1/p) space in p passes. The hardness ultimately

stems from a similar lower bound for the SHORTPATH-DAG problem. In this latter problem,

the input is an n-vertex DAG with two designated vertices vs and vt, such that either (a)

there exists a path of length at most 2p + 2 from vs to vt or (b) vt is unreachable from vs.

The goal is to determine which of these is the case.

Our goal in this section is to show that the same lower bound continues to hold under

random ordering, provided we insist on a sufficiently small error probability, about 1/pΩ(p).

We prove this for SHORTPATH-DAG. As this is a special case of STCONN-DAG, a lower

bound for SHORTPATH-DAG carries over to STCONN-DAG. Further, by the reductions in

Proposition 2.1.4 and Corollaries 2.1.5 and 2.1.6, the lower bounds also carry over to ACYC,

TOPO-SORT, and FAS. We also show a barrier result arguing that this restriction to low error

is necessary: for the SHORTPATH-DAG problem, if an error probability of at least 2/p! is

allowed, then Õ(n) space is achievable in p passes.

Our proof uses the machinery of the Guruswami–Onak lower bound for SHORTPATH-

DAG under an adversarial stream ordering [95]. As in their work, we derive our space lower

bound from a communication lower bound for set chasing intersection (henceforth, SCI).

However, unlike them, we need to prove a “robust” lower bound for SCI, in the sense of

Chakrabarti, Cormode, and McGregor [56], as explained below. To define SCI, we first set

up a special family of multilayer pointer jumping problems, described next.

Picture a layered digraphG∗ with 2k+1 layers of vertices, each layer havingm vertices,

laid out in a rectangular grid with each column being one layer. From left to right, the layers

33

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

are numbered −k,−k + 1, . . . , k. Layer 0 is called the mid-layer. The only possible edges

of G∗ are from layer ℓ to layer ℓ − 1, or from layer −ℓ to layer −ℓ + 1, for ℓ ∈ [k] (i.e.,

edges travel from the left and right ends of the rectangular grid towards the mid-layer). We

designate the first vertex in layer −k as vs and the first vertex in layer k as vt.

Each vertex not in the mid-layer has exactly t outgoing edges, numbered 1st through

tth, possibly with repetition (i.e., G∗ is a multigraph). Think of these edges as pointers. An

input to one of our communication problems (to be defined soon) specifies the destinations

of these pointers. Thus, an input consists of 2mkt tokens, where each token is an integer in

[m] specifying which of the m possibilities a certain pointer takes. The pointers emanating

from layer ℓ of vertices constitute the ℓth layer of pointers. Our communication games will

involve 2k players named P−k, . . . , P−1, P1, . . . , Pk. We say that Pℓ is the natural owner

of the portion of the input specifying the ℓth layer of pointers.

In the SCIm,k,t problem, the goal is to determine whether or not there exists a mid-layer

vertex reachable from vs as well as vt. Consider the communication game where each

pointer is known to its natural owner and the players must communicate in k − 1 rounds,

where in each round they broadcast messages in the fixed order P−1, . . . , P−k, P1, . . . , Pk.

Guruswami and Onak [95] showed that this problem requires a total communication cost

of Ω(m1+1/(2k)/k16 log3/2m) in the parameter regime t2k ≪ m. This almost immediately

implies a similar lower bound for SHORTPATH-DAG—simply reverse the directions of the

pointers in positive-numbered layers—which then translates into a data streaming lower

bound along standard lines.

The key twist in our version of the SCI problem is that each pointer is allocated to one

of the 2k players uniformly at random: thus, most pointers are not allocated to their natural

owners. The players have to determine the output to SCI communicating exactly in the

same pattern as before, up to a small error probability taken over the protocol’s internal

randomness as well as the random allocation. This setup potentially makes the problem

34

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

easier because there is a good chance that the players will be able to “jump two pointers”

within a single round. Our main technical result is to show that a lower bound of the form

m1+Ω(1/k) holds despite this. In the terminology of Chakrabarti et al. [56], who lower-

bounded a number of communication problems under such random-allocation setups, this

is a robust communication lower bound.

Theorem 2.1.7. Suppose that t2k = o(m/ polylog(m)) and that protocol Π solves SCIm,k,t

with error ε < (2k)−2k−2 when the input is randomly allocated amongst the 2k players, as

described above. Then, Π communicates Ω(m1+1/(2k)/k16 log3/2m) bits.

To prove this result, we consider a problem we call MPJ-MEETm,k,t, defined next (Gu-

ruswami and Onak called this problem OR ◦ LPCE). Consider an input G∗ to SCIm,k,t and

fix an i ∈ [t]. If we retain only the ith pointer emanating from each vertex, for each layer ℓ,

the ℓth layer of pointers defines a function fℓ,i : [n] → [n]. Let xi (respectively, yi) denote

the index of the unique mid-layered vertex reached from vs (respectively, vt) by following

the retained pointers. Formally,

xi = f−1,i(f−2,i(· · · f−k,i(1) · · ·)) , yi = f1,i(f2,i(· · · fk,i(1) · · ·)) .

Define a function to be r-thin if every element in its range has at most r distinct pre-

images. The instance G∗ is said to meet at i if xi = yi and is said to be r-thin at i if each

function fℓ,i is r-thin. The desired output of MPJ-MEET is

MPJ-MEET(G∗) =
t∨
i=1

1{G∗ meets at i} ∨ 1{G∗ is not (C logm)-thin at i} ,

for an appropriate universal constant C. The corresponding communication game allocates

each pointer to its natural owner and asks them to determine the output using the same

communication pattern as for SCI. Here is the key result about this problem.

35

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Lemma 2.1.8 (Lemma 7 of Guruswami–Onak [95]). The (k − 1)-round constant-error

communication complexity Rk−1(MPJ-MEETm,k,t) = Ω(tm/(k16 logm))−O(kt2).

Using this, we prove our main technical result.

Proof of Theorem 2.1.7. Based on the ε-error protocol Π for SCIm,k,t, we design a protocol

Q for MPJ-MEETm,k,t as follows. Let G∗ be an instance of MPJ-MEET allocated to players

as described above. The players first check whether, for some i, G∗ fails to be r-thin at i,

for r := C logm: this check can be performed in the first round of communication with

each player communicating a single bit. If the check passes, the protocol ends with output

1. From now on, we assume that G∗ is indeed r-thin at each i ∈ [t].

Using public randomness, the players randomly renumber the vertices in each layer of

G∗, creating an instance G′ of SCI.3 The players then choose ρ, a random allocation of

pointers as in the SCI problem. They would like to simulate Π on G′, as allocated by ρ,

but of course they can’t do so without additional communication. Instead, using further

public randomness, for each pointer that ρ allocates to someone besides its natural owner,

the players reset that pointer to a uniformly random (and independent) value in [m]. We

refer to such a pointer as damaged. Since there are 2k players, each pointer is damaged

with probability 1 − 1/(2k). Let G′′ denote the resulting random instance of SCI. The

players then simulate Π on G′′ as allocated by ρ.

It remains to analyze the correctness properties of Q. Suppose that G∗ is a 1-instance

of MPJ-MEET. Then there exists i ∈ [t] such that G∗ meets at i. By considering the unique

maximal paths out of vs and vt following only the ith pointers at each vertex, we see thatG∗

is also a 1-instance of SCI. Since the vertex renumbering preserves connectivity, G′ is also

a 1-instance of SCI. With probability (2k)−2k, none of the 2k pointers on these renumbered

paths is damaged; when this event occurs, G′′ is also a 1-instance of SCI. Therefore, Q
3This step is exactly as in Guruswami-Onak [95]. Formally, each function fℓ,i is replaced by a corre-

sponding function of form πℓ,i ◦ fℓ,i ◦ π−1
ℓ+1,i (for ℓ > 0), for random permutations πℓ,i : [m]→ [m]. To keep

things concise, we omit the full details here.

36

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

outputs 1 with probability at least (2k)−2k(1− err(Π)) ≥ (2k)−2k(1− ε).

Next, suppose that G∗ is a 0-instance of MPJ-MEET. It could be that G∗ is a 1-instance

of SCI. However, as Guruswami and Onak show,4 the random vertex renumbering ensures

that Pr[SCI(G′) = 1] < o(1). For the rest of the argument, assume that SCI(G′) = 0. In

order to have SCI(G′′) = 1, there must exist a mid-layer vertex x such that

f1,i1(f2,i2(· · · fk,ik(1) · · ·)) = x = f−1,j1(f−2,j2(· · · f−k,jk(1) · · ·)) (2.1)

for some choice of pointer numbers i1, . . . , ik, j1, . . . , jk ∈ [t]. We consider three cases.

• Case 1: None of the pointers in the above list is damaged. In this case, eq. (2.1)

cannot hold, because SCI(G′) = 0.

• Case 2: The layer-1 pointer in the above list is damaged. Condition on a particular

realization of pointers in negative-numbered layers and let x denote the mid-layered

vertex reached from vs by following pointers numbered jk, . . . , j1, as in eq. (2.1).

The probability that the damaged pointer at layer 1 points to x is 1/m. Since this

holds for each conditioning, the probability that SCI(G′′) = 1 is also 1/m.

• Case 3: The layer-ℓ pointer is damaged, but pointers in layers 1, . . . , ℓ − 1 are not,

where ℓ ≥ 2. Again, condition on a particular realization of pointers in negative-

numbered layers and let x be as above. Since the functions f in eq. (2.1) are all

r-thin, the number of vertices in layer ℓ − 1 that can reach x using only undamaged

pointers is at most rℓ−1 ≤ rk−1. The probability that the damaged pointer at layer ℓ

points to one of these vertices is at most rk−1/m.

Combining the cases, the probability that eq. (2.1) holds for a particular choice of

pointer numbers i1, . . . , ik, j1, . . . , jk ∈ [t] is at most rk−1/m. Taking a union bound over

4See the final paragraph of the proof of Lemma 11 in [95].

37

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

the t2k choices, the overall probability Pr[SCI(G′′) = 1] < t2krk−1/m = o(1), for the pa-

rameter regime t2k = o(m/ polylog(m)) and r = O(logm). Therefore, Q outputs 1 with

probability at most err(Π) + o(1) ≤ ε+ o(1).

Thus far, we have a protocolQ that outputs 1 with probability αwhen MPJ-MEET(G∗) =

0 and with probability β when MPJ-MEET(G∗) = 1, where α ≤ ε + o(1) and β ≥

(2k)−2k(1 − ε). Recall that ε = (2k)−2k−2, so β is bounded away from α. Let Q′ be a

protocol where we first toss an unbiased coin: if it lands heads, we output 0 with probabil-

ity δ := (α + β)/2 and 1 with probability 1 − δ; if it lands tails, we simulate Q. Then Q′

is a protocol for MPJ-MEET with error probability 1
2
− (β − α)/4. By Lemma 2.1.8, this

protocol must communicate Ω(m1+1/(2k)/k16 log3/2m) bits and so must Π.

By a standard reduction from random-allocation communication protocols to random-

order streaming algorithms, we obtain the following lower bound: the main result of this

section.

Theorem 2.1.9. For each constant p, a p-pass algorithm that solves SHORTPATH-DAG on

n-vertex digraphs whose edges presented in a uniform random order, erring with probabil-

ity at most 1/pΩ(p) must use Ω(n1+1/(2p+2)/ log3/2 n) bits of space.

Consequently, similar lower bounds hold for the problems STCONN-DAG, ACYC, TOPO-

SORT, FAS, and FAS-SIZE.

This paper is focused on directed graph problems. However, it is worth noting that

a by-product of our generalization of the Guruswami–Onak bound to randomly ordered

streams is that we also obtain the first random-order super-linear (in n) lower bounds for

two important undirected graph problems.

Corollary 2.1.10. For each constant p, n1+Ω(1/p) space is required to solve either of the

following problems in p passes, erring with probability at most 1/pΩ(p), over a randomly

ordered edge stream of an n-vertex undirected graph G:

38

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

• decide whether G contains a perfect matching;

• decide whether the distance between prespecified vertices vs and vt is at most 2p+2.

A Barrier Result. Notably, Theorem 2.1.9 applies only to algorithms with a rather small

error probability. This is inherent: allowing just a slightly larger error probability renders

the problem solvable in semi-streaming space. This is shown in the result below, which

should be read as a barrier result rather than a compelling algorithm.

Proposition 2.1.11. Given a randomly ordered edge stream of a digraphG, the SHORTPATH-

DAG problem on G can be solved using Õ(n) space and p passes, with error probability at

most 2/p! .

Proof. Recall that we’re trying to decide whether or notG has a path of length at most (2p+

2) from vs to vt. The high-level idea is that thanks to the random ordering, a “Bellman–

Ford” style algorithm that grows a forward path out of vs and a backward path out of vt is

very likely to make more than one step of progress during some pass.

To be precise, we maintain arrays ds and dt, each indexed by V . Initialize the arrays to

∞, except that ds[vs] = dt[vt] = 0. During each pass, we use the following logic.

for each edge (x, y) in the stream:

if ds[x] + dt[y] ≤ 2p+ 1: output TRUE and halt

ds[y]← min(ds[y], 1 + ds[x])

dt[x]← min(dt[x], 1 + dt[y])

If we complete p passes without any output, then we output FALSE.

If G has no short enough path from vs to vt, this algorithm will always output FALSE.

So let’s consider the other case, when there is a vs–vt path π of length at most 2p + 2. Let

vertex z be the midpoint of π, breaking ties arbitrarily if needed. The subpaths [vs, z]π and

[z, vt]π have lengths q and r, respectively, with q ≤ p + 1 and r ≤ p + 1. Notice that if

39

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

our algorithm is allowed to run for q (resp. r) passes, then ds[z] (resp. dt[z]) will settle to

its correct value. If both of them settle, then the algorithm correctly outputs TRUE. So, the

only nontrivial case is when q, r ∈ {p, p+ 1}.

Let Es be the event that the random ordering of the edges in the stream places the edges

of [vs, z]π in the exact reverse order of π. Let Et be the event that the random ordering

places the edges of [z, vt]π in the exact same order as π. If Es does not occur, then for

some two consecutive edges (w, x), (x, y) on [vs, z]π, the stream puts (w, x) before (x, y).

Therefore, once ds[w] settles to its correct value, the following pass will settle not just ds[x],

but also ds[y]; therefore, after q − 1 ≤ p passes, ds[z] is settled. Similarly, if Et does not

occur, then after r − 1 ≤ p passes, dt[z] is settled. As noted above, if both of them settle,

the algorithm correctly outputs TRUE.

Thus, the error probability ≤ Pr[Es ∨Et] ≤ Pr[Es] +Pr[Et] = 1/q! + 1/r! ≤ 2/p! , as

required.

2.1.5. Sink Finding in Tournaments

We now focus on tournaments, and begin with the sink-finding problem. A classical offline

algorithm for TOPO-SORT is to repeatedly find a sink v in the input graph (which must exist

in a DAG), prepend v to a growing list, and recurse on G \ v. Thus, SINK-FIND itself is a

fundamental digraph problem. Obviously, SINK-FIND can be solved in a single pass using

O(n) space by maintaining an “is-sink” flag for each vertex. Our results below show that

for arbitrary order streams this is tight, even for tournament graphs.

In fact, we say much more. In p passes, on the one hand, the space bound can be

improved to roughly O(n2/p). On the other hand, any p-pass algorithm requires about

Ω(n1/p) space. While these bounds don’t quite match, they reveal the correct asymp-

totics for the number of passes required to achieve polylogarithmic space usage: namely,

Θ(log n/ log log n).

In contrast, we show that if the stream is randomly ordered, then using polylog(n)

40

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

space and a single pass is sufficient. Thus, we establish an exponential separation between

the adversarial- and random-order streaming models.

Arbitrary Order Sink Finding. Let us first consider the setting where the stream order is

adversarial.

Theorem 2.1.12 (Multi-pass algorithm). For all p with 1 ≤ p ≤ log n, there is a (2p− 1)-

pass algorithm for SINK-FIND-T that uses O(n1/p log(3p)) space and has failure probabil-

ity at most 1/3.

Proof. Let the input digraph be G = (V,E). For a set S ⊆ V , let maxS denote the vertex

in S that has maximum in-degree. This can also be seen as the maximum vertex within S

according to the total ordering defined by the edge directions.

Our algorithm proceeds as follows.

• Initialization: Set s =
⌈
n1/p ln(3p)

⌉
. Let S1 be a set of s vertices chosen randomly

from V .

• For i = 1 to p− 1:

– During pass 2i − 1: Find vi = maxSi by computing the in-degree of each

vertex in Si.

– During pass 2i: Let Si+1 be a set of s vertices chosen randomly from {u :

(vi, u) ∈ E}.

• During pass 2p− 1: Find vp = maxSp by computing the in-degree of each vertex in

Sp.

For the sake of analysis, consider the quantity ℓi = |{u : (vi, u) ∈ E}|. Note that, for

each i ∈ [p],

Pr
[
ℓi > ℓi−1/n

1/p
]
= (1− 1/n1/p)s ≤ 1

3p
.

41

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Thus, by the union bound, ℓp = 0 with probability at least 1 − p/(3p) = 2/3. Note that

ℓp = 0 implies that vp is a sink.

We turn to establishing a multi-pass lower bound. Our starting point for this is the tree

pointer jumping problem TPJk,t, which is a communication game involving k players. To

set up the problem, consider a complete ordered k-level t-ary tree T ; we consider its root

z to be at level 0, the children of z to be at level 1, and so on. We denote the i-th child of

y ∈ V (T) by yi, the j-th child of yi by yi,j , and so on. Thus, each leaf of T is of the form

zi1,...,ik−1
for some integers i1, . . . , ik−1 ∈ [t].

An instance of TPJk,t is given by a function ϕ : V (T)→ [t] such that ϕ(y) ∈ {0, 1} for

each leaf y. The desired one-bit output is

TPJk,t(ϕ) := g(k)(z) = g(g(· · · g(z) · · ·)) ,where

g(y) :=


ϕ(y) , if y is a leaf,

yϕ(y) , otherwise.
(2.2)

For each j ∈ {0, . . . , k − 1}, Player j receives the input values ϕ(y) for each vertex y at

level j. The players then communicate using at most k − 1 rounds, where a single round

consists of one message from each player, speaking in the order Player k− 1, . . . , Player 0.

All messages are broadcast publicly (equivalently, written on a shared blackboard) and may

depend on public random coins. The cost of a round is the total number of bits communi-

cated in that round and the cost of a protocol is the maximum, over all rounds, of the cost of

a round. The randomized complexity Rk−1(TPJk,t) is the minimum cost of a (k− 1)-round

1
3
-error protocol for TPJk,t.

Combining the lower bound approach of Chakrabarti et al. [56] with the improved round

elimination analysis of Yehudayoff [171], we obtain the following lower bound on the

randomized communication complexity of the problem.

42

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Theorem 2.1.13. Rk−1(TPJk,t) = Ω(t/k).

Based on this, we prove the following lower bound.

Theorem 2.1.14 (Multi-pass lower bound). Any streaming algorithm that solves SINK-

FIND-T in p passes must use Ω(n1/p/p2) space.

Proof. We reduce from TPJk,t, where k = p + 1. We continue using the notations defined

above. At a high level, we encode an instance of TPJ in the directions of edges in a tour-

nament digraph G, where V (G) can be viewed as two copies of the set of leaves of T .

Formally,

V (G) = {⟨i1, . . . , ik−1, a⟩ : each ij ∈ [t] and a ∈ {0, 1}} .

We assign each pair of distinct vertices u, v ∈ V (G) to a level in {0, . . . , k− 1} as follows.

Suppose that u = ⟨i1, . . . , ik⟩ and v = ⟨i′1, . . . , i′k⟩. We assign {u, v} to level j − 1, where

j is the smallest index such that ij ̸= i′j . Given an instance of TPJk,t, the players jointly

create an instance of SINK-FIND-T as follows. For each j from k − 1 to 0, in that order,

Player j assigns directions for all pairs of vertices at level j, obtaining a set Ej of directed

edges, and then appends Ej to a stream. The combined stream Ek−1 ◦ · · · ◦E1 ◦E0 defines

the tournament G. It remains to define each set Ej precisely.

The set Ek−1 encodes the bits ϕ(y) at the leaves y of T as follows.

Ek−1 = {(⟨i1, . . . , ik−1, 1− a⟩, ⟨i1, . . . , ik−1, a⟩) ∈ V (G)2 : ϕ(zi1,...,ik−1
) = a} , (2.3)

Notice that if we ignore edge directions, Ek−1 is a perfect matching on V (G).

Now consider an arbitrary level j ∈ {0, . . . , k − 2}. Corresponding to each vertex

zi1,...,ij−1
at level j of T , we define the permutation πi1,...,ij−1

: [t]→ [t] thus:

(πi1,...,ij−1
(1), . . . , πi1,...,ij−1

(t)) = (1, . . . , ℓ− 1, ℓ+ 1, . . . , t, ℓ) ,

where ℓ = ϕ(zi1,...,ij−1
) . (2.4)

43

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Using this, we define Ej so as to encode the pointers at level j as follows.

Ej = {(⟨i1, . . . , ij−1, ij, . . . , ik⟩, ⟨i1, . . . , ij−1, i′j, . . . , i′k⟩) ∈ V (G)2 : π−1i1,...,ij−1
(ij) < π−1i1,...,ij−1

(i′j)} .

(2.5)

It should be clear that the digraph (V (G), E0 ∪ E1 ∪ · · · ∪ Ek−1) is a tournament. We

argue that it is acyclic. Suppose, to the contrary, that G has a cycle σ. Let j ∈ {0, . . . , k −

2} be the smallest-numbered level of an edge on σ. Then there exist h1, . . . , hj−1 such

that every vertex on σ is of the form ⟨h1, . . . , hj−1, ij, . . . , ik⟩. Let v(1), . . . , v(r) be the

vertices on σ whose outgoing edges belong to level j. For each q ∈ [r], let v(q) =

⟨h1, . . . , hj−1, i(q)j , . . . , i
(q)
k ⟩. Let π̂ = πh1,...,hj−1

. According to eq. (2.5),

π̂−1
(
i
(1)
j

)
< π̂−1

(
i
(2)
j

)
< · · · < π̂−1

(
i
(r)
j

)
< π̂−1

(
i
(1)
j

)
,

a contradiction.

It follows that G has a unique sink. Let v = ⟨h1, . . . , hk−1, a⟩ ∈ V (G) be this sink. In

particular, for each level j ∈ {0, . . . , k − 2}, all edges in Ej involving v must be directed

towards v. According to eq. (2.5), we must have π−1h1,...,hj−1
(hj) = t, i.e., πh1,...,hj−1

(t) = hj .

By eq. (2.4), this gives ϕ(zh1,...,hj−1
) = hj . Next, by eq. (2.2), this gives g(zh1,...,hj−1

) =

zh1,...,hj . Instantiating this observation for j = 0, . . . , k − 2, we have

zh1 = g(z), zh1,h2 = g(zh1), . . . , zh1,...,hk−1
= g(zh1,...,hk−2

) ,

i.e., zh1,...,hk−1
= g(k−1)(z).

At this point h1, . . . , hk−1 have been determined, leaving only two possibilities for v.

We now use the fact that the sole edge in Ek−1 involving v must be directed towards v.

According to eq. (2.3), ϕ(zh1,...,hk−1
) = a. Invoking eq. (2.2) again, a = ϕ(g(k−1)(z)) =

44

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

g(k)(z) = TPJk,t(ϕ).

Thus, the players can read off the desired output TPJk,t(ϕ) from the identity of the

unique sink of the constructed digraph G. Notice that n := |V (G)| = 2tk−1. It follows

that a (k − 1)-pass streaming algorithm for SINK-FIND-T that uses S bits of space solves

TPJk,t in k − 1 rounds at a communication cost of kS. By Theorem 2.1.13, we have S =

Ω(t/k2) = Ω(n1/(k−1)/k2).

Random Order Sink Finding. Now, we shift to the random stream-order setting and show

that it is possible to find the sink of an acyclic tournament in one pass while using only

polylog(n) space. The algorithm we consider is as follows:

• Initialization: Let S be a random set of s = 200 log n nodes.

• For i = 1 to k := log2

(
m

200000n logn

)
:

– Ingest the next ci := 100 · 2i(n − 1) log n elements of the stream: For each

v ∈ S, collect the set of edges Sv consisting of all outgoing edges; throw away

Sv if it exceeds size 220 log n

– Pick any v ∈ S, such that |Sv| = (200 ± 20) log n and let S be the endpoints

(other than v) of the edges in Sv

• Ingest the next m/1000 elements: find P the set of vertices w such that there exists

an edge uw for some u ∈ S

• Ingest the remaining 499m/500 elements: Output any vertex in P with no outgoing

edges.

Given a graph with a unique total ordering, we say a vertex u has rank rk(u) = r if it

occurs in the rth position in this total ordering.

Theorem 2.1.15. There is a single pass algorithm for SINK-FIND-T that usesO(polylog n)

space and has failure probability at most 1/3 under the assumption that the data stream is

45

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

randomly ordered.

Proof. We refer to the ci elements used in the iteration i as the ith segment of the stream.

For a node u, let Xu,i be the number of outgoing edges from u amongst the ith segment.

The following claim follows from the Chernoff bound:

Claim 2.1.16. With high probability, for all u with |rk(u)− n/2i| ≥ 0.2 · n/2i then

|Xu,i − 200 log n| > 0.1 · 200 log n .

With high probability, for all u with |rk(u)− n/2i| ≤ 0.05 · n/2i, then

|Xu,i − 200 log n| < 0.1 · 200 log n .

If follows from the claim that if after processing the ith segment of the stream there

exists a v such that |Sv| = (200± 20) log n then with high probability rk(u) = (1± 0.2) ·

n/2i. We next need to argue that there exists such a v.

Claim 2.1.17. With high probability, for every node u with rk(u) = (1 ± 0.2) · n/2i−1,

there exists an edge uv in the ith segment such that |rk(v)− n/2i| ≤ 0.05 · n/2i.

Proof. There are at least 0.01 · n/2i such edges. The probability that none of them exists

in the ith segment is at most (1− ci/m)0.01·n/2
i ≤ 1/ poly(n).

The above two claims allow us to argue by induction that we will have an element u

with rk(u) = (1± 0.2) · n/2i after the ith segment. At the end of the kth segment we have

identified at least (200− 20) log n vertices where every rank is at most (1 + 0.2) · n/2k =

O(log n). With probability at least 1 − 1/ poly(n) one of these vertices includes an edge

to the sink amongst the (k + 1) segment and hence the sink is in P with high probability.

There may be other vertices in P but the following claim shows that we will identify any

false positives while processing the final 499m/500 elements of the stream.

46

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Claim 2.1.18. With probability at least 1− 1/499, there exists at least once outgoing edge

from every node except the sink amongst the last 499m/500 elements of the stream

Proof of Claim. The probability no outgoing edge from the an element of rank r > 0

appears in the suffix of the stream is at most (1 − 499/500)r . Hence, by the union bound

the probability that there exists an element of rank r > 0 without an outgoing edge is at

most
∑

r≥1(1− 499/500)r = 1/499.

This concludes the proof of Theorem 2.1.15.

2.1.6. Feedback Arc Set in Tournaments

Accurate, One Pass, but Slow Algorithm for FAS-T. We shall now design an algorithm

for FAS-T (that also solves FAS-SIZE-T) based on linear sketches for ℓ1-norm estimation.

Recall that the ℓ1-norm of a vector x ∈ RN is ∥x∥1 =
∑

i∈[N] |xi|. A d-dimensional ℓ1-

sketch with accuracy parameter ε and error parameter δ is a distribution S over d × N

matrices, together with an estimation procedure Est : Rd → R such that

Pr
S←S

[
(1− ε)∥x∥1 ≤ Est(Sx) ≤ (1 + ε)∥x1∥

]
≥ 1− δ .

Such a sketch is “stream friendly” if there is an efficient procedure to generate a given

column of S and further, Est is efficient. Obviously, a stream friendly sketch leads to a

space and time efficient algorithm for estimating ∥x∥1 given a stream of entrywise updates

to x. We shall use the following specialization of a result of Kane et al. [113].

Fact 2.1.1 (Kane et al. [113]). There is a stream friendly d-dimensional ℓ1-sketch with

accuracy ε and error δ that can handle NO(1) many ±1-updates to x ∈ RN , with each

update taking O(ε−2 log ε−1 log δ−1 logN) time, with d = O(ε−2 log δ−1), and with entries

of the sketched vector fitting in O(logN) bits.

47

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Theorem 2.1.19. There is a one-pass algorithm for FAS-T that uses O(ε−2n log2 n) space

and returns a (1 + ε)-approximation with probability at least 2
3
, but requires exponential

post-processing time.

Proof. Identify the vertex set of the input graph G = (V,E) with [n] and put N =
(
n
2

)
. We

index vectors z in RN as zuv, where 1 ≤ u < v ≤ n. Define a vector x ∈ {0, 1}N based on

G and vectors yπ ∈ {0, 1}N for each permutation π : [n]→ [n] using indicator variables as

follows.

xuv = 1{(u, v) ∈ E} , yπuv = 1{π(u) < π(v)} .

A key observation is that the uv-entry of x− yπ is nonzero iff the edge between u and v is

a back edge of G according to the ordering π. Thus, |BG(π)| = ∥x− yπ∥1.

Our algorithm processes the graph stream by maintaining an ℓ1-sketch Sx with accu-

racy ε/3 and error δ = 1/(3 · n!). By Fact 2.1.1, this takes O(ε−2n log2 n) space and

O(ε−2 log ε−1n log2 n) time per edge.

In post-processing, the algorithm considers all n! permutations π and, for each of them,

computes S(x−yπ) = Sx−Syπ. It thereby recovers an estimate for ∥x−yπ∥1 and finally

outputs the ordering π that minimizes this estimate. By a union bound, the probability that

every estimate is (1±ε/3)-accurate is at least 1−n!·δ = 2/3. When this happens, the output

ordering provides a (1 + ε)-approximation to FAS-T by our key observation above.

Despite its “brute force” feel, the above algorithm is essentially optimal, both in its

space usage (unconditionally) and its post-processing time (in a sense we shall make precise

later). We address these issues in Section 2.1.6.

Multiple Passes: FAS-T in Polynomial Time. For a more time-efficient streaming algo-

rithm, we design one based on the KWIKSORT algorithm of Ailon et al. [7]. This (non-

streaming) algorithm operates as follows on a tournament G = (V,E).

• Choose a random ordering of the vertices: v1, v2, . . . , vn.

48

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

• Vertex v1 partitions V into two sub-problems {u : (u, v1) ∈ E} and {w : (v1, w) ∈

E}. At this point we know the exact place of v1 in the ordering.

• Vertex v2 further partitions one of the these sub-problems. Proceeding in this manner,

after v1, v2, . . . , vi are considered, there are i+ 1 sub-problems.

• Continue until all n vertices are ordered.

When vi is being used to divide a sub-problem we refer to it as a pivot.

Emulating KWIKSORT in the Data Stream Model. We will emulate KWIKSORT in p

passes over the data stream. In each pass, we will consider the action of multiple pivots.

Partition v1, . . . , vn into p groups V1, . . . , Vp, where V1 = {v1, . . . , vcn1/p logn}, V2 consists

of the next cn2/p log n vertices in the sequence, and Vj contains cnj/p log n vertices coming

after Vj−1. Here c is a sufficiently large constant. At the end of pass j + 1, we want to

emulate the effect of pivots in Vj+1 on the sub-problems resulting from considering pivots

in V1 through Vj . In order to do that, in pass j + 1 for each vertex v ∈ Vj+1 we store all

edges between v and vertices in the same sub-problem as v, where the sub-problems are

defined at the end of pass j.

The following combinatorial lemma plays a key role in analyzing this algorithm’s space

usage.

Lemma 2.1.20 (Mediocrity Lemma). In an n-vertex tournament, if we pick a vertex v

uniformly at random, then Pr[εn < din(v) < (1− ε)n] ≥ 1− 4ε.

Similarly, Pr[εn < dout(v) < (1− ε)n] ≥ 1− 4ε. In particular, with probability at

least 1/3, v has in/out-degree between n/6 and 5n/6.5

5The Mediocrity Lemma is tight: consider sets of vertices A,B,C where |A| = |C| = 2εn and |B| =
(1 − 4ε)n. Edges on B do not form any directed cycles. Subgraphs induced by A and C are balanced, i.e.,
the in-degree equals the out-degree of every vertex (where degrees here are considered within the subgraph).
All other edges are directed from A to B, from B to C, or from A to C. Then vertices with in/out-degrees
between εn and (1−ε)n are exactly the vertices in B, and a random vertex belongs to this set with probability
1− 4ε.

49

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Proof. Let H be a set of vertices of in-degree at least (1 − ε)n. Let h = |H|. On the one

hand,
∑

v∈H din(v) ≥ (1 − ε)nh. On the other hand, the edges that contribute to the in-

degrees of vertices in H have both endpoints in H or one endpoint in H and one in V \H .

The number of such edges is

∑
v∈H

din(v) ≤
(
h

2

)
+ h(n− h) = 1

2
(2nh− h2 − h) .

Therefore, (2nh− h2 − h)/2 ≥ (1− ε)nh. This implies h < 2εn.

Thus, the number of vertices with in-degree at least (1 − ε)n (and out-degree at most

εn) is h < 2εn. By symmetry, the number of vertices with out-degree at least (1 − ε)n

(and in-degree at most εn) is also less than 2εn. Thus, the probability a random vertex has

in/out-degree between εn and (1− ε)n is (n− 2h)/n > (n− 2 · 2εn)/n = 1− 4ε.

Space Analysis. Let Mj be the maximum size of a sub-problem after pass j. The number

of edges collected in pass j+1 is then at most Mj|Vj+1|. By Lemma 2.1.21 (below), this is

at most cn1+1/p log n. Once the post-processing of pass j + 1 is done, the edges collected

in that pass can be discarded.

Lemma 2.1.21. With high probability, Mj ≤ n1−j/p for all j.

Proof. Let M v
j denote the size of the sub-problem that contains v, after the jth pass. We

shall prove that, for each v, Pr[M v
j > n1−j/p] ≤ 1/n10. The lemma will then follow by a

union bound.

Take a particular vertex v. If, before the jth pass, we already have M v
j−1 ≤ n1−j/p,

there is nothing to prove. So assume that M v
j−1 > n1−j/p. Call a pivot “good” if it reduces

the size of the sub-problem containing v by a factor of at least 5/6. A random pivot falls

in the same sub-problem as v with probability at least n1−j/p/n; when this happens, by

the Mediocrity Lemma, the probability that the pivot is good is at least 1/3. Overall, the

probability that the pivot is good is at least n−j/p/3.

50

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

In the jth pass, we use cnj/p log n pivots. If at least log6/5 n of them are good, we

definitely have M v
j ≤ n1−j/p. Thus, by a Chernoff bound, for a sufficiently large c, we

have

Pr
[
M v

j > n1−j/p] ≤ Pr
[
Bin

(
cnj/p log n, n−j/p/3

)
< log6/5 n

]
≤ 1/n10 .

Theorem 2.1.22. There exists a polynomial time p-pass data stream algorithm using Õ(n1+1/p)

space that returns a 3-approximation (in expectation) for FAS-T. In particular, there is a

log n-pass semi-streaming algorithm for 3-approximate FAS-T.

Proof. The pass/space tradeoff follows from Lemma 2.1.21 and the discussion above it;

the approximation factor follows directly from the analysis of Ailon et al. [7]. The second

part follows by substituting p = log n.

A Space Lower Bound. Both our one-pass algorithm and the O(log n)-pass instantiation

of our multi-pass algorithm use at least Ω(n) space. For FAS-SIZE-T, where the desired

output is a just a number, it is reasonable to ask whether o(n)-space solutions exist. We

now prove that they do not.

Proposition 2.1.23. Solving ACYC-T is possible in one pass and O(n log n) space. Mean-

while, any p-pass solution requires Ω(n/p) space.

Proof. For the upper bound, we maintain the in-degrees of all vertices in the input graph

G. Since G is a tournament, the set of in-degrees is exactly {0, 1, . . . , n − 1} iff the input

graph is acyclic.

For the lower bound, we reduce from DISJN,N/3. Alice and Bob construct a tournament

T on n = 7N/3 vertices, where the vertices are labeled {v1, . . . , v2N , w1, . . . , wN/3}. Alice,

based on her input x, adds edges (v2i, v2i−1) for each i ∈ x. For each remaining pair

(i, j) ∈ [2N] × [2N] with i < j, she adds the edge (vi, vj). Let a1 < · · · < aN/3 be the

51

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

sorted order of the elements in Bob’s set y. For each k = aℓ ∈ y, Bob defines the alias

v2N+k = wℓ and then adds the edges

Ek = {(vi, v2N+k) : 1 ≤ i ≤ 2k − 1} ∪ {(v2N+k, vj) : 2k ≤ j ≤ 2N} .

Finally, he adds the edges {(wi, wj) : 1 ≤ i < j ≤ N/3}. This completes the

construction of T .

We claim that the tournament T is acyclic iff x ∩ y = ∅. The “only if” part is direct

from construction, since if x and y intersect at some index k ∈ [N], we have the directed

cycle (v2k, v2k−1, v2N+k, v2k). For the “if” part, let σ be the ordering (v1, . . . , v2N) and let

T ′ = Tou(σ), as defined in Section 2.1.3. We show how to modify σ into a topological

ordering of T , proving that T is acyclic. Observe that, by construction, the tournament

T \{w1, . . . , wN/3} can be obtained from T ′ by flipping only the edges (v2i−1, v2i) for each

i ∈ x. Each time we perform such an edge flip, we modify the topological ordering of

T ′ by swapping the associated vertices of the edge. The resultant ordering would still be

topological as the vertices were consecutive in the ordering before the flip. Thus, after per-

forming these swaps, we get a topological ordering of T \ {w1, . . . , wN/3}. Now, consider

some k ∈ y. Since x ∩ y = ∅, k /∈ x and so, v2k succeeds v2k−1 in this ordering, just

as in σ, since we never touched these two vertices while performing the swaps. Thus, for

each such k, we can now insert v2N+k between v2k−1 and v2k in the ordering and obtain a

topological ordering of T . This proves the claim.

Thus, given a p-pass solution to ACYC-T using s bits of space, we obtain a protocol for

DISJN,N/3 that communicates at most (2p − 1)s bits. By Fact 1.3.3, (2p − 1)s = Ω(N) =

Ω(n), i.e., s = Ω(n/p).

Theorem 2.1.24. A p-pass multiplicative approximation for FAS-SIZE-T requires Ω(n/p)

space.

Proof. This is immediate from Observation 2.1.1 and proposition 2.1.23.

52

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

A Query Lower Bound. Let us now consider the nature of the post-processing performed

by our one-pass FAS-T algorithm in Section 2.1.6. During its streaming pass, that algorithm

builds an oracle based on G that, when queried on an ordering σ, returns a fairly accurate

estimate of |BG(σ)|. It proceeds to query this oracle n! times to find a good ordering. This

raises the question: is there a more efficient way to exploit the oracle that the algorithm has

built? A similar question was asked in Bateni et al. [34] in the context of using sketches for

the maximum coverage problem.

Were the oracle exact—i.e., on input σ it returned |BG(σ)| exactly—then two queries

to the oracle would determine which of (i, j) and (j, i) was an edge in G. It follows that

O(n log n) queries to such an exact oracle suffice to solve FAS-T and FAS-SIZE-T. How-

ever, what we actually have is an ε-oracle, defined as one that, on query σ, returns β̂ ∈ R

such that (1 − ε)|BG(σ)| ≤ β̂ ≤ (1 + ε)|BG(σ)|. We shall show that an ε-oracle cannot

be exploited efficiently: a randomized algorithm will, with high probability, need exponen-

tially many queries to such an oracle to solve either FAS-T or FAS-SIZE-T.

To prove this formally, we consider two distributions on n-vertex tournaments, defined

next.

Definition 2.1.25. Let Dyes,Dno be distributions on tournaments on [n] produced as fol-

lows. To produce a sample from Dyes, pick a permutation π of [n] uniformly at random;

output Tou(π). To produce a sample from Dno, for each i, j with 1 ≤ i < j ≤ n, indepen-

dently at random, include edge (i, j) with probability 1
2
; otherwise include edge (j, i).

Let σ be an ordering of [n]. By linearity of expectation, if T is sampled from either

Dyes or Dno,

E|BT (σ)| = m :=
1

2

(
n

2

)
.

In fact, we can say much more.

Lemma 2.1.26. There is a constant c such that, for all ε > 0, sufficiently large n, a fixed

53

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

ordering σ on [n], and random T drawn from either Dyes or Dno,

Pr [(1− ε)m < |BT (σ)| < (1 + ε)m] ≥ 1− 2−cε
2n .

Proof. When T ← Dno, the random variable |BT (σ)| has binomial distribution Bin(2m, 1
2
),

so the claimed bound is immediate.

Let T ← Dyes. Partition the edges of the tournament into perfect matchingsM1, . . . ,Mn−1.

For each i ∈ [n− 1], let Xi be the number of back edges of T involving Mi, i.e.,

Xi = |{(u, v) ∈Mi : either (u, v) ∈ BT (σ) or (v, u) ∈ BT (σ)}| .

Notice that Xi ∼ Bin(n/2, 1
2
), whence

Pr
[
(1− ε)n/4 < Xi <

1
2
(1 + ε)n/4

]
≥ 1− 2bε

2n ,

for a certain constant b. By a union bound, the probability that all of the Xis are between

these bounds is at least 1 − (n − 1)2−bε
2n ≥ 1 − 2−cε

2n, for suitable c. When this latter

event happens, we also have (1− ε)m < |BT (σ)| = 1
2

∑n−1
i=1 Xi < (1 + ε)m.

We define a (q, ε)-query algorithm for a problem P to be one that access an input

digraph G solely through queries to an ε-oracle and, after at most q such queries, outputs

its answer to P (G). We require this answer to be correct with probability at least 2
3
.

Now consider the particular oracle OT,ε, describing an n-vertex tournament T , that

behaves as follows when queried on an ordering σ.

• If (1− ε/2)m < |BT (σ)| < (1 + ε/2)m, then return m.

• Otherwise, return |BT (σ)|.

Clearly, OT,ε is an ε-oracle. The intuition in the next two proofs is that this oracle makes

life difficult by seldom providing useful information.

54

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Proposition 2.1.27. Every (q, ε)-query algorithm for TOPO-SORT-T makes exp(Ω(ε2n))

queries.

Proof. WLOG, consider a (q, ε)-query algorithm, A, that makes exactly q queries, the last

of which is its output. Using Yao’s minimax principle, fix A’s random coins, obtaining a

deterministic (q, ε)-query algorithm A′ that succeeds with probability ≥ 2
3

on a random

tournament T ← Dyes. Let σ1, . . . , σq be the sequence of queries that A′ makes when the

answer it receives from the oracle to each of σ1, . . . , σq−1 is m.

Suppose that the oracle supplied to A′ is OT,ε. Let E be the event that A′’s query se-

quence is σ1, . . . , σq and it receives the responsem to each of these queries. For a particular

σi,

Pr[OT,ε(σi) = m] = Pr[(1− ε/2)m < |BT (σi)| < (1 + ε/2)m] ≥ 1− 2−bε
2n

for a suitable constant b, by Lemma 2.1.26. Thus, by a union bound, Pr[E] ≥ 1 −

q2−bε
2n.

When E occurs, A′ must output σq, but E itself implies that |BT (σq)| ̸= 0, so A′ errs.

Thus, the success probability of A′ is at most 1 − Pr[E] ≤ q2−bε
2n. Since this probability

must be at least 2
3
, we need q ≥ 2

3
· 2bε2n = exp(Ω(ε2n)).

Proposition 2.1.28. Every (q, ε)-query algorithm for ACYC-T makes exp(Ω(ε2n)) queries.

Proof. We proceed similarly to Proposition 2.1.27, except that we require the deterministic

(q, ε)-query algorithmA′ to succeed with probability at least 2
3

on a random T ← 1
2
(Dyes+

Dno). We view T as being chosen in two stages: first, we pick Z ∈R {yes, no} uniformly

at random, then we pick T ← DZ .

Define σ1, . . . , σq and E as before. So Pr[E] ≥ 1 − q2−bε2n. When E occurs, A′ must

output some fixed answer, either “yes” or “no.” We consider these cases separately.

Suppose that A′ outputs “no,” declaring that T is not acyclic. Then A′ errs whenever

55

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

Z = yes and E occurs. The probability of this is at least 1
2
− q2−bε2n, but it must be at most

1
3
, requiring q = exp(Ω(ε2n)).

Suppose that A′ outputs “yes” instead. Then it errs when Z = no, T is cyclic, and E

occurs. Since

Pr[T acyclic | Z = no] = n!/2(
n
2) = exp(−Ω(n2)) ,

we have 1
3
≥ Pr[A′ errs] ≥ 1

2
− exp(−Ω(n2))− q2−bε2n, requiring q = exp(Ω(ε2n)).

Theorem 2.1.29. A (q, ε)-query algorithm that gives a multiplicative approximation for

either FAS-T or FAS-SIZE-T must make q = exp(Ω(ε2n)) queries.

Proof. This is immediate from Observation 2.1.1 and propositions 2.1.27 and 2.1.28.

2.1.7. Topological Ordering in Random Graphs

We present results for computing a topological ordering of G ∼ PlantDAGn,q (see Defi-

nition 2.1.2). We first present an O(log n)-pass algorithm using Õ(n4/3) space. We then

present a one-pass algorithm that uses Õ(n3/2) space and requires the assumption that the

stream is in random order.

Arbitrary Order Algorithm. Here, we present two different algorithms. The first is appro-

priate when q is large whereas the second is appropriate when q is small. Combining these

algorithms and considering the worst case value of q yields the algorithm using Õ(n4/3)

space.

Algorithm for large q. The basic approach is to emulate QuickSort. We claim that

we can find the relationship between any vertex u among n vertices and a predetermined

vertex v using three passes and O(n + q−3 log n) space. Assuming this claim, we can

sort in O(log(q2n)) passes and Õ(n/q) space: we recursively partition the vertices and

suppose at the end of a phase we have sub-problems of sizes n1, n2, n3, Any sub-

problem with at least 1/q2 vertices is then sub-divided by picking Θ(log n) random pivots

56

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

(with replacement) within the sub-problems using the aforementioned three pass algorithm.

There are at most q2n such sub-problems. Hence, the total space required partition all the

sub-problems in this way is at most

O

log n

q2n∑
i=1

(ni + q−3 log n)

 = O(nq−1 log2 n) .

Note that the size of every sub-problem decreases by a factor at least 2 at each step with

high probability and hence after log(q2n) iterations, all sub-problems have at most 1/q2

vertices. Furthermore, each vertex degree is O(1/q · log n) in each sub-problem. Hence,

the entire remaining instance can be stored using O(n/q · log n) space.

It remains to prove our three-pass claim. For this, we define the following families of

sets:

Li = {u : ∃ u-to-v path of length ≤ i} , Ri = {u : ∃ v-to-u path of length ≤ i} .

We shall call an edge critical if it lies on a directed Hamiltonian path of length n − 1 in a

DAG. Using two passes and O(n log n) space we can identify L2 and R2 using O(n log n)

space. Let U be the set of vertices not contained in L2 ∪ R2. The following lemma (which

can be proved via Chernoff bounds) establishes that L2 ∪ R2 includes most of the vertices

of the graph with high probability.

Lemma 2.1.30. With high probability, |U | = O(q−2 log n).

In a third pass, we store every edge between vertices in U and also compute L3 and

R3. Computing L3 and R3 requires only O(n log n) space. There is an edge between each

pair of vertices in U with probability q and hence, the expected number of edges between

vertices in U is at most q|U |2 = O(q−3 log2 n). By an application of the Chernoff Bound,

this bound also holds w.h.p. Note that L3, R3, and the edges within U suffice to determine

57

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

whether u ∈ L∞ or u ∈ R∞ for all u. To see this first suppose u ∈ L∞ and that (u,w) is

the critical edge on the directed path from u to v. Either w ∈ L2 and therefore we deduce

u ∈ L3; or u ∈ L2; or u ̸∈ L2 and w ̸∈ L2 and we therefore store the edge (u,w).

This establishes the following lemma.

Lemma 2.1.31. There is a O(log n)-pass, Õ(n/q)-space algorithm for TOPO-SORT on a

random input graph G ∼ PlantDAGn,q.

Algorithm for small q. We use only two passes. In the first pass, we compute the in-degree

of every vertex. In the second, we store all edges between vertices where the in-degrees

differ by at most 3
√
cnq · lnn where c > 0 is a sufficiently large constant.

Lemma 2.1.32. There is a two-pass, Õ(n3/2√q)-space algorithm for TOPO-SORT on a

random input graph G ∼ PlantDAGn,q.

Proof. We show that, with high probability, the above algorithm collects all critical edges

and furthermore only collects Õ(n3/2√q) edges in total. Let u be the element of rank ru.

Note that din(u) has distribution 1+Bin(ru−2, q). LetXu = din(u)−1. By an application

of the Chernoff Bound,

Pr
[
|Xu − (ru − 2)q| ≥

√
c(ru − 2)q lnn

]
≤ 1/ poly(n) .

Hence, w.h.p., ru = 2 + Xu/q ±
√
cn/q · lnn for all vertices u. Therefore, if (u, v) is

critical, then

|Xu−Xv| ≤ |Xu− (ru−2)q|+ |(ru−2)q− (rv−2)q|+ |Xv− (rv−2)q| ≤ 3
√
cnq · lnn .

This ensures that the algorithm collects all critical edges. For the space bound, we first

58

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

observe that for an arbitrary pair of vertices u and v, if |Xu −Xv| ≤ 3
√
cnq · lnn then

|ru − rv| ≤ |Xu −Xv|/q + 2
√
cn/q · lnn ≤ 8

√
cn/q · lnn .

Hence, we only store an edge between vertex u and vertices whose rank differs by at most

8
√
cn/q · lnn. Since edges between such vertices are present with probability q, the ex-

pected number of edges stored incident to u is 8
√
cnq · lnn and is O(

√
nq · lnn) by an

application of the Chernoff bounds. Across all vertices this means the number of edges

stored is O(n3/2
√
q · lnn) as claimed.

Combining Lemma 2.1.31 and Lemma 2.1.32 yields the main theorem of this section.

Theorem 2.1.33. There is an O(log n)-pass algorithm for TOPO-SORT on a random input

G ∼ PlantDAGn,q that uses Õ(min(n/q, n3/2√q) space. For the worst-case over q, this is

Õ(n4/3).

Random Order Algorithm. The transitive reduction of a DAG G = (V,E) is the minimal

subgraph Gred = (V,E ′) such that, for all u, v ∈ V , if G has a u-to-v path, then so does

Gred. So if G has a Hamiltonian path, Gred is this path.

The one-pass algorithm assuming a random ordering of the edges is simply to maintain

Gred as G is streamed in, as follows. Let S be initially empty. For each edge (u, v) in the

stream, we add (u, v) to S and then remove all edges (u′, v′) where there is a u′-to-v′ path

among the stored edges.

Theorem 2.1.34. There is a one-pass Õ(maxq̂≤qmin{n/q̂, n2q̂})-space algorithm for TOPO-

SORT on inputs G ∼ PlantDAGn,q presented in random order. In the worst case this space

bound is Õ(n3/2).

Proof. Consider the length-T prefix of the stream where the edges of G are presented in

random order. It will be convenient to write T = n2q̂. We will argue that the number of

59

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

edges in the transitive reduction of this prefix is O(min{n/q̂, n2q̂}) with high probability;

note the bound n2q̂ follows trivially because the transitive reduction has at most T edges.

The result then follows by taking the maximum over all prefixes.

We say an edge (u, v) ofG is short if the difference between the ranks is rv−ru ≤ τ :=

cq̂−2 log n where c is some sufficiently large constant. An edge that is not short is defined

to be long. Let S be the number of short edges in G and let M be the total number of edges

in G. Note that E[S] ≤ (n − 1) + qτn and E[M] = (n − 1) + q
(
n−1
2

)
. By the Chernoff

bound, S ≤ 2qτn and n2q/4 ≤ M ≤ n2q with high probability. Furthermore, the number

of short edges in the prefix is expected to be T · S/M and, with high probability, is at most

2T · S/M ≤ 4Tqτn

n2q/4
= 16cn/q̂ · log n .

Now consider how many long edges are in the transitive reduction of the prefix. For any

long edge (u, v), let Xw denote the event that (u,w), (w, v) are both in the prefix. Note that

the variables {Xw}w:ru+1≤rw≤rv−1 are negatively correlated and that

Pr [Xw = 1] ≥ (qT/M)2/2 ≥ q̂2/2 .

Hence, if X =
∑

w:ru+1≤rw≤rv−1Xw then

E[X] ≥ cq̂−2 log n · q̂2/2 = c/2 · log n

and so, by the Chernoff bound, X > 0 with high probability and if this is the case, even

if (u, v) is in the prefix, it will not be in the transitive reduction of the prefix. Hence, by

the union bound, with high probability no long edges exist in the transitive closure of the

prefix.

60

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

2.1.8. Rank Aggregation

Recall the RANK-AGGR problem and the distance d between permutations, defined in Sec-

tion 2.1.3. To recap, the distance between two orderings is the number of pairs of objects

which are ranked differently by them, i.e.,

d(π, σ) :=
∑
a,b∈[n]

1{π(a) < π(b), σ(b) < σ(a)} .

Note that RANK-AGGR is equivalent to finding the median of a set of k points under this

distance function, which can be shown to be metric. It follows that picking a random

ordering from the k input orderings provides a 2-approximation for RANK-AGGR.

A different approach is to reduce RANK-AGGR to the weighted feedback arc set problem

on a tournament. This idea leads to a (1 + ε)-approximation via ℓ1-norm estimation in a

way similar to the algorithm in Section 2.1.6. Define a vector x of length
(
n
2

)
indexed by

pairs of vertices {a, b} where

xa,b =
k∑
i=1

1{σi(a) < σi(b)} ,

i.e., the number of input orderings that have a < b. Then for any ordering π define a vector

yπ, where for each pair of vertices {a, b},

yπa,b = k · 1{π(a) < π(b)} .

It is easy to see that ∥x− yπ∥1 = cost(π).

As in Section 2.1.6, our algorithm maintains an ℓ1-sketch Sx with accuracy ε/3 and

error δ = 1/(3 · n!). By Fact 2.1.1, this requires at most O(ε−2n log2 n) space. In post-

processing, the algorithm considers all n! permutations π and, for each of them, computes

S(x− yπ) = Sx− Syπ. It thereby recovers an estimate for ∥x− yπ∥1 and finally outputs

61

2.1 DIRECTED GRAPH PROBLEMS CLASSICAL GRAPH STREAMING

the ordering π that minimizes this estimate.

The analysis of this algorithm is essentially the same as in Theorem 2.1.19. Overall,

we obtain the following result.

Theorem 2.1.35. There is a one-pass algorithm for rank aggregation that usesO(ε−2n log2 n)

space, returns a (1+ ε)-approximation with probability at least 2
3
, but requires exponential

post-processing time.

2.1.9. Subsequent Works

Subsequent to our work, a number of works studied the multipass-streaming complexity of

the s–t reachability problem. They showed stronger lower bounds that also apply for the

related problems of ACYC, TOPO-SORT, and FAS. Assadi and Raz [20] showed that any

two-pass streaming algorithm for s–t reachability on adversarial-order streams requires

almost linear (in the number of edges), i.e., Ω(n2−o(1)) space, which significantly improves

upon the Ω(n7/6)-space lower bound of Guruswami and Onak. Chen et al. [66] then further

improved the lower bound to show that the requirement of Ω(n2−o(1)) space holds for any

o(
√
log n)-pass algorithm.

Baweja, Jia, and Woodruff [35] improved upon our 3-approximation for FAS to give

a polynomial-time (1 + ε)-approximation using p passes and O(n1+1/p) space. They also

considered the problems of checking whether an input digraph is strongly connected (SCC)

and finding the strongly connected components of a digraph (SCC-FIND). For each prob-

lem, they designed a (p+1)-pass algorithm using O(n1+1/p)-space. By reduction from the

SCI problem, they showed lower bounds for the SCC and SCC-FIND problems with similar

tradeoffs as our lower bounds for reachability and other problems, i.e., SCC and SCC-FIND

require n1+Ω(1/p)/pO(1) space for p passes. Their work also provides some single-pass

lower bound results: for digraphs on m edges, the problems SCC, ACYC, and determining

whether there exists a path from a fixed vertex s to every other vertex in the graph, all

require Ω(m log(n2/m)) space.

62

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Section 2.2

Graph Coloring

We now turn to the problem of vertex-coloring in the classical streaming model. Unlike the

problems considered in the last section, this one is on undirected graphs. As we shall see,

however, the concept of vertex orderings studied in the last section will play an important

role in the design and analysis of our algorithms here as well.

Graph coloring is a fundamental topic in combinatorics and the corresponding algo-

rithmic problem of coloring an input graph with few colors is a basic and heavily stud-

ied problem in computer science. It has numerous applications including in schedul-

ing [126, 132, 165], air traffic flow management [33], frequency assignment in wireless

networks [24, 149], and register allocation [52, 53, 68]. More recently, vertex coloring has

been used to compute seed vertices in social networks that are then expanded to detect

community structures in the network [143].

Given an n-vertex graph G = (V,E), the task is to assign colors to the vertices in V

so that no two vertices that share an edge get the same color. Doing so with the minimum

possible number of colors—called the chromatic number, χ(G)—is famously hard: it is

NP-hard to even approximate χ(G) to a factor of n1−ε for any constant ε > 0 [80,120,173].

In the face of this hardness, it is algorithmically interesting to color G with a possibly

suboptimal number of colors depending upon tractable parameters of G. One such simple

parameter is ∆, the maximum degree. A trivial greedy algorithm colors G with ∆ + 1

colors: go over the nodes in some arbitrary order and assign to each node the first color in

[∆+1] that is not already assigned to any of its neighbors (there is always an available color

since a node has at most ∆ neighbors). This algorithm, however, uses linear space and time,

which is bad news for massive real-world graphs. Thus, coloring with “about ∆” colors is

a fairly non-trivial problem in sublinear settings such as streaming and graph query (also

63

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

called sublinear time). Further, the greedy algorithm is inherently sequential. In parallel or

distributed computing models, it is a challenging and one of the most extensively studied

problems (see for a more detailed discussion).

In a joint work with S.K. Bera [44], we initiated the study of graph coloring in the

streaming model and obtained a ∆(1 + o(1))-coloring algorithm in semi-streaming space.

A parallel breakthrough work (awarded Best Paper at SODA 2019) by Assadi, Chen, and

Khanna [17] then gave a tight (∆+1)-coloring semi-streaming algorithm. Such a coloring,

however, might sometimes use excessively larger number of colors than the optimal: think

of star graph on n nodes which is 2-colorable but a (∆+ 1)-coloring might use as many as

n colors. This is the case for most sparse graphs in particular. Can we do better for such

graphs?

Here, we focus on colorings that use “about κ” colors, where κ = κ(G) is the degener-

acy of G, a parameter that improves upon ∆. It is defined as follows: κ = min{k : every

induced subgraph of G has a vertex of degree at most k}. By definition, κ ≤ ∆. There is a

simple greedy (κ + 1)-coloring algorithm analogous to the offline (∆ + 1)-coloring algo-

rithm mentioned above that runs using linear time and space; see Section 2.2.3. However,

just as before, when processing a massive graph under the constraints of the space-bounded

streaming model or the sublinear time and distributed computing models, the inherently se-

quential nature of the greedy algorithm makes it infeasible. We overcome this barrier with

a very simple framework: decompose the graph into smaller subgraphs or blocks so as to

store all the blocks in our limited memory, and then run the greedy algorithm on each block.

We show that this basic framework suffices for obtaining a coloring with κ(1+o(1)) colors

in semi-streaming space. Our analysis is simple, thanks to the concept of vertex orderings

from the last section. Further, we show wide applicability of our framework: it can be eas-

ily implemented in the sublinear time and distributed computing models to obtain efficient

colorings that improve upon the state of the art.

64

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Degeneracy is closely related to the arboricity parameter α of the graph, defined as the

minimum number of forests into which the edges of G can be partitioned. Arboricity is

more well-studied in the literature in the context of graph coloring: a long line of work has

studied arboricity-based colorings in the dynamic and distributed models in order to save

colors for sparse graphs. Every graph is 2α-colorable, and it is an easy exercise to show

that α ≤ κ ≤ 2α − 1. Our κ(1 + o(1))-coloring not only provides a tighter bound on the

number of colors, but also has simpler analysis than the corresponding 2α orO(α)-coloring

algorithms. Our work thus conveys an important conceptual message that degeneracy is a

better parameter than arboricity in the context of graph coloring.

On the other hand, we give a number of lower bounds showing that, despite its sim-

plicity, our algorithmic framework does about as good a job as any one-pass streaming

algorithm can. In particular, no such algorithm can achieve (κ + O(1))-colorings without

spending Ω(n2) space. Importantly, our lower bounds hold even if the value of the degen-

eracy κ of the graph is known to the algorithm in advance. At the same time, our upper

bounds do not make any such assumptions.

2.2.1. Our Results and Techniques

Streaming Algorithm. We design a semi-streaming κ(1+o(1))-coloring algorithm. More

formally, we prove the following theorem.

Theorem 2.2.1. (Short version of Theorem 2.2.8) There is a one-pass algorithm that pro-

cesses a dynamic (i.e., insert-delete) graph stream using using Õ(n) space and, with high

probability, produces a κ(1 + o(1))-coloring. The post-processing at the end of the stream

takes Õ(n) time.

We briefly contrast this result with the previously known result of Assadi, Chen, and

Khanna [17], which gives a (∆+ 1)-coloring (see Section 2.2.2 for more detailed compar-

isons). As we have noted, κ ≤ ∆ in every case; indeed, κ could be arbitrarily better than

65

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

∆ as shown by the example of a star graph, where κ = 1 whereas ∆ = n − 1. From a

practical standpoint, it is notable that in many real-world large graphs drawn from various

application domains—such as social networks, web graphs, and biological networks—the

parameter κ is often significantly smaller than ∆. See Table 2.2 for some concrete num-

bers. Thus, our color bound is much better than [17] for a large class of graphs. That said,

κ+ o(κ) is mathematically incomparable with ∆+ 1.

Graph Name |V | |E| ∆ κ

soc-friendster 66M 2B 5K 305
fb-uci-uni 59M 92M 5K 17

soc-livejournal 4M 28M 3K 214
soc-orkut 3M 106M 27K 231

web-baidu-baike 2M 18M 98K 83
web-hudong 2M 15M 62K 529

web-wikipedia2009 2M 5M 3K 67
web-google 916K 5M 6K 65

bio-mouse-gene 43K 14M 8K 1K
bio-human-gene1 22K 12M 8K 2K
bio-human-gene2 14K 9M 7K 2K
bio-WormNet-v3 16K 763K 1K 165

Table 2.2: Statistics of several large real-world graphs taken from the application do-
mains of social networks, web graphs, and biological networks, showing that the de-
generacy, κ, is often significantly smaller than the maximum degree, ∆. Source: http:
//networkrepository.com [154].

Streaming Lower Bounds. Recall that any graph with degeneracy κ has a proper (κ +

1)-coloring. Perhaps, analogous to Assadi et al.’s (∆ + 1)-coloring algorithm [17], we

could improve our algorithm’s color bound all the way to κ + 1? We prove that this is

not possible in sublinear space. In fact, our lower bounds prove more. We show that

distinguishing n-vertex graphs of degeneracy κ from those with chromatic number κ + 2

requires Ω(n2) space. This means that, in particular, it is hard to produce a (κ+1)-coloring

and to determine the exact value of κ. These results generalize to the problems of producing

a (κ + λ)-coloring or estimating the degeneracy up to ±λ; the respective space lower

66

http://networkrepository.com
http://networkrepository.com

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

bounds generalize to Ω(n2/λ2). Furthermore, the streaming lower bounds hold even in the

insertion-only model; compare this with our upper bound, which works even for dynamic

graph streams.

A possible criticism of the above lower bounds for coloring is that they seem to depend

on it being hard to estimate the degeneracy κ. Perhaps the coloring problem could become

easier if κ was given to the algorithm in advance? We show another class of lower bounds

establishing that this is not so: the same Ω(n2/λ2) bound holds for any λ even with κ known

a priori. Thus, specifically, (κ+1)-coloring with prior knowledge of κ also requires Ω(n2)

space. Recall that our algorithm, on the other hand, does not need to know κ in advance.

Application to other space-conscious settings. We apply the main framework used in

our streaming algorithm to obtain coloring algorithms that achieve the same color bound in

the following models: (1) the general graph query or sublinear time model [92], where we

may access the graph using only neighbor queries (what is the ith neighbor of x?) and pair

queries (are x and y adjacent?); (2) the massively parallel communication (MPC) model,

where each of a large number of memory-limited processors holds a sublinear-sized por-

tion of the input data and computation proceeds using rounds of communication; (3) the

congested-clique model of distributed computation, where there is one processor per vertex

holding that vertex’s neighborhood information and each round allows each processor to

communicate O(log n) bits to a specific other processor; and (4) the LOCAL model of dis-

tributed computation, where there is one processor per vertex holding that vertex’s neigh-

borhood information and each round allows each processor to send an arbitrary amount of

information to all its neighbors.

Table 2.3 below summarizes our algorithmic results in each of these models and pro-

vides a basic comparison with the most relavant result from prior work; more detailed

comparison appears in Section 2.2.2.

67

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Model Colors Complexity Parameters Source

Query
∆+ 1 Õ(n3/2) queries [17]

κ(1 + o(1)) Õ(n3/2) queries this work

MPC
∆+ 1 O(1) rounds, O(n log3 n) bits/proc [17]

κ(1 + o(1)) O(1) rounds, O(n log2 n) bits/proc this work

Congested ∆+ 1 O(1) rounds [64]

Clique O(κ) O(1) rounds [88]

κ(1 + o(1))⋆ O(1) rounds this work

LOCAL
O(αn1/k) O(k) rounds, k ∈ [ω(log log n), O(

√
log n)] [124]

O(αn1/k log n) O(k) rounds, k ∈ [ω(
√
log n), o(log n)] this work

Table 2.3: Summary of our algorithmic results and basic comparison with most relavant
previous works. In the result marked (⋆), we require that κ = ω(log2 n).

We also establish lower bounds in the query model analogous to the streaming setting:

a (κ + 1)-coloring query algorithm needs Ω(n2) queries. More generally, distinguishing a

graph with degeneracy κ from one with chromatic number κ + λ + 1 requires Ω(n2/λ2)

queries, which means that estimating κwithin an additive factor of λ or achieving a (κ+λ)-

coloring requires Ω(n2/λ2) queries for any λ. Also similar to the streaming model, we

show that the coloring lower bound holds even if κ is known to the algorithm in advance.

Techniques. Perhaps even more than these results, our key contribution is a conceptual

idea and a corresponding technical lemma underlying all our algorithms. We show that

every graph admits a “small” sized low degeneracy partition (LDP), which is a partition

of its vertex set into “few” blocks such that the subgraph induced by each block has low

degeneracy, roughly logarithmic in n. Moreover, such an LDP can be computed by a very

simple and distributed randomized algorithm: for each vertex, choose a “color” indepen-

dently and uniformly at random from a suitable-sized palette (this is not to be confused

68

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

with the eventual graph coloring we seek; this random assignment is most probably not a

proper coloring of the graph). The resulting color classes define the blocks of such a par-

tition, with high probability. Theorem 2.2.6, the LDP Theorem, makes this precise. The

proof of this theorem heavily uses vertex ordering arguments, a theme that we explored in

Section 2.1.

Given an LDP, a generic graph coloring algorithm is to run a well-known offline (κ+1)-

coloring greedy algorithm on each block, using distinct palettes for the distinct blocks. The

fact that the resultant coloring is proper follows immediately. We then use the LDP The-

orem to bound the number of colors and the space usage. We obtain algorithms achieving

our claimed results in streaming as well as in the other models mentioned above by suitably

implementing this generic algorithm in each computational model.

Our streaming lower bounds exploit the standard tool of communication complexity:

for most of them, we use reductions from the INDEX problem via a novel gadget that we

develop here; one bound uses a reduction from a variant of DISJ. These communication

complexity problems are described in Section 1.3. Our query lower bounds use a related

gadget and reductions from basic problems in Boolean decision tree complexity.

A combinatorial lower bound. A potential criticism of our algorithmic technique LDP

is that it is rather simple; perhaps a more sophisticated graph-theoretic result, such as the

Palette Sparsification Theorem (see below) of Assadi et al. [17], could improve the qual-

ity of the colorings obtained? In Section 2.2.8, we prove that this is not so: there is no

analogous theorem for colorings with “about κ” colors.

2.2.2. Related Work and Comparisons

Streaming Model. As mentioned before, our joint work with S.K. Bera [44] (on which

our algorithm here builds) initiated the study of graph coloring in the streaming model

and gave a one-pass semi-streaming ∆(1 + o(1))-coloring algorithm. Assadi, Chen, and

69

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Khanna [17] parallelly and independently gave a (∆ + 1)-coloring algorithm using the

same space and number of passes. Their algorithm exploits a key structural result that

they establish: choosing a random O(log n)-sized list from {1, . . . ,∆+ 1} for each vertex

allows a compatible list coloring, i.e., a proper coloring where each node gets a color from

its own list. They call this the Palette Sparsification Theorem. For our degeneracy-based

coloring, while we do not get a similarly tight combinatorial result—none exists, as noted

above—we do achieve faster post-processing time (Õ(n) versus their Õ(n
√
∆)). This win

comes at the price of a less tight result—(1 + o(1))κ colors instead of the combinatorially

optimal κ + 1—but of course our lower bounds show that such slack is necessary. Also,

as noted before, we often have κ ≪ ∆ (Table 2.2). Further, for graphs with arboricity

α (see discussion at the beginning of Section 2.2 for definition and details), there was no

previously known algorithm for O(α)-coloring in the semi-streaming setting, whereas here

we obtain a κ(1 + o(1))-coloring; recall the bound κ ≤ 2α− 1.

On the lower bound side, Abboud et al. [1] show that coloring a graph G with χ(G)

colors requires Ω(n2/p) space in p passes. They also show that deciding c-colorability

for 3 ≤ c < n (that might be a function of n) takes Ω((n − c)2/p) space in p passes.

Furthermore, any streaming algorithm that distinguishes between χ(G) ≤ 3c and χ(G) ≥

4c must use Ω(n2/pc2) space. Another work on coloring in the streaming model prior to

our work is the study of 2-coloring an n-uniform hypergraph by Radhakrishnan et al. [152].

Subsequent to our work, quite a few papers studied streaming graph coloring from multiple

angles; see Section 2.2.9 for a discussion.

Query Model. Assadi et al. [17] also consider the graph coloring problem in the query

model. They give a (∆ + 1)-coloring algorithm that makes Õ(n3/2) queries, followed

by a fairly elaborate computation that runs in Õ(n3/2) time and space. While our algo-

rithm has the same space bound and number of queries, it is arguably much simpler: its

post-processing is just the straightforward greedy offline algorithm for (κ + 1)-coloring.

70

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Again, this simplification is probably possible because our final coloring is a (1 + o(1))-

approximation to the combinatorially optimal (κ + 1) colors, whereas their bound is the

optimal ∆ + 1. However, we do show that the super-constant slack for degeneracy-based

coloring is a necessity (as opposed to degree-based coloring) in the query model as well.

Also, Assadi et al. [17] proved a lower bound showing that any O(∆)-coloring requires

Ω̃(n3/2) queries, which also implies that our query-bound is tight.

MPC and Congested Clique Models. The MapReduce framework [74] is extensively

used in distributed computing to process massive data sets. Beame, Koutris, and Suciu [36]

defined the Massively Parallel Communication (MPC)6 model to abstract out key theoret-

ical features of MapReduce; it has since become a widely used setting for designing and

analyzing big data algorithms, especially for graph problems.

Another well studied model for distributed graph algorithms is Congested Clique [133].

Behnezhad et al. [38] show that Congested Clique is equivalent to the “semi-MPC model,”

defined as MPC withO(n log n) bits of memory per machine, thanks to simulations in both

directions preserving the round complexity.

Harvey et al. [99] gave a (∆ + o(∆))-coloring algorithm in the MapReduce model;

it can be simulated in MPC using O(1) rounds and O(n1+c) space per machine for some

constant c > 0. The aforementioned paper of Assadi et al. [17] gives an O(1)-round MPC

algorithm for (∆ + 1)-coloring using O(n log3 n) bits of space per machine. Because

this space usage is ω(n log n), the equivalence result of Behnezhad et al. [38] does not

apply and this doesn’t lead to an O(1)-round Congested Clique algorithm. In contrast,

our MPC algorithm can be made to use only O(n log n) bits per machine and κ(1 + o(1))

colors for graphs with κ = ω(log2 n), and therefore leads to such a Congested Clique

algorithm. Chang et al. [64] gave an O(
√
log log n)-round MPC algorithm with o(n) space

per machine and Õ(m) space in total. Using the improved network decomposition results

6also known as Massively Parallel Computations

71

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

by Rozhon and Ghaffari [155], this round complexity can be reduced to O(log log log n).

We, however, focus on the regime of quasi-linear memory per machine.

Graph coloring has recently garnered considerable attention in the Congested Clique

model. Parter [150] gave a (∆+1)-coloring algorithm using O(log log∆ · log⋆∆) rounds,

later improved to O(log⋆∆) by Parter and Su [151]. Chang et al. [64] have improved this

to O(1) rounds. They use similar but more involved graph partitioning techniques than

us, as is probably necessary for a stringent (∆ + 1)-coloring. For low-degeneracy graphs,

our algorithm uses fewer colors than all these algorithms while achieving the best possible

asymptotic round complexity (O(1)). Parallel to our work, Ghaffari and Sayyadi [88] gave

an O(1)-round algorithm for the O(α)-coloring problem. Their analysis suggests that they

obtain a (cα)-coloring algorithm, where the constant c > 10. On the other hand, we get a

tighter κ(1+o(1))-coloring. Recall, again, that κ ≤ 2α−1 (Fact 2.2.2). Hence, we have an

arguably simpler algorithmic framework achieving better results. The main novelty in our

techniques lies in choosing degeneracy as the key parameter (instead of arboricity, which

could lead to results looser by a factor of 2) and in the careful analysis that gives very

sharp—not just asymptotic—bounds on the number of colors. Our algorithm (only the

Congested Clique implementation), however, needs κ = ω(log2 n) or κ = O(1) to keep

the round complexity constant.

The LOCAL Model. The LOCAL model of distributed computing is “orthogonal” to

Congested Clique: the input setup is similar but, during computation, each node may only

communicate with its neighbors in the input graph, though it may send an arbitrarily long

message. As before, the focus is on minimizing the number of rounds (a.k.a. time). There

is a deep body of work on graph coloring in this model. Indeed, graph coloring is one of the

most central “symmetry breaking” problems in distributed computing. We refer the reader

to the monograph by Barenboim and Elkin [31] for an excellent overview of the state of

the art. Here, we shall briefly discuss only a few results closely related to our contribution.

72

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

There is a long line of work on fast (∆ + 1)-coloring in the LOCAL model, in the

deterministic as well as the randomized setting [9,28,32,84,108,134,147,157] culminating

in sublogarithmic time solutions due to Harris [98] and Chang et al. [65]. Barenboim and

Elkin [29, 30] studied fast distributed coloring algorithms that may use far fewer than ∆

colors: in particular, they gave algorithms that use O(α) colors and run in O(αε log n) time

on graphs with arboricity at most α. Recall again that κ ≤ 2α − 1, so that a 2α-coloring

always exists. They also gave a fasterO(log n)-time algorithm usingO(α2) colors. Further,

they gave a family of algorithms that produce an O(tα2)-coloring in O(logt n+log⋆ n), for

every t such that 2 ≤ t ≤ O(
√
n/α). Our algorithm for the LOCAL model builds on this

latter result.

Kothapalli and Pemmaraju [124] focused on arboricity-dependant coloring using very

few rounds. They gave a randomized O(k)-round algorithm that uses O(αn1/k) colors for

2 log log n ≤ k ≤
√
log n and O(α1+1/kn1/k+3/k22−2

k
) colors for k < 2 log log n. We

extend their result to the range k ∈
[
ω(
√
log n), o(log n)

]
, using O(αn1/k log n) colors.

Ghaffari and Lymouri [87] gave a randomized O(α)-coloring algorithm that runs in

timeO(log n·min{log log n, logα}) as well as anO(log n)-time algorithm using min{(2+

ε)α + O(log n log log n), O(α logα)} colors, for any constant ε > 0. However, their

technique does not yield a sublogarithmic time algorithm, even at the cost of a larger palette.

The LDP Technique. As mentioned earlier, our algorithmic results rely on the concept of

a low degeneracy partition (LDP) that we introduce in this work. Some relatives of this idea

have been considered before. Specifically, Barenboim and Elkin [31] define a d-defective

(resp. b-arbdefective) c-coloring to be a vertex coloring using palette [c] such that every

color class induces a subgraph with maximum degree at most d (resp. arboricity at most b).

Obtaining such improper colorings is a useful first step towards obtaining proper colorings.

They give deterministic algorithms to obtain good arbdefective colorings [30]. However,

their algorithms are elaborate and are based on construction of low outdegree acyclic partial

73

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

orientations of the graph’s edges: an expensive step in our space-conscious models.

Elsewhere (Theorem 10.5 of Barenboim and Elkin [31]), they note that a useful de-

fective (not arbdefective) coloring is easily obtained by randomly picking a color for each

vertex; this is then useful for computing an O(∆)-coloring.

Our LDP technique can be seen as a simple randomized method for producing an arbde-

fective coloring. Crucially, we parametrize our result using degeneracy instead of arboricity

and we give sharp—not just asymptotic—bounds on the degeneracy of each color class.

The Degeneracy Parameter. The parameter has been studied under several other names,

such as width [85], linkage [121] and Szekeres-Wilf number [161]. For a graph G, the

number κ(G) + 1 is often called the coloring number of G [76, 160]. It has also been

extensively studied as k-core number in different areas such as data streaming and parallel

computing [77], distributed systems [12], data mining [142], protein networks [22], and

social networks [48]. Farach-Colton and Tsai [79] studied the parameter in the streaming

model, and gave a one-pass semi-streaming algorithm that approximates the degeneracy

of an input graph within a multiplicative factor of 1 + ε. Our lower bounds complement

this result as we show that computing the degeneracy κ exactly or more generally within a

multiplicative factor of (1+κ−(1/2+γ)), for some constant γ, is not possible in the one-pass

semi-streaming setting.

Other Related Work. Other work considers coloring in the setting of dynamic graph

algorithms: edges are inserted and deleted over time and the goal is to maintain a valid

vertex coloring of the graph that must be updated quickly after each modification. Un-

like in the streaming setting, there is no space restriction. Bhattacharya et al. [46] gave

a randomized algorithm that maintains a (∆ + 1)-coloring with O(log∆) expected amor-

tized update time and a deterministic algorithm that maintains a (∆+ o(∆))-coloring with

O(polylog∆) amortized update time. Barba et al. [27] gave tradeoffs between the number

of colors used and update time. However, the techniques in these works do not seem to

74

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

apply in the streaming setting due to fundamental differences in the models.

Estimating the arboricity of a graph in the streaming model is a well studied problem.

McGregor et al. [138] gave a one pass (1 + ε)-approximation algorithm to estimate the

arboricity of graph using Õ(n) space. Bahmani et al. [23] gave a matching lower bound.

Our lower bounds for estimating degeneracy are quantitatively much larger but they call

for much tighter estimates.

2.2.3. Preliminary tools

Throughout the rest of this chapter, graphs are simple, undirected, and unweighted. For a

graph G, we define ∆(G) = max{deg(v) : v ∈ V (G)}. We say that G is k-degenerate if

every induced subgraph of G has a vertex of degree at most k. For instance, every forest is

1-degenerate and an elementary theorem says that every planar graph is 5-degenerate. The

degeneracy κ(G) is the smallest k such that G is k-degenerate. The arboricity α(G) is the

smallest r such that the edge set E(G) can be partitioned into r forests. When the graph G

is clear from the context, we simply write ∆, κ, and α, instead of ∆(G), κ(G), and α(G).

We note two useful facts: the first is immediate from the definition, and the second is

an easy exercise.

Fact 2.2.1. If an n-vertex graph has degeneracy κ, then it has at most κn edges.

Fact 2.2.2. In every graph, the degeneracy κ and arboricity α satisfy α ≤ κ ≤ 2α−1.

In analyzing our algorithms, it will be useful to consider certain vertex orderings of

graphs and their connection with the notion of degeneracy, given by Lemma 2.2.4 below.

Although the lemma is folklore, it is crucial to our analysis, so we include a proof for

completeness.

Definition 2.2.2. An ordering of G is a list consisting of all its vertices (equivalently, a

total order on V (G)). Given an ordering ◁, for each v ∈ V (G), the ordered neighborhood

75

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

NG,◁(v) := {w ∈ V (G) : {v, w} ∈ E(G), v ◁ w},

NG,◁(v) := {w ∈ V (G) : {v, w} ∈ E(G), v ◁ w} ,

i.e., the set of neighbors of v that appear after v in the ordering. The ordered degree

odegG,◁(v) := |NG,◁(v)|.

Definition 2.2.3. A degeneracy ordering of G is an ordering produced by the following

algorithm: starting with an empty list, repeatedly pick a minimum degree vertex v (breaking

ties arbitrarily), append v to the end of the list, and delete v from G; continue this until G

becomes empty.

Lemma 2.2.4. A graphG is k-degenerate iff there exists an ordering ◁ such that odegG,◁(v) ≤

k for all v ∈ V (G).

Proof. Suppose that G is k-degenerate. Let ◁= (v1, . . . , vn) be a degeneracy ordering.

Then, for each i, odegG,◁(vi) is the degree of vi in the induced subgraphG\{v1, . . . , vi−1}.

By definition, this induced subgraph has a vertex of degree at most k, so vi, being a mini-

mum degree vertex in the subgraph, must have degree at most k.

On the other hand, suppose that G has an ordering ◁ such that odegG,◁(v) ≤ k for

all v ∈ V (G). Let H be an induced subgraph of G. Let v be the leftmost (i.e., smallest)

vertex in V (H) according to ◁. Then all neighbors of v in H in fact lie in NG,◁(v), so

degH(v) ≤ odegG,◁(v) ≤ k. Therefore, G is k-degenerate.

A c-coloring of a graph G is a mapping ψ : V (G) → [c]; it is said to be a proper

coloring if it makes no edge monochromatic: ψ(u) ̸= ψ(v) for all {u, v} ∈ E(G). The

smallest c such that G has a proper c-coloring is called the chromatic number χ(G). By

considering the vertices of G one at a time and coloring greedily, we immediately obtain a

proper (∆ + 1)-coloring. This idea easily extends to degeneracy-based coloring.

76

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Lemma 2.2.5. Given unrestricted (“offline”) access to an input graph G, we can produce

a proper (κ+ 1)-coloring in linear time.

Proof. Construct a degeneracy ordering (v1, . . . , vn) of G and then consider the vertices

one by one in the order (vn, . . . , v1), coloring greedily. Given a palette of size κ+1, by the

“only if” direction of Lemma 2.2.4, there will always be a free color for a vertex when it is

considered.

Of course, the simple algorithm above is not implementable directly in “sublinear”

settings, such as space-bounded streaming algorithms, query models, or distributed com-

puting models. Nevertheless, we shall make use of the algorithm on suitably constructed

subgraphs of our input graph.

2.2.4. LDP: A Generic Framework for Coloring

In this section, we give a generic framework for graph coloring that we later instantiate in

various computational models. As a reminder, our focus is on graphs G with a nontrivial

upper bound on the degeneracy κ = κ(G). Each such graph admits a proper (κ + 1)-

coloring; our focus will be on obtaining a proper (κ+ o(κ))-coloring efficiently.

As a broad outline, our framework calls for coloring G in two phases. The first phase

produces a low degeneracy partition (LDP) of G: it partitions V (G) into a “small” number

of parts, each of which induces a subgraph that has “low” degeneracy. This step can be

thought of as preprocessing and it is essentially free (in terms of complexity) in each of

our models. The second phase properly colors each part, using a small number of colors,

which is possible because the degeneracy is low. In Section 2.2.5, we shall see that the low

degeneracy allows this second phase to be efficient in each of the models we consider.

A Low Degeneracy Partition and its Application. In this phase of our coloring framework,

we assign each vertex a color chosen uniformly at random from [ℓ], these choices being

77

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

mutually independent, where ℓ is a suitable parameter. For each i ∈ [ℓ], let Gi denote

the subgraph of G induced by vertices colored i. We shall call each Gi a block of the

vertex partition given by (G1, . . . , Gℓ). The next theorem, our main technical tool, provides

certain guarantees on this partition given a suitable choice of ℓ.

Theorem 2.2.6 (LDP Theorem). Let G be an n-vertex graph with degeneracy κ. Let k ∈

[1, n] be a “guess” for the value of κ and let s ≥ Cn log n be a sparsity parameter, where

C is a sufficiently large universal constant. Put

ℓ =

⌈
2nk

s

⌉
, λ = 3

√
κℓ log n , (2.6)

and let ψ : V (G) → [ℓ] be a uniformly random coloring of G. For i ∈ [ℓ], let Gi be the

subgraph induced by ψ−1(i). Then, the partition (G1, . . . , Gℓ) has the following properties.

(i) If k ≤ 2κ, then w.h.p., for each i, the degeneracy κ(Gi) ≤ (κ+ λ)/ℓ.

(ii) W.h.p., for each i, the block size |V (Gi)| ≤ 2n/ℓ.

(iii) If κ ≤ k ≤ 2κ, then w.h.p., the number of monochromatic edges |E(G1) ∪ · · · ∪

E(Gℓ)| ≤ s.

In each case, “w.h.p.” means “with probability at least 1− 1/ poly(n).”

It will be convenient to encapsulate the guarantees of this theorem in a definition.

Definition 2.2.7. Suppose graph G has degeneracy κ. A vertex partition (G1, . . . , Gℓ) si-

multaneously satisfying the degeneracy bound in item (i), the block size bound in item (ii),

and the (monochromatic) edge sparsity bound in item (iii) in Theorem 2.2.6 is called an

(ℓ, s, λ)-LDP of G.

It will turn out that an (ℓ, s, λ)-LDP leads to a proper coloring of G using at most

κ + λ + ℓ colors. An instructive setting of parameters is s = Θ((n log n)/ε2), where ε

78

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

is either a small constant or a slowly vanishing function of n, such as 1/ log n. Then, a

quick calculation shows that when an accurate guess k ∈ [κ, 2κ] is made, Theorem 2.2.6

guarantees an LDP that has edge sparsity s = Õ(n) and that leads to an eventual proper

coloring using (1 +O(ε))κ colors. When ε = o(1), this number of colors is κ+ o(κ).

Recall that the second phase of our coloring framework involves coloring each Gi sep-

arately, exploiting its low degeneracy. Indeed, given an (ℓ, s, λ)-LDP, each blockGi admits

a proper (κ(Gi) + 1)-coloring. Suppose we use a distinct palette for each block; then the

total number of colors used is

ℓ∑
i=1

(κ(Gi) + 1) ≤ ℓ

(
κ+ λ

ℓ
+ 1

)
= κ+ λ+ ℓ , (2.7)

as claimed above. Of course, even if our first phase random coloring ψ yields a suitable

LDP, we still have to collect each block Gi or at least enough information about each block

so as to produce a proper (κ(Gi) + 1)-coloring. How we do this depends on the precise

model of computation; see Section 2.2.5 and Section 2.2.7.

Proof of the LDP Theorem. We now turn to proving the LDP Theorem from Section 2.2.4.

Notice that when k ≤ (C/2) log n, the condition s ≥ Cn log n results in ℓ = 1, so the

vertex partition is the trivial one-block partition, which obviously satisfies all the properties

in the theorem. Thus, in our proof, we may assume that k > (C/2) log n.

Proof of Theorem 2.2.6. We start with item (ii), which is the most straightforward. From

eq. (2.6), we have ℓ ≤ 4nk/s, so

n

ℓ
≥ s

4k
≥ Cn log n

4k
≥ C log n

4
.

79

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Each block size |V (Gi)| has binomial distribution Bin(n, 1/ℓ), so a Chernoff bound gives

Pr

[
|V (Gi)| >

2n

ℓ

]
≤ exp

(
− n
3ℓ

)
≤ exp

(
−C log n

12

)
≤ 1

n2
,

for sufficiently large C. By a union bound over the at most n blocks, item (ii) fails with

probability at most 1/n.

Items (i) and (iii) include the condition k ≤ 2κ, which we shall assume for the rest of

the proof. By eq. (2.6) and the bounds s ≥ Cn log n and k > (C/2) log n,

ℓ ≤
⌈

2k

C log n

⌉
≤ 4k

C log n
≤ 8κ

C log n
,

whence, for sufficiently large C,

λ ≤ 3

√
κ · 8κ

C log n
· log n ≤ κ . (2.8)

We now turn to establishing item (i). Let ◁ be a degeneracy ordering for G. For each

i ∈ [ℓ], let ◁i be the restriction of ◁ to V (Gi). Consider a particular vertex v ∈ V (G) and

let j = ψ(v) be its color. We shall prove that, w.h.p., odegG,◁j
(v) ≤ (κ+ λ)/ℓ.

By the “only if” direction of Lemma 2.2.4, we have odegG,◁(v) = |NG,◁(v)| ≤ κ.

Now note that

odegGj ,◁j
(v) =

∑
u∈NG,◁(v)

1{ψ(u)=ψ(v)}

is a sum of mutually independent indicator random variables, each of which has expectation

1/ℓ. Therefore, E odegGj ,◁j
(v) = odegG,◁(v)/ℓ ≤ κ/ℓ. Since λ ≤ κ by eq. (2.8), we may

use the form of the Chernoff bound in Fact 1.3.1, which gives us

Pr

[
odegGj ,◁j

(v) >
κ+ λ

ℓ

]
≤ exp

(
−κ
ℓ

λ2

3κ2

)
= exp

(
−9κℓ log n

3κℓ

)
≤ 1

n3
,

80

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

where the equality follows from eq. (2.6). In words, with probability at least 1− 1/n3, the

vertex v has ordered degree at most (κ+λ)/ℓ within its own block. By a union bound, with

probability at least 1 − 1/n2, all n vertices of G satisfy this property. When this happens,

by the “if” direction of Lemma 2.2.4, it follows that κ(Gi) ≤ (κ+ λ)/ℓ for every i.

Finally, we take up item (iii), which is now straightforward. Assume that the high

probability event in item (i) occurs. Then, by Fact 2.2.1,

|E(G1)∪· · ·∪E(Gℓ)| ≤
ℓ∑
i=1

κ(Gi) |V (Gi)| ≤
κ+ λ

ℓ

ℓ∑
i=1

|V (Gi)| =
n(κ+ λ)

ℓ
≤ 2nκ

ℓ
≤ s ,

where the final inequality uses the condition κ ≤ k and eq. (2.6).

2.2.5. Streaming Algorithm for Degeneracy-Based Coloring

For graph problems, in the basic streaming model, the input is a stream of non-repeated

edges that define the input graph G: this is called the insertion-only model, since it can be

thought of as building up G through a sequence of edge insertions. In the more general

dynamic graph model or turnstile model, the stream is a sequence of edge updates, each

update being either an insertion or a deletion: the net effect is to build up G. Our algorithm

will work in this more general model. Later, we shall give a corresponding lower bound

that will hold even in the insertion-only model (for a lower bound, this is a strength).

We assume that the vertex set V (G) = [n] and the input is a stream σ of at most

m = poly(n) updates to an initially empty graph. An update is a triple (u, v, c), where

u, v ∈ V (G) and c ∈ {−1, 1}: when c = 1, this token represents an insertion of edge

{u, v} and when c = −1, it represents a deletion. Let N =
(
n
2

)
and [[m]] = Z ∩ [−m,m].

It is convenient to imagine a vector x ∈ [[m]]N of edge multiplicities that starts at zero and

is updated entrywise with each token. The input graph G described by the stream will be

the underlying simple graph, i.e., E(G) will be the set of all edges {u, v} such that xu,v ̸= 0

81

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

at the end. We shall say that σ builds up x and G.

Our algorithm makes use of two data streaming primitives, each a linear sketch. (We

can do away with these sketches in the insertion-only setting; see the end of this section.)

The first is a sketch for sparse recovery given by a matrixA (say): given a vector x ∈ [[m]]N

with sparsity ∥x∥0 ≤ t, there is an efficient algorithm to reconstruct x from Ax. The

second is a sketch for ℓ0 estimation given by a random matrix B (say): given a vector

x ∈ [[m]]N , there is an efficient algorithm that takes Bx and computes from it an estimate

of ∥x∥0 that, with probability at least 1 − δ, is a (1 + γ)-multiplicative approximation. It

is known that there exists a suitable A ∈ {0, 1}d×N , where d = O(t log(N/t)), where A

has column sparsity O(log(N/t)); see, e.g., Theorem 9 of Gilbert and Indyk [90]. It is also

known that there exists a suitable distribution over matrices giving B ∈ {0, 1}d′×N with

d′ = O(γ−2 log δ−1 logN(log γ−1 + log logm)). Further, given an update to the ith entry

of x, the resulting updates inAx andBx can be effected quickly by generating the required

portion of the ith columns of A and B.

Algorithm 1 One-Pass Streaming Algorithm for Graph Coloring via Degeneracy

1: procedure COLOR(stream σ, integer k) ▷ σ builds up x and G; k ∈ [1, n] is a guess
for κ(G)

2: choose s, ℓ as in eq. (2.6) and t, d, d′, A,B as in the above discussion
3: initialize y ∈ [[m]]d and z ∈ [[m]]d

′ to zero
4: foreach u ∈ [n] do ψ(u)← uniform random color in [ℓ]

5: foreach token (u, v, c) in σ do
6: if ψ(u) = ψ(v) then y← y + cAu,v; z← z+ cBu,v

7: if estimate of ∥w∥0 obtained from z is > 5s/4 then abort
8: w′ ← result of t-sparse recovery from y ▷ we expect that w′ = w
9: foreach i ∈ [ℓ] do

10: Gi ← simple graph induced by {{u, v} : w′u,v ̸= 0 and ψ(u) = ψ(v) = i}
11: color Gi using palette {(i, j) : 1 ≤ j ≤ κ(Gi) + 1}; cf. Lemma 2.2.5 ▷ net

effect is to color G

In our description of Algorithm 1, we use Au,v (resp. Bu,v) to denote the column of

A (resp. B) indexed by {u, v}. The algorithm’s logic results in sketches y = Aw and

82

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

z = Bw, where w corresponds to the subgraph of G consisting of ψ-monochromatic

edges only (cf. Theorem 2.2.6), i.e., w is obtained from x by zeroing out all entries except

those indexed by {u, v} with ψ(u) = ψ(v). We choose the parameter t = 2s, where

s ≥ Cn log n is the sparsity parameter from Theorem 2.2.6, which gives d = O(s log n);

we choose γ = 1/4 and δ = 1/n, giving d′ = O(log3 n).

Notice that Algorithm 1 requires a guess for κ := κ(G), which is not known in ad-

vance. Our final one-pass algorithm runs O(log n) parallel instances of COLOR(σ, k), us-

ing geometrically spaced guesses k = 2, 4, 8 It outputs the coloring produced by the

non-aborting run that uses the smallest guess.

Theorem 2.2.8. Set s = ⌈ε−2n log n⌉, where ε > 0 is a parameter. The above one-pass

algorithm processes a dynamic (i.e., turnstile) graph stream using O(ε−2n log4 n) bits of

space and, with high probability, produces a proper coloring using at most (1 + O(ε))κ

colors. In particular, taking ε = 1/ log n, it produces a κ + o(κ) coloring using Õ(n)

space. Each edge update is processed in Õ(1) time and post-processing at the end of the

stream takes Õ(n) time.

Proof. The coloring produced is obviously proper. Let us bound the number of colors used.

One of the parallel runs of COLOR(σ, k) in 1 will use a value k = k⋆ ∈ (κ, 2κ]. We shall

prove that, w.h.p., (a) every non-aborting run with k ≤ k⋆ will use at most (1 + O(ε))κ

colors, and (b) the run with k = k⋆ will not abort.

We start with (a). Consider a particular run using k ≤ k⋆. By item (i) of Theorem 2.2.6,

each Gi has degeneracy at most (κ + λ)/ℓ; so if w is correctly recovered by the sparse

recovery sketch (i.e., w′ = w in Algorithm 1), then each Gi is correctly recovered and the

run uses at most κ+λ+ℓ colors, as in eq. (2.7). Using the values from eq. (2.6), this number

is at most (1 + O(ε))κ. Now, if the run does not abort, then the estimate of the sparsity

∥w∥0 is at most 5s/4. By the guarantees of the ℓ0-estimation sketch, the true sparsity is at

most (5/4)(5s/4) < 2s = t, so, w.h.p., w is indeed t-sparse and, by the guarantees of the

83

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

sparse recovery sketch, w′ = w. Taking a union bound over all O(log n) runs, the bound

on the number of colors holds for all required runs simultaneously, w.h.p.

We now take up (b). Note that ∥w∥0 is precisely the number of ψ-monochromatic edges

in G. By item (iii) of Theorem 2.2.6, we have ∥w0∥ ≤ s w.h.p. By the accuracy guarantee

of the ℓ0-estimation sketch, in this run the estimate of ∥w∥0 is at most 5s/4 w.h.p., so the

run does not abort.

The space usage of each parallel run is dominated by the computation of y, so it is

O(d logm) = O(s log n logm) = O(ε−2n log3 n), using our setting of s and the assump-

tion m = poly(n). The claims about the update time and post-processing time follow

directly from the properties of a state-of-the-art sparse recovery scheme, e.g., the scheme

based on expander matching pursuit given in Theorem 9 of Gilbert and Indyk [90].

Simplification for Insertion-Only Streams. Algorithm 1 can be simplified considerably

if the input stream is insertion-only. We can then initialize each Gi to an empty graph and,

upon seeing an edge {u, v} in the stream, insert it into Gi iff ψ(u) = ψ(v) = i. We abort if

we collect more than s edges; w.h.p., this will not happen, thanks to Theorem 2.2.6. Finally,

we color the collected graphs Gi greedily, just as in Algorithm 1. With this simplification,

the overall space usage drops to O(s log n) = O(ε−2n log2 n) bits.

The reason this does not work for dynamic graph streams is that the number of monochro-

matic edges could exceed s by an arbitrary amount mid-stream.

2.2.6. Streaming Lower Bounds

We investigate whether we can improve the number of colors used by our algorithms to

κ + 1, rather than κ(1 + o(1))? After all, every graph G does have a proper (κ(G) + 1)-

coloring. The main message of this section is that answer is a strong “No”. If we insist on

a coloring that good, we would incur the worst possible space complexity: Ω(n2). In fact,

it holds even if the input stream consists of edge insertions alone. Furthermore, this holds

84

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

even if κ is known to the algorithm in advance.

Our lower bounds generalize to the problem of producing a (κ+λ)-coloring. We show

that this requires Ω(n2/λ2) space. The generalization is based on the following Blow-Up

Lemma.

Definition 2.2.9. Let G be a graph and λ a positive integer. The blow-up graph Gλ is

obtained by replacing each vertex ofGwith a copy of the complete graphKλ and replacing

each edge of G with a complete bipartite graph between the copies of Kλ at its endpoints.

More succinctly, Gλ is the lexicographical product G[Kλ].

Lemma 2.2.10 (Blow-Up Lemma). For all graphs G and positive integers λ, c, if G has a

c-clique, then Gλ has a (cλ)-clique. Also, κ(Gλ) ≤ (κ(G) + 1)λ− 1.

Proof. The claim about cliques is immediate. The bound on κ(Gλ) follows by taking a

degeneracy ordering of G and replacing each vertex v by a list of vertices of the clique that

replaces v in Gλ, ordering vertices within the clique arbitrarily.

Our lower bounds come in two flavors. The first address the hardness of distinguishing

low-degeneracy graphs from high-chromatic-number graphs. This is encapsulated in the

following abstract problem.

Definition 2.2.11 (GRAPH-DIST problem). Consider two graph families: G1 := G1(n, q, λ),

consisting of n-vertex graphs with chromatic number χ ≥ (q + 1)λ, and G2 := G2(n, q, λ),

consisting of n-vertex graphs with κ ≤ qλ− 1. Then GRAPH-DIST(n, q, λ) is the problem

of distinguishing G1 from G2; note that G1∩G2 = ∅. More precisely, given an input graphG

on n vertices, the problem is to decide whether G ∈ G1 or G ∈ G2, with success probability

at least 2/3.

We shall prove that GRAPH-DIST is “hard” in the insertion-only streaming setting and

in the query setting, thereby establishing that in these models it is hard to produce a (κ+λ)-

coloring. In fact, our proofs will show that it is just as hard to estimate the parameter κ;

85

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

this goes to show that the hardness of the coloring problem is not just because of the large

output size.

Lower bounds of the above flavor raise the following question: since estimating κ itself

is hard, does the coloring problem become easier if the value of κ(G) is given in advance,

before the algorithm starts to read G? In fact, the (∆ + 1)-coloring algorithms by Assadi

et al. [17] assume that ∆ is known in advance. However, perhaps surprisingly, we prove

a second flavor of lower bounds, showing that a priori knowledge of κ does not help and

(κ+1)-coloring (more generally, (κ+λ)-coloring) remains a hard problem even under the

strong assumption that κ is known in advance.

The above tools not only help in proving streaming lower bounds as we describe next,

but also in proving lower bounds in the query model as demonstrated in Section 4.3.6.

We prove two flavors of lower bounds in the one-pass streaming setting. Our streaming

lower bounds use reductions from the INDEX and INT-FIND (intersection finding, a variant

of DISJOINTNESS) problems in communication complexity (see Section 1.3).

In INT-FINDN , Alice and Bob hold vectors x,y ∈ {0, 1}N , interpreted as subsets of [N],

satisfying the promise that |x∩y| = 1. They must find the unique index i where xi = yi =

1, using at most c bits of randomized interactive communication, succeeding with proba-

bility at least 2/3. The smallest c for which such a protocol exists is the randomized com-

munication complexity, R(INT-FINDN). Recall that R→(INDEXN) = Ω(N) (Fact 1.3.2)

and R(INT-FINDN) = Ω(N); the latter is a simple extension of the DISJOINTNESS lower

bound (Fact 1.3.3).

We shall in fact consider instances of INDEXN where N = p2, for an integer p. Using

a canonical bijection between [N] and [p] × [p], we reinterpret x as a matrix with entries

(xij)i,j∈[p], and Bob’s input as (y, z) ∈ [p] × [p]. We further interpret this matrix x as the

bipartite adjacency matrix of a (2p)-vertex balanced bipartite graph Hx. Such graphs Hx

will be key gadgets in the reductions to follow.

86

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Definition 2.2.12. For x ∈ {0, 1}p×p, a realization of Hx on a list (ℓ1, . . . , ℓp, r1, . . . , rp)

of distinct vertices is a graph on these vertices whose edge set is {{ℓi, rj} : xij = 1}.

First Flavor: Degeneracy Not Known in Advance. To prove lower bounds of the first

flavor, we start by demonstrating the hardness of the abstract problem GRAPH-DIST, from

Definition 2.2.11.

Lemma 2.2.13. Solving GRAPH-DIST(n, q, λ) in one randomized streaming pass requires

Ω(n2/λ2) space.

More precisely, there is a constant c > 0 such that for every integer λ ≥ 1 and every

sufficiently large integer q, there is a setting n = n(q, λ) for which every randomized one-

pass streaming algorithm for GRAPH-DIST(n, q, λ) requires at least cn2/λ2 bits of space.

Proof. Put p = q − 1. We reduce from INDEXN , where N = p2, using the following

plan. Starting with an empty graph on n = 3λp vertices, Alice adds certain edges based

on her input x ∈ {0, 1}p×p and then Bob adds certain other edges based on his input

(y, z) ∈ [p] × [p]. By design, solving GRAPH-DIST(n, q, λ) on the resulting final graph

reveals the bit xyz, implying that a one-pass streaming algorithm for GRAPH-DIST requires

at least R→(INDEXN) = Ω(N) = Ω(p2) = Ω(n2/λ2) bits of memory. The details follow.

We first consider λ = 1. We use the vertex set L ⊎ R ⊎ C (the notation “⊎” denotes

a disjoint union), where L = {ℓ1, . . . , ℓp}, R = {r1, . . . , rp}, and |C| = p. Alice intro-

duces the edges of the gadget graph Hx (from Definition 2.2.12), realized on the vertices

(ℓ1, . . . , ℓp, r1, . . . , rp). Bob introduces all possible edges within C ∪ {ℓy, rz}, except for

{ℓy, rz}. Let G be the resulting graph (see Figure 2.1).

If xyz = 1, then G contains a clique on C ∪ {ℓy, rz}, whence χ(G) ≥ p + 2. If, on the

other hand, xyz = 0, then we claim that κ(G) ≤ p. By Lemma 2.2.4, the claim will follow

if we exhibit a vertex ordering ◁ such that odegG,◁(v) ≤ p for all v ∈ V (G). We use an

ordering where

L ∪R \ {ℓy, rz} ◁ ℓy ◁ {rz} ∪ C

87

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

L R

l
r

C

y

z

Figure 2.1: Gadget graph for proving lower bounds of first flavor

and the ordering within each set is arbitrary. By construction of Hx, each vertex in L ∪

R \ {ℓy, rz} has total degree at most p. For each vertex v ∈ {rz} ∪ C, we trivially have

odegG,◁(v) ≤ p because |C| = p. Finally, since xyz = 0, the vertex rz is not a neighbor of

ℓy; so odegG,◁(ℓy) = |C| = p. This proves the claim.

When λ ≥ 1, Alice and Bob introduce edges so as to create the blow-up graph Gλ, as

in Definition 2.2.9. By Lemma 2.2.10, if xyz = 1, then Gλ has a (p + 2)λ-clique, whereas

if xyz = 0, then κ(Gλ) ≤ (p+ 1)λ− 1. In the former case, χ(Gλ) ≥ (p+ 2)λ = (q + 1)λ,

so that Gλ ∈ G1(n, q, λ); cf. Definition 2.2.11. In the latter case, κ(Gλ) ≤ qλ − 1, so that

Gλ ∈ G2(n, q, λ). Thus, solving GRAPH-DIST(n, q, λ) on Gλ reveals xyz.

Our coloring lower bounds are straightforward consequences of the above lemma.

Theorem 2.2.14. Given a single randomized pass over a stream of edges of an n-vertex

graph G, succeeding with probability at least 2/3 at either of the following tasks requires

Ω(n2/λ2) space, where λ ≥ 1 is an integer parameter:

(i) produce a proper (κ+ λ)-coloring of G;

(ii) produce an estimate κ̂ such that |κ̂− κ| ≤ λ.

88

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Furthermore, if we require λ = O
(
κ

1
2
−γ), where γ > 0, then neither task admits a semi-

streaming algorithm.

Proof. An algorithm for either task (i) and or task (ii) immediately solves GRAPH-DIST

with appropriate parameters, implying the Ω(n2/λ2) bounds, thanks to Lemma 2.2.13. For

the “furthermore” statement, note that the graphs in the family G2 constructed in the proof

of Lemma 2.2.13 have κ = Θ(n), so performing either task with the stated guarantee on λ

would require Ω(n1+2γ) space, which is not in Õ(n).

Combining the above result with the algorithmic result in Theorem 2.2.8, we see that

producing a κ(1 + o(1))-coloring is possible in semi-streaming space whereas producing

a (κ + O
(
κ

1
2
−γ))-coloring is not. We leave open the question of whether this gap can be

tightened.

Second Flavor: Degeneracy Known in Advance. We now show that the coloring prob-

lem remains just as hard even if the algorithm knows the degeneracy of the graph before

seeing the edge stream.

Theorem 2.2.15. Given as input an integer κ, followed by a stream of edges of an n-

vertex graph G with degeneracy κ, a randomized one-pass algorithm that produces a

proper (κ + λ)-coloring of G requires Ω(n2/λ2) bits of space. Furthermore, if we require

λ = O
(
κ

1
2
−γ), where γ > 0, then the task does not admit a semi-streaming algorithm.

Proof. We reduce from INDEXN , where N = p2, using a plan analogous to the one used in

proving Lemma 2.2.13. Alice and Bob will construct a graph on n = 5λp vertices, using

their respective inputs x ∈ {0, 1}p×p and (y, z) ∈ [p]× [p].

First, we consider the case λ = 1. We use the vertex set L ⊎ R ⊎ L ⊎ R ⊎ C, where

L = {ℓ1, . . . ℓp}, R = {r1, . . . , rp}, L = {ℓ1, . . . , ℓp}, R = {r1, . . . , rp}, and |C| = p.

Let x be the bitwise complement of x. Alice introduces the edges of the gadget graph Hx

(from Definition 2.2.12), realized on L ∪ R, and the edges of Hx realized on L ∪ R. For

89

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

l

L R

L R

C

r

l
r

Figure 2.2: Gadget graph for proving lower bounds of second flavor

ease of notation, put ℓ := ℓy, r := rz, ℓ := ℓy, r := rz, and S := C ∪ {ℓ, r, ℓ, r}. Bob

introduces all possible edges within S, except for {ℓ, r} and {ℓ, r}. Let G be the resulting

graph (see Figure 2.2).

We claim that the degeneracy κ(G) = p+2. To prove this, we consider the case xyz = 1

(the other case, xyz = 0, is symmetric). By construction, G contains a clique on the p + 3

vertices in C ∪{ℓ, r, ℓ}; therefore, by definition of degeneracy, κ(G) ≥ p+2. To show that

κ(G) ≤ p + 2, it will suffice to exhibit a vertex ordering ◁ such that odegG,◁(v) ≤ p + 2

for all v ∈ V (G). To this end, consider an ordering where

V (G) \ S ◁ ℓ ◁ S \ {ℓ}

and the ordering within each set is arbitrary. Each vertex v ∈ V (G) \ S has odegG,◁(v) ≤

deg(v) ≤ p and each vertex v ∈ S \ {ℓ} has odegG,◁(v) ≤
∣∣S \ {ℓ}∣∣− 1 = p + 2. As for

the vertex ℓ, since xyz = 1 − xyz = 0, by the construction in Definition 2.2.12, r is not a

neighbor of ℓ; therefore, odegG,◁(ℓ) ≤
∣∣S \ {ℓ, r}∣∣ = p+ 2.

Let A be a streaming algorithm that behaves as in the theorem statement. Recall that

90

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

we are considering λ = 1. Since κ(G) = p + 2 for every instance of INDEXN , Alice and

Bob can simulate A on their constructed graph G by first feeding it the number p + 2,

then Alice’s edges, and then Bob’s. When A succeeds, the coloring it outputs is a proper

(p+3)-coloring; therefore it must repeat a color inside S, as |S| = p+4. But S has exactly

one pair of non-adjacent vertices: the pair {ℓ, r} if xyz = 0, and the pair {ℓ, r} if xyz = 1.

Thus, an examination of which two vertices in S receive the same color reveals xyz, solving

the INDEXN instance. It follows that A must use at least R→(INDEXN) = Ω(N) = Ω(p2)

bits of space.

Now consider an arbitrary λ. Alice and Bob proceed as above, except that they simulate

A on the blow-up graph Gλ. Since G always has a (p + 3)-clique and κ(G) = p + 2,

the two halves of Lemma 2.2.10 together imply κ(Gλ) = (p + 3)λ − 1. So, when A

succeeds, it properly colors Gλ using at most (p + 4)λ − 1 colors. For each A ⊆ V (G),

abusing notation, letAλ denote its corresponding set of vertices inGλ (cf. Definition 2.2.9).

Since |Sλ| = (p + 4)λ, there must be a color repetition within Sλ. Reasoning as above,

this repetition must occur within {ℓ, r}λ when xyz = 0 and within {ℓ, r}λ when xyz =

1. Therefore, Bob can examine the coloring to solve INDEXN , showing that A must use

Ω(N) = Ω(p2) = Ω(n2/λ2) space.

The “furthermore” part follows by observing that κ(Gλ) = Θ
(
|V (Gλ)|

)
.

Multiple Passes. The streaming algorithm from Section 2.2.5 is one-pass, as are the

lower bounds proved above. Is the coloring problem any easier if we are allowed multiple

passes over the edge stream? We now give a simple argument showing that, if we slightly

generalize the problem, it stays just as hard using multiple (O(1) many) passes.

The generalization is to allow some edges to be repeated in the stream. In other words,

the input is a multigraph Ĝ. Clearly, a coloring is proper for Ĝ iff it is proper for the

underlying simple graph G, so the relevant algorithmic problem is to properly (κ + λ)-

color G, where κ := κ(G). Note that our algorithm in Section 2.2.5 does, in fact, solve this

91

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

more general problem.

Theorem 2.2.16. Given as input an integer κ, followed by a stream of edges of an n-

vertex multigraph Ĝ whose underlying simple graph has degeneracy κ, a randomized p-

pass algorithm that produces a proper (κ+ λ)-coloring of G requires Ω(n2/(λ2p)) bits of

space. This holds even if the stream is insertion-only, with each edge appearing at most

twice.

Proof. As usual, we prove this for λ = 1 and appeal to the Blow-Up Lemma (Lemma 2.2.10)

to generalize.

We reduce from INT-FINDN , with N =
(
n
2

)
. Let Alice and Bob treat their inputs as

(xij)1≤i<j≤n and (yij)1≤i<j≤n in some canonical way. Alice (resp. Bob) converts their input

into an edge stream consisting of pairs (i, j) such that i < j and xij = 0 (resp. yij = 0). The

concatenation of these streams defines the multigraph Ĝ given to the coloring algorithm.

Let (h, k) be the unique pair such that xhk = yhk = 1. Note that the underlying simple

graph G is Kn minus the edge {h, k}. Therefore, κ = n − 2 and so, in a proper (n − 1)-

coloring of Ĝ, there must be a repeated color and this can only happen at vertices h and

k.

Thus, a p-pass (κ + 1)-coloring algorithm using s bits of space leads to a protocol for

INT-FINDN using (2p − 1)s bits of communication. Therefore, s = Ω(N/p) = Ω(n2/p).

2.2.7. Applications in Various Space-Conscious Models

We now turn to designing graph coloring algorithms in models for big data computation

other than streaming, all of which deal which the challenge posed by the size of a massive

input graph. We call such models space-conscious. They include the general graph query

model and certain distributed models of computation such as MPC, Congested Clique,

and LOCAL. In each case, our algorithm ultimately relies on the framework developed in

92

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Section 2.2.4. For the query model, we also give complementary lower bounds.

Query Model. The general graph query model is a standard model of space-conscious

algorithms for big graphs where the input graph is random-accessible but the emphasis is

on the examining only a tiny (ideally, sublinear) portion of it; for general background see

Chapter 10 of Goldreich’s book [92]. In this model, the algorithm starts out knowing the

vertex set [n] of the input graph G and can access G only through the following types of

queries.

• A pair query Pair({u, v}), where u, v ∈ [n]. The query returns 1 if {u, v} ∈ E(G)

and 0 otherwise. For better readability, we shall write this query as Pair(u, v).

• A neighbor query Neighbor(u, j), where u ∈ [n] and j ∈ [n− 1]. The query returns

v ∈ [n] where v is the jth neighbor of u in some underlying fixed ordering of vertex

adjacency lists; if deg(v) < j, so that there does not exist a jth neighbor, the query

returns ⊥.

Naturally, when solving a problem in this model, the goal is to do so while minimizing the

number of queries.

By adapting the combinatorial machinery from their semi streaming algorithm, Assadi

et al. [17] gave an Õ(n3/2)-query algorithm for finding a (∆ + 1)-coloring. Our LDP

framework gives a considerably simpler algorithm using κ+o(κ) colors, where κ := κ(G).

We remark here that Õ(n3/2) query complexity is essentially optimal, as Assadi et al. [17]

proved a matching lower bound for any (c ·∆)-coloring algorithm, for any constant c > 1.

Theorem 2.2.17. Given query access to a graph G, there is a randomized algorithm that,

with high probability, produces a proper coloring of G using κ + o(κ) colors. The algo-

rithm’s worst-case query complexity, running time, and space usage are all Õ(n3/2).

Proof. The algorithm proceeds in two stages. In the first stage, it attempts to extract

all edges in G through neighbor queries alone, aborting when “too many” queries have

93

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

been made. More precisely, it loops over all vertices v and, for each v, issues queries

Neighbor(v, 1),Neighbor(v, 2), . . . until a query returns ⊥. If this stage ends up making

3n3/2 queries (say) without having processed every vertex, then it aborts and the algorithm

moves on to the second stage. By Fact 2.2.1, if κ ≤
√
n, then this stage will not abort

and the algorithm will have obtained G completely; it can then (κ + 1)-color G (as in

Lemma 2.2.5) and terminate, skipping the second stage.

In the second stage, we know that κ >
√
n. The algorithm now uses a random coloring

ψ to construct an (ℓ, s, λ)-LDP of G using the “guess” k =
√
n, with s = Θ(ε−2n log n)

and ℓ, λ given by Equation (2.6). To produce each subgraph Gi in the LDP, the algorithm

simply makes all possible queries Pair(u, v) where ψ(u) = ψ(v). W.h.p., the number of

queries made is at most

1

2

∑
i∈[ℓ]

|V (Gi)|2 ≤
ℓ

2

(
2n

ℓ

)2

≤ 2n2s

4nk
= Θ

(
n3/2 log n

ε2

)
,

where the first inequality uses Item (ii) of Theorem 2.2.6. We can enforce this bound in the

worst case by aborting if it is violated.

Clearly, k ≤ 2κ, so Item (i) of Theorem 2.2.6 applies and by the discussion after

Definition 2.2.7, the algorithm uses (1 + O(ε))κ colors. Setting ε = 1/ log n, this number

is at most κ+ o(κ) and the overall number of queries remains Õ(n3/2), as required.

Query Complexity Lower Bounds. We complement our algorithmic results in the query

model with lower bounds. Recall that the above algorithm produces a κ(1+ o(1))-coloring

while making at most Õ(n3/2) queries, without needing to know κ in advance. Here, we

shall prove that the number of colors cannot be improved to κ + 1: that would preclude

sublinear complexity. In fact, we prove more general results, similar in spirit to the stream-

ing lower bounds from Section 2.2.6. For the query lower bounds, we use another family

of gadget graphs.

94

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

L R

l
r

C

y

z

(a)

l

L R

L R

C

r

l
r

(b)

ai

aj b

b

j

i

A B
(c)

Figure 1: Gadget graphs used in (a) Lemma 5.5; (b) Theorem 5.7; (c) Lemma 5.12 and Theorem 5.14.

Definition 5.3 (graph-dist problem). Consider two graph families: G1 := G1(n, q, λ), consisting of n-vertex
graphs with chromatic number χ > (q + 1)λ, and G2 := G2(n, q, λ), consisting of n-vertex graphs with
κ 6 qλ − 1. Then graph-dist(n, q, λ) is the problem of distinguishing G1 from G2; note that G1 ∩ G2 = ∅.
More precisely, given an input graph G on n vertices, the problem is to decide whether G ∈ G1 or G ∈ G2,
with success probability at least 2/3.

We shall prove that graph-dist is “hard” in the insertion-only streaming setting and in the query setting,
thereby establishing that in these models it is hard to produce a (κ + λ)-coloring. In fact, our proofs will show
that it is just as hard to estimate the parameter κ; this goes to show that the hardness of the coloring problem
is not just because of the large output size.

Lower bounds of the above flavor raise the following question: since estimating κ itself is hard, does the
coloring problem become easier if the value of κ(G) is given in advance, before the algorithm starts to read
G? In fact, the (∆ + 1)-coloring algorithms by Assadi et al. [ACK19] assume that ∆ is known in advance.
However, perhaps surprisingly, we prove a second flavor of lower bounds, showing that a priori knowledge
of κ does not help and (κ + 1)-coloring (more generally, (κ + λ)-coloring) remains a hard problem even under
the strong assumption that κ is known in advance.

5.1 Streaming Lower Bounds

In this section, we prove both flavors of lower bounds in the one-pass streaming setting. The next section
takes up the query model.

Our streaming lower bounds use reductions from the index and int-find (intersection finding, a variant
of disjointness) problems in communication complexity. In the indexN problem, Alice is given a vector
x = (x1, . . . , xN) ∈ {0, 1}N and Bob is given an index k ∈ [N]. The goal is for Alice to send Bob a (possibly
random) c-bit message that enables Bob to output xk with probability at least 2/3. The smallest c for
which such a protocol exists is called the one-way randomized communication complexity, R→(indexN). In
int-findN , Alice and Bob hold vectors x, y ∈ {0, 1}N , interpreted as subsets of [N], satisfying the promise that
|x∩y| = 1. They must find the unique index i where xi = yi = 1, using at most c bits of randomized interactive
communication, succeeding with probability at least 2/3. The smallest c for which such a protocol exists is
the randomized communication complexity, R(int-findN). As is well known, R→(indexN) = Ω(N) [Abl96]
and R(int-findN) = Ω(N); the latter is a simple extension of the disjointness lower bound [Raz92].

16

Figure 2.3: Gadget graph for proving query lower bounds

Definition 2.2.18. Given a large integer p (a size parameter), the gadgets for that size

are (2p + 1)-vertex graphs on vertex set A ⊎ B, where A = {a1, . . . , ap+1} and B =

{b1, . . . , bp}. Let H be the graph consisting of a clique on A and a clique on B, with no

edges between A and B. For 1 ≤ i < j ≤ p, let Hij be a graph on the same vertex set

obtained by slightly modifying H as follows (see Figure 2.3):

E(Hij) = E(H) \
{
{ai, aj}, {bi, bj}

}
∪
{
{ai, bj}, {aj, bi}

}
. (2.9)

Notice that the vertex ap+1 is not touched by any of these modifications. The relevant

properties of these gadget graphs are as follows.

Lemma 2.2.19. For all 1 ≤ i < j ≤ p, κ(Hij) = p − 1, whereas the chromatic number

χ(H) = p+ 1.

Proof. The claim about χ(H) is immediate.

Consider a particular graph Hij . The subgraph induced by A \ {ai} is a p-clique, so

κ(Hij) ≥ p− 1.

Now consider the following ordering ◁ for Hij: B ◁ ai ◁ A \ {ai}, where the order

within each set is arbitrary. For each v ∈ B, odegHij ,◁(v) ≤ deg(v) = p − 1. For each

v ∈ A \ {ai}, odegHij ,◁(v) ≤ |A \ {ai}| − 1 = p − 1. Finally, ai has exactly p − 1

95

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

neighbors in A \ {ai} (by construction, aj is not a neighbor), so odegHij ,◁(ai) = p− 1. By

Lemma 2.2.4, it follows that κ(Hij) ≤ p− 1.

Our proofs will use these gadget graphs in reductions from a pair of basic problems

in decision tree complexity. Consider inputs that are vectors in {0, 1}N : let 0 denote the

all-zero vector and, for i ∈ [N], let ei denote the vector whose ith entry is 1 while all other

entries are 0. Let UNIQUE-ORN and UNIQUE-FINDN denote the following partial functions

on {0, 1}N :

UNIQUE-ORN(x) =


0 , if x = 0 ,

1 , if x = ei , for i ∈ [N] ,

⋆ , otherwise;

UNIQUE-FINDN(x) =


i , if x = ei , for i ∈ [N] ,

⋆ , otherwise.

Informally, these problems capture, respectively, the tasks of (a) determining whether

there is a needle in a haystack under the promise that there is at most one needle, and

(b) finding a needle in a haystack under the promise that there is exactly one needle. Intu-

itively, solving either of these problems with high accuracy should require searching almost

the entire haystack. Formally, let Rdt
δ (f) denote the δ-error randomized query complexity

(a.k.a. decision tree complexity) of f . Elementary considerations of decision tree complex-

ity lead to the bounds below (for a thorough discussion, including formal definitions, we

refer the reader to the survey by Buhrman and de Wolf [51]).

Fact 2.2.3. For all δ ∈ (0, 1
2
), we have Rdt

δ (UNIQUE-ORN) ≥ (1−2δ)N and Rdt
δ (UNIQUE-FINDN) ≥

(1− δ)N − 1.

With this setup, we turn to lower bounds of the first flavor.

96

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Lemma 2.2.20. Solving GRAPH-DIST(n, p, λ) in the general graph query model requires

Ω(n2/λ2) queries.

More precisely, there is a constant c > 0 such that for every integer λ ≥ 1 and every

sufficiently large integer p, there is a setting n = n(p, λ) for which every randomized query

algorithm for GRAPH-DIST(n, p, λ) requires at least cn2/λ2 queries in the worst case.

Proof. We reduce from UNIQUE-ORN , where N =
(
p
2

)
, using the following plan. Put

n = (2p+1)λ. Let C be a query algorithm for GRAPH-DIST(n, p, λ). Based on C, we shall

design a 1
3
-error algorithm A for UNIQUE-ORN that makes at most as many queries as C.

By Fact 2.2.3, this number of queries must be at least N/3 = Ω(p2) = Ω(n2/λ2).

As usual, we detail our reduction for λ = 1; the Blow-up Lemma (Lemma 2.2.10)

then handles general λ. By Lemma 2.2.19, H ∈ G1 whereas each Hij ∈ G2 (cf. Defini-

tion 2.2.11, taking q = p).

We now design A. Let x ∈ {0, 1}N be the input to A. Using a canonical bijection, let

us index the bits of x as xij , where 1 ≤ i < j ≤ p. Algorithm A simulates C and outputs 1

iff C decides that its input lies in G2. Since C makes queries to a graph, we shall design an

oracle for C whose answers, based on query answers for input x toA, will implicitly define

a graph on vertex set V := A ⊎ B, as in Definition 2.2.18. The oracle answers queries as

follows.

• For i, j ∈ [p], it answers Pair(ai, aj) and Pair(bi, bj) with 1− xij .

• For i, j ∈ [p], it answers Pair(ai, bj) and Pair(aj, bi) with xij .

• For i ∈ [p], it answers Pair(ap+1, ai) with 1 and Pair(ap+1, bi) with 0.

• For i ∈ [p] and d ∈ [p − 1], it answers Neighbor(ai, d) with aj if xij = 0 and bj if

xij = 1, where j = d if d < i, and j = d+ 1 otherwise.

• For i, d ∈ [p], it answers Neighbor(ai, p) with ap+1 and Neighbor(ap+1, d) with ad.

97

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

• For i ∈ [p] and d ∈ [p − 1], it answers Neighbor(bi, d) with bj if xij = 0 and aj if

xij = 1, where j = d if d < i, and j = d+ 1 otherwise.

• For all other combinations of v ∈ V and d ∈ N, it answers Neighbor(v, d) = ⊥.

By inspection, we see that the graph defined by this oracle is H if x = 0 and is Hij if

x = eij . Furthermore, the oracle answers each query by making at most one query to the

input x. It follows that A makes at most as many queries as C and decides UNIQUE-ORN

with error at most 1
3
. This completes the proof for λ = 1.

To handle λ > 1, we modify the oracle in the natural way so that the implicitly defined

graph isHλ when x = 0 andHλ
ij when x = eij . We omit the details, which are routine.

As an immediate consequence of Lemma 2.2.20, we get the following query lower

bounds.

Theorem 2.2.21. Given query access to an n-vertex graph G, succeeding with probability

at least 2/3 at either of the following tasks requires Ω(n2/λ2) queries, where λ ≥ 1 is an

integer parameter:

(i) produce a proper (κ+ λ)-coloring of G;

(ii) produce an estimate κ̂ such that |κ̂− κ| ≤ λ.

We now prove a lower bound of the second flavor, where the algorithm knows κ in

advance.

Theorem 2.2.22. Given an integer κ and query access to an n-vertex graphG with κ(G) =

κ, an algorithm that, with probability 2/3, produces a proper (κ + λ)-coloring of G must

make Ω(n2/λ2) queries.

Proof. We focus on the case λ = 1; the general case is handled by the Blow-up Lemma, as

usual.

98

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Let C be an algorithm for the coloring problem. We design an algorithmA for UNIQUE-FINDN ,

whereN =
(
p
2

)
, using the same reduction as in Lemma 2.2.20, changing the post-processing

logic as follows: A outputs (i, j) as its answer to UNIQUE-FINDN(x), where 1 ≤ i < j ≤ p

is such that ai and aj are colored the same by C.

To prove the correctness of this reduction, note that when x = eij , the graph defined

by the simulated oracle is Hij and κ(Hij) = p − 1 (Lemma 2.2.19). Suppose that C is

successful, which happens with probability at least 2/3. Then C properly p-colors Hij .

Recall that V (Hij) = A⊎B, where |A| = p+ 1; there must therefore be a color repetition

withinA. The only two non-adjacent vertices insideA are ai and aj , soA correctly answers

(i, j). By Fact 2.2.3, A must make Ω(N) = Ω(p2) queries.

MPC and Congested Clique Models. In the Massively Parallel Computations (MPC)

model of Beame et al. [36], an input of size m is distributed adversarially among p proces-

sors, each of which has S bits of working memory: here, p and S are o(m) and, ideally,

p ≈ m/S. Computation proceeds in synchronous rounds: in each round, a processor car-

ries out some local computation (of arbitrary time complexity) and then communicates with

as many of the other processors as desired, provided that each processor sends and receives

no more than S bits per round. The primary goal in solving a problem is to minimize the

number of rounds.

When the input is an n-vertex graph, the most natural and widely studied setting of MPC

is S = Õ(n), which enables each processor to hold some information about every vertex;

this makes many graph problems tractable. Since the input size m is potentially Ω(n2), it

is reasonable to allow p = n many processors. Note that the input is just a collection of

edges, distributed adversarially among these processors, subject to the memory constraint.

Theorem 2.2.23. There is a randomized O(1)-round MPC algorithm that, given an n-

vertex graph G, outputs a κ(1 + o(1))-coloring of G with high probability. The algorithm

uses n processors, each with O(n log2 n) bits of memory.

99

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Proof. Our algorithm will use n processors, each assigned to one vertex. If |E(G)| =

O(n log n), then all of G can be collected at one processor in a single round using |E(G)| ·

2⌈log n⌉ = O(n log2 n) bits of communication and the problem is solved trivially. There-

fore, we may as well assume that |E(G)| = ω(n log n), which implies κ = ω(log n), by

Fact 2.2.1. We shall first give an algorithm assuming that κ is known a priori. Our final

algorithm will be a refinement of this preliminary one.

Preliminary algorithm. Take k = κ. Each processor chooses a random color for its

vertex, implicitly producing a partition (G1, . . . , Gℓ) that is, w.h.p., an (ℓ, s, λ)-LDP; we

take ℓ, λ as in eq. (2.6), s = Θ(ε−2n log n), and ε = (k−1 log n)1/4. Note that ε = o(1).

In Round 1, each processor sends its chosen color to all others—this is O(n log n) bits of

communication per machine—and as a result every processor learns which of its vertex’s

incident edges are monochromatic. Now each color i ∈ [ℓ] is assigned a unique machine

Mi and, in Round 2, all edges in Gi are sent to Mi. Each Mi then locally computes a

(κ(Gi)+1)-coloring ofGi using a palette disjoint from those of otherMis; by the discussion

following Definition 2.2.7, this colors G using at most (1 +O(ε))κ = κ+ o(κ) colors.

The communication in Round 2 is bounded by maxi |E(Gi)| · 2⌈log n⌉. By Fact 2.2.1,

items (i) and (ii) of Theorem 2.2.6, and eq. (2.6), the following holds w.h.p. for each i ∈ [ℓ]:

|E(Gi)| ≤ κ(Gi)|V (Gi)| ≤
κ+ λ

ℓ
·2n
ℓ
≤ 4nκ

ℓ2
≤ 4nk

(2nk/s)2
=
O(ε−2n log n)2

nk
= O(n log n) .

(2.10)

Thus, the communication per processor in Round 2 is O(n log2 n) bits.

Final algorithm. When we don’t know κ in advance, we can make geometrically spaced

guesses k, as in Section 2.2.5. In Round 1, we choose a random coloring for each such

k. In Round 2, we determine the quantities |E(Gi)| for each k and each subgraph Gi and

thereby determine the smallest k such that eq. (2.10) holds for every Gi corresponding to

100

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

this k. We then run Round 3 for only this one k, replicating the logic of Round 2 of the

preliminary algorithm.

Correctness is immediate. We turn to bounding the communication cost. For Round 3,

the previous analysis shows that the communication per processor is O(n log2 n) bits. For

Rounds 1 and 2, let us consider the communication involved for each guess k: since each

randomly-chosen color and each cardinality |E(Gi)| can be described in O(log n) bits,

each processor sends and receives at most O(n log n) bits per guess. This is a total of

O(n log2 n) bits, as claimed.

The Congested-Clique model [133] is a well established model of distributed comput-

ing for graph problems. In this model, there are n nodes, each of which holds the local

neighborhood information (i.e., the incident edges) of one vertex of the input graph G. In

each round, every pair of nodes may communicate, whether or not they are adjacent in G,

but the communication is restricted to O(log n) bits. There is no constraint on a node’s

local memory. The goal is to minimize the number of rounds.

Behnezhad et al. [38] built on results of Lenzen [127] to show that any algorithm in the

semi-MPC model—defined as MPC with space per machine being O(n log n) bits—can be

simulated in the Congested Clique model, preserving the round complexity up to a constant

factor. Based on this, we obtain the following result.

Theorem 2.2.24. There is a randomized O(1)-round algorithm in the Congested Clique

model that, given a graph G, w.h.p. finds a (κ + O(κ3/4 log1/2 n))-coloring. For κ =

ω(log2 n), this gives a κ(1 + o(1))-coloring.

Proof. We cannot directly use our algorithm in Theorem 2.2.23 because it is not a semi-

MPC algorithm: it uses O(n log2 n) bits of space per processor, rather than O(n log n).

However, with a more efficient implementation of Round 1, a more careful analysis of

Round 2, and a slight tweak of parameters for Round 3, we can improve the commu-

101

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

nication (hence, space) bounds to O(n log n), whereupon the theorem of Behnezhad et

al. [38] completes the proof.

For Round 3, the tweak is to set ε = (k−1 log2 n)1/4 but otherwise replicate the logic

of the final algorithm from Theorem 2.2.23. With this higher value of ε, the bound from

eq. (2.10) improves to |E(Gi)| = O(n). Therefore the per-processor communication in

Round 3 is only O(n log n) bits. The number of colors used is, w.h.p., at most (1 +

O(ε))κ = κ+O(κ3/4 log1/2 n).

For a tighter analysis of the communication cost of Round 2, note that, for a particular

guess k, there is a corresponding ℓ given by eq. (2.6) such that each processor need only

send/receive ℓ cardinalities |E(Gi)|, each of which can be described in O(log n) bits. Con-

sulting eq. (2.6), we see that ℓ = O(n2/s) = O(n/ log n). Therefore, summing over all

O(log n) choices of k, each processor communicates at most

O(n/ log n) ·O(log n) ·O(log n) = O(n log n) bits.

Round 1 appears problematic at first, since there are O(log n) many random colorings

to be chosen, one for each guess k. However, note that these colorings need not be inde-

pendent. Therefore, we can choose just one random ⌈log n⌉-bit “master color” ϕ(v) for

each vertex v and derive the random colorings for the various guesses k by using only

appropriate length prefixes of ϕ(v). This ensures that each processor only communicates

O(n log n) bits in Round 1.

Distributed Coloring in the LOCAL Model. In the LOCAL model, each node of the input

graphG hosts a processor that knows only its own neighborhood. The processors operate in

synchronous rounds, during which they can send and receive messages of arbitrary length

to and from their neighbors. The processors are allowed unbounded local computation in

each round. The key complexity measure is time, defined as the number of rounds used by

102

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

an algorithm (expected number, for a randomized algorithm) on a worst-case input.

Graph coloring in the LOCAL model is very heavily studied and is one of the central

problems in distributed algorithms. Here, our focus is on algorithms that properly color

the input graph G using a number of colors that depends on α := α(G), the arboricity

of G. Recall that α ≤ κ ≤ 2α − 1 (Fact 2.2.2). Unlike in previous sections, our results

will give big-O bounds on the number of colors, so we may as well state them in terms

of α (following established tradition in this line of work) rather than κ. Our focus will

be on algorithms that run in sublogarithmic time, while using not too many colors. See

Section 4.2.1 for a quick summary of other interesting parameter regimes and Barenboim

and Elkin [31] for a thorough treatment of graph coloring in the LOCAL model.

Kothapalli and Pemmaraju [124] gave an O(k)-round algorithm that uses O(αn1/k)

colors, for all k with 2 log log n ≤ k ≤
√
log n. We give a new coloring algorithm that,

in particular, extends the range of k to which such a time/quality tradeoff applies: for

k ∈
[
ω(
√
log n), o(log n)

]
, we can compute an O(αn1/k log n)-coloring in O(k) rounds.

Our algorithm uses our LDP framework to split the input graph into parts with logarith-

mic degeneracy (hence, arboricity) and then invokes an algorithm of Barenboim and Elkin.

The following theorem records the key properties of their algorithm.

Lemma 2.2.25 (Thm 5.6 of Barenboim and Elkin [29]). There is a deterministic distributed

algorithm in the LOCAL model that, given an n-vertex graph G, an upper bound b on

α(G), and a parameter t with 2 < t ≤ O(
√
n/b), produces an O(tb2)-coloring of G in

time O (logt n+ log⋆ n).

Here is the main result of this section.

Theorem 2.2.26. There is a randomized distributed algorithm in the LOCAL model that,

given an n-vertex graph G, an estimate of its arboricity α up to a constant factor, and a

parameter t such that 2 < t ≤ O(
√
n/ log n), produces an O(tα log n)-coloring of G in

time O (logt n+ log⋆ n).

103

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Proof. To simplify the presentation, we assume that α = α(G). We assume that every

node (vertex) knows n and α. Consider a (ℓ, s, λ)-LDP of G, where we put s = Cn log n,

for some large constant C, as in Theorem 2.2.6. This setting of s gives ℓ = O(α/ log n).

First, each vertex v chooses a color ψ(v) uniformly at random from [ℓ]. Next, we need to

effectively “construct” the blocks Gi, for each i ∈ [ℓ]. This is straightforwardly done in a

single round: each vertex v sends ψ(v) to all its neighbors.

At this point, each vertex v knows its neighbors in the block Gψ(v). So it’s now possible

to run a distributed algorithm on each Gi. We invoke the algorithm in Lemma 2.2.25. The

algorithm needs each vertex v to know an upper bound bi on α(Gi), where i = ψ(v). A

useful upper bound of bi = O(log n), which holds w.h.p., is given by item (i) of Theo-

rem 2.2.6.

By Lemma 2.2.25, each Gi can be colored using O(t log2 n) colors, within another

O (logt n+ log⋆ n) rounds, since 2 < t ≤ O(
√
n/ log n). Using disjoint palettes for

the distinct blocks, the total number of colors used for G is at most ℓ · O(t log2 n) =

O(tα log n), as required.

The particular form of the tradeoff stated in Table 2.1 is obtained by setting t = n1/k

(for some k ≥ 3) in the above theorem.

Corollary 2.2.27. There is a randomized LOCAL algorithm that, given graph G, estimate

α ≈ α(G), and a parameter k with 2 < n1/k ≤ O(
√
n/ log n), finds an O(αn1/k log n)-

coloring of G in time O (k + log⋆ n).

2.2.8. A Combinatorial Lower Bound

Finally, we explore a connection between degeneracy based coloring and the list coloring

problem. In the latter problem, each vertex has a list of colors and the goal is to find a

corresponding list coloring—i.e., a proper coloring of the graph where each vertex receives

a color from its list—or to report that none exists. Assadi et al. [17] proved a beautiful

104

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Palette Sparsification Theorem, a purely graph-theoretic result that connects the (∆ + 1)-

coloring problem to the list coloring problem.

Define a graph G to be [ℓ, r]δ-randomly list colorable (briefly, [ℓ, r]δ-RLC) if choosing

r random colors per vertex, independently and uniformly without replacement from the

palette [ℓ], permits a list coloring with probability at least 1 − δ using these chosen lists.7

Their theorem can be paraphrased as follows.

Fact 2.2.4 (Assadi et al. [17], Theorem 1). There exists a constant c such that every n-

vertex graph G is [∆(G) + 1, c log n]1/n-RLC.

Indeed, this theorem is the basis of the various coloring results in their work. Let

us outline how things work in the streaming model, focusing on the space usage. Given

an input graph G that is promised to be [ℓ, r]1/3-RLC, for some parameters ℓ, r that may

depend on G, we sample r random colors from [ℓ] for each vertex before reading the in-

put. Chernoff bounds imply that the conflict graph—the subgraph of G consisting only

of edges between vertices whose color lists intersect—is of size O(|E(G)|r2/ℓ), w.h.p..

Using |E(G)| ≤ n∆/2, taking ℓ = ∆ + 1 and r = O(log n) bounds this size by Õ(n), so

a semi-streaming space bound suffices to collect the entire conflict graph. (For full details,

see Lemma 4.1 in [17].) Finding a list coloring of the conflict graph (which exists with

probability at least 2/3) yields an ℓ-coloring of G.

For a similar technique to work in our setting, we would want ℓ ≈ κ. Recalling that

|E(G)| ≤ nκ, for the space usage to be Õ(n), we need r = O(polylog n). This raises the

following combinatorial question: what is the smallest λ for which we can guarantee that

every graph is [κ+ λ,O(polylog n)]1/3-RLC?

By the discussion above, our streaming lower bound in Theorem 2.2.15 already tells

us that such a result is not possible with λ = O(κ
1
2
−γ). Our final result (Theorem 2.2.29

below) proves that we can say much more.

7When r ≥ l, this procedure simply produces the list [ℓ] for every vertex.

105

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

Let Jn,t denote the graphKt+Kn−t, i.e., the graph join of a t-clique and an (n−t)-sized

independent set. More explicitly,

Jn,t = (A⊎B,E) , where |A| = t, |B| = n−t, E = {{u, v} : u ∈ A, v ∈ A∪B, u ̸= v} .

(2.11)

Lemma 2.2.28. For integers 0 < r ≤ t < n, if Jn,t is [κ + κ/r, r]δ-RLC, then δ ≥

1− rn/(r + 1)n−t.

Proof. Take a graph Jn,t with vertices partitioned intoA andB as in eq. (2.11). An ordering

with B ◁ A shows that κ = κ(Jn,t) = t. We claim that for every choice of colors lists for

vertices in A, taken from the palette [t + t/r], the probability that the chosen lists for B

permit a proper list coloring is at most p := rn/(r + 1)n−t. This will prove that δ ≥ 1− p.

To prove the claim, consider a particular choice of lists for A. Fix a partial coloring ψ

of A consistent with these lists. If ψ is not proper, there is nothing to prove. Otherwise,

since A induces a clique, ψ must assign t distinct colors to A. In order for a choice of lists

for B to permit a proper extension of ψ to the entire graph, every vertex of B must sample

a color from the remaining t/r colors in the palette. Since r colors are chosen per vertex,

this event has probability at most

(
r · t/r

t+ t/r

)|B|
=

(
r

r + 1

)n−t
.

The claimed upper bound on p now follows by a union bound over the rt possible partial

colorings ψ.

This easily leads to our combinatorial lower bound, given below. In reading the theorem

statement, note that the restriction on edge density strengthens the theorem.

Theorem 2.2.29. Let n be sufficiently large and let m be such that n ≤ m ≤ n2/ log2 n. If

every n-vertex graphG with Θ(m) edges is [κ(G)+λ, c log n]1/3-RLC for some parameter

106

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

λ and some constant c, then we must have λ > κ(G)/(c log n).

Proof. Suppose not. Put t = ⌈m/n⌉, r = c log n, and consider the graph Jn,t defined in

eq. (2.11). By the bounds on m, |E(Jn,t)| = t(t− 1)/2 + t(n− t) = Θ(nt) = Θ(m). Put

κ := κ(Jn,t). By assumption, Jn,t is [κ+ κ/r, r]-RLC, so Lemma 2.2.28 implies that

2

3
≤ rn

(r + 1)n−t
=

(
1− 1

r + 1

)n
(r + 1)t ≤ exp

(
− n

r + 1
+ t ln(r + 1)

)
.

Since t = O(n/ log2 n) and r = c log n, this is a contradiction for sufficiently large n.

We remark that the above result rules out the possibility of using a palette sparsification

theorem along the lines of Assadi et al. [17] to obtain a semi-streaming coloring algorithm

that uses fewer colors than Algorithm 1 (with the setting ε = 1/ log n).

More generally, suppose we were willing to tolerate a weaker notion of palette sparsi-

fication by sampling O(logd n) colors per vertex, for some d ≥ 1: this would increase

the space complexity of an algorithm based on such sparsification by a polylog n fac-

tor. By Lemma 2.2.28, arguing as in Theorem 2.2.29, we would need to spend at least

κ + κ/Θ(logd n) colors. This is no better than the number of colors obtained using Algo-

rithm 1 with the setting ε = 1/ logd n, which still maintains semi-streaming space. In fact,

palette sparsification does not immediately guarantee a post-processing runtime that is bet-

ter than exponential, because we need to color the conflict graph in post-processing. Mean-

while, recall that Algorithm 1 has Õ(n) post-processing time via a straightforward greedy

algorithm. Furthermore, since there exist “hard” graphs Jn,t at all edge densities from Θ(n)

to Θ(n2/ log2 n), we cannot even hope for a semi-streaming palette-sparsification-based al-

gorithm that might work only for sparse graphs or only for dense graphs.

2.2.9. Subsequent works

Subsequently, a number of works studied streaming graph coloring from various angles.

Alon and Assadi [8] explored palette sparsification under several settings of palette size

107

2.2 GRAPH COLORING CLASSICAL GRAPH STREAMING

and number of sampled colors. Their results implied that there is a palette-sparsification-

based semi-streaming algorithm for κ(1 + o(1))-coloring, although it does not guarantee

polynomial time post-processing. Their palette sparsification theorems also implied semi-

streaming algorithms for coloring triangle-free graphs and (deg+1)-coloring, where every

vertex v gets a color list [deg(v) + 1]. Very recently, Halldórsson [96] gave a palette-

sparsification-based semi-streaming algorithm for (deg+1)-coloring that works even when

the color list of node v can be any arbitrary list of (deg(v)+1) colors, not just [deg(v)+1].

Bhattacharya et al. [45] showed that verifying whether a given vertex-coloring (streamed

with the input edges) is proper, does not admit any sublinear-space algorithm. They also

gave some interesting algorithms for this problem for random-order streams. Assadi, Chen,

and Sun [16] proved that (∆ + 1)-coloring has no non-trivial one-pass deterministic semi-

streaming algorithm: any such algorithm requires exp(∆Ω(1)) colors. Again, any one-pass

deterministic algorithm using O(n1+α) space requires Ω(∆1/(2α)) colors. Further, they

gave a deterministic 2-passO(∆2)-coloring semi-streaming algorithm and extended it to an

O(log n)-pass O(∆)-coloring. Furthermore, Assadi, Kumar, and Mittal [19] surprisingly

proved Brooks’ theorem in the semi-streaming model: they showed that any connected

graph which is not an odd cycle or a clique admits a ∆-coloring algorithm in this setting.

Finally, in a joint work with A. Chakrabarti and M. Stoeckl [61], we studied graph coloring

in the adversarially robust streaming setting, of which give an elaborate account in the next

chapter.

108

Chapter 3

Adversarially Robust Streaming

Recall that a data streaming algorithm processes a long input sequence σ, while using space

sublinear in the size of σ, to return an output from a set of valids outputs based on σ. For

most—though not all—problems of interest, a streaming algorithm needs to be random-

ized in order to achieve sublinear space. Observe that most algorithms given in Chapter 2

are randomized. For a randomized algorithm, the standard correctness requirement is that

for each possible fixed input stream it return a valid answer with high probability. A bur-

geoning body of work—much of it very recent [21, 39–41, 50, 100, 115, 169] but traceable

back to [97]—addresses streaming algorithms that seek an even stronger correctness guar-

antee: they need to produce valid answers with high probability even when working with

an input generated by an active adversary. There is compelling motivation from practical

applications for seeking this stronger guarantee: for instance, consider a user continuously

interacting with a database and choosing future queries based on past answers received;

or think of an online streaming or marketing service looking at a customer’s transaction

history and recommending them products based on it.

We may view the operation of streaming algorithm A as a game between a solver, who

executesA, and an adversary, who generates a “hard” input stream σ. The standard notion

of A having error probability δ is that for every fixed σ that the adversary may choose, the

109

ADVERSARIALLY ROBUST STREAMING ADVERSARIALLY ROBUST STREAMING

probability overA’s random choices that it errs on σ is at most δ. Since the adversary has to

make their choice before the solver does any work, they are oblivious to the actual actions of

the solver. In contrast to this, an adaptive adversary is not required to fix all of σ in advance,

but can generate the elements (tokens) of σ incrementally, based on outputs generated

by the solver as it executes A. Clearly, such an adversary is much more powerful and

can attempt to learn something about the solver’s internal state in order to generate input

tokens that are bad for the particular random choices made by A. Indeed, such adversarial

attacks are known to break many well known algorithms in the streaming literature [40,97].

Motivated by this, one defines a δ-error adversarially robust streaming algorithm to be one

where the probability that an adaptive adversary can cause the solver to produce an incorrect

output at some point of time is at most δ. Notice that a deterministic streaming algorithm

(which, by definition, must always produce correct answers) is automatically adversarially

robust.

Past work on such adversarially robust streaming algorithms has focused on statistical

estimation problems and on sampling problems but, with the exception of [50], there has

not been much study of graph theoretic problems. In this chapter, we mainly focus on graph

coloring, a fundamental algorithmic problem on graphs. Recall that the goal is to efficiently

process an input graph given as a stream of edges and assign colors to its vertices from a

small palette so that no two adjacent vertices receive the same color. The main messages

of our results are that (i) while there exist surprisingly efficient sublinear-space algorithms

for coloring under standard streaming, it is provably harder to obtain adversarially robust

solutions; but nevertheless, (ii) there do exist nontrivial sublinear-space robust algorithms

for coloring.

To be slightly more detailed, suppose we must color an n-vertex input graph G that

has maximum degree ∆. Producing a coloring using only χ(G) colors, where χ(G) is the

chromatic number, is NP-hard while producing a (∆+1)-coloring admits a straightforward

110

3.1 MOTIVATION AND CONTEXT ADVERSARIALLY ROBUST STREAMING

greedy algorithm, given offline access to G. Producing a good coloring given only stream-

ing access to G and sublinear (i.e., o(n∆) bits of) space is a nontrivial problem and the

subject of much recent research [8,17,43–45], including the breakthrough result of Assadi,

Chen, and Khanna [17] that gives a (∆+ 1)-coloring algorithm using only semi-streaming

(i.e., Õ(n) bits of) space.1 However, all of these algorithms were designed with only the

standard, oblivious adversary setting in mind; an adaptive adversary can make all of them

fail. This is the starting point for our exploration in this work.

Section 3.1

Motivation and Context

Graph streaming has become widely popular [137], especially since the advent of large and

evolving networks including social media, web graphs, and transaction networks. These

large graphs are regularly mined for knowledge and such knowledge often informs their

future evolution. Therefore, it is important to have adversarially robust algorithms for

working with these graphs. Yet, the recent explosion of interest in robust algorithms has

not focused much on graph problems. We now quickly recap some history.

Two influential works [97, 140] identified the challenge posed by adaptive adversaries

to sketching and streaming algorithms. In particular, Hardt and Woodruff [97] showed

that many statistical problems, including the ubiquitous one of ℓ2-norm estimation, do not

admit adversarially robust linear sketches of sublinear size. Recent works have given a

number of positive results. Ben-Eliezer, Jayaram, Woodruff, and Yogev [40] considered

such fundamental problems as distinct elements, frequency moments, and heavy hitters

(these date back to the beginnings of the literature on streaming algorithms); for (1 ± ε)-

approximating a function value, they gave two generic frameworks that can “robustify” a

standard streaming algorithm, blowing up the space cost by roughly the flip number λε,m,

1The notation Õ(·) hides factors polylogarithmic in n.

111

3.1 MOTIVATION AND CONTEXT ADVERSARIALLY ROBUST STREAMING

defined as the maximum number of times the function value can change by a factor of 1±ε

over the course of anm-length stream. For insertion-only streams and monotone functions,

λε,m is roughly O(ε−1 logm), so this overhead is very small. Subsequent works [21, 100,

169] have improved this overhead with the current best-known one beingO
(√

ελε,m
)

[21].

For insertion-only graph streams, a number of well-studied problems such as trian-

gle counting, maximum matching size, and maximum subgraph density can be handled

by the above framework because the underlying functions are monotone. For some prob-

lems such as counting connected components, there are simple deterministic algorithms

that achieve an asymptotically optimal space bound, so there is nothing new to say in the

robust setting. For graph sparsification, [50] showed that the Ahn–Guha sketch [4] can

be made adversarially robust with a slight loss in the quality of the sparsifier. Thanks

to efficient adversarially robust sampling [41, 50], many sampling-based graph algorithms

should yield corresponding robust solutions without much overhead. For problems call-

ing for Boolean answers, such as testing connectivity or bipartiteness, achieving low error

against an oblivious adversary automatically does so against an adaptive adversary as well,

since a sequence of correct outputs from the algorithm gives away no information to the

adversary. This is a particular case of a more general phenomenon captured by the notion

of pseudo-determinism, discussed at the end of this section.

Might it be that for all interesting data streaming problems, efficient standard stream-

ing algorithms imply efficient robust ones? The above framework does not automatically

give good results for turnstile streams, where each token specifies either an insertion or a

deletion of an item, or for estimating non-monotone functions. In either of these situations,

the flip number can be very large. As noted above, linear sketching, which is the preemi-

nent technique behind turnstile streaming algorithms (including ones for graph problems),

is vulnerable to adversarial attacks [97]. This does not quite provide a separation between

standard and robust space complexities, since it does not preclude efficient non-linear solu-

112

3.1 MOTIVATION AND CONTEXT ADVERSARIALLY ROBUST STREAMING

tions. The very recent work [115] gives such a separation: it exhibits a function estimation

problem for which the ratio between the adversarial and standard streaming complexities is

as large as Ω̃
(√

λε,m
)
, which is exponential upon setting parameters appropriately. How-

ever, their function is highly artificial, raising the important question: Can a significant gap

be shown for a natural streaming problem? 2

It is easy to demonstrate such a gap in graph streaming. Consider the problem of find-

ing a spanning forest in a graph undergoing edge insertions and deletions. The celebrated

Ahn–Guha–McGregor sketch [5] solves this in Õ(n) space, but this sketch is not adversari-

ally robust. Moreover, suppose thatA is an adversarially robust algorithm for this problem.

Then we can argue that the memory state of A upon processing an unknown graph G must

contain enough information to recover G entirely: an adversary can repeatedly ask A for

a spanning forest, delete all returned edges, and recurse until the evolving graph becomes

empty. Thus, for basic information theoretic reasons, A must use Ω(n2) bits of space,

resulting in a quadratic gap between robust and standard streaming space complexities. Ar-

guably, this separation is not very satisfactory, since the hardness arises from the turnstile

nature of the stream, allowing the adversary to delete edges. Meanwhile, the [115] sepa-

ration does hold for insert-only streams, but as we (and they) note, their problem is rather

artificial.

Hardness for Natural Problems. We now make a simple, yet crucial, observation. Let

MISSING-ITEM-FINDING (MIF) denote the problem where, given an evolving set S ⊆ [n],

we must be prepared to return an element in [n]∖S or report that none exists. When the ele-

ments of S are given as an input stream, MIF admits the followingO(log2 n)-space solution

against an oblivious adversary: maintain an ℓ0-sampling sketch [109] for the characteristic

vector of [n] ∖ S and use it to randomly sample a valid answer. In fact, this solution ex-

tends to turnstile streams. Now suppose that we have an adversarially robust algorithm A
2This open question was explicitly raised in the STOC 2021 workshop Robust Streaming, Sketching, and

Sampling [159].

113

3.1 MOTIVATION AND CONTEXT ADVERSARIALLY ROBUST STREAMING

for MIF, handling insert-only streams. Then, given the memory state of A after processing

an unknown set T with |T | = n/2, an adaptive adversary can repeatedly query A for a

missing item x, record x, insert x as the next stream token, and continue until A fails to

find an item. At that point, the adversary will have recorded (w.h.p.) the set [n]∖ T , so he

can reconstruct T . As before, by basic information theory, this reconstructability implies

that A uses Ω(n) space.

This exponential gap between standard and robust streaming, based on well-known

results, seems to have been overlooked—perhaps because MIF does not conform to the type

of problems, namely estimation of real-valued functions, that much of the robust streaming

literature has focused on. That said, though MIF is a natural problem and the hardness holds

for insert-only streams, there is one important box that MIF does not tick: it is not important

enough on its own and so does not command a serious literature. This leads us to refine the

open question of [115] thus: Can a significant gap be shown for a natural and well-studied

problem with the hardness holding even for insertion-only streams?

With this in mind, we return to graph problems, searching for such a gap. In view of the

generic framework of [40] and follow-up works, we should look beyond estimating some

monotone function of the graph with scalar output. What about problems where the output

is a big vector, such as approximate maximum matching (not just its size) or approximate

densest subgraph (not just the density)? It turns out that the sketch switching technique of

[40] can still be applied: since we need to change the output only when the estimates of the

associated numerical values (matching size and density, respectively) change enough, we

can proceed as in that work, switching to a new sketch with fresh randomness that remains

unrevealed to the adversary. This gives us a robust algorithm incurring only logarithmic

overhead.

But graph coloring is different. As our Theorem 3.2.1 shows, it does exhibit a quadratic

gap for the right setting of parameters and it is, without doubt, a heavily-studied problem,

114

3.1 MOTIVATION AND CONTEXT ADVERSARIALLY ROBUST STREAMING

even in the data streaming setting.

The above hardness of MIF provides a key insight into why graph coloring is hard; see

Section 3.2.3.

Connections with Other Work on Streaming Graph Coloring. Graph coloring is, of

course, a heavily-studied problem in theoretical computer science. For this discussion, we

stick to streaming algorithms for this problem, which already has a significant literature [1,

8, 17, 43–45].

Although it is not possible to χ(G)-color an input graph in sublinear space [1], as [17]

shows, there is a semi-streaming algorithm that produces a (∆ + 1)-coloring. This follows

from their elegant palette sparsification theorem, which states that if each vertex samples

roughly O(log n) colors from a palette of size ∆+ 1, then there exists a proper coloring of

the graph where each vertex uses a color only from its sampled list. Hence, we only need to

store edges between vertices whose lists intersect. If the edges of G are independent of the

algorithm’s randomness, then the expected number of such “conflict” edges is O(n log2 n),

leading to a semi-streaming algorithm. But note that an adaptive adversary can attack this

algorithm by using a reported coloring to learn which future edges would definitely be

conflict edges and inserting such edges to blow up the algorithm’s storage.

There are some other semi-streaming algorithms (in the standard setting) that aim for

∆(1 + ε)-colorings. One is palette-sparsification based [8] and so, suffers from the above

vulnerability against an adaptive adversary. Others [43, 44] are based on randomly parti-

tioning the vertices into clusters and storing only intra-cluster edges, using pairwise disjoint

palettes for the clusters.

Here, the semi-streaming space bound hinges on the random partition being likely to

assign each edge’s endpoints to different clusters. This can be broken by an adaptive adver-

sary, who can use a reported coloring to learn many vertex pairs that are intra-cluster and

then insert new edges at such pairs.

115

3.1 MOTIVATION AND CONTEXT ADVERSARIALLY ROBUST STREAMING

Finally, we highlight an important theoretical question about sublinear algorithms for

graph coloring: Can they be made deterministic? This was explicitly raised by Assadi [15]

and, prior to this work, it was open whether, for (∆ + 1)-coloring, any sublinear space

bound could be obtained deterministically. Our Theorem 3.2.1 settles the deterministic

space complexity of this problem, showing that even the weaker requirement of O(∆)-

coloring forces Ω(n∆) space, which is linear in the input size.

Parameterizing Theorem 3.2.1 differently, we see that a robust (in particular, a de-

terministic) algorithm that is limited to semi-streaming space must spend Ω̃(∆2) colors.

A major remaining open question is whether this can be matched, perhaps by a deter-

ministic semi-streaming O(∆2)-coloring algorithm. In fact, it is not known how to get

even a poly(∆)-coloring deterministically. Our algorithmic results, summarized in Theo-

rem 3.2.2, make partial progress on this question. Though we do not obtain determinis-

tic algorithms, we obtain adversarially robust ones, and we do obtain poly(∆)-colorings,

though not all the way down to O(∆2) in semi-streaming space.

Other Related Work. Pseudo-deterministic streaming algorithms [93] fall between ad-

versarially robust and deterministic ones. Such an algorithm is allowed randomness, but

for each particular input stream it must produce one fixed output (or output sequence) with

high probability. Adversarial robustness is automatic, because when such an algorithm suc-

ceeds, it does not reveal any of its random bits through the outputs it gives. Thus, there is

nothing for an adversary to base adaptive decisions on.

The well-trodden subject of dynamic graph algorithms deals with a model closely re-

lated to the adaptive adversary model: one receives a stream of edge insertions/deletions

and seeks to maintain a solution after each update. There have been a few works on the

∆-based graph coloring problem in this setting [46, 47, 102]. However, the focus of the

dynamic setting is on optimizing the update time without any restriction on the space us-

age; this is somewhat orthogonal to the streaming setting where the primary goal is space

116

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

efficiency, and update time, while practically important, is not factored into the complexity.

Section 3.2

Adversarially Robust Coloring

3.2.1. Our Results and Contributions

We ask whether the graph coloring problem is inherently harder under an adversarial ro-

bustness requirement than it is for standard streaming. We answer this question affirma-

tively with the first major theorem in this work, which is the following (we restate the

theorem with more detail and formality as Theorem 3.2.6).

Theorem 3.2.1. A constant-error adversarially robust algorithm that processes a stream

of edge insertions into an n-vertex graph and, as long as the maximum degree of the graph

remains at most ∆, maintains a valid K-coloring (with ∆ + 1 ≤ K ≤ n/2) must use at

least Ω(n∆2/K) bits of space.

We spell out some immediate corollaries of this result because of their importance as con-

ceptual messages.

• Robust coloring using O(∆) colors. In the setting of Theorem 3.2.1, if the algo-

rithm is to use only O(∆) colors, then it must use Ω(n∆) space. In other words, a

sublinear-space solution is ruled out.

• Robust coloring using semi-streaming space. In the setting of Theorem 3.2.1, if

the algorithm is to run in only Õ(n) space, then it must use Ω̃(∆2) colors.

• Separating robust from standard streaming with a natural problem. Contrast

the above two lower bounds with the guarantees of the [17] algorithm, which handles

the non-robust case. This shows that “maintaining an O(∆)-coloring of a graph”

is a natural (and well-studied) algorithmic problem where, even for insertion-only

117

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

streams, the space complexities of the robust and standard streaming versions of the

problem are well separated: in fact, the separation is roughly quadratic, by taking

∆ = Θ(n). This answers an open question of [115], as we explain in greater detail

in Section 4.2.1.

• Deterministic versus randomized coloring. Since every deterministic streaming

algorithm is automatically adversarially robust, the lower bound in Theorem 3.2.1

applies to such algorithms. In particular, this settles the deterministic complexity of

O(∆)-coloring. Also, turning to semi-streaming algorithms, whereas a combinatori-

ally optimal3 (∆ + 1)-coloring is possible using randomization [17], a deterministic

solution must spend at least Ω̃(∆2) colors. These results address a broadly-stated

open question of Assadi [15]; see Section 4.2.1 for details.

We prove the lower bound in Theorem 3.2.1 using a reduction from a novel two-player

communication game that we call SUBSET-AVOIDANCE. In this game, Alice is given an

a-sized subset of the universe [t];4 she must communicate a possibly random message to

Bob that causes him to output a b-sized subset of [t] that, with high probability, avoids Al-

ice’s set completely. We give a fairly tight analysis of the communication complexity of

this game, showing an Ω(ab/t) lower bound, which is matched by an Õ(ab/t) deterministic

upper bound. The SUBSET-AVOIDANCE problem is a natural one. We consider the defini-

tion of this game and its analysis—which is not complicated—to be additional conceptual

contributions of this work; these might be of independent interest for future applications.

We complement our lower bound with some good news: we give a suite of upper bound

results by designing adversarially robust coloring algorithms that handle several interesting

parameter regimes. Our focus is on maintaining a valid coloring of the graph using poly(∆)

colors, where ∆ is the current maximum degree, as an adversary inserts edges. In fact,

3If one must use at most f(∆) colors for some function f , the best possible function that always works is
f(∆) = ∆+ 1.

4The notation [t] denotes the set {1, 2, . . . , t}.

118

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

some of these results hold even in a turnstile model, where the adversary might both add

and delete edges. In this context, it is worth noting that the [17] algorithm also works in a

turnstile setting.

Theorem 3.2.2. There exist adversarially robust algorithms for coloring an n-vertex graph

achieving the following tradeoffs (shown in Table 3.1) between the space used for process-

ing the stream and the number of colors spent, where ∆ denotes the evolving maximum

degree of the graph and, in the turnstile setting, m denotes a known upper bound on the

stream length.

Model Colors Space Notes

Insertion-only O(∆3) Õ(n) Õ(n∆) external random bits
Insertion-only O(∆k) Õ(n∆1/k) any k ∈ N

Strict Graph Turnstile O(∆k) Õ(n1−1/km1/k) constant k ∈ N

Table 3.1: A summary of our adversarially robust coloring algorithms. A “strict graph
turnstile” model requires the input to describe a simple graph at all times; see Section 3.2.2.

In each of these algorithms, for each stream update or query made by the adversary,

the probability that the algorithm fails either by returning an invalid coloring or aborting

is at most 1/ poly(n).

We give a more detailed discussion of these results, including an explanation of the

technical caveat noted in Table 3.1 for the O(∆3)-coloring algorithm, in Section 3.2.3.

3.2.2. Preliminaries

Defining Adversarial Robustness. For the purposes of this paper, a “streaming algo-

rithm” is always one-pass and we always think of it as working against an adversary. In

the standard streaming setting, this adversary is oblivious to the algorithm’s actual run.

This can be thought of as a special case of the setup we now introduce in order to define

adversarially robust streaming algorithms.

119

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Let U be a universe whose elements are called tokens. A data stream is a sequence in

U∗. A data streaming problem is specified by a relation f ⊆ U∗×Z whereZ is some output

domain: for each input stream σ ∈ U∗, a valid solution is any z ∈ Z such that (σ, z) ∈ f .

A randomized streaming algorithm A for f running in s bits of space and using r random

bits is formalized as a triple consisting of (i) a function INIT : {0, 1}r → {0, 1}s, (ii) a

function PROCESS : {0, 1}s×U×{0, 1}r → {0, 1}s, and (iii) a function QUERY : {0, 1}s×

{0, 1}r → Z . Given an input stream σ = (x1, . . . , xm) and a random string R ∈R {0, 1}r,

the algorithm starts in state w0 = INIT(R), goes through a sequence of states w1, . . . , wm,

where wi = PROCESS(wi−1, xi, R), and provides an output z = QUERY(wm, R). The

algorithm is δ-error in the standard sense if PrR[(σ, z) ∈ f] ≥ 1− δ.

To define adversarially robust streaming, we set up a game between two players: Solver,

who runs an algorithm as above, and Adversary, who adaptively generates a stream σ =

(x1, . . . , xm) using a next-token function NEXT : Z∗ → U as follows. With w0, . . . , wm as

above, put zi = QUERY(wi, R) and xi = NEXT(z0, . . . , zi−1). In words, Adversary is able

to query the algorithm at each point of time and can compute an arbitrary deterministic

function of the history of outputs provided by the algorithm to generate his next token. Fix

(an upper bound on) the stream length m. Algorithm A is δ-error adversarially robust if

∀ function NEXT : Pr
R
[∀ i ∈ [m] : ((x1, . . . , xi), zi) ∈ f] ≥ 1− δ .

In this work, we prove lower bounds for algorithms that are only required to be O(1)-error

adversarially robust. On the other hand, the algorithms we design will achieve vanishingly

small error of the form 1/ poly(m) and moreover, they will be able to detect when they are

about to err and can abort at that point.

Graph Streams and the Coloring Problem. Throughout this paper, an insert-only graph

stream describes an undirected graph on the vertex set [n], for some fixed n that is known in

advance, by listing its edges in some order: each token is an edge. A strict graph turnstile

120

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

stream describes an evolving graph G by using two types of tokens—INS-EDGE({u, v}),

which causes {u, v} to be added to G, and DEL-EDGE({u, v}), which causes {u, v} to be

removed—and satisfies the promises that each insertion is of an edge that was not already

in G and that each deletion is of an edge that was in G. When we use the term “graph

stream” without qualification, it should be understood to mean an insert-only graph stream,

unless the context suggests that either flavor is acceptable.

In this context, a semi-streaming algorithm is one that runs in Õ(n) := O(n polylog n)

bits of space.

In theK-coloring problem, the input is a graph stream and a valid answer to a query is a

vector in [K]n specifying a color for each vertex such that no two adjacent vertices receive

the same color. The quantity K may be given as a function of some graph parameter, such

as the maximum degree ∆. In reading the results in this paper, it will be helpful to think of

∆ as a growing but sublinear function of n, such as nα for 0 < α < 1. Since an output of the

K-coloring problem is a Θ(n logK)-sized object, we think of a semi-streaming coloring

algorithm running in Õ(n) space as having “essentially optimal” space usage.

One-Way Communication Complexity. In this work, we shall only consider a special

kind of two-player communication game: one where all input belongs to the speaking

player Alice and her goal is to induce Bob to produce a suitable output. Such a game, g, is

given by a relation g ∈ X ×Z , where X is the input domain and Z is the output domain. In

a protocol Π for g, Alice and Bob share a random string R. Alice is given x ∈ X and sends

Bob a message msg(x,R). Bob uses this to compute an output z = out(msg(x,R)). We

say that Π solves g to error δ if ∀x ∈ X : PrR[(x, z) ∈ g] ≥ 1 − δ. The communication

cost of Π is cost(Π) := maxx,R length(msg(x,R)). The (one-way, randomized, public-

coin) δ-error communication complexity of g is R→δ (g) := min{cost(Π) : Π solves g to

error δ}.

If Π never uses R, it is deterministic. Minimizing over zero-error deterministic proto-

121

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

cols gives us the one-way deterministic communication complexity of g, denoted D→(g).

A Result on Random Graphs. During the proof of our main lower bound (in Sec-

tion 3.2.4), we shall need the following basic lemma on the maximum degree of a random

graph.

Lemma 3.2.3. LetG be a graph with M edges and n vertices, drawn uniformly at random.

Define ∆G to be its maximum degree. Then for 0 ≤ ε ≤ 1:

Pr

[
∆G ≥

2M

n
(1 + ε)

]
≤ 2n exp

(
−ε

2

3
· 2M
n

)
. (3.1)

Proof. Let G(n,m) be the uniform distribution over graphs with m edges and n ver-

tices. Observe the monotonicity property that for all m ∈ N, PrG∼G(n,m)[∆G ≥ C] ≤

PrG∼G(n,m+1)[∆G ≥ C]. Next, let H(n, p) be the distribution over graphs on n vertices in

which each edge is included with probability p, independently of any others, and let e(G)

be the number of edges of a given graph G. Then with p =M/
(
n
2

)
,

Pr
G∼G(n,M)

[∆G ≥ C] = Pr
G∼H(n,p)

[∆G ≥ C | e(G) =M] ≤ Pr
G∼H(n,p)

[∆G ≥ C | e(G) ≥M] ◁ by monotonicity

≤
PrG∼H(n,p)[∆G ≥ C]

PrG∼H(n,p)[e(G) ≥M]
≤ 2 Pr

G∼H(n,p)
[∆G ≥ C] .

The last step follows from the well-known fact that the median of a binomial distribution

equals its expectation when the latter is integral; hence PrG∼H(n,p)[e(G) ≥M] ≥ 1/2.

Taking C = (2M/n)(1 + ε) and using a union bound and Chernoff’s inequality,

Pr
G∼H(n,p)

[
∆G ≥

2M

n
(1 + ε)

]
≤

∑
x∈V (G)

Pr
G∼H(n,p)

[
degG(x) ≥

2M

n
(1 + ε)

]
≤ n exp

(
−ε

2

3
· 2M
n

)
.

Algorithmic Results From Prior Work. Our adversarially robust graph coloring algo-

rithms in Section 3.2.7 will use, as subroutines, some previously known standard streaming

122

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

algorithms for coloring. We summarize the key properties of these existing algorithms.

Fact 3.2.1 (Restatement of [17], Result 2). There is a randomized turnstile streaming algo-

rithm for (∆ + 1)-coloring a graph with max-degree ∆ in the oblivious adversary setting

that uses Õ(n) bits of space and Õ(n) random bits. The failure probability can be made at

most 1/np for any large constant p.

In the adversarial model described above, we need to answer a query after each stream

update. The algorithm mentioned in Fact 3.2.1 or other known algorithms using “about”

∆ colors (e.g., [43]) use at least Θ̃(n) post-processing time in the worst case to answer a

query. Hence, using such algorithms in the adaptive adversary setting might be inefficient.

We observe, however, that at least for insert-only streams, there exists an algorithm that is

efficient in terms of both space and time. This is obtained by combining the algorithms

of [43] and [102] (see the discussion towards the end of Section 3.2.7 for details).

Fact 3.2.2. In the oblivious adversary setting, there is a randomized streaming algorithm

that receives a stream of edge insertions of a graph with max-degree ∆ and degeneracy κ

and maintains a proper coloring of the graph using κ(1 + ε) ≤ ∆(1 + ε) colors, Õ(ε−2n)

space, and O(1) amortized update time. The failure probability can be made at most 1/np

for any large constant p.

3.2.3. Overview of Techniques

Lower Bound Techniques. As might be expected, our lower bounds are best formalized

through communication complexity. Recall that a typical communication-to-streaming re-

duction for proving a one-pass streaming space lower bound works as follows. We set

up a communication game for Alice and Bob to solve, using one message from Alice to

Bob. Suppose that Alice and Bob have inputs x and y in this game. The players simulate a

purported efficient streaming algorithm A (for P , the problem of interest) by having Alice

feed some tokens into A based on x, communicating the resulting memory state of A to

123

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Bob, having Bob continue feeding tokens into A based on y, and finally querying A for

an answer to P , based on which Bob can give a good output in the communication game.

When this works, it follows that the space used byAmust be at least the one-way (and per-

haps randomized) communication complexity of the game. Note, however, that this style

of argument where it is possible to solve the game by querying the algorithm only once, is

also applicable to an oblivious adversary setting. Therefore, it cannot prove a lower bound

any higher than the standard streaming complexity of P .

The way to obtain stronger lower bounds by using the purported adversarial robustness

of A is to design communication protocols where Bob, after receiving Alice’s message,

proceeds to query A repeatedly, feeding tokens into A based on answers to such queries.

In fact, in the communication games we shall use for our reductions, Bob will not have any

input at all and the goal of the game will be for Bob to recover information about Alice’s

input, perhaps indirectly. It should be clear that the lower bound for the MIF problem,

outlined in Section 4.2.1, can be formalized in this manner. For our main lower bound

(Theorem 3.2.1), we use a communication game that can be seen as a souped-up version of

MIF.

The Subset-Avoidance Problem. Recall the SUBSET-AVOIDANCE problem described in

Section 3.2.1 and denote it AVOID(t, a, b). To restate: Alice is given a set A ⊆ [t] of size a

and must induce Bob to output a set B ⊆ [t] of size b such that A ∩ B = ∅. The one-way

communication complexity of this game can be lower bounded from first principles. Since

each output of Bob is compatible with only
(
t−b
a

)
possible input sets of Alice, she cannot

send the same message on more than that many inputs. Therefore, she must be able to send

roughly
(
t
a

)
/
(
t−b
a

)
distinct messages for a protocol to succeed with high probability. The

number of bits she must communicate in the worst case is roughly the logarithm of this

ratio, which we show is Ω(ab/t). Interestingly, this lower bound is tight and can in fact be

matched by a deterministic protocol, as shown in Lemma 3.2.5.

124

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

In the sequel, we shall need to consider a direct sum version of this problem that we call

AVOIDk(t, a, b), where Alice has a list of k subsets and Bob must produce his own list of

subsets, with his ith avoiding the ith subset of Alice. We extend our lower bound argument

to show that the one-way complexity of AVOIDk(t, a, b) is Ω(kab/t).

Using Graph Coloring to Solve Subset-Avoidance. To explain how we reduce the

AVOIDk problem to graph coloring, we focus on a special case of Theorem 3.2.1 first. Sup-

pose we have an adversarially robust (∆+1)-coloring streaming algorithmA. We describe

a protocol for solving AVOID(t, a, b). Let us set t =
(
n
2

)
to have the universe correspond

to all possible edges of an n-vertex graph. Suppose Alice’s set A has size a ≈ n2/8. We

show that, given a set of n vertices, Alice can use public randomness to randomly map her

elements to the set of vertex-pairs so that the corresponding edges induce a graph G that,

w.h.p., has max-degree ∆ ≈ n/4. Alice proceeds to feed the edges of G into A and then

sends Bob the state of A.

Bob now queries A to obtain a (∆ + 1)-coloring of G. Then, he pairs up like-colored

vertices to obtain a maximal pairing. Observe that he can pair up all but at most one vertex

from each color class. Thus, he obtains at least (n−∆− 1)/2 such pairs. Since each pair

is monochromatic, they don’t share an edge, and hence, Bob has retrieved (n −∆ − 1)/2

missing edges that correspond to elements absent in Alice’s set. Since Alice used public

randomness for the mapping, Bob knows exactly which elements these are. He now forms

a matching with these pairs and inserts the edges to A. Once again, he queries A to find

a coloring of the modified graph. Observe that the matching can increase the max-degree

of the original graph by at most 1. Therefore, this new coloring uses at most ∆+ 2 colors.

Thus, Bob would retrieve at least (n−∆− 2)/2 new missing edges. He again adds to the

graph the matching formed by those edges and queries A. It is crucial to note here that he

can repeatedly do this and expect A to output a correct coloring because of its adversarial

robustness. Bob stops once the max-degree reaches n − 1, since now the algorithm can

125

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

color each vertex with a distinct color, preventing him from finding a missing edge.

Summing up the sizes of all the matchings added by Bob, we see that he has found

Θ((n − ∆)2) elements missing from Alice’s set. Since ∆ ≈ n/4, this is Θ(n2). Thus,

Alice and Bob have solved the AVOID(t, a, b) problem where t =
(
n
2

)
and a, b = Θ(n2). As

outlined above, this requires Ω(ab/t) = Ω(n2) communication. Hence,A must use at least

Ω(n2) = Ω(n∆) space.

With some further work, we can generalize the above argument to work for any value

of ∆ with 1 ≤ ∆ ≤ n/2. For this generalization, we use the communication complexity

of AVOIDk(t, a, b) for suitable parameter settings. With more rigorous analysis, we can

further generalize the result to apply not only to (∆ + 1)-coloring algorithms but to any

f(∆)-coloring algorithm. That is, we can prove Theorem 3.2.6.

Upper Bound Techniques. It is useful to outline our algorithms in an order different from

the presentation in Section 3.2.5.

A Sketch-Switching-Based O(∆2)-Coloring. The main challenge in designing an ad-

versarially robust coloring algorithm is that the adversary can compel the algorithm to

change its output at every point in the stream: he queries the algorithm, examines the re-

turned coloring, and inserts an edge between two vertices of the same color. Indeed, the

sketch switching framework of [40] shows that for function estimation, one can get around

this power of the adversary as follows. Start with a basic (i.e., oblivious-adversary) sketch

for the problem at hand. Then, to deal with an adaptive adversary, run multiple indepen-

dent basic sketches in parallel, changing outputs only when forced to because the under-

lying function has changed significantly. More precisely, maintain λ independent parallel

sketches where λ is the flip number, defined as the maximum number of times the function

value can change by the desired approximation factor over the course of the stream. Keep

track of which sketch is currently being used to report outputs to the adversary. Upon be-

ing queried, re-use the most recently given output unless forced to change, in which case

126

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

discard the current sketch and switch to the next in the list of λ sketches. Notice that this

keeps the adversary oblivious to the randomness being used to compute future outputs: as

soon as our output reveals any information about the current sketch, we discard it and never

use it again to process a stream element.

This way of switching to a new sketch only when forced to ensures that λ sketches

suffice, which is great for function estimation. However, since a graph coloring output can

be forced to change at every point in a stream of length m, naively implementing this idea

would require m parallel sketches, incurring a factor of m in space. We have to be more

sophisticated. We combine the above idea with a chunking technique so as to reduce the

number of times we need to switch sketches.

Suppose we split the m-length stream into k chunks, each of size m/k. We initialize

k parallel sketches of a standard streaming (∆ + 1)-coloring algorithm C to be used one

at a time as each chunk ends. We store (buffer) an entire chunk explicitly and when we

reach its end, we say we have reached a “checkpoint,” use a fresh copy of C to compute a

(∆ + 1)-coloring of the entire graph at that point, delete the chunk from our memory, and

move on to store the next chunk. When a query arrives, we deterministically compute a

(∆ + 1)-coloring of the partial chunk in our buffer and “combine” it with the coloring we

computed at the last checkpoint. The combination uses at most (∆ + 1)2 = O(∆2) colors.

Since a single copy of C takes Õ(n) space, the total space used by the sketches is Õ(nk).

Buffering a chunk uses an additional Õ(m/k) space. Setting k to be
√
m/n, we get the

total space usage to be Õ(
√
mn) = Õ(n

√
∆), since m = O(n∆).

Handling edge deletions is more delicate. This is because we can no longer express the

current graph as a union of G1 (the graph up to the most recent checkpoint) and G2 (the

buffered subgraph) as above. A chunk may now contain an update that deletes an edge

which was inserted before the checkpoint, and hence, is not in store. Observe, however,

that deleting an edge doesn’t violate the validity of a coloring. Hence, if we ignore these

127

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

edge deletions, the only worry is that they might substantially reduce the maximum degree

∆ causing us to use many more colors than desired. Now, note that if we have a (∆1 + 1)-

coloring at the checkpoint, then as long as the current maximum degree ∆ remains above

∆1/2, we have a 2∆-coloring in store. Hence, combining that with a (∆ + 1)-coloring

of the current chunk gives an O(∆2)-coloring. Furthermore, we can keep track of the

maximum degree of the graph using only Õ(n) space and detect the points where it falls

below half of what it was at the last checkpoint. We declare each such point as a new “ad

hoc checkpoint,” i.e., use a fresh sketch to compute a (∆ + 1)-coloring there. Since the

max-degree can decrease by a factor of 2 at most log n times, we show that it suffices to

have only log n times more parallel sketches initialized at the beginning of the stream. This

incurs only anO(log n)-factor overhead in space. We discuss the algorithm and its analysis

in detail in Algorithm 4 and Lemma 3.2.15 respectively.

To generalize the above to an O(∆k)-coloring in Õ(n∆1/k) space, we use recursion in

a manner reminiscent of streaming coreset construction algorithms. Split the stream into

∆1/k chunks, each of size n∆1−1/k. Now, instead of storing a chunk entirely and coloring

it deterministically, we can recursively color it with ∆k−1 colors in O(n∆1/k) space and

combine the coloring with the (∆+1)-coloring at the last checkpoint. The recursion makes

the analysis of this algorithm even more delicate, and careful work is needed to argue the

space usage and to properly handle deletions in the turnstile setting. The details appear in

Theorem 3.2.16.

A Palette-Sparsification-Based O(∆3)-Coloring. This algorithm uses a different ap-

proach to the problem of the adversary forcing color changes. It ensures that, every time

an an edge is added, one of its endpoints is randomly recolored, where the color is drawn

uniformly from a set C∖K of colors, where C is determined by the degree of the endpoint,

and K is the set of colors currently held by neighboring vertices. Let Rv denote the ran-

dom string that drives this color-choosing process at vertex v. When the adversary inserts

128

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

an edge {u, v}, the algorithm uses Ru and Rv to determine whether this edge could with

significant probability end up with the same vertex color on both ends in the future. If so,

the algorithm stores the edge; if not, it can be ignored entirely. It will turn out that when the

number of colors is set to establish an O(∆3)-coloring, only an Õ(1/∆) fraction of edges

need to be stored, so the algorithm only needs to store Õ(n) bits of data related to the input.

The proof of this storage bound has to contend with an adaptive adversary. We do so by first

arguing that despite this adaptivity, the adversary cannot cause the algorithm to use more

storage than the worst oblivious adversary could have. We can then complete the proof

along traditional lines, using concentration bounds. The details appear in Algorithm 3 and

Theorem 3.2.12.

There is a technical caveat here. The random string Rv used at each vertex v is about

Õ(∆) bits long. Thus, the algorithm can only be called semi-streaming if we agree that

these Õ(n∆) random bits do not count towards the storage cost. In the standard streaming

setting, this “randomness cost” is not a concern, for we can use the standard technique of

invoking Nisan’s space-bounded pseudorandom generator [146] to argue that the necessary

bits can be generated on the fly and never stored. Unfortunately, it is not clear that this

transformation preserves adversarial robustness. Despite this caveat, the algorithmic result

is interesting as a contrast to our lower bounds, because the lower bounds do apply even

in a model where random bits are free, and only actually computed input-dependent bits

count towards the space complexity.

3.2.4. Hardness of Adversarially Robust Graph Coloring

In this section, we prove our first major result, showing that graph coloring is significantly

harder when working against an adaptive adversary than it is in the standard setting of an

oblivious adversary. We carry out the proof plan outlined in Section 3.2.3, first describ-

ing and analyzing our novel communication game of SUBSET-AVOIDANCE (henceforth,

AVOID) and then reducing the AVOID problem to robust coloring.

129

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

The Subset Avoidance Problem. Let AVOID(t, a, b) denote the following one-way com-

munication game.

• Alice is given S ⊆ [t] with |S| = a;

• Bob must produce T ⊆ [t] with |T | = b for which T is disjoint from S.

Let AVOIDk(t, a, b) be the problem of simultaneously solving k instances of AVOID(t, a, b).

Lemma 3.2.4. The public-coin δ-error communication complexity of AVOIDk(t, a, b) is

bounded thus:

R→δ (AVOIDk(t, a, b)) ≥ log (1− δ) + k log

((
t

a

)/(t− b
a

))
(3.2)

≥ log (1− δ) + kab/(t ln 2) . (3.3)

Proof. Let Π be a δ-error protocol for AVOIDk(t, a, b) and let d = cost(Π), as defined in

Section 3.2.2. Since, for each input (S1, . . . , Sk) ∈
(
[t]
a

)k
, the error probability of Π on that

input is at most δ, there must exist a fixing of the random coins of Π so that the resulting

deterministic protocol Π′ is correct on all inputs in a set

C ⊆
(
[t]

a

)k
, with |C| ≥ (1− δ)

(
t

a

)k
.

The protocol Π′ is equivalent to a function ϕ : C →
(
[t]
b

)k
where

• the range size | Im(ϕ)| ≤ 2d, because cost(Π) ≤ d, and

• for each (S1, . . . , Sk) ∈ C, the tuple (T1, . . . , Tk) := ϕ((S1, . . . , Sk)) is a correct

output for Bob, i.e., Si ∩ Ti = ∅ for each i.

For any fixed (T1, . . . , Tk) ∈
(
[t]
b

)k
, the set of all (S1, . . . , Sk) ∈

(
[t]
a

)k
for which each

coordinate Si is disjoint from the corresponding Ti is precisely the set
(
[t]∖T1
S1

)
×· · ·×

(
[t]∖Tk
Sk

)
.

130

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

The cardinality of this set is exactly
(
t−b
a

)k
. Thus, for any subset D of

(
[t]
b

)k
, it holds that

|C ∩ ϕ−1(D)| ≤
(
t−b
a

)k|D|. Consequently,

(1− δ)
(
t

a

)k
≤ |C| = |ϕ−1(Im(ϕ))| ≤

(
t− b
a

)k
| Im(ϕ)| ≤

(
t− b
a

)k
2d ,

which, on rearrangement, gives eq. (3.2).

To obtain eq. (3.3), we note that

(
t

a

)/(t− b
a

)
=

t!a!(t− a− b)!
(t− a)!a!(t− b)!

=
t · (t− 1) · · · (t− a+ 1)

(t− b) · (t− b− 1) · · · (t− a− b+ 1)

≥
(

t

t− b

)a
=

(
1

1− b/t

)a
> eab/t , (3.4)

which implies

log (1− δ) + k log

((
t

a

)/(t− b
a

))
≥ log (1− δ) + kab/(t ln 2) .

Since our data streaming lower bounds are based on the AVOIDk problem, it is important

to verify that we are not analyzing its communication complexity too loosely. To this end,

we prove the following result, which says that the lower bound in Lemma 3.2.4 is close to

being tight. In fact, a nearly matching upper bound can be obtained deterministically.

Lemma 3.2.5. For any t ∈ N, 0 < a+b ≤ t, the deterministic complexity of AVOID(t, a, b)

is bounded thus:

D→(AVOID(t, a, b)) ≤ log

((
t

a

)/(t− b
a

))
+ log

(
ln

(
t

a

))
+ 2 . (3.5)

Proof. We claim there exists an ordered collection R of z :=
⌈((

t
a

)/(
t−b
a

))
ln
(
t
a

)⌉
subsets

of [t] of size b, with the property that for each S ∈
(
[t]
a

)
, there exists a set T in R which is

disjoint from S. In this case, Alice’s protocol is, given a set S ∈
(
[t]
a

)
, to send the index j of

131

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

the first set T inR which is disjoint from S; Bob in turn returns the jth element ofR. The

number of bits needed to communicate such an index is at most ⌈log z⌉, implying eq. (3.5).

We prove the existence of such an R by the probabilistic method. Pick a subset Q ⊆(
[t]
b

)
of size z uniformly at random. For any S ∈

(
[t]
a

)
, define OS to be the set of subsets in(

[t]
b

)
which are disjoint from S; observe that |OS| =

(
t−a
b

)
. ThenQ has the desired property

if for all S ∈
(
[t]
a

)
, it overlaps with OS . As

Pr

[
∃S ∈

(
[t]

a

)
: Q∩OS = ∅

]
≤
∑
S∈([t]a)

Pr [Q∩OS = ∅] ◁ by union bound

=
∑
S∈([t]a)

Pr

[
Q ∈

(([t]
b

)
∖OS
z

)]

=
∑
S∈([t]a)

(((t
b

)
−
(
t−a
b

)
z

)/((t
b

)
z

))

<

(
t

a

)
exp

(
−z
(
t− a
b

)/(t
b

))
◁ by eq. (3.4)

=

(
t

a

)
exp

(
−z
(
t− b
a

)/(t
a

))
,

setting z =
⌈((

t
a

)/(
t−b
a

))
ln
(
t
a

)⌉
ensures the random setQ fails to have the desired property

with probability strictly less than 1. LetR be a realization ofQ that does have the property.

Reducing Multiple Subset Avoidance to Graph Coloring. Having introduced and ana-

lyzed the AVOID communication game, we are now ready to prove our main lower bound

result, on the hardness of adversarially robust graph coloring.

Theorem 3.2.6 (Main lower bound). Let L, n,K be integers with 2K ≤ n, and L+1 ≤ K,

and L ≥ 12 ln(4n).

Assume there is an adversarially robust coloring algorithm A for insert-only streams

of n-vertex graphs which works as long as the input graph has maximum degree ≤ L, and

132

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

maintains a coloring with ≤ K colors so that all colorings are correct with probability

≥ 1/4. Then A requires at least C bits of space, where

C ≥ 1

40 ln 2
· nL

2

K
− 3 .

Proof. Given an algorithmA as specified, we can construct a public-coin protocol to solve

the communication problem AVOID⌊n/(2K)⌋(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉) using exactly as

much communication asA requires storage space. The protocol for the more basic problem

AVOID(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉) is described in Algorithm 2.

Algorithm 2 Protocol for AVOID(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉)

Require: AlgorithmA that colors graphs up to maximum degree L, always using≤ K
colors

1: R← publicly random bits to be used by A
2: π← publicly random permutation of {1, . . . ,

(
2K
2

)
}, drawn uniformly

3: e1, . . . , e(2K2)
← an enumeration of the edges of the complete graph on 2K vertices

4: function ALICE(S):
5: Z ←A::INIT(R), the initial state of A
6: for i from 1 to

(
2K
2

)
do

7: if πi ∈ S then
8: Z ←A::INSERT(Z, R, ei)
9: return Z

10: function BOB(Z):
11: J ← empty list
12: for i from 1 to ⌊L/2⌋ do
13: CLR←A::QUERY(Z, R)
14: M ← maximal pairing of like-colored vertices, according to CLR

15: for each pair {u, v} ∈M do
16: Z ←A::INSERT(Z, R, {u, v}) ▷ M is turned into a matching and

inserted
17: J ← J ∪M
18: if length(J) ≤ ⌊L/2⌋⌈K/2⌉ then
19: return fail
20: else
21: T ← {πi : ei ∈ first ⌊L/2⌋⌈K/2⌉ edges of J}
22: return T

133

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

To useA to solve s := ⌊n/2K⌋ instances of AVOID, we pick s disjoint subsets V1, . . . , Vs

of the vertex set [n], each of size 2K. A streaming coloring algorithm on the vertex set [2K]

with degree limit L and using at most K colors can be implemented by relabeling the ver-

tices in [2K] to the vertices in some set Vi and using A. This can be done s times in

parallel, as the sets (Vi)si=1 are disjoint. Note that a coloring of the entire graph on vertex

set [n] using ≤ K colors is also a K-coloring of the s subgraphs supported on V1, . . . , Vs.

To minimize the number of color queries made, Algorithm 2 can be implemented by alter-

nating between adding elements from the matching M in each instance (for Line 16), and

making single color queries to the n-vertex graph (for Line 13).

The guarantee that A uses fewer than K colors depends on the input graph stream

having maximum degree at most L. In Bob’s part of the protocol, adding a matching to the

graph only increases the maximum degree of the graph represented by Z by at most one;

since he does this ⌊L/2⌋ times, in order for the maximum degree of the graph represented

by Z to remain at most L, we would like the random graph Alice inserts into the algorithm

to have maximum degree ≤ L/2 ≤ L − ⌊L/2⌋. By Lemma 3.2.3, the probability that,

given some i, this random graph on Vi has maximum degree ∆i ≥ L/2 is

Pr

[
∆i ≥

L

4
(1 + 1)

]
≤ 4Ke−L/12 .

Taking a union bound over all s graphs, we find that

Pr

[
max
i∈[s]

∆i ≥ L/2

]
≤ 4K

⌊ n

2K

⌋
e−L/12 ≤ 2ne−L/12 .

We can ensure that this happens with probability at most 1/2 by requiring L ≥ 12 ln(4n).

If all the random graphs produced by Alice have maximum degree ≤ L/2, and the

⌊L/2⌋ colorings requested by the protocol are all correct, then we will show that Bob’s part

of the protocol recovers at least ⌊L/2⌋⌈K/2⌉ edges for each instance. Since the algorithm

134

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

A’s random bits R and permutation random bits π are independent, the probability that

the the maximum degree is low and the algorithm gives correct colorings on graphs of

maximum degree at most L is ≥ (1/2) · (1/4) = 1/8.

The list of edges that Bob inserts (Line 16) are fixed functions of the query output of

A on its state Z and random bits R. None of the edges can already have been inserted by

Alice or Bob, since each edge connects two vertices which have the same color. Because

these edges only depend on the query output ofA, conditioned on this query output they are

independent of Z and R. This ensures that A’s correctness guarantee against an adversary

applies here, and thus the colorings reported on Line 13 are correct.

Assuming all queries succeed, and the initial graph that Alice added has maximum

degree ≤ L/2, for each i ∈ [⌊L/2⌋], the coloring produced will have at most K colors. Let

B be the set of vertices covered by the matching M , so that [2K] ∖ B are the unmatched

vertices. Since no pair of unmatched vertices can have the same color, |[2K]∖B| ≤ K.

This implies |B| ≥ K, and since |M | = |B|/2 is an integer, we have |M | ≥ ⌈K/2⌉. Thus

each for loop iteration will add at least ⌈K/2⌉ new edges to J . The final value of the list J

will contain at least ⌊L/2⌋⌈K/2⌉ edges that were not added by Alice; Line 21 converts the

first ⌊L/2⌋⌈K/2⌉ of these to elements of {1, . . . ,
(
2K
2

)
} not in the set S given to Alice.

Finally, by applying Lemma 3.2.4, we find that the communication C needed to solve s

independent copies of AVOID(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉) with failure probability ≤ 7/8

satisfies

C ≥ log

(
1− 7

8

)
+
⌊ n

2K

⌋ ⌊LK/4⌋ · ⌊L/2⌋⌈K/2⌉(
2K
2

)
ln 2

≥ n

4K

L2K2/20
1
2
(2K)2 ln 2

− 3 ≥ nL2

40K ln 2
− 3 ,

where we used K > L ≥ 12 ln(4n) ≥ 12 ln 4 to conclude ⌊LK/4⌋⌊L/2⌋⌈K/2⌉ ≥

(LK)2/20.

135

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Applying the above Theorem 3.2.6 with “K = f(L),” we immediately obtain the fol-

lowing corollary, which highlights certain parameter settings that are particularly instruc-

tive.

Corollary 3.2.7. Let f be a monotonically increasing function, and L an integer for which

L = Ω(log n) and f(L) ≤ n/2. Let A be a coloring algorithm which works for graphs of

maximum degree up to L; which at any point in time uses ≤ f(∆) colors, where ∆ is the

current graph’s maximum degree; and which has total failure probability ≤ 3/4 against

an adaptive adversary. Then the number of bits S of space used by A is lower-bounded as

S = Ω(nL2/f(L)). In particular:

• If f(∆) = ∆ + 1—or, more generally, f(∆) = O(∆)—then S = Ω(nL) space is

needed.

• To ensure S = Õ(n) space, f(∆) = Ω̃(∆2) is needed.

• If f(L) = Θ(n), then S = Ω(L2).

3.2.5. Upper Bounds: Adversarially Robust Coloring Algorithms

We now turn to positive results. We show how to maintain a poly(∆)-coloring of a graph

in an adversarially robust fashion. We design two broad classes of algorithms. The first,

described in Section 3.2.6, is based on palette sparsification as in [8, 17], with suitable

enhancements to ensure robustness. The resulting algorithm maintains an O(∆3)-coloring

and uses Õ(n) bits of working memory. As noted in Section 3.2.3, the algorithm comes

with the caveat that it requires a large pool of random bits: up to Õ(n∆) of them. As also

noted there, it makes sense to treat this randomness cost as separate from the space cost.

The second class of algorithms, described in Section 3.2.7, is built on top of the sketch

switching technique of [40], suitably modified to handle non-real-valued outputs. This

time, the amount of randomness used is small enough that we can afford to store all random

bits in working memory. These algorithms can be enhanced to handle strict graph turnstile

136

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

streams as described in Section 3.2.2. For any such turnstile stream of length at most m,

we maintain an O(∆2)-coloring using Õ(
√
nm) space. More generally, we maintain an

O(∆k)-coloring in O(n1−1/km1/k) space for any k ∈ N. In particular, for insert-only

streams, this implies an O(∆k)-coloring in O(n∆1/k) space.

3.2.6. An Algorithm Based on Palette Sparsification

We proceed to describe our palette-sparsification-based algorithm. It maintains a 3∆3-

coloring of the input graph G, where ∆ is the evolving maximum degree of the input graph

G. With high probability, it will store only O(n(log n)4) = Õ(n) bits of information

about G; an easy modification ensures that this bound is always maintained by having the

algorithm abort if it is about to overshoot the bound.

The algorithm does need a large number of random bits—up to O(nL(log n)2) of

them—where L is the maximum degree of the graph at the end of the stream or an up-

per bound on the same. Due to the way the algorithm looks ahead at future random bits, L

must be known in advance.

The algorithm uses these available random bits to pick, for each vertex, L lists of ran-

dom color palettes, one at each of L “levels.” The level-i list at vertex x is called P i
x and

consists of 4 log n colors picked uniformly at random with replacement from the set [2i2].

The algorithm tracks each vertex’s degree. Whenever a vertex x is recolored, its new color

is always of the form (d, p), where d = deg(x) and p ∈ P d
x . Thus, when the maximum

degree in G is ∆, the only colors that have been used are the initial default (0, 0) and colors

from
⋃∆
i=1{i}× [2i2]. The total number of colors is therefore at most 1+

∑∆
i=1 2i

2 ≤ 3∆3.

The precise algorithm is given in Algorithm 3.

Lemma 3.2.8 (Bounding the failure probability). When an edge is added, recoloring one

of its vertices succeeds with probability ≥ 1 − 1/n4, regardless of the past history of the

algorithm.

137

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Algorithm 3 Adversarially robust 3∆3-coloring algorithm, assuming 0 < ∆ ≤ L

Input: Stream of edges of a graph G = (V,E), with maximum degree always ≤ L.

Random bits:
1: for each vertex x ∈ [n] do
2: for each i ∈ [L] do
3: P i

x← list of 4 log n colors sampled u.a.r. with replacement from [2i2]

Initialize:
4: for each vertex x ∈ [n] do
5: DEG(x)← 0 ▷ tracks degree of x
6: CLR(x)← (0, 0) ▷ maintains color of x; in general ∈

⋃L
i=1{i} × [2i2]

7: A← empty list of edges

Process(edge {u, v}):
8: DEG(u), DEG(v)← DEG(u) + 1, DEG(v) + 1 ▷ maintain vertex degrees
9: k← max{DEG(u), DEG(v)}

10: for i from k to L do ▷ store edges that might be needed in the future
11: if P i

u and P i
v overlap then

12: A← A ∪ {{u, v}}
13: USED← {CLR(w) : {u,w} ∈ A} ▷ prepare to recolor vertex u: collect colors of

neighbors
14: for j from 1 to 4 log n do
15: c← (DEG(u), P

DEG(u)
u [j]) ▷ try the next color in the random list

16: if c /∈ USED then
17: CLR(u)← c; return
18: abort ▷ failed to find a color

Query():
19: return the vector CLR

Proof. The color for the endpoint u is chosen and assigned in Lines 13 through 17. Let d

be the value of DEG(u) at that point. First, we observe that because the list P d
u of colors

to try was drawn independently of all other lists, and has never been used before by the

algorithm, it is necessarily independent of the rest of the algorithm state.

A given color (d, P d
u [j]) is only invalid if there exists some other vertex w which has

precisely this color. If this were the case, then the set USED would contain that color, be-

cause USED contains all colors on vertices w with DEG(w) = d and whose list of potential

138

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

colors P d
w overlaps with P d

u . Thus, the algorithm will detect any invalid colors in Line 16.

The probability that the algorithm fails to find a valid color is:

Pr[P d
u ⊆ USED] =

4 logn∏
j=1

Pr[P d
u [j] ∈ USED] =

4 logn∏
j=1

|USED|
2d2

≤ 1

24 logn
=

1

n4
,

where the inequality uses the fact that |USED| ≤ DEG(u) = d.

Taking a union bound over the at most nL/2 endpoints modified, we find that the total

probability of a recoloring failure in the algorithm is, by Lemma 3.2.8, at most (1/n4) ·

nL/2 ≤ 1/n2.

The rest of this section is dedicated to analyzing the space cost of Algorithm 3. In

general, an adaptive adversary could try to construct a bad sequence of updates that causes

the algorithm to store too many edges. The next two lemmas argue that for Algorithm 3,

the adversary is unable to use his adaptivity for this purpose: he can do no worse than the

worst oblivious adversary. Subsequently, Lemma 3.2.11 shows that Algorithm 3 does well

in terms of space cost against an oblivious adversary, which completes the analysis.

Lemma 3.2.9. Let τ = (e1, χ1, e2, χ2, . . . , χi−1, ei) be the transcript of the edges (e1, . . . , ei)

that an adversary provides to an implementation of Algorithm 3, and of the colorings

(χ1, . . . , χi−1) produced by querying after each of the first (i − 1) edges was added. Let

σ = (ei+1, . . . , ej) be an arbitrary sequence of edges not in
⋃i
h=1 eh, and let γ be a sub-

sequence of σ. Conditioned on τ , the next coloring χi returned is independent of the event

that when the next edges in the input stream are σ, the algorithm will store γ in its list A.

Proof. Let G =
⋃i
j=1 ej be the graph containing all edges up to ei, and let ei = {u, v}, so

that u is the vertex recolored in Lines 13 through 17. Let degG(x) be the degree of vertex x

in G. We can partition the array [n] × [L] of indices for random color lists (P i
x)(x,i)∈[n]×[L]

139

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

used by Algorithm 3 into three groups, defined as follows:

Q> = {(x, i) ∈ [n]× [L] : i ≥ degG(x) + 1}

Q= = {(u, degG(u))}

Q< = {(x, i) ∈ [n]× [L] : i ≤ degG(x)}∖Q= .

The next coloring χi returned by the algorithm depends only on u, G, χi−1, and the random

color list P degG(u)
u . On the other hand, the past colorings (χ1, . . . , χi−1) returned by the

algorithm depend only on (e1, . . . , ei−1) and the color lists indexed byQ<. Finally, whether

an edge {a, b} is stored in the setA in the future depends only on the edges added up to that

time and some of the color lists from Q>, because (per Lines 9 to 12) only color lists P i
a

and P i
b with i ≥ max(DEG(a), DEG(b)) are considered. (Note that at the time the new edge

is processed, DEG(a) and DEG(b) will both be larger than degG(a) and degG(b) because

Line 8 will have increased the vertex degrees.) Also observe that the edges (e1, . . . , ei)

depend only on the colorings (χ1, . . . , χi−1) and the randomness of the function f ; thus the

transcript τ so far depends on the color lists in Q<, but is independent of the color lists in

Q= ∪ Q>. It follows that conditioned on the transcript τ , the value χi of the next coloring

returned is independent of whether or not a given subset γ of some future list σ of edges

inserted is stored in the set A.

Lemma 3.2.10. Let m be an integer, and let η be an adversary for Algorithm 3 for which

the first m edges submitted are always valid inputs for Algorithm 3. (In other words, no

edge is repeated, and no vertex attains degree > L.) Let E be an event which depends only

on the list of edges provided by η and the subset of those edges which Algorithm 3 stores in

the set A. Then there is a specific fixed input stream of length m on which Pr[E] is at least

as large as when η chooses the inputs.5

5In fact, one can prove that there is a distribution over fixed input streams so that the probability of E
occurring is exactly the same as when η is used to pick the input.

140

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Proof. Let NEXT be the function used by η to pick the next input based on the list of

colorings produced so far, as per Section 3.2.2. We say that a partial sequence of col-

orings ρ = (χ1, . . . , χi) is pivotal for NEXT if there exist two suffixes of ρ given by

π = (χ1, . . . , χi, χi+1, χi+2, . . . , χj) and π′ = (χ1, . . . , χi, χ
′
i+1, χ

′
i+2, . . . , χ

′
j), which first

differ at coordinate i+ 1, and where NEXT(π) ̸= NEXT(π′).

If no sequence of colorings is pivotal for NEXT, then the adversary only ever submits

one stream of m edges, and we are done. Otherwise, let ρ be a maximal pivotal coloring

sequence for NEXT, so that there does not exist a coloring sequence π which has ρ as a

prefix and which is also pivotal for NEXT. We will construct a modified adversary η̃ given

by ÑEXT which behaves the same on all coloring sequences that are not extensions of ρ,

which has at least the same probability of the event E, and where neither ρ nor any of

its extensions is pivotal for ÑEXT. If ÑEXT has no pivotal sequence of colorings, we are

done; if not, we can repeat this process of finding modified adversaries with fewer pivotal

sequences until that is the case.

LetX = (X1, . . . , Xm) be the random variable whose ith coordinate corresponds to the

ith coloring returned by the algorithm, when the adversary is given by NEXT. WriteX1..i =

(X1, . . . , Xi). Let ρ = (χ1, . . . , χi). Because ρ is a maximal pivotal coloring sequence for

NEXT, the next coloring returned—Xi+1—will determine the remaining (m− i− 1) edges

sent by the adversary. Let F be the random variable whose value is this list of edges. For

each possible value σ of the conditional random variable (Xi+1|X1..i = ρ), let Fσ be the

list of edges sent when (X1..i, Xi+1) = (ρ, σ). By Lemma 3.2.9, conditioned on the event

X1..i = ρ, and on the edges Fσ being sent next, Xi+1 and the event E are independent.

Thus

Pr[E | X1..i = ρ] = Eσ∼Xi+1|X1..i=ρ Pr[E | X1..i = ρ,Xi+1 = σ, F = Fσ]

= Eσ∼Xi+1|X1..i=ρ Pr[E | X1..i = ρ, F = Fσ] .

141

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Consequently, there is a value σ̃ where Pr[E | X1..i = ρ, F = Fσ̃] ≥ Pr[E | X1..i = ρ]. We

define ÑEXT so as to agree with NEXT, except that after the coloring sequence ρ has been

received, the adversary now picks edges according to the sequence Fσ̃ instead of making

a choice based on Xi+1. This change does not reduce the probability of E (and may even

increase it conditioned on X1..i = ρ). Finally, note that neither ρ nor any extension thereof

is pivotal for the function ÑEXT used by adversary η̃.

Lemma 3.2.11 (Bounding the space usage). In the oblivious adversary setting, if a fixed

stream of a graph G with maximum degree ∆ is provided to Algorithm 3, the total number

of edges stored by Algorithm 3 is O(n(log n)3), with high probability.

Proof. We prove this by showing the maximum number of edges adjacent to any given

vertex v is O((log n)3) with high probability. Let d = degG(v), and w1, . . . , wd be the

neighbors of v in G, ordered by the order in which the edges {v, wi} occur in the stream.

For any x ∈ [n], write Px to be the random variable consisting of all of x’s color lists,

Px := (P i
x)i∈[L]. Then for i ∈ [d], define the indicator random variable Yi to be 1 iff the

algorithm records edge {v, wi}; since Yi is determined by Pv and Pwi
, the random variables

(Yi)i∈[d] are conditionally independent given Pv.

Now, for each i ∈ [d],

Pr[Yi = 1 | Pv] = Pr

[
L∨
j=i

{
P j
wi
∩ P j

v ̸= ∅
} ∣∣∣ Pv]

≤
L∑
j=i

Pr
[
P j
wi
∩ P j

v ̸= ∅ | Pv
]
=

L∑
j=i

Pr
[
∃h ∈ [4 log n] : P j

wi
[h] ∈ P j

v | Pv
]

≤
L∑
j=i

4 logn∑
h=1

Pr
[
P j
wi
[h] ∈ P j

v | Pv
]
=

L∑
j=i

4 log n · |P
j
v |

2j2

≤ 16(log n)2
∞∑
j=i

1

j(j + 1)
=

16(log n)2

i
.

142

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Since E[Yi | Pv] = Pr[Yi = 1 | Pv], this upper bound gives

E

[
d∑
i=1

Yi

∣∣∣ Pv] ≤ d∑
i=1

16(log n)2

i
≤ 32(log n)3 ,

using the fact that
∑d

i=1 1/i ≤ max{2 log d, 1} ≤ 2 log n. Applying a form of the Chernoff

bound:

Pr

[
d∑
i=1

Yi ≥ 2 · 32(log n)3
∣∣∣ Pv] ≤ exp

(
−1

3
· 32(log n)3

)
≤ 1

n3
,

which proves that the number of edges adjacent to v is ≤ 64(log n)3 with high probability,

for any value of Pv.

Applying a union bound over all n vertices, the probability that the maximum degree

of the stored graph A exceeds 64(log n)3 is less than 1/n2.

Combining Lemma 3.2.8, Lemma 3.2.10 and Lemma 3.2.11, we arrive at the main

result of this section.

Theorem 3.2.12. Algorithm 3 is an adversarially robust O(∆3)-coloring algorithm for

insertion streams which stores O(n(log n)4) bits related to the graph, requires access to

Õ(nL) random bits, and even against an adaptive adversary succeeds with probability

≥ 1−O(1/n2).

A weakness of Algorithm 3 is that it requires the algorithm be able to access all Õ(nL)

random bits in advance. If we assume that the adversary is limited in some fashion, then

it may be possible to store ≤ Õ(n) true random bits, and use a pseudorandom number

generator to produce the Õ(nL) bits that the algorithm uses, on demand. For example, if

the adversary only can use O(n/ log n) bits of space, using Nisan’s PRG [146] on Ω(n)

true random bits will fool the adversary. Alternatively, assuming one-way functions exist,

there is a classic construction [101] to produce a pseudorandom number generator using

143

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

O(n) true random bits, which in polynomial time generates poly(n) pseudorandom bits

that any adversary limited to using polynomial time cannot distinguish with non-negligible

probability from truly random bits.

3.2.7. Sketch-Switching Based Algorithms for Turnstile Streams

We present a class of sketch switching based algorithms for poly(∆)-coloring. First, we

give an outline of a simple algorithm for insert-only streams that colors the graph using

O(∆2) colors and Õ(n
√
∆) space, where ∆ is the max-degree of the graph at the time of

query. Next, we show how to modify it to handle deletions. This is given by Algorithm 4,

whose correctness is proven in Lemma 3.2.15. Then we describe how it can be generalized

to get an O(∆k)-coloring in Õ(n∆1/k) space for insert-only streams for any constant k ∈

N. Finally, we prove the fully general result giving an O(∆k)-coloring in Õ(n1−1/km1/k)

space for turnstile streams, which is given by Theorem 3.2.16. Finally, we discuss how we

can get rid of some reasonable assumptions that we make for our algorithms and how to

improve the query time.

Throughout this section, we make the standard assumption that the stream length m for

turnstile streams is bounded by poly(n). When we say that a statement holds with high

probability (w.h.p.), we mean that it holds with probability at least 1 − 1/poly(n). In our

algorithms, we often take the product of colorings of multiple subgraphs of a graph G. We

define this notion below and record its key property.

Definition 3.2.13 (Product of Colorings). Let G1 = (V,E1), . . . , Gk = (V,Ek) be graphs

on a common vertex set V . Given a coloring χi of Gi, for each i ∈ [k], the product of

these colorings is defined to be a coloring where each vertex v ∈ V is assigned the color

⟨χ1(v), χ2(v), . . . , χk(v)⟩.

Lemma 3.2.14. Given a proper ci-coloring χi of a graph Gi = (V,Ei) for each i ∈ [k],

the product of the colorings χi is a proper (
∏k

i=1 ci)-coloring of ∪ki=1Gi := (V,∪ki=1Ei).

144

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Proof. An edge in ∪ki=1Gi comes from Gi∗ for some i∗ ∈ [k], and hence the colors of its

endpoints in the product coloring differ in the i∗th coordinate. For i ∈ [k], the ith coordinate

can take ci different values and hence the color bound holds.

Insert-Only Streams and O(∆2)-Coloring. Split the O(n∆)-length stream into
√
∆

chunks of sizeO(n
√
∆) each. LetA be a standard (i.e., oblivious-adversary) semi-streaming

algorithm for O(∆)-coloring a graph (by Fact 3.2.1 and Fact 3.2.2, such algorithms exist).

At the start of the stream, initialize
√
∆ parallel copies of A, called A1, . . . , A√∆; these

will be our “parallel sketches.” At any point of time, only a suffix of this list of parallel

sketches will be active.

We use the sketch switching idea of [40] as follows. With each edge insertion, we

update each of the active parallel sketches. Whenever we arrive at the end of a chunk,

we say we have reached a “checkpoint” and query the least-numbered active sketch (this

is guaranteed to be “fresh” in the sense that it has not been queried before) to produce

a coloring of the entire graph until that point. By design, the randomness of the queried

sketch is independent of the edges it has processed. Therefore, it returns a correct O(∆)-

coloring of the graph until that point, w.h.p. Henceforth, we mark the just-queried sketch

as inactive and never update it, but continue to update all higher-numbered sketches. Thus,

each copy ofA actually processes a stream independent of its randomness and hence, works

correctly while using Õ(n) space. By a union bound over all sketches, w.h.p., all of them

generate correct colorings at the respective checkpoints and simultaneously use Õ(n) space

each, i.e., Õ(n
√
∆) space in total.

Conditioned on the above good event, we can always return an O(∆2)-coloring as

follows. We store (buffer) the most recent partial chunk explicitly, using our available

Õ(n
√
∆) space. Now, when a query arrives, we can express the current graphG asG1∪G′,

whereG1 is the subgraph ofG until the last checkpoint andG′ is the subgraph in our buffer.

Observe that we computed an O(∆(G1))-coloring of G1 at the last checkpoint. Further, we

145

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

can deterministically compute a (∆(G′) + 1)-coloring of G′ since we explicitly store it.

We output the product of the colorings (Definition 3.2.13) of G1 and G′, which must be a

proper O(∆(G1) ·∆(G′)) = O(∆(G)2)-coloring of the graph G (Lemma 3.2.14).

Extension to Handle Deletions. The algorithm above doesn’t immediately work for turn-

stile streams. The chunk currently being processed by the algorithm may contain an update

that deletes an edge which was inserted before the start of the chunk, and hence, is not in

store. Thus, we can no longer express the current graph as a union of the graphs G1 and G′

as above. Overcoming this difficulty complicates the algorithm enough that it is useful to

lay it out more formally as pseudocode (see Algorithm 4). This new algorithm maintains

an O(∆2)-coloring, works even on turnstile streams, and uses Õ(
√
mn) space. Note that

while the blackbox algorithm A used in Algorithm 4 might be any generic O(∆)-coloring

semi-streaming algorithm with error 1/m, it can be, for instance, chosen to be the one

given by Fact 3.2.1 or, for insert-only streams, the one in Fact 3.2.2. The former gives a

tight (∆ + 1)-coloring but possibly large query time, while the latter answers queries fast

using possibly a few more colors, up to ∆(1 + ε).6

Before proceeding to the analysis, let us set up some terminology. Recall from Sec-

tion 3.2.2 that we work with strict graph turnstile streams, so each deletion of an edge e

can be matched to a unique previous token that most recently inserted e. An edge deletion,

where the corresponding insertion did not occur inside the same chunk, is called a negative

edge. Call a point in the stream a checkpoint if we use a fresh parallel copy of A, i.e.,

a copy Ai that hasn’t been queried before, to generate an O(∆)-coloring of the graph at

that point. We define two types of checkpoints, namely fixed and ad hoc. We have a fixed

checkpoint at the end of each chunk; this means that whenever the last update of a chunk

arrives, we compute a coloring of the graph seen so far using a fresh copy of A. The ad hoc

checkpoints are made on the fly inside a current chunk, precisely when a query appears and

6In practice, however, the latter uses significantly fewer colors for most graphs since it’s a κ(1 + ε)-
coloring algorithm and κ ≤ ∆ always, and, in fact, κ≪ ∆ for real world graphs. [43]

146

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Algorithm 4 Adversarially robust O(∆2)-coloring in Õ(
√
nm) space for turnstile streams

Input: Stream of edge insertions/deletions of n-vertex graph G = (V,E); parameter
m

Require: Semi-streaming algorithm A that works on turnstile graph streams and pro-
vides an O(∆)-coloring with error ≤ 1/m against an oblivious adversary

Initialize:
1: s← C ·

√
m/n log n for some sufficiently large constant C

2: A1, . . . , As← independent parallel initializations of A
3: c← 0 ▷ index into list (A1, . . . , As)
4: CLR← n-vector of vertex colors, initialized to all-1s ▷ valid O(∆)-coloring until last

checkpoint
5: DEG← n-vector of vertex degrees, initialized to all-0s
6: G′← (V,∅) ▷ buffer to store current chunk
7: CHUNKSIZE← 0 ▷ current buffer size
8: CHECKPTMAXDEG← 0 ▷ max-degree at last checkpoint

Process(operation OP, edge {u, v}): ▷ OP says whether to insert or delete
9: for i from c+ 1 to s do

10: Ai . Process(OP, {u, v}) ▷ if this aborts, report FAIL
11: if OP = “insert” then
12: increment DEG(u), DEG(v)
13: add {u, v} to G′

14: else if OP = “delete” then
15: decrement DEG(u), DEG(v)
16: if {u, v} ∈ G′ then: ▷ else, negative edge; not stored
17: delete {u, v} from G′

18: CHUNKSIZE← CHUNKSIZE + 1
19: ∆← maxv∈[n] DEG(v)
20: if CHUNKSIZE =

√
nm then:

21: NewCheckpoint() ▷ fixed checkpoint encountered
22: CHUNKSIZE← 0
23: if ∆ < CHECKPTMAXDEG/2 then:
24: NewCheckpoint() ▷ ad hoc checkpoint created

Query():
25: CLR′← (∆G′ + 1)-coloring of G′

26: return ⟨(CLR(v), CLR′(v)) : v ∈ [n]⟩ ▷ take the product of the two colorings

NewCheckpoint():
27: c← c+ 1 ▷ switch to next fresh sketch
28: CLR← Ac . Query() ▷ if Ac fails, report FAIL
29: G′← (V,∅)
30: CHECKPTMAXDEG← maxv∈[n] DEG(v)

147

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

we see that the max-degree of the current graph is less than half of what it was at the last

checkpoint (which might be fixed or ad hoc). We now analyze Algorithm 4 in the following

lemma.

Lemma 3.2.15. For any strict graph turnstile stream of length at most m for a graph G

given by an adaptive adversary, the following hold simultaneously, w.h.p.:

(i) Algorithm 4 outputs an O(∆2)-coloring after each query, where ∆ is the maximum

degree of the graph at the time a query is made.

(ii) Algorithm 4 uses Õ(
√
mn) bits of space.

Proof. Notice that Algorithm 4 splits the stream into chunks of size
√
mn. It processes

one chunk at a time by explicitly storing all updates in it except for the negative edges.

Nevertheless, when a negative edge arrives, the chunk size increases and importantly, we

do update the appropriate copies of A with it. Buffer G′ maintains the graph induced by

the updates stored from the current chunk. The counter c maintains the number of (overall)

checkpoints reached. Whenever we reach a checkpoint, we re-initialize G′ to G0, defined

as the empty graph on the vertex set V . For c ≥ 1, let Gc denote the graph induced by all

updates until checkpoint c.

Note that answers to all queries (if any) that are made following some update before

checkpoint c depends only on sketches Ai for some i < c (if any). Thus, the random string

used by the sketch Ac is independent of the graphGc. Hence, by the correctness guarantees

of algorithmA, the copy Ac produces a valid O(∆)-coloring CLR of Gc with probability at

least 1− 1/m. Furthermore, observe that an edge update before checkpoint c is dependent

on only the outputs of the sketches Aj for j < c. However, we insert such an update only

to copies Ai for i ≥ c. Therefore, the random string of any sketch Ai is independent of

the graph edges it processes. Thus, by the space guarantees of algorithm A, a sketch Ai

uses Õ(n) space with probability 1−1/m. By a union bound over all s = O(
√
m/n log n)

148

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

copies, with probability at least 1−1/poly(n), for all c ∈ [s], the sketchAc produces a valid

O(∆)-coloring of the graph Gc and uses Õ(n) space. Now, conditioning on this event, we

prove that (i) and (ii) always hold. Hence, in general, they hold with probability at least

1− 1/poly(n).

Consider a query made at some point in the stream. Since we keep track of all the vertex

degrees and save the max-degree at the last checkpoint, we can compare the max-degree

∆ of the current graph G with ∆(Gc), where c is the last checkpoint (can be fixed or ad

hoc). In case ∆ < ∆(Gc)/2, we declare the current query point as an ad hoc checkpoint

c + 1, i.e., we use the next fresh sketch Ac+1 to compute an O(∆)-coloring of the current

graph Gc+1. Since we encounter a checkpoint, we reset CLR to this coloring and G′ to G0,

implying that CLR′ is just a 1-coloring of the empty graph. Thus, the product of CLR and

CLR′ that is returned uses only O(∆) colors and is a proper coloring of the graph Gc+1.

In the other case that ∆ > ∆(Gc)/2, we output the coloring obtained by taking a

product of the O(∆(Gc))-coloring CLR at the last checkpoint c and a (∆(G′)+ 1)-coloring

CLR′ of the graph G′. Note that we can obtain the latter deterministically since we store

G′ explicitly. Observe that the edge set of the graph G is precisely (E(Gc)∖ F) ∪ E(G′),

where F is the set of negative edges in the current chunk. Since the coloring we output is

a proper coloring of Gc ∪ G′ (Lemma 3.2.14), it must be a proper coloring of G as well

because edge deletions can’t violate it. It remains to prove the color bound. The number of

colors we use is at most O(∆(Gc) ·∆(G′)). We have checked that ∆ ≥ ∆(Gc)/2. Again,

observe that ∆(G′) ≤ ∆ since G′ is a subgraph of G. Therefore, the number of colors used

it at most O(2∆ ·∆) = O(∆2).

To complete the proof that (i) holds, we need to ensure that before the stream ends, we

don’t introduce too many ad hoc checkpoints so as to run out of fresh sketches to invoke

at the checkpoints. We declare a point as an ad hoc checkpoint only if the max-degree

has fallen below half of what it was at the last checkpoint (fixed or ad hoc). Therefore,

149

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

along the sequence of ad hoc checkpoints between two consecutive fixed checkpoints (i.e.,

inside a chunk), the max-degree decreases by a factor of at least 2. Hence, there can

be only O(log∆max) = O(log n) ad hoc checkpoints inside a single chunk, where ∆max

is the maximum degree of a vertex over all intermediate graphs in the stream. We have

O(
√
m/n) chunks and hence, O(

√
m/n) fixed checkpoints and at most O(

√
m/n log n)

ad hoc checkpoints. Thus, the total number of checkpoints is at most s = O(
√
m/n log n)

and it suffices to have that many sketches initialized at the start of the stream.

To verify (ii), note that since each chunk has size
√
mn, we use at most Õ(

√
mn) bits

of space to store G′. Also, each of the s parallel sketches takes Õ(n) space, implying that

they collectively use Õ(ns) = Õ(
√
mn) space. Storing all the vertex degrees takes Õ(n)

space. Therefore, the total space usage is Õ(
√
mn) bits.

Generalization to O(∆k)-Coloring in Õ(n∆1/k) Space for Insert-Only Streams. We

aim to generalize the above result by attaining a color-space tradeoff. Again, for insert-

only streams, it is not hard to obtain such a generalization and we outline the algorithm

for this setting first. Algorithm 4 shows that we need to use roughly Õ(nr) space if we

split the stream into r chunks since we use a fresh Õ(n)-space sketch at the end of each

chunk. Thus, to reduce the space usage, we can split the stream into smaller number of

chunks. However, that would make the size of each chunk larger than our target space

bound. Hence, instead of storing it entirely and coloring it deterministically as before, we

treat it as a smaller stream in itself and recursively color it using space smaller than its

size. To be precise, suppose that for any d, we can color a stream of length nd using O(∆ℓ)

colors and Õ(nd1/ℓ) space for some integer ℓ (this holds for ℓ = 2 by Lemma 3.2.15). Now,

suppose we split an nd-length stream into d1/(ℓ+1) chunks of size ndℓ/(ℓ+1). We use a fresh

sketch at each chunk end or checkpoint to compute an O(∆)-coloring of the graph seen so

far. We can then recursively color the subgraph induced by each chunk using O(∆ℓ) colors

and Õ
(
n
(
dℓ/(ℓ+1)

)1/ℓ)
= Õ(nd1/(ℓ+1)) space. As before, taking a product of this coloring

150

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

with anO(∆)-coloring at the last checkpoint gives anO(∆ℓ+1)-coloring (Lemma 3.2.14) of

the current graph in Õ(nd1/(ℓ+1)) space. The additional space used by the parallel sketches

for the d1/(ℓ+1) many chunks is also Õ(nd1/(ℓ+1)). Therefore, by induction, we can get an

O(∆k)-coloring in Õ(nd1/k) = O(n∆1/k) space for any integer k. We capture this result

in Corollary 3.2.17 after proving the more general result for turnstile streams.

Fully General Algorithm for Turnstile Streams. Handling edge deletions with the above

algorithm is challenging because of the same reason as earlier: a chunk of the stream may

not itself represent a subgraph as it can have negative edges. Therefore, it is not clear that

we can recurse on that chunk with a blackbox algorithm for a graph stream. A trick to

handle deletions as in Algorithm 4 faces challenges due to the recursion depth. We shall

have anO(∆)-coloring at a checkpoint at each level of recursion that we basically combine

to obtain the final coloring. Previously, we checked whether the max-degree has decreased

significantly since the last checkpoint and if so, declared it as an ad hoc checkpoint. This

time, due to the presence of checkpoints at multiple recursion levels, if the ∆-value is too

high at even a single level, we need to have an ad hoc checkpoint, which might turn out

to be too many. We show how to extend the earlier technique to overcome this challenge

and obtain the general result for turnstile streams, which achieves an O(∆k)-coloring in

Õ(n1−1/km1/k) space for an m-length stream.

Theorem 3.2.16. For any strict graph turnstile stream of length at most m, and for any

constant k ∈ N, there exists an adversarially robust algorithm A such that the following

hold simultaneously w.h.p.:

(i) After each query, A outputs an O(∆k)-coloring, where ∆ is the max-degree of the

current graph.

(ii) A uses Õ(n1−1/km1/k) bits of space.

Proof. The following framework is an extension of Algorithm 4 that would be given by the

151

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

C1 C2

B1

C5

A1

Stream

Level 1

Level 2

Level 3

A1

B3

C7

Level 1

Level 2

Level 3

A1 A2

B1 B2 B3 B4

C3 C4 C5 C6 C7 C8

A1 A2

B2 B3 B4

B2 B3 B4

A2

B1

A2

C1 C2 C3 C4 C7 C8 C1 C5 C6

B2 B4B1

C7 C8C1 C2 C4 C5 C6

C2 C3 C4C6

C3

C8

(i) (ii)

(iii) (iv)

(Level 0)

Stream
(Level 0)

Figure 3.1: Certain states of the data structure of our O(∆k)-coloring algorithm for k = 4.
We pretend that we always split into d1/k = 2 chunks. The stream is a level-0 chunk;
A1, A2 are level-1 chunks; B1, . . . , B4 are level-2; and C1, . . . , C8 are level-3. For each
state, the top blue bar shows the progress of the stream. Each level has a green vertical
bar that represents the last checkpoint in that level. The chunks filled in gray represent the
subgraphs defined as Gi. A partially filled chunk (endpoint colored cyan) is the current
chunk from which the subgraph G′ is stored. A chunk is crossed out in red if it has been
subsumed by a higher level chunk.

recursion idea discussed above. Figure 3.1 shows the setup of our data structure. The full

stream is the sole “level-0” chunk. Given k, we first split the edge stream into d1/k chunks of

size O(nd(k−1)/k) each, where d = m/n: these chunks are in “level 1.” For 1 ≤ i ≤ k − 2,

recursively split each level-i chunk into d1/k subchunks of size O(nd(k−i−1)/k) each, which

we say are in level i+1. Level k− 1 thus has chunks of size O(nd1/k). We explicitly store

all updates in a level-(k − 1) chunk except the negative edges, one chunk at a time.

Let A be a turnstile streaming algorithm in the oblivious adversary setting that uses

at most ∆(1 + ε) colors, where ε = 1/2k, and Õ(n) space, and fails with probability at

most 1/(mn). By Fact 3.2.1, such an algorithm exists.7 At the start of the stream, for

7By Fact 3.2.2, another algorithm with these properties exists for insert-only streams.

152

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

each i ∈ [k − 1], we initialize s = O(d1/k(k log n)k) parallel copies or “level-i sketches”

Ai,1, . . . , Ai,s of A. For each i, the level-i sketches process the level-i chunks. Henceforth,

over the course of the stream, as soon as we reach the end of a level-i chunk, since it

subsumes all its subchunks, we re-initialize the level-j sketches for each j > i. As before,

at the end of each chunk in each level i, we have a “checkpoint”, i.e., we query a fresh

level-i sketch Ai,r for some r ∈ [s] to compute a coloring at such a point. Observe that this

is a coloring of the subgraph starting from the last level-(i − 1) checkpoint through this

point. Following previous terminology, we call these level-i chunk ends as fixed “level-i

checkpoints”. (For instance, in Figure 3.1, in (i), the checkpoint at the end of chunk C1 is

a fixed level-3 checkpoint, while in (iii), the checkpoint at the end of A1 is a fixed level-1

checkpoint.)

This time, we can also have what we call vacuous checkpoints. The start of the stream

is a vacuous level-i checkpoint for each 0 ≤ i ≤ k − 1. Further, for each i ∈ [k − 2], after

the end of each level-i chunk, i.e., immediately after a fixed level-i checkpoint, we create

a vacuous level-j checkpoint for each j > i (e.g., in Figure 3.1, in (i), the checkpoint at

the start of B1 is a vacuous level-2 checkpoint, while in (ii), the one at the start of C3 is a

vacuous level-3 checkpoint). It is, after all, a level-j “checkpoint”, so we want a coloring

stored for the substream starting from the last level-(j − 1) checkpoint through this point.

However, note, that for each j > i this substream is empty (hence the term “vacuous”).

Hence, we don’t waste a sketch for a vacuous checkpoint and directly store a 1-coloring for

that empty substream.

We can also have ad hoc level-i checkpoints that we declare on the fly (when to be

specified later). Just as we would do on reaching a fixed level-i checkpoint, we do the

following upon creating an ad hoc level-i checkpoint: (i) query a fresh level-i sketch to

compute a coloring at this point (again, this is a coloring of the subgraph from the last

level-(i− 1) checkpoint until this point), (ii) start splitting the remainder of the stream into

153

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

subchunks of higher levels, (iii) re-initialize the level-j-sketches for each j > i, and (iv)

create vacuous level-j checkpoints for each j > i.

Any copy of algorithm A that we use in any level is updated and queried as in Algo-

rithm 4: we update each copy as long as it is not used to answer a query of the adversary

and whenever we query a sketch, we make sure that it has not been queried before. There-

fore, as in Algorithm 4, the random string of any copy is independent of the graph edges

it processes. Hence, each sketch computes a coloring correctly and uses Õ(n) space with

probability at least 1−1/(mn). Taking a union bound over allO(ds) = Õ(d1+1/k) sketches,

we get that all of them simultaneously provide correct colorings and use Õ(n) space each

with probability at least 1 − 1/poly(n). Henceforth, as in the proof of Lemma 3.2.15, we

condition on this event and show that (i) and (ii) always hold, thus proving that they hold

w.h.p. in general.

For 1 ≤ i ≤ k− 1, define Gi as the graph starting from the last level-(i− 1) checkpoint

through the last level-i checkpoint (in Figure 3.1, the last checkpoint in each level is denoted

by a green bar, and the Gi’s are the graphs between two such consecutive bars; they are

either filled with gray or empty; for instance, in (ii), G1 = ∅, G2 = B1, and G3 = ∅,

while in (iv), G1 = A1, G2 = B3, and G3 = C7). Note that a graph Gi might be empty:

this happens when the last level-i checkpoint is vacuous. Observe that we can express the

current graph G as ((G1 ∪ G2 ∪ . . . ∪ Gk−1) ∖ F) ∪ G′, where, G′ is the subgraph stored

from the the current chunk in level (k − 1) (recall that it is induced by all updates in this

chunk excluding the negative edges), and F is the set of negative edges in the chunk. It is

easy to see that we can keep track of the degrees so that we know ∆(Gi) for each i. We

check whether there exists an i ∈ [k − 1] such that the max-degree ∆ of the current graph

G is less than ∆(Gi)/(1 + ε). If not, we take the coloring from the last checkpoint of each

level in [k − 1] and return the product of all these colorings with a (∆(G′) + 1)-coloring

of G′ (Definition 3.2.13). We can compute the latter deterministically since we have G′ in

154

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

store. Notice that the colorings at the checkpoints are valid colorings of Gi for i ∈ [k − 1]

using 1 color if Gi is empty and at most (1+ ε)∆(Gi) ≤ (1+ ε)2∆ colors otherwise. Also,

∆(G′) ≤ ∆ because G′ is a subgraph of G. Therefore, by Lemma 3.2.14, the total number

of colors used to color G is

k−1∏
i=1

(max{(1 + ε)2∆, 1}) · (∆ + 1) ≤ O
(
(1 + ε)2k−2∆k

)
= O(∆k) ,

since 2k − 2 < 2k = 1/ε. Finally, note that the product obtained will be a proper coloring

of G since the negative edges in F cannot violate it.

In the other case that there exists an i such that ∆ < ∆(Gi)/(1 + ε), let i∗ be the

first such i. We make this query point an ad hoc level-i∗ checkpoint. Also, the graph

Gi∗ changes according to the definition above, and now the current graph G is given by

G1 ∪ . . . ∪ Gi∗ . Then, we return the product of colorings at the last checkpoints of levels

1, . . . , i∗. We know that these give (1 + ε)∆(Gi)-colorings for i ∈ [i∗]. Again, we have

∆(Gi) ≤ ∆ since Gi is a subgraph of G for each i. Thus, the total number of colors used is

i∗∏
i=1

((1 + ε)∆(Gi)) = (1 + ε)i
∗
∆i∗ = O(∆k−1) ,

since i∗ ≤ k − 1 < 1/2ε. Therefore, in either case, we get an O(∆k)-coloring.

Now, as in the proof of Lemma 3.2.15, we need to prove that we have enough parallel

sketches for the ad hoc checkpoints. Observe that we create an ad hoc level-i checkpoint

only when the current max-degree decreases by a factor of (1+ ε) from the last checkpoint

in level i itself. Thus, along the sequence of ad hoc level-i checkpoints between two consec-

utive non-ad-hoc (fixed or vacuous) level-i checkpoints, the max-degree decreases by a fac-

tor of at least (1+ε). Therefore, there can be at most log1+ε n = O(ε−1 log n) = O(k log n)

such ad hoc checkpoints.

We show by induction that the number of ad hoc checkpoints in any level i isO(d1/k(k log n)i).

155

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

In level 1, there is only 1 vacuous checkpoint (at the beginning) and d1/k fixed checkpoints.

Therefore, by the argument above, it can have O(d1/k(k log n)) ad hoc checkpoints; the

base case holds. By induction hypothesis assume that it is true for all i ≤ j. The number

of vacuous checkpoints in level j is equal to the number of fixed plus ad hoc checkpoints

in levels 1, . . . , j − 1. This is
∑j−1

i=1 O(d
1/k(k log n)i) = O(d1/kkj logj−1 n) since j < k.

The number of ad hoc checkpoints in level j is log n times the number of vacuous plus

fixed checkpoints in level j, which is O(d1/kkj logj−1 n · log n) = O(d1/k(k log n)j). Thus,

by induction, there are O(d1/k(k log n)i) ad hoc checkpoints in any level i. Therefore, the

total number of checkpoints in level i is also O(d1/k(k log n)i + d1/kki logi−1 n + d1/k) =

O(d1/k(k log n)i). Thus, s = O(d1/k(k log n)k) many parallel sketches suffice for each

level. This completes the proof of (i).

Finally, for (ii), as noted above, the s parallel sketches of A take up Õ(n) space indi-

vidually, and hence, Õ(ns) = Õ(nd1/k) space in total (recall that k = O(1). Additionally,

the space usage to store the subgraph G′ from a level-(k − 1) chunk is Õ(nd1/k). Hence,

the total space used is Õ(nd1/k) = Õ(n1−1/km1/k).

The next corollary shows that the space bound forO(∆k)-coloring on insert-only streams

is Õ(n∆1/k) and follows immediately from Theorem 3.2.16 noting that m = O(n∆) for

such streams. Note that it works even for k = ω(1) since we don’t have ad hoc checkpoints

for insert-only streams and just d1/k sketches per level suffice.

Corollary 3.2.17. For any stream of edge insertions describing a graph G, and for any

k ∈ N, there exists an adversarially robust algorithmA such that the following hold simul-

taneously w.h.p.:

• After each query, A outputs an O(∆k)-coloring, where ∆ is the max-degree of the

current graph.

• A uses Õ(n∆1/k) bits of space.

156

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

Implementation Details: Update and Query Time. Observe that if we use the algorithm

by [17] or [43] as a blackbox, then, to answer each query of the adversary, the time we spend

is the post-processing time of these algorithms, which are Õ(n
√
∆) and Õ(n) respectively.

Although in the streaming setting, we don’t care that much about the time complexity, such

a query time might be infeasible in practice since we can potentially have a query at every

point in the stream. Thus, ideally, we want an algorithm that maintains a coloring at every

point in the stream spending a reasonably small time to update the solution after each edge

insertion/deletion. This is similar to the dynamic graph algorithms setting, except here, we

are asking for more: we want to optimize the space usage as well.

The algorithm by [43] broadly works as follows for insert-only streams. It partitions

the vertex set into a number of clusters and stores only intra-cluster edges during stream

processing. In the post-processing phase, it colors each cluster using an offline (∆ + 1)-

coloring algorithm with pairwise disjoint palettes for the different clusters. This attains a

desired (1 + ε)∆-coloring of the entire graph. We observe that instead, we can color each

cluster on the fly using a dynamic (∆+1)-coloring algorithm such as the one by [102] that

takes O(1) amortized update time for maintaining a coloring. A stream update causes an

edge insertion in at most one cluster and hence, the update time is the same as that required

for a single run of [102]. The [43] algorithm runs roughly O(log n) parallel sketches, and

hence, we can maintain a (1 + ε)∆-coloring of the graph in Õ(1) update time while using

the same space as [43], which is Õ(ε−2n). This proves Fact 3.2.2.

If we use this algorithm as the blackbox algorithm A in our adversarially robust al-

gorithm for O(∆k)-coloring in insert-only streams, we get Õ(1) amortized update time

for each parallel copy of A, implying an Õ(s) amortized update time in total, where

s is the number of parallel sketches used. We, however, also need to process a buffer

deterministically, where we cannot use the aforementioned algorithm since it’s random-

ized. We can use the deterministic dynamic (∆ + 1)-coloring algorithm by [46] for this

157

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

part to get an additional Õ(1) amortized update time. Thus, overall, our update time is

Õ(s) = Õ((m/n)1/k) = Õ(∆1/k). Finally, we can think of the algorithm as maintaining

an n-length vector representing the coloring and making changes to its entries with every

update while spending Õ(∆1/k) time in the amortized sense. Hence, there’s no additional

time required to answer queries. This is a significant improvement over a query time of

Õ(n
√
∆) or Õ(n).

Removing the Assumption of Prior Knowledge of m. Observe that in Algorithm 4 as

well as the algorithm described in Theorem 3.2.16, we assume that a value m, an upper

bound on the number of edges, is given to us in advance. Without it, we do not know

how many sketches to initialize at the start of the stream. A typical guessing trick does

not seem to work since even the last sketch needs to process the entire graph and cannot

be started “on the fly” if we follow our framework. In this context, we note the following.

First, knowledge of an upper bound on the number of edges is a reasonable assumption,

especially for turnstile streams, since an algorithm typically knows how large of an input

stream it can handle. Second, for insert-only streams, we can always set m = n∆/2 if

an upper bound ∆ on the max-degree of the final graph is known; a knowledge of such a

bound is reasonable since f(∆)-coloring is usually studied with a focus on bounded-degree

graphs. Third, we can remove the assumption of knowing either m or ∆ for insert-only

streams at the cost of a factor of ∆ in the number of colors and an additive Õ(n) factor in

space, which we outline next.

At the beginning of the stream, we initalize ⌊log n⌋ copies of the oblivious O(∆)-

coloring semi-streaming algorithm A for the checkpoints where ∆ first attains values of

the form 2i for some i ∈ [⌊log n⌋]. For each i, the substream between the checkpoints with

∆ = 2i and ∆ = 2i+1 can be handled using our algorithm as a blackbox since we know

that the stream length is at most 2i+1n. This way, we need not initialize O(D1/k) sketches

for D ≫ ∆max at the very beginning of the stream, where ∆max is the final max-degree

158

3.2 ADVERSARIALLY ROBUST COLORING ADVERSARIALLY ROBUST STREAMING

of the graph, and incur such a huge factor in space; we can initialize the d1/k sketches for

the substream with d ≤ ∆ ≤ 2d only when (if at all) ∆ reaches the value d. Thus, the

maximum space used is O(n∆1/k
max), which we can afford. When queried in a substream

between checkpoints at ∆ = 2i and ∆ = 2i+1, we use our O(∆k)-coloring algorithm to

get a coloring of the substream, and take product with the O(∆)-coloring at the checkpoint

at ∆ = 2i. Thus, we get an O(∆k+1)-coloring of the current graph. The additional space

usage is Õ(n) due to the initial ⌊log n⌋ sketches taking up Õ(n) space each; hence, the total

space usage is still O(n∆1/k
max).

159

Chapter 4

Streaming Verification

Interactive proof systems have contributed a very important conceptual message to com-

puter science: it is possible for a computationally bounded entity to reduce its computa-

tional cost for a problem if it is only required to verify a proof of the solution instead of find-

ing a solution on its own. This concept led to celebrated results such as IP = PSPACE [158]

and the PCP Theorems [13, 14]. It is natural to incorporate this idea to deal with chal-

lenging problems in massive data streams so as to reduce the impractical computational

costs for such problems. This incorporation led to the following setting: a space-restricted

client reading a huge data stream outsources the computation to a more powerful entity,

such as a cloud service, with unbounded space. The cloud sends the result of the com-

putation to the client who refuses to blindly trust it since it might be malicious or might

have incurred some hardware failure. Therefore, the cloud (henceforth named “Prover”)

also sends the client (henceforth named “Verifier”) a proof in support of its results. Ver-

ifier needs to use his limited space to collect sufficient information from the stream so

as to verify the proof. In the case that Prover is honest, Verifier can use it as a help

message to find the solution to the underlying problem. Otherwise, he rejects the proof.

This combination of data streaming with prover-verifier systems has been fruitful: multiple

works [2, 54, 57–59, 62, 71, 73, 122, 123, 164] have shown that several intractable problems

160

4.1 PRELIMINARIES, SETUP, AND TERMINOLOGY STREAMING VERIFICATION

in the basic data streaming model turn out to be solvable in prover-enhanced models using

verification space and proof-length sublinear in the input size.

Past work has considered a few different instances of this setup, such as (a) annotated

data streaming algorithms [57]—also called online schemes—where the parties read σ to-

gether and the protocol consists of Prover streaming a “help message” (a.k.a. proof) to Ver-

ifier either during stream processing and/or at the end; (b) prescient schemes [54,57], which

are a variant of the above where Prover knows all of σ before Verifier sees it; (c) streaming

interactive proofs (SIPs) [58, 73], where Verifier and Prover engage in multiple rounds of

communication.

This work focuses on the first and arguably best-motivated of these models, namely,

online schemes. We simply call them schemes.

Section 4.1

Preliminaries, Setup, and Terminology

In this work, the input graph, multigraph, or digraph is denoted G and defined on a fixed

vertex set V = [n]. In the vanilla streaming model, G is given as a stream of (u, v) tokens,

where u, v ∈ V : the token is interpreted as an insertion of edge {u, v} or directed edge

(u, v). If G is edge-weighted, the tokens are of the form (u, v, w), where w ∈ Z+ is a

weight. In the turnstile streaming model, tokens are of the form (u, v,∆), denoting that the

quantity ∆ ∈ Z (which can be negative) is added either to the multiplicity or the weight of

the edge {u, v}.

Throughout this paper, the stream elements come from the universe [n] := {1, . . . , n}

and the stream length ism. In the turnstile streaming model, tokens are of the form (j,∆) ∈

[n]×Z, which means ∆ copies of the element j are inserted (resp. deleted) if ∆ > 0 (resp.

∆ < 0). The cash register or insert-only streaming model is the special case when ∆ is

always positive. In this paper, for simplicity, we assume unit updates, i.e., ∆ ∈ {−1, 1}

161

4.1 PRELIMINARIES, SETUP, AND TERMINOLOGY STREAMING VERIFICATION

always. The assumption can be easily removed by looking at an update as a collection of

multiple unit updates.

For a stream σ = ⟨(a1,∆1), . . . , (am,∆m)⟩, the frequency vector f(σ) is defined as

⟨f1, . . . , fn⟩ where fj is the frequency of element j, given by fj :=
∑

i∈[m]:
ai=j

∆i. We denote

estimates of fj by f̂j . We drop the argument σ when the stream is clear from the context.

In our schemes, we use the standard technique of sketching a frequency vector by eval-

uating its low-degree extension at a random point. We explain what this means. We trans-

form (or shape) our frequency vector of length n into a 2-dimensional d1 × d2 array f ,

where d1d2 = n, using some canonical bijection from [n] to [d1] × [d2]. This means that

the domain of the function f can now be seen as [d1] × [d2]. We work on a finite field

F with large enough characteristic such that the values don’t “wrap around” under opera-

tions in F. By Lagrange’s interpolation, there is a unique polynomial f̃(X, Y) ∈ F[X, Y]

with degX(f̃) = d1 − 1 and degY (f̃) = d2 − 1 such that f̃(x, y) = f(x, y) for all

(x, y) ∈ [d1]×[d2]. We call f̃ the low-degree F-extension of f . For each (x, y) ∈ [d1]×[d2],

we have “Lagrange basis polynomials” defined as

δx,y(X, Y) :=

 ∏
xi∈[d1]\{x}

X − xi
x− xi

 ·
 ∏
yi∈[d2]\{y}

Y − yi
y − xi

 (4.1)

We can write f̃ as a linear combination of these polynomials as follows:

f̃(X, Y) =
∑

(x,y)∈[d1]×[d2]

f(x, y) δx,y(X, Y)

In particular, if f is built up from a stream of turnstile updates ⟨((x, y)j,∆j)⟩, then

f̃(X, Y) =
∑
j

∆j δ(x,y)j(X, Y) . (4.2)

Thus, we can use eq. (4.2) to maintain f̃(x∗, y∗) at some fixed point (x∗, y∗) dynamically

162

4.1 PRELIMINARIES, SETUP, AND TERMINOLOGY STREAMING VERIFICATION

with stream updates. We formalize this in the following fact.

Fact 4.1.1. Given p = (p1, . . . , pk) ∈ Fk and a stream of pointwise updates to an initially-

zero array with dimensions (s1, . . . , sk), we can maintain the evaluation f̃(p) usingO(log |F|)

space, performing O(k) field arithmetic operations per update. In applications, we usu-

ally take p ∈R Fk.1 For details and implementation considerations, see Cormode et

al. [73].

Another useful primitive is fingerprinting, used prominently in our SSSP scheme and

subtly in subroutines within other schemes. Its goal is to check equality between two

vectors a = (a1, . . . , aN) and b = (b1, . . . , bN) that are provided via turnstile streams in

some possibly intermixed order. This is achieved by checking that φa(r) = φb(r) for

r ∈R F, where φa(X) =
∑N

j=1 ajX
j is the fingerprint polynomial of a and has degree at

most N . Both fingerprinting and the eventual uses of Fact 4.1.1 in sum-check protocols

depend upon the following basic but powerful result.

Fact 4.1.2 (Schwartz–Zippel Lemma). For a nonzero polynomial P (X1, . . . , Xn) ∈ F[X1, . . . , Xn]

of total degree d, where F is a finite field, Pr(r1,...,rn)∈RFn [P (r1, . . . , rn) = 0] ≤ d/|F|.

At various points, we shall use a couple of schemes from Chakrabarti et al. [54, 57].

Fact 4.1.3 (SUBSET and INTERSECTION schemes; Prop. 4.1 of [57] and Thm. 5.3 of [54]).

Given a stream of elements of sets S, T ⊆ [N] interleaved arbitrarily, for any h, v with

hv ≥ N , there are [h, v]-schemes to compute |S∩T | and to determine whether S ⊆ T .

Setup and Terminology. We formalize the setting described above. A scheme for com-

puting a function g(σ) of the input stream σ is a triple (H,A, out), where H is a function

that Prover uses to generate the help message or proof-stream for σ, given by H(σ), A

is a data streaming algorithm that Verifier runs on the stream σ using a random string R

1The notation r ∈R A means that r is drawn uniformly at random from the finite set A.

163

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

to produce a summary AR(σ), and out is a streaming algorithm that Verifier runs on the

proof-stream H(σ) and also uses AR(σ) and R to generate an output outR(H(σ),AR(σ))

in range(g)∪⊥, where the symbol ⊥ denotes rejection of the proof. Note that if the proof-

length |H(σ)| is larger than the memory of Verifier, then he needs to process H(σ) as a

stream.

A scheme (H,A, out) has completeness error εc and soundness error εs if it satisfies

• (completeness) ∀σ : PrR[outR(AR(σ),H(σ)) = g(σ)] ≥ 1− εc;

• (soundness) ∀σ,H : PrR[outR(AR(σ), H) /∈ {g(σ),⊥}] ≤ εs.

Informally, this means that an honest Prover can convince Verifier to produce the correct

output with high probability. Again, if Prover is dishonest, then, with high probability,

Verifier rejects the proof. We usually aim for εc, εs ≤ 1/3 (they can be boosted down using

standard techniques incurring a small increase in the space usage). A scheme is said to

have perfect completeness if εc = 0.

The hcost (short for “help cost”) of a scheme (H,A, out) is defined as maxσ |H(σ)|,

i.e., the maximum number of bits required to express a proof. The vcost (short for “veri-

fication cost”) is the maximum bits of space used by the algorithms AR(σ) and outR(σ),

where the maximum is taken over all inputs σ and possible random strings R. A scheme

with hcost O(h) and vcost O(v) is called an (h, v)-scheme. An (h, v)-scheme is interesting

if h > 0 and v is asymptotically smaller than the best bound achievable for h = 0, i.e., in

the basic (sans prover) streaming model.

Section 4.2

Frequency-Based Functions

Since its inception, data streaming algorithms have been extensively studied for funda-

mental statistical problems such as counting the number of distinct elements in a stream

164

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

(F0) [10, 25, 83, 114], the kth frequency moment for k > 0 (Fk) [10, 86, 105, 168], the

maximum frequency of an element (F∞) [10,113], and the ℓp-norm of the frequency vector

for some p ≥ 0 [113,114,144]. All of these problems are special cases of (or can be solved

by easily applying) the general problem of computing frequency-based functions: given a

function g : Z → Z+, find
∑n

j=1 g(fj), where, for each j in the universe {1, . . . , n}, fj is

the frequency of the jth element. This general problem was notably addressed by the cele-

brated seminal paper by Alon, Matias, and Szegedy [10]: they asked for a characterization

of precisely which frequency-based functions can be approximated efficiently in the basic

streaming model. The aforementioned paper by Chakrabarti et al. [57] studied such sta-

tistical problems in the annotated streaming setting and gave several interesting schemes.

In particular, for the general problem of computing frequency-based functions, they gave

an (n2/3 log4/3 n, n2/3 log4/3 n)-scheme. Their scheme uses an intricate data structure with

binary trees and calls upon a subroutine for heavy-hitters that uses an elaborate framework

called hierarchical heavy hitters.

Given how general the problem is, with several important special cases having numer-

ous applications, it is important and beneficial to have a simple scheme for the general

problem. In this work, we design such a simple scheme that uses the most basic and

classical data structure for frequency estimation: the Misra-Gries summary [141]. Our

scheme ends up improving the best known complexity bounds for the problem: we give an

(n2/3 log n, n2/3 log n)-scheme. No better bounds or simpler algorithms were known even

for the special cases of computing F0 or F∞. Our result thus simplifies and improves the

bounds for these problems as well.

The aforementioned scheme works for streams of length m = O(n), an assumption

that was also made by Chakrabarti et al. [57]. However, their scheme can be made to work

for longer turnstile streams as long as ∥f∥1 = O(n). We show how to use the Count-

Median Sketch [72], an estimation algorithm with stronger guarantees than Misra-Gries, to

165

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

get a scheme with similar complexity bounds for these long streams. But since the Count-

Median Sketch is randomized (contrary to Misra-Gries), we incur a non-zero completeness

error for this scheme. The high-level idea of both our schemes is the following: we use

the estimation algorithm as a primitive to “partially” solve the problem. Prover then helps

Verifier with the “remaining” unsolved part.

4.2.1. Our Results and Techniques

In this section, we state our results and give an overview of our techniques.

Results. Given a stream with elements in [n], let f denote its frequency vector ⟨f1, f2, . . . , fn⟩,

where fj is the frequency of the jth element. A frequency-based function is a functionG(f)

of the form G(f) :=
∑n

j=1 g(fj) for some function g : Z→ Z+.

Our main result is captured in the following theorem which we prove in Section 4.2.3.

Theorem 4.2.1. There is an (n2/3 log n, n2/3 log n)-scheme for computing any frequency-

based function in any turnstile stream of length m = O(n). The scheme is perfectly com-

plete and has soundness error at most 1/poly(n).

With some modifications, we obtain a similar scheme for longer streams at the cost

of imperfect completeness. This is given by the following theorem which we prove in

Section 4.2.4.

Theorem 4.2.2. There is an (n2/3 log n, n2/3 log n)-scheme for computing any frequency-

based function in any turnstile stream with ∥f∥1 = O(n). The scheme has completeness

and soundness errors at most 1/3.

As a consequence, we get schemes with the same complexity bounds for the problems

of computing F0, F∞, and checking multiset inclusion (see Corollary 4.2.5 for formal def-

inition). Just as for frequency-based functions, our schemes also improve upon the best

166

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

known bounds for these special cases and applications2. We discuss these results in detail

in Section 4.2.4.

Corollary 4.2.3. For any turnstile stream with ∥f∥1 = O(n), there is an (n2/3 log n, n2/3 log n)-

scheme for computing F0, the number of distinct elements with non-zero frequency, with

completeness and soundness errors at most 1/3. The scheme can be made perfectly com-

plete with soundness error 1/poly(n) if the stream has length m = O(n).

Corollary 4.2.4. For any turnstile stream with ∥f∥1 = O(n), there is an (n2/3 log n, n2/3 log n)-

scheme for computing F∞, the maximum frequency of an element, with completeness and

soundness errors at most 1/3. The scheme can be made perfectly complete with soundness

error 1/poly(n) if the stream has length m = O(n).

Corollary 4.2.5. Let X, Y ⊆ [n] be multisets of size O(n). Given a stream where elements

of X and Y arrive in interleaved manner, there is an (n2/3 log n, n2/3 log n)-scheme for

determining whether X ⊆ Y .

Techniques. Computing frequency-based functions is challenging simply because we

don’t have enough space to store all the exact frequencies. However, there are efficient

small-space algorithms—e.g., Misra-Gries algorithm [141], Count-Median Sketch [72]—

that return reasonably good estimates of the frequencies. We use such an algorithm as a

primitive in our schemes. The estimates returned partially solve the problem by helping us

identify the “heavy-hitters” or the most frequent items. There cannot be too many heavy-

hitters and hence, the all-powerful Prover can send Verifier the exact frequencies of these

elements (which of course need to be verified) without too much communication. On

the other hand, the rest of the elements, though large in number, have relatively small

frequency. We show a way to encode the answer in terms of a low-degree polynomial

2Computing Fk for constant k > 0 is a well-studied special case for which better bounds are known [57].

167

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

when the frequencies are small. Prover can then send us this polynomial using few bits,

enabling us to solve the problem with small communication overall.

We remark that the high-level technique used in our first scheme—using Misra-Gries as

a subroutine—might be more widely applicable than that used in the second one, i.e., using

Count-Median Sketch. This is because Misra-Gries is deterministic while Count-Median is

randomized. In general, both Prover and Verifier can locally run a deterministic algorithm

on the input, and then, Prover can send messages based on the final state of that algorithm.

Note that it isn’t clear if a randomized algorithm can always help in this regard since we

assume that Prover and Verifer do not have access to shared randomness3. Hence, the final

states of the algorithm might vary drastically for Prover and Verifier if they run it locally

with their own private randomness. For our problem, we don’t run into this issue since we

don’t require Prover to know the exact output of the Verifier’s local estimation algorithm.

Other techniques used are pretty standard in this area. We use techniques based on

the famous sum-check protocol of Lund et al. [135] that encodes answers as sum of low-

degree polynomials. In our case, where Prover sends only a single message to Verifier,

a quantity of interest is expressed as the sum of evaluations of a low-degree univariate

polynomial. Since the polynomial has low-degree, it can be expressed with a small number

of monomials. Thus, Prover needs only a few bits to express the set of coefficients that

describe the polynomial, leading to short proof-length. Moreover, to verify the authenticity

of the polynomial, Verifier needs to evaluate it at just a single random point, the space

for which he can afford. The main challenge in this technique is to find the proper low-

degree polynomials to encode the answer, and in this work, we give such new polynomial

encodings for the underlying sub-problems. Another standard technique we use is the

shaping technique that transforms a one-dimensional vector into a two-dimensional array.

On a high-level, this helps in “distributing” the work between Prover and Verifier as they

3This assumption is made so that it corresponds to the MA communication model. Access to shared
randomness corresponds to the AMA communication model where better bounds are known [94].

168

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

each “take care of” a single dimension. Pertaining to the streaming model, we exploit the

popular technique of linear sketching where we express a quantity of interest as a linear

combination of the stream updates, which helps us to maintain the quantity dynamically as

the stream arrives.

Related Work. Early works on the concept of stream outsourcing and verification were

done by the database community [131,148,166,172]. Motivated by these works, Chakrabarti

et al. [57] abstracted out and formalised the theoretical aspects of the settings. They defined

two types of stream verification settings: (i) the annotated data streaming setting—calling

the schemes as online schemes—where Prover and Verfier read the input stream together

and Prover sends help messages during and/or after the stream arrival based on the part of

the stream she has seen so far, and (ii) the prescient setting where Prover knows the entire

stream upfront, i.e., before Verifies sees it, and can send help messages accordingly. Several

subsequent works [54, 59, 62, 71, 122, 164] studied these non-interactive models. Natural

generalizations of the model, where we allow multiple rounds of interaction between Prover

and Verifier, have also been explored. These include Arthur-Merlin streaming protocols

(Prover is named “Merlin” and Verifier is named “Arthur” following a long-standing tradi-

tion in complexity theory) of Gur and Raz [94] and the streaming interactive proofs (SIP)

of Cormode et al. [73]. The latter setting was further studied by multiple works [2,58,123].

We refer the reader to the expository article by Thaler [163] for a detailed survey of this

area.

We state the results with the standard assumption [57, 73] that the stream length m =

O(n). Chakrabarti et al. [57] gave two schemes for computing any general frequency-based

function: an online (n2/3 log4/3 n, n2/3 log4/3 n)-scheme and a prescient (n2/3 log n, n2/3 log n)-

scheme. They noted that the schemes apply to get best known schemes for the special cases

of computing the number of distinct elements (F0), the maximum frequency (F∞), and for

checking multiset inclusion. They also showed a lower bound that any online or prescient

169

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

(h, v)-scheme for the problem (even for the aforementioned special cases) requires hv ≥ n.

They designed schemes with better bounds for certain other frequency-based functions, of-

ten matching this lower bound up to polylogarithmic factors. For instance, for any hv = n,

they gave an online (k2h log n, kv log n)-scheme for calculating the kth frequency moment

Fk for any positive integer k, and a (ϕ−1 log2 n + h log n, v log n)-scheme for computing

the ϕ-heavy hitters (elements with frequency of at least a ϕ-fraction of the stream length).

The specific problem of computing F0 has been studied by multiple works in var-

ious stream verification models. Cormode, Mitzenmacher, and Thaler [71] studied the

problem in the stronger SIP-model and gave a (log3 n, log2 n)-SIP with O(log2 n) rounds

of communication. For the case where we restrict the number of rounds to O(log n),

Cormode, Thaler, and Yi [73] gave a (
√
n log2 n, log2 n)-SIP. Klauck and Prakash [123]

improved this to a (log4 n log log n, log2 n log log n)-SIP. Gur and Raz [94] designed an

(Õ(
√
n), Õ(

√
n))-AMA-streaming protocol4 for F0.

4.2.2. The Misra-Gries Algorithm

An important subroutine in one of our schemes s the classic Misra-Gries algorithm for

frequency estimation [141] which, given an input stream of m elements and a fraction ϕ,

estimates the frequency of the stream elements within an additive factor of ϕm. We recall

this algorithm in Algorithm 5.

Informally, the algorithm does the following: it keeps an array or “dictionary” K in-

dexed by “keys” that are elements of the stream and each of them has an associated counter

K[i]. At any point of time, the array has at most ⌈ϕ−1⌉ keys. When a stream element

arrives, it increments the counter for the element if it’s present in the keys (it includes it in

the keys if there are less than ⌈ϕ−1⌉ keys), and otherwise decrements the counter of every

key. If a counter for a key becomes 0, it is removed from K. Finally, the estimate f̂j is

given by K[j] (which is 0 if j is not in the keys). The guarantees of the algorithm is given

4AMA stands for the communication pattern Arthur-Merlin-Arthur

170

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

in Fact 4.2.1.

Algorithm 5 [141] Misra-Gries algorithm for frequency estimates in insert-only streams
Require: Stream σ; ϕ ≤ 1

1: Initialize K ← empty array
Process(token j ∈ σ):
2: if j ∈ keys(K) then
3: K[j]← K[j] + 1
4: else
5: if |keys(K)| < ⌈ϕ−1⌉ then
6: K[j]← 1
7: else
8: for i ∈ keys(K) do:
9: K[i]← K[i]− 1

10: if K[i] = 0 then remove i from keys(K)

Output:
11: for j ∈ [n] do:
12: if j ∈ keys(K) then return f̂j = K[j]; else return f̂j = 0

Fact 4.2.1 ([141]). For an insert-only stream of m elements in [n], given any ϕ ≤ 1,

Algorithm 5 uses O(ϕ−1(log n + logm)) space and returns frequency estimates ⟨f̂j : j ∈

[n]⟩ such that, for all tokens j ∈ [n], we have fj − ϕm ≤ f̂j ≤ fj .

Note that this algorithm was designed for insert-only streams and doesn’t work for

turnstile streams. To use it for turnstile streams, we need to make appropriate modifications

(which we do in Section 4.2.3).

4.2.3. Computing Frequency-based Functions in Turnstile Streams

Let f be the frequency vector of a stream as defined in Section 4.1. Recall that a frequency-

based function is a function G(f) of the form G(f) :=
∑

j∈[n] g(fj) for some function

g : Z → Z+. In this section, we obtain an improved (n2/3 log n, n2/3 log n)-scheme for

computing any frequency-based function for some predetermined function g. As stated

earlier, we design a scheme exploiting the Misra-Gries algorithm (Algorithm 5). We want

171

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

to use it as a subroutine in our problem for turnstile streams, but it works only in the insert-

only model. Therefore, in Section 4.2.3, we provide a simple extension of the algorithm that

attains a similar guarantee for turnstile streams. In Section 4.2.3, first, we use this extended

Misra-Gries (EMG) algorithm as a subroutine for our scheme for computing frequency-

based functions. Next, we show that we can instead use the Count-Median Sketch [72] to

make it work for longer streams. In Section 4.2.4, we discuss some important applications

of our schemes.

Extension of Misra-Gries Algorithm for Turnstile Streams. The extended Misra-Gries

algorithm (henceforth called “EMG algorithm”) works as follows: we process the positive

and negative updates separately in two parallel copies of Algorithm 5 to estimate the total

positive update and (absolute value of) the total negative update. In the second copy, we

can actually think of the updates as “increments” since only negative updates are processed

there. Thus, what we are actually estimating is the absolute value of the total negative

update.

For each j, let the total positive update be f+
j and (absolute value of) the total negative

update f−j . Then, the actual frequency is fj = f+
j −f−j . Denote the corresponding estimates

given by the copies of Algorithm 5 by f̂+
j and f̂−j . Then f̂j := f̂+

j − f̂−j gives a similar

guarantee as Fact 4.2.1 for turnstile streams; this time, we also incur an additive error of

ϕm on the upper bound.

To see this, note that by Fact 4.2.1, we have, ∀j ∈ [n],

f+
j − ϕm ≤ f̂+

j ≤ f+
j (4.3)

f−j − ϕm ≤ f̂−j ≤ f−j (4.4)

172

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

Thus, eqs. (4.3) and (4.4) give f+
j − f−j − ϕm ≤ f̂+

j − f̂−j ≤ f+
j − f−j + ϕm, i.e.,

fj − ϕm ≤ f̂j ≤ fj + ϕm (4.5)

Hence, this time we get double sided error. This estimate would suffice for getting our

desired scheme. Therefore, we get the following lemma.

Lemma 4.2.6. Given a turnstile stream of m elements in [n], the EMG algorithm uses

O(ϕ−1(log n + logm)) space and returns a summary ⟨f̂j : j ∈ [n]⟩ such that, for all

j ∈ [n], we have fj − ϕm ≤ f̂j ≤ fj + ϕm.

Remark. The guarantee given by the EMG algorithm may not be very useful in general

for turnstile streams. This is because the total number of stream updates m can be huge,

whereas the frequency of each token can be small since we allow both increments and

decrements in the turnstile model. The classic Misra-Gries algorithm for insert-only model,

on the other hand, has a good guarantee (Fact 4.2.1) since m = ∥f∥1 in this model. How-

ever, for our purpose, the guarantee in Lemma 4.2.6 is good enough since we assume that

m = O(n).

Schemes for Frequency-based Functions. First, in Section 4.2.3, we describe a protocol

for computing frequency-based functions in turnstile streams of length O(n) and prove

Theorem 4.2.1. Next, in Section 4.2.4, we show that the scheme can be modified to work

for any turnstile stream with ∥f∥1 = O(n), proving Theorem 4.2.2. The completeness error

in the latter scheme is, however, non-zero.

Perfectly Complete Scheme for O(n)-Length Streams. As in prior works [57, 73], we

solve the problem for stream length m = O(n). Hence, by Lemma 4.2.6, the EMG algo-

173

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

rithm takes O(ϕ−1 log n) space and gives, for some constant c,

∀j ∈ [n] : fj − ϕcn ≤ f̂j ≤ fj + ϕcn . (4.6)

Set ϕ = (cn2/3)−1. Therefore, we have an O(n2/3 log n) space algorithm that guarantees

∀j ∈ [n] : fj − n1/3 ≤ f̂j ≤ fj + n1/3 .

Let K denote the set of keys in the final state of the EMG algorithm for the setting of ϕ =

1/(cn2/3). Observe that if f̂j = 0 for some j (i.e., j ̸∈ K), we know that fj ∈ [−n1/3, n1/3].

Define h(j) = I{j ̸∈ K} where I is the 0-1 indicator function. We have

∑
j∈[n]

g(f(j)) =
∑
j∈K

g(f(j)) +
∑
j ̸∈K

g(f(j)) =
∑
j∈K

g(f(j)) +
∑
j∈[n]

g(f(j))h(j)

Let L :=
∑

j∈K g(f(j)) and R :=
∑

j∈[n] g(f(j))h(j). We shall compute L and R

separately and add them to get the desired answer.

We shape (see Section 4.1) the 1D array [n] into a 2D n1/3 × n2/3 array. Thus, we get

R =
∑

x∈[n1/3]

∑
y∈[n2/3]

g(f(x, y))h(x, y)

As is standard [57], we assume that the range of the function g is upper bounded by

some polynomial in n, say np. Pick a prime q such that np+1 < q < 2np+1. We will work

in the finite field Fq and the upper bound on the range of g ensures that G(f) will not “wrap

around” under arithmetic in Fq.

Let f̃ , h̃ be polynomials of lowest degree over the finite field Fq that agree with f, h

respectively at all values in [n1/3] × [n2/3]. Note that, by Lagrange’s interpolation, both f̃

and h̃ have degrees n1/3 − 1 and n2/3 − 1 in the two variables (see Section 4.1). Again, let

174

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

g̃ denote the polynomial of lowest degree that agrees with g at all values in [−n1/3, n1/3].

Thus, g̃ has degree 2n1/3.

Therefore, we have

R =
∑

x∈[n1/3]

∑
y∈[n2/3]

g̃(f̃(x, y))h̃(x, y)

i.e., we can write

R =
∑

x∈[n1/3]

P (x) , (4.7)

where the polynomial P is given by

P (X) =
∑

y∈[n2/3]

g̃(f̃(X, y))h̃(X, y) (4.8)

To compute L, it suffices to obtain the values fj for all j ∈ K since g is predetermined.

In our protocol, Prover would send values f ′j that she claims to be fj for all j ∈ K. Define

T :=
∑
j∈K

(fj − f ′j)2

Note that we have fj = f ′j for each j if and only if T = 0. Set f ′j := 0 for all j ̸∈ K.

Thus, we can rewrite T as

T =
∑
j∈[n]

(fj − f ′j)2(1− h(j))

Using shaping as before, we get

T =
∑

x∈[n1/3]

∑
y∈[n2/3]

(f(x, y)− f ′(x, y))2(1− h(x, y)) (4.9)

Let f̃ ′ denote the polynomial of lowest degree over Fq that agrees with f ′ at all values in

175

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

[n1/3]× [n2/3]. Therefore, we have

T =
∑

x∈[n1/3]

Q(x) (4.10)

where the polynomial Q is given by

Q(X) =
∑

y∈[n2/3]

(f̃(X, y)− f̃ ′(X, y))2(1− h̃(X, y)) . (4.11)

We are now ready to describe the protocol.

Stream processing. Verifier picks r ∈ Fq uniformly at random. As the stream arrives,

he maintains f̃(r, y) for all y ∈ [n2/3] (Fact 4.1.1). In parallel, he runs the EMG

algorithm setting ϕ = (cn2/3)−1.

Help message. Prover sends polynomials P ′ and Q′, and values f ′j for all j ∈ K. She

claims that P ′, Q′, f ′ are identical to P,Q, f respectively. The polynomials are sent

as streams of their coefficients following some canonical order of their monomials.

Verifier evaluates P ′(r) and Q′(r) as the polynomials are streamed.

Verification and output. Looking at the final state of the EMG subroutine, Verifier con-

structs h̃(r, y) for all y ∈ [n2/3] (he can treat the keys as a stream and use Fact 4.1.1).

Also, from the values f ′j , he constructs f̃ ′(r, y) for all y ∈ [n2/3]. TheO(n1/3)-degree

polynomial g̃ is computed and stored in advance (we need to evaluate g at all points

in [−n1/3, n1/3] and then use Lagrange interpolation to get g̃).

Thus, Verifier can now use eq. (4.8) to compute P (r) and eq. (4.11) to compute

Q(r). He checks whether P (r) = P ′(r) and Q(r) = Q′(r). If the checks pass,

he believes P ′, Q′ are correct. He further checks whether
∑

x∈[n1/3]Q
′(x) = 0, i.e.,

by Equation (4.10), whether T = 0. If so, he believes that f ′j = fj for all j ∈ K.

Next, he computes L =
∑

j∈K g(f
′(j)), and using Equation (4.7), he computes R =

176

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

∑
x∈[n1/3] P

′(x). Finally, L+R gives the answer.

Error probability. The correctness analysis follows along standard lines of sum-check

protocols. The scheme is perfectly complete since it follows from above that we

always output correctly if Prover is honest. For soundness, note that the protocol

fails if either P ̸= P ′ or Q ̸= Q′, but P (r) = P ′(r) and Q(r) = Q′(r). Then, r

is a root of the non-zero polynomial P − P ′ or Q − Q′. Since degree of P − P ′

is O(n2/3) and that of Q − Q′ is O(n1/3), they have at most O(n2/3) roots in total.

Since r is drawn uniformly at random from Fq, where q > np+1, the probability that

r is such a root is at most O(n2/3)/np+1 ≤ 1/poly(n) for sufficiently large n. Thus,

the soundness error is at most 1/poly(n).

Help and Verification costs. The polynomials P andQ have degreeO(n2/3) andO(n1/3)

respectively. Thus, it requires O(n2/3 log n) bits in total to express their coefficients

since each coefficient comes from Fq that has size poly(n). Recall that for the setting

of ϕ = (cn2/3)−1, there are O(ϕ−1) = O(n2/3) keys in the EMG algorithm. Prover

sends f ′j for each j ∈ K, and since each frequency is at mostm = O(n), this requires

O(n2/3 log n) bits to communicate. Therefore, the total hcost is O(n2/3 log n).

As noted above, the invocation of EMG algorithm takesO(n2/3 log n) space. Verifier

maintains f̃(r, y) and stores the values h̃(r, y) and f̃ ′(r, y) for all y ∈ [n2/3]. Each

value is an element in Fq, and hence they take up O(n2/3 log n) space in total. The

O(n1/3)-degree polynomial g̃ takes O(n1/3 log n) space to store. Hence, the total

vcost is O(n2/3 log n).

Thus, we have proved the following theorem.

Theorem 4.2.1. There is an (n2/3 log n, n2/3 log n)-scheme for computing any frequency-

based function in any turnstile stream of length m = O(n). The scheme is perfectly com-

plete and has soundness error at most 1/poly(n).

177

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

4.2.4. Modifications for Longer Streams

The scheme in Section 4.2.3 requires stream length m = O(n). Note that a turnstile stream

with massive cancellations can have lengthm≫ n, but ∥f∥1 can still beO(n). Chakrabarti

et al. [57] presented their scheme under the assumption of m = O(n), but their scheme can

be made to work for longer streams as long as ∥f∥1 = O(n). We can modify our scheme

to handle such streams as well without increasing the costs, but we no longer have perfect

completeness. We give a sketch of this scheme below highlighting the modifications.

We cannot use the EMG algorithm anymore because it doesn’t give a strong guarantee

with respect to ∥f∥1 for turnstile streams. We use the Count-Median Sketch instead which

gives the following guarantee.

Fact 4.2.2 (Count-Median Sketch [72]). For all ϕ, ε > 0, there exists an algorithm that,

given a turnstile stream of elements in [n] with ∥f∥1 = O(n), uses O(ϕ−1 log(ε−1) log n)

space and returns frequency estimates ⟨f̂j : j ∈ [n]⟩ such that, with probability at least

1− ε, for all tokens j ∈ [n], we have fj − ϕ∥f∥1 ≤ f̂j ≤ fj + ϕ∥f∥1.

If ∥f∥1 ≤ cn for some constant c, then setting ϕ = (4cn2/3)−1 and ε = 1/4, we get that

there is an O(n2/3 log n) space algorithm that, with probability at least 3/4, gives

∀j ∈ [n] : fj − n1/3/4 ≤ f̂j ≤ fj + n1/3/4 (4.12)

For this protocol, redefine the set K as K := {j : |fj| ≥ n1/3/2}. Prover sends a

set K ′ that she claims is identical to K. Let M denote the set {j : |f̂j| ≥ 3n1/3/4}.

Verifier checks whether M ⊆ K ′, and if the check passes, he computes
∑

j∈K′ g(fj) and∑
j ̸∈K′ g(fj) separately, similar to the earlier protocol, and adds them to obtain the answer.

Error probability. For completeness, note that if Prover is honest and K ′ = K, then with

probability at least 3/4, we have M ⊆ K ′. To see this, observe that, by the guarantees

of the Count-Median Sketch (eq. (4.12)), for all j ∈ [n] with |f̂j| ≥ 3n1/3/4, we have

178

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

|fj| ≥ n1/3/2 with probability at least 3/4. The rest of the completeness analysis is as

before, and hence, there is no additional completeness error. Thus, the total completeness

error of the scheme is at most 1/4.

For soundness, suppose that K ′ ̸= K. By the guarantees of the Count-Median Sketch,

for all j ∈ [n] with |fj| ≥ n1/3, we have |f̂j| ≥ 3n1/3/4 with probability at least 3/4. Thus,

{j : |fj| ≥ n1/3} ⊆ M . Hence, if the check M ⊆ K ′ passes, then with probability at least

3/4, we have {j : |fj| ≥ n1/3} ⊆ K ′. Thus, if j ̸∈ K ′, we have |fj| < n1/3. Therefore,

the computation of
∑

j ̸∈K′ g(fj) goes through as before. The additional soundness error is

at most 1/poly(n) as analyzed earlier. Thus, the total soundness error of the protocol is at

most 1/4 + 1/poly(n) < 1/3.

Help and Verification costs. Clearly, since ∥f∥1 ≤ cn, we have |K| = O(n2/3) which

adds O(n2/3 log n) bits to the hcost. The Count-Median Sketch takes space O(n2/3 log n),

similar to the EMG algorithm. The rest of the cost analysis is as before, and hence we have

an (n2/3 log n, n2/3 log n)-scheme.

Thus, we have the following theorem.

Theorem 4.2.2. There is an (n2/3 log n, n2/3 log n)-scheme for computing any frequency-

based function in any turnstile stream with ∥f∥1 = O(n). The scheme has completeness

and soundness errors at most 1/3.

Remark. We compare the schemes for Theorem 4.2.1 and Theorem 4.2.2 (call them Scheme 1

and Scheme 2 respectively). Scheme 2 works for streams of length m ≫ n as long as

∥f∥1 = O(n), while Scheme 1 requiresm = O(n). On the negative side, Scheme 2 has im-

perfect completeness, contrary to Scheme 1. Furthermore, the space dependence on the er-

ror ε for Scheme 2 is worse than Scheme 1: given any ε, Scheme 2 usesO(n2/3 log n log(ε−1))

space to bound the completeness and soundness errors by at most ε, while Scheme 1 takes

O
(
n2/3(log n+ log(ε−1))

)
space to bound the soundness error by ε. This means that to

bound the error by 1/poly(n), Scheme 2 takes O(n2/3 log2 n) space, making it weaker

179

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

(though simpler) than the scheme of Chakrabarti et al. [57], which takes O(n2/3 log4/3 n)

space for the same and is also perfectly complete. For this, Scheme 1 takes onlyO(n2/3 log n)

space.

Special Instances and Applications. Here, we note important implications of Theorems 4.2.1

and 4.2.2. They can be applied to get similar results for multiple well-studied problems

such as computing the number of distinct elements in the stream (F0), the highest frequency

of an element in the stream (F∞), and checking multiset inclusions. Note that for these

problems, to the best of our knowledge, the best-known schemes were (n2/3 log4/3 n, n2/3 log4/3 n)-

schemes obtained by direct application of the general scheme. Hence, we improve the

bounds and simplify the schemes for these problems as well.

As a direct corollary of Theorems 4.2.1 and 4.2.2, we get the same bounds for F0. It

is an extensively studied problem in both basic streaming and stream verification. It is the

special case of frequency-based functions where the function g is defined as g(x) = 0 if

x = 0, and g(x) = 1 otherwise. Therefore, we obtain the following result.

Corollary 4.2.3. For any turnstile stream with ∥f∥1 = O(n), there is an (n2/3 log n, n2/3 log n)-

scheme for computing F0, the number of distinct elements with non-zero frequency, with

completeness and soundness errors at most 1/3. The scheme can be made perfectly com-

plete with soundness error 1/poly(n) if the stream has length m = O(n).

Another well-studied problem related to frequency-based functions is computing F∞.

Unlike F0, it is not a direct special case, but a protocol for it follows by easily applying

a scheme for frequency-based functions. Chakrabarti et al. [57] noted one way in which

it can be applied to solve F∞. Here, we note a slightly alternate way which doesn’t use a

subroutine that their scheme uses and is tailored to our protocols: Prover sends the element

j∗ ∈ [n] that she claims has the highest frequency and a value f ′j∗ that she claims to be

equal to fj∗ . By the above protocols, Verifier can check whether f ′j∗ = fj∗ . If the check

180

4.2 FREQUENCY-BASED FUNCTIONS STREAMING VERIFICATION

passes, he computes G(f) :=
∑n

j=1 g(fj) using the scheme above, where g is defined as

g(x) = 0 if x ≤ f ′j∗ and g(x) = 1 otherwise. He accepts Prover’s claim if G(f) = 0. Thus,

we get the following result.

Corollary 4.2.4. For any turnstile stream with ∥f∥1 = O(n), there is an (n2/3 log n, n2/3 log n)-

scheme for computing F∞, the maximum frequency of an element, with completeness and

soundness errors at most 1/3. The scheme can be made perfectly complete with soundness

error 1/poly(n) if the stream has length m = O(n).

The problem of checking multiset inclusion has two multisets arriving in a stream ar-

bitrarily interleaved between each other, and we need to check if one of them is contained

in the other. This abstract problem is used as a subroutine in several other problems, e.g.,

some graph problems considered in the annotated settings [57, 59, 62]. Thus, an improved

scheme for multiset inclusion implies improved subroutines for the corresponding prob-

lems. It can be solved by easy application of frequency-based functions. The reduction is

already noted in Chakrabarti et al. [57], but we repeat it here for the sake of completeness.

Corollary 4.2.5. Let X, Y ⊆ [n] be multisets of size O(n). Given a stream where elements

of X and Y arrive in interleaved manner, there is an (n2/3 log n, n2/3 log n)-scheme for

determining whether X ⊆ Y .

Proof. Think of X and Y as n-length characteristic vector representation of the multisets

(with an entry denoting the multiplicity of the corresponding element). Then,X ⊆ Y if and

only if Xj ≤ Yj for each j ∈ [n]. As the elements arrive, we increment an entry if belongs

to Y and decrement it if it belongs toX . Thus, the vector f is given by fj = Yj−Xj . Define

g as g(x) = 0 if x ≥ 0 and g(x) = 1 otherwise. Therefore, computing G(f) :=
∑n

j=1 g(fj)

and checking if it equals 0 solves the problem. The multisets having size O(n) ensures that

the length of the stream is O(n), and so we can safely apply our scheme.

181

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Section 4.3

Graph Problems

Several recent works in the annotated stream and the SIP models have focused on basic

algorithmic problems on graphs [2, 71, 164], often giving sublinear-space algorithms for

problems that provably do not admit sublinear solutions in the basic (sans prover) streaming

setting.

In this work, we give new algorithms in the annotated streaming setting for certain

graph problems, including triangle counting, its generalization to subgraph counting, max-

imum matching, problems about the existence (or not) of short paths, finding the shortest

path between two vertices, and testing for an independent set. Two of our results pro-

vide “unexpected” new upper bounds, disproving published conjectures [164] asserting that

such bounds would be unattainable. We give new and improved schemes for several graph-

theoretic problems, including triangle counting, maximum matching, topological sorting,

and shortest paths. In all cases, the input is a huge n-vertex graph G given as a stream σ of

edge insertions and/or deletions. While most of our problems have been studied before, we

give schemes that (a) have better complexity parameters, in some cases achieving optimal-

ity, and (b) use cleverer algebraic encodings of the relevant combinatorial problems, often

exploiting the ability of a streaming algorithm to compute nonlinear sketches.

Subgraph Counting. The literature on graph streaming contains many works on the cen-

tral problem of triangle counting (henceforth, TRIANGLECOUNT): given a multigraph G

as a dynamic stream, compute T , the number of triangles inG [26,42,106,139,164]. In Sec-

tion 4.3.3, we study this and the more general problem of subgraph-counting (SUBGRAPHCOUNTk)

[42, 111, 112, 164], where the goal is to compute TH , the number of copies of a fixed, k-

sized graph H , where k is a constant. In the basic streaming model, computing T or TH

exactly is impossible in sublinear space and it becomes necessary to approximate. In con-

182

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

trast, we design a family of (o(n2), o(n))-schemes for TRIANGLECOUNT that give exact

answers. Such a frugal scheme had been conjectured not to exist [164]. We extend our

ideas to give sublinear (o(n2), o(n2))-schemes for SUBGRAPHCOUNTk.

Maximum Matching. Determining α′(G), the cardinality of a maximum-sized matching

in G, is a central problem in graph algorithms and has received a lot of attention in the

recent literature on streaming algorithms [18, 63, 82, 91, 116, 136]. In Section 4.3.5, we

consider this problem (henceforth, MAXMATCHING) for multigraphs given by dynamic

streams. As with TRIANGLECOUNT, we give a frugal scheme for MAXMATCHING, which

had been conjectured to be impossible [164]. In the process, we present a frugal scheme for

the subproblem of verifying that the purported connected components of a graph are indeed

disconnected from each other, which might be of independent interest for future work on

connectivity-related problems.

Independent Sets and Length-Three Paths. In Section 4.4, we study the independent set

testing problem (INDSETTEST), where we are given a multigraph G and a set U ⊆ V (also

streamed and interleaved with the edge stream arbitrarily) and we must determine whether

or not U is independent. We also study the ST-3PATH problem, where G (which might be

a digraph) has two designated vertices vs and vt and we must determine whether G has

a path of length at most 3 from vs to vt. By results from prior work, any (h, v)-scheme

for these problems must have total cost h + v = Ω(n). We therefore design two-pass

schemes for these problems, achieving h+ v = Õ(n2/3). In fact, we obtain a more general

tradeoff, giving a two-pass [t2, s]-scheme for any parameters t, s with ts = n. Our schemes

instantiate a protocol for the abstract problem CROSSEDGECOUNT, which asks for a count

of the number of edges in G from U ⊆ V to W ⊆ V , where these sets U and W are also

streamed.

In each case, we can design ordinary (one-pass) schemes with the same complexity

parameters under a natural assumption on the way the stream is ordered, and these schemes

183

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

still beat the space bound achievable by basic (sans prover) streaming algorithms.

Short Paths and Shortest Path. Finally, in Section 4.3.7, we consider shortest path

problems, perhaps the most basic problem in classic graph algorithms. We study the ST-

KPATH problem, which is to detect whether or not G has a path of length at most k from

vs to vt, where k, vs, and vt are prespecified. We first present a [kn, n]-scheme for ST-

KPATH. This gives a semi-streaming scheme for detecting short (of length polylogarithmic

in n) paths, which is optimal in terms of total cost. It also implies a [kn, n]-scheme for

ST-SHORTESTPATH problem—where k is the length of the shortest path from vs to vt—

which is to find the shortest path between vertices vs and vt, and output NO if none exists.

For directed graphs of small (polylogarithmic in n) diameter, it implies a semi-streaming

scheme for checking vs–vt connectivity. Note that these problems require Ω(n2) space in

the basic data streaming model, even for constant k or constant-diameter graphs [82].

Targeting a different cost regime, we generalize our result for ST-3PATH from Sec-

tion 4.4 to obtain multi-pass (h, v)-schemes for ST-KPATH with total cost h+v = o(n), for

constant k. To be precise, we present a ⌈k/2⌉-pass [n1−1/k, n1−1/k]-scheme for ST-KPATH.

4.3.1. Our Techniques

Sum-Check and Polynomial Encodings. As with much prior work in this area (and

probabilistic proof systems more generally), our schemes are variants of the famous sum-

check protocol of Lund et al. [135]. Specialized to our (non-interactive) schemes, this

protocol allows Verifier to make Prover honestly compute
∑

x∈X g(x) for some low-degree

polynomial g(X) derived from the input data and some designated set X . Verifier has no

space to compute g explicitly, nor all values ⟨g(x) : x ∈ X⟩, but he can afford to evaluate

g(r) at a random point r. The Prover steps in by explicitly providing ĝ(X), a polynomial

claimed to equal g(X): this is cheap since g has low degree. Verifier can be convinced of

this claim by checking that ĝ(r) = g(r).

184

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Hence, the main challenge in applying the sum-check technique is to find a way to

encode the data stream problem’s output as the sum of the evaluations of a low-degree

polynomial g so that Verifier can, in small space, evaluate g at a random point r.

Sketches: Linearity and Beyond. A streaming Verifier evaluates g(r) by suitably summa-

rizing the input in a sketch. Viewing the input as updates to a data vector f = (f1, . . . , fN),

such a sketch v is linear if v = Sf for some matrix S ∈ Fv×N , for some field F.5 Typically,

S is implicit in the sketching algorithm and enables stream processing in Õ(v) space by

translating a stream update fi ← fi + ∆ into the sketch update v ← v + ∆Sei, where

ei is the ith standard basis vector. In essentially all prior works on stream verification, the

polynomial g was such that g(r) could be derived from such a linear sketch v.

There is one exception: Thaler [164] introduced an optimal [n, n]-scheme for TRIAN-

GLECOUNT in which Verifier computes a nonlinear sketch.6 Roughly speaking, the verifier

in Thaler’s protocol maintains two n-dimensional linear sketches v(1) and v(2), plus a value

C that is not a linear function of the input stream but instead depends quadratically on v(1)

and v(2). Moreover, the jth increment to C uses information that is available while pro-

cessing the jth stream update, but not after the stream is gone. This is in contrast to linear

sketches themselves, where the jth sketch update depends only on the jth stream update

and no others.

The Shaping Technique. Another ubiquitous idea in streaming verification is the shap-

ing technique, which transforms a data vector into a multidimensional array. This trick

realizes g(X) as a summation of an even simpler multivariate polynomial: the latter can

be evaluated directly by Verifier at several points, which forms the basis for his sketch-

ing. When applied to graph problems, this technique was historically used to reshape the(
n
2

)
-dimensional vector of edge multiplicities. Recently, Chakrabarti and Ghosh [59] in-

troduced the idea of reshaping the graph’s vertex space, rather than just the edge space,
5This field is finite in the streaming verification literature, whereas traditional data streaming uses R.
6Simliar nonlinearity was used recently in the more powerful model of 2-pass schemes [59].

185

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

thereby transforming the adjacency matrix into a 4-dimensional array. This trick was cru-

cial to obtaining the first frugal schemes for TRIANGLECOUNT and MAXMATCHING.

Our Contributions. The new schemes in this work make the following contributions.

• We design new polynomial encodings for the graph-theoretic problems we study.

• We prominently employ nonlinear sketches, in the above sense, for almost all of our

scheme designs.

• We use the shaping technique on the vertex space, often combining it with nonlinear

sketching, thus expanding the applications of this very recent innovation.

Our solutions for TRIANGLECOUNT are particularly good illustrations of all of these

ideas. Where Thaler’s nonlinear-sketch protocol treated each vertex as monolithic, our view

of each vertex as an object in [t]× [s] (for some pair t, s with t · s = n) let us do two things.

In the laconic regime, we get to use Verifier’s increased space allowance in a way that

Thaler’s protocol cannot, thereby extending his [n, n]-scheme to get an optimal tradeoff. In

the frugal regime, it is significantly harder to exploit vertex-space shaping because Verifier

cannot even afford to devote one entry per vertex in his linear sketches. We overcome this

by finding a way for many vertices to “share” each entry of each linear sketch (see the

string of equations culminating in eq. (4.18)), thus extending Thaler’s protocol to smoothly

trade off communication for space.

We also extend the applicability of nonlinear sketching by identifying many further

graph problems for which it yields significant improvements. Specifically, in Section 4.3.4,

we describe two technical problems called INDUCEDEDGECOUNTand CROSSEDGECOUNT,

which are later used as primitives to optimally solve several important graph problems, in-

cluding MAXMATCHING. We show how to apply sum-check with a nonlinear Verifier (see,

e.g, eq. (4.27)) to optimally solve INDUCEDEDGECOUNT and CROSSEDGECOUNT.

Finally, our schemes for SSSP feature a different kind of innovation on top of vertex-

186

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

space shaping and new, clever encodings of shortest-path problems in a manner amenable to

sum-check. They overcome the frugal Verifier’s space limitation by exploiting the Prover’s

room to generate a proof stream that mimics an iterative algorithm. For the Verifier to play

along with such an iterative algorithm while lacking even one bit of space per vertex, a

careful layering of fingerprint-based checks is needed on top of the sum-checks. We hope

that our work here opens up possibilities for other instances of porting iterative algorithms

to a streaming setting with the help of a prover.

4.3.2. Triangle Counting

A frugal scheme. We begin by describing a frugal scheme for TRIANGLECOUNT and then

extend our ideas to obtain a sublinear scheme for the more general problem SUBGRAPH-

COUNT. Throughout, we assume that the input is an n-vertex multigraph G = (V,E) with

adjacency matrix A, built up through a stream of edge insertions and deletions.

Let T = T (G) be the number of triangles in G taking edge multiplicities into account,

i.e., two triangles are considered distinct iff their corresponding sets of edges are distinct.

Then,

6T =
∑

v1,v2,v3∈V

Av1v2Av2v3Av3v1 . (4.13)

Let t and s be integer-valued parameters such that ts = n. Using a canonical bijection,

we represent each vertex v ∈ V by a pair of integers (x, y) ∈ [t] × [s]. This transforms

the matrix A into a 4-dimensional array a, given by a(x1, y1, x2, y2) = Av1v2 . Let ã be the

F-extension of a for a sufficiently large finite field F to be chosen later. Equation (4.13)

now gives

6T =
∑

x1,x2,x3∈[t]

p(x1, x2, x3) , where (4.14)

p(X1, X2, X3) =
∑

y1,y2,y3∈[s]

ã(X1, y1, X2, y2) ã(X2, y2, X3, y3) ã(X3, y3, X1, y1) . (4.15)

187

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Note that, for each i ∈ {1, 2, 3}, we have degXi
p ≤ 2t−2. Thus, the number of monomials

in p is at most (2t− 1)3 ≤ 8t3 and the total degree deg p ≤ 6t− 6 ≤ 6t.

Our scheme for triangle counting operates as follows.

Stream processing. Verifier starts by picking r1, r2, r3 ∈R F. As the edge stream ar-

rives, he maintains the three 2-dimensional arrays ã(r1, w, r2, z), ã(r2, w, r3, z), and

ã(r3, w, r1, z), for all (w, z) ∈ [s] × [s] (using Fact 4.1.1). At the end of the stream,

he uses these arrays to compute p(r1, r2, r3), using eq. (4.15).

Help message. Prover sends Verifier a polynomial p̂(X1, X2, X3) that she claims equals

p(X1, X2, X3); in particular, for each i ∈ {1, 2, 3}, degXi
p̂ ≤ 2t−2. She streams the

coefficients of p̂ one at a time, according to some canonical ordering of the possible

monomials.

Verification and output. As p̂ is streamed in, Verifier computes the check value C :=

p̂(r1, r2, r3) and the result value T̂ := 1
6

∑
x1,x2,x3∈[t] p̂(x1, x2, x3). If he finds that

C ̸= p(r1, r2, r3), he outputs ⊥. Otherwise, he believes that p̂ ≡ p and accordingly,

based on eq. (4.14), outputs T̂ as the answer.

The analysis of this scheme is along now-standard lines.

Error probability. Clearly, if Prover is honest (i.e., p̂ ≡ p), then the output is always

correct. So the scheme errs only when p̂ ̸≡ p but Verifier’s check passes. This means

that the random point (r1, r2, r3) ∈ F3 is a root of the nonzero polynomial p̂ − p,

which has total degree at most 6t. By the Schwartz-Zippel Lemma (Fact 4.1.2), the

probability of this event is at most 6t/|F| < 1/n, by choosing |F| large enough.

Help and Verification costs. The number of bits used to describe the polynomial p̂ is the

hcost. As noted, the polynomial p̂ has O(t3) many coefficients, each of which is

an element of F, and hence has size O(log n). So the hcost is Õ(t3). The Verifier

maintains three s × s arrays, where each entry is an element of F. Hence, the vcost

188

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

is Õ(s2). Therefore, we get a [t3, s2]-scheme for triangle counting, for parameters

t, s with ts = n. Setting t = nα for α ∈ (1/2, 2/3), we get a (o(n2), o(n))-scheme,

which is frugal.

The result in this section is captured in the theorem below.

Theorem 4.3.1. For any parameters t, s with ts = n, there is a [t3, s2]-scheme for TRIAN-

GLECOUNT. In particular, there is an (o(n2), o(n))-scheme for TRIANGLECOUNT.

This disproves Thaler’s conjecture [164], which stated that TRIANGLECOUNT has no

frugal scheme.

An improved frugal scheme.

Theorem 4.3.2. There is an [nt2, s]-scheme for TRIANGLECOUNT.

Consider an adjacency matrix A of a graph on vertex set V . The addition of a new edge

{u, v} creates
∑

z∈V A(u, z)A(v, z) new triangles.

Suppose that the input stream consists of L edge updates, the jth being (v1j, v2j,∆j);

recall that its effect is to add ∆j to the multiplicity of edge {v1j, v2j}. Suppose that the cu-

mulative effect of the first j updates is to produce a multigraph Gj whose adjacency matrix

is Aj and which has Tj triangles (counting multiplicity). As in Thaler’s protocol [164], we

can then account for the number of triangles added by the jth update:

Tj − Tj−1 =
∑
v3∈V

∆j Aj−1(v1j, v3)Aj−1(v2j, v3) .

As a result, the number of triangles T in the final graph G = GL is

T =
∑
j∈[L]

∑
v3∈V

∆j Aj−1(v1j, v3)Aj−1(v2j, v3) . (4.16)

189

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Our two new families of schemes for TRIANGLECOUNT apply the shaping technique

to the above equation in two distinct ways, resulting in markedly different complexity be-

haviors.

We rewrite the variables v1j and v2j as pairs (x1j, y1j) and (x2j, y2j), each in [t] × [s]

for parameters t, s with ts = n. The matrices Aj−1 are now shaped into 3-dimensional

arrays bj−1 that can be seen as functions on the domain [t] × [s] × [n]. As before, let b̃ be

an appropriate F-extension. Working from eq. (4.16) and cleverly using the “unit impulse”

function δ seen in eq. (4.1),

T =
∑
v3∈V

∑
j∈[L]

∆j b̃j−1(x1j, y1j, v3) b̃j−1(x2j, y2j, v3)

=
∑
v3∈V

∑
w1,w2∈[t]

∑
j∈[L]

∆j b̃j−1(w1, y1j, v3) b̃j−1(w2, y2j, v3) δx1j(w1) δx2j(w2)

=
∑
v3∈V

∑
w1,w2∈[t]

q(w1, w2, v3) , where (4.17)

q(W1,W2, V3) =
∑
j∈[L]

∆j b̃j−1(W1, y1j, V3) b̃j−1(W2, y2j, V3) δx1j(W1) δx2j(W2) . (4.18)

We have a multivariate polynomial q(W1,W2, V3). We have the bounds degW1
q ≤

2(t−1), degW2
q ≤ 2(t−1), and degV3 q ≤ 2(n−1), for a total degree ofO(t+n) = O(n).

Importantly, the number of monomials in q is at most (2t−1)2(2n−1) = O(nt2). We now

present the corresponding scheme and its analysis.

Stream processing. Verifier picks r1, r2, r3 ∈R F. As the stream arrives, he maintains

two 1-dimensional arrays: b̃j−1(r1, y, r3) and b̃j−1(r2, y, r3), for all y ∈ [s] (using

Fact 4.1.1). He also maintains an accumulator that starts at zero and, after the jth

update (x1j, y1j, x2j, y2j), is incremented by

∆j b̃j−1(r1, y1j, r3) b̃j−1(r2, y2j, r3) δx1j(r1) δx2j(r2) .

190

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

By eq. (4.18), the final value of this accumulator is q(r1, r2, r3).

Notice that the accumulator is a nonlinear sketch of the input.

Help message. Prover sends Verifier a polynomial q̂(W1,W2, V3) that she claims equals

q(W1,W2, V3). It should satisfy the degree bounds noted above. He lacks the space

to store q̂, so she streams the coefficients of q̂ in some canonical order.

Verification and output. As q̂ is streamed in, Verifier computes the check value C :=

q̂(r1, r2, r3) and the result value T̂ :=
∑

v3∈[n]
∑

w1,w2∈[t] q̂(w1, w2, v3). If he finds

that C ̸= q(r1, r2, r3), he outputs ⊥. Otherwise, he believes that q̂ ≡ q and accord-

ingly, based on eq. (4.17), outputs T̂ as the answer.

Error probability. As before, we have perfect completeness and by the Schwartz–Zippel

Lemma (Fact 4.1.2, this time using its full multivariate strength), this soundness error

is at most deg q/|F| = O(n)/|F| < 1/n, by choosing |F| large enough.

Help and Verification costs. Prover can describe q̂ by listing itsO(nt2) coefficients. Ver-

ifier maintains two s-length arrays. Overall, we get an [nt2, s]-scheme, as required.

An Optimal Laconic Scheme.

Theorem 4.3.3. There is a [t, ns]-scheme for TRIANGLECOUNT. This is optimal up to

logarithmic factors.

Let t, s ∈ N be parameters with ts = n. We first consider rewriting the variable

v3 in eq. (4.16) as a pair of integers (x3, y3) ∈ [t] × [s] using some canonical bijection.

This shapes each matrix Aj−1 into a 3-dimensional array aj−1, i.e., a function with domain

[n]× [t]× [s]. Let ã be the F-extension of a for a sufficiently large finite field F to be chosen

191

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

later. Then eq. (4.16) becomes

T =
∑
j∈[L]

∑
x3∈[t]

∑
y3∈[s]

∆j ãj−1(v1j, x3, y3) ãj−1(v2j, x3, y3) =
∑
x3∈[t]

p(x3) , where

(4.19)

p(X3) =
∑
j∈[L]

∑
y3∈[s]

∆j ãj−1(v1j, X3, y3) ãj−1(v2j, X3, y3) . (4.20)

By the properties of F-extensions observed above, we have the bound deg p ≤ 2(t−1).

We now design our scheme as follows.

Stream processing. Verifier starts by picking r3 ∈R F. As the stream arrives, he main-

tains a 2-dimensional array of values ãj−1(v, r3, y), for all (v, y) ∈ [n] × [s], using

Fact 4.1.1. He also maintains an accumulator that starts at zero and, after the jth up-

date, is incremented by ∆j

∑
y3∈[s] ãj−1(v1j, r3, y3) ãj−1(v2j, r3, y3). By eq. (4.20),

the final value of this accumulator is p(r3).

Help message. Prover sends Verifier a polynomial p̂(X3) of degree ≤ 2(t − 1) that she

claims equals p(X3).

Verification and output. Using Prover’s message, Verifier computes the check valueC :=

p̂(r3) and the result value T̂ :=
∑

x3∈[t] p̂(x3). If he finds that C ̸= p(r3), he outputs

⊥. Otherwise, he believes that p̂ ≡ p and accordingly, based on eq. (4.19), outputs T̂

as the answer.

The analysis of this scheme proceeds along standard lines long established in the liter-

ature.

Error probability. An honest Prover (p̂ ≡ p) clearly ensures perfect completeness. The

soundness error is the probability that Verifier’s check passes despite p̂ ̸≡ p, i.e., that

the random point r3 ∈ F is a root of the nonzero degree-(2t−2) polynomial p̂−p. By

192

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

the Schwartz–Zippel Lemma (Fact 4.1.2), this probability is at most (2t − 2)/|F| <

1/n, by choosing |F| large enough.

Help and Verification costs. Prover describes p̂ by listing its O(t) many coefficients,

spendingO(t log n) bits, since each is an element of F and |F| = nO(1) suffices above.

Verifier maintains an n × s array whose entries are in F, for a vcost of O(ns log n).

Overall, we get a [t, ns]-scheme, as required.

4.3.3. Generalization: Counting Copies of an Arbitrary Subgraph

Now we consider the SUBGRAPHCOUNTk problem. Let H be a fixed k-vertex graph. The

goal is to determine TH = TH(G), the number of copies of H in the n-vertex multigraph

G given by an input stream: n is growing whereas k = O(1). As before, we take edge

multiplicities into account.

Fix a numbering of the vertices of H as 1, 2, . . . , k. Write i ∼ j to denote {i, j} ∈

E(H) ∧ i < j. To generalize eq. (4.13), note that the expression
∏

i∼j Avivj counts the

number of copies of H occurring amongst vertices v1, . . . , vk in G where i ∈ V (H) is

mapped to vi ∈ V , provided that v1, . . . , vk are distinct. This subtlety of explicitly requiring

the vis to be distinct did not arise for TRIANGLECOUNT because Av1v2Av2v3Av3v1 is zero

unless v1, v2, v3 are distinct. To enforce the distinctness condition in our more general

setting, define an n× n Boolean matrix B by Buv = 1 iff u ̸= v. Then, defining αH to be

the number of automorphisms of H ,

αHTH =
∑

v1,...vk∈V

(∏
i∼j

Avivj

) ∏
i ̸=j∈[k]

Bvivj

 . (4.21)

As before, we shape V into [t] × [s] for parameters t and s with ts = n. This turns the 2-

dimensional matrices A,B into 4-dimensional arrays a, b, which in turn have F-extensions

193

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

ã, b̃. Equation (4.21) gives

αHTH =
∑

x1,...,xk∈[t]

p(x1, . . . , xk) , where (4.22)

p(X1, . . . , Xk) =
∑

y1,...,yk∈[s]

(∏
i∼j

ã(Xi, yi, Xj, yj)

) ∏
i ̸=j∈[k]

b̃(Xi, yi, Xj, yj)

 . (4.23)

For each i ∈ [k], degXi
p ≤ 2(k−1)(t−1) = O(t). So the total degree deg p = O(t) and p

has at most O(tk) monomials. This leads to a scheme for subgraph counting that naturally

generalizes our earlier scheme for triangle counting. We sketch the salient features and the

analysis.

Stream processing. Verifier picks r1, . . . , rk ∈R F and maintains (using Fact 4.1.1)

O(k2) = O(1) many s×s arrays: ã(ri, w, rj, z) for each i ∼ j ∈ [k] and b̃(ri, w, rj, z)

for each i ̸= j ∈ [k], where (w, z) ∈ [s]× [s]. The b̃ arrays do not depend on the input

stream and can be computed once and for all. At the end of the stream, he computes

p(r1, . . . , rk) with the help of these values, using eq. (4.23).

Help message. Prover sends a polynomial p̂(X1, . . . , Xk) that she claims to be p(X1, . . . , Xk).

She streams the O(tk) coefficients of p̂, using some canonical ordering of the mono-

mials.

Verification and output. Verifier computes the check value C := p̂(r1, . . . , rk) and the

result value T̂H := α−1H
∑

x1,...,xk∈[t] p̂(x1, . . . , xk). He outputs⊥ ifC ̸= p(r1, . . . , rk).

Else, believing p̂ ≡ p, he outputs T̂H as the answer, in view of eq. (4.22).

Error probability. By a Schwartz-Zippel Lemma (Fact 4.1.2) argument as before, the

error probability is at most deg p/|F| = O(t)/|F| < 1/n, by choosing |F| large

enough.

Help and Verification costs. The hcost is Õ(tk), by the bound on the number of mono-

mials in p̂. Verifier stores O(1) many s× s arrays, leading to a vcost of Õ(s2).

194

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

In summary, we obtain a [tk, s2]-scheme for counting copies of a fixed k-vertex sub-

graph H , for all choices of parameters t, s with ts = n. Setting t = n2/(k+2) and s =

nk/(k+2) gives a scheme where both these costs are Õ(n2k/(k+2)), which is o(n2) for con-

stant k. Thus, we get the following theorem.

Theorem 4.3.4. For any parameters t, s such that ts = n, there is a [tk, s2]-scheme for

SUBGRAPHCOUNTk, where k is a constant. In particular, there is a sublinear scheme for

SUBGRAPHCOUNTk with total cost Õ(n2k/(k+2)).

4.3.4. A Technical Result: Counting Edges in Induced Subgraphs

We introduce two somewhat technical, though still natural, graph problems: INDUCED-

EDGECOUNT and CROSSEDGECOUNT. We design schemes for these problems giving

optimal tradeoffs (as usual, up to logarithmic factors). These schemes are key subroutines

in our schemes for more standard, well-studied graph problems—such as MAXMATCH-

ING—considered in Section 4.3.6.

The INDUCEDEDGECOUNT problem is defined as follows. The input is a stream of

edges of a graph G = (V,E) followed by a stream of vertex subsets ⟨U1, . . . Uℓ⟩ for some

ℓ ∈ N, where Ui ⊆ V for i ∈ [ℓ]. To be precise, the latter portion of the stream consists

of the vertices of U1 in arbitrary order, followed by a delimiter, followed by the vertices

of U2 in arbitrary order, and so on. The desired output is
∑ℓ

i=1 |E(G[Ui])|, the sum of the

numbers of edges in the induced subgraphs G[U1], . . . , G[Uℓ]. Note that U1, . . . , Uℓ need

not be pairwise disjoint, so the sum may count some edges more than once.

The CROSSEDGECOUNT problem is an analog of the above for induced bipartite sub-

graphs. The input is a stream of edges followed by ℓ pairs of vertex subsets ⟨(U1,W1), . . . , (Uℓ,Wℓ)⟩,

where Ui ∩Wi = ∅ for i ∈ [ℓ]. The desired output is
∑ℓ

i=1 |E(G[Ui,Wi])|, the sum of the

number of cross-edges in the induced bipartite subgraphs G[U1,W1], . . . , G[Uℓ,Wℓ]. Note

that the Uis (or Wis) need not be disjoint among themselves.

195

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Importantly, in both of these problems, the edges precede the vertex subsets in the

stream. This makes the problems intractable in the basic data streaming model. We shall

prove the following results.

Lemma 4.3.5. For any h, v with hv = n2, there is an [h, v]-protocol for INDUCEDEDGE-

COUNT.

Lemma 4.3.6. For any h, v with hv = n2, there is an [h, v]-protocol for CROSSEDGE-

COUNT.

Scheme for INDUCEDEDGECOUNT (Proof of Lemma 4.3.5). For the given instance,

let M denote the desired output and let A be the adjacency matrix of G. For each i ∈ ℓ, let

Bi ∈ {0, 1}V be the indicator vector of the set Ui, i.e., Bi(v) = 1 ⇐⇒ v ∈ Ui. Then,

M =
1

2

ℓ∑
i=1

∑
v1,v2∈V

Bi(v1)Bi(v2)A(v1, v2) . (4.24)

Let t, s be integer parameters such that ts = n. We apply the shaping technique to

eq. (4.24) by rewriting the variables vj as pairs of integers (xj, yj) ∈ [t]×[s], for j ∈ {1, 2}.

This transforms the matrixA into a 4-dimensional array a and eachBi into a 2-dimensional

array bi. Let ã and b̃i be the respective F-extensions. Equation (4.24) now gives

2M =
ℓ∑
i=1

∑
x1,x2∈[t]

∑
y1,y2∈[s]

b̃i(x1, y1) b̃i(x2, y2) ã(x1, y1, x2, y2) =
∑

x1,x2∈[t]

p(x1, x2) , where

(4.25)

p(X1, X2) =
ℓ∑
i=1

∑
y1,y2∈[s]

b̃i(X1, y1) b̃i(X2, y2) ã(X1, y1, X2, y2) . (4.26)

Our scheme exploits this expression in the same general manner as the analogous ex-

pressions for the TRIANGLECOUNT schemes from Section 4.3.2 (e.g., Equation (4.19)).

Prover sends a bivariate polynomial p̂(X1, X2), which is claimed to be p, by streaming its

196

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

coefficients. Since degXj
p ≤ 2(t− 1) for j ∈ {1, 2}, Prover need only send O(t2) coeffi-

cients, for a help cost of Õ(t2). Verifier computes his output using eq. (4.25), giving perfect

completeness. On the soundness side, Verifier checks the condition p̂(r1, r2) = p(r1, r2)

for randomly chosen r1, r2 ∈R F. By the Schwartz-Zippel Lemma (Fact 4.1.2), the proba-

bility that he is fooled is at most deg p/|F| = O(t)/|F| < 1/n, for the right choice of F. It

remains to describe how exactly Verifier evaluates p(r1, r2), which we now address.

Processing the stream of edges. This is straightforward: Verifier maintains the 2-dimensional

array of values ã(r1, w, r2, z), for all w, z ∈ [s], using Fact 4.1.1.

Processing the stream of vertex subsets. Verifier initializes an accumulator to zero and

allocates workspace for two arrays of length s with entries in F. For each i ∈ [ℓ], as

the vertices of Ui arrive, he maintains b̃i(r1, z) and b̃i(r2, z) for each z ∈ [s], using

that workspace. Upon seeing the delimiter marking the end of Ui, he computes

∑
y1,y2∈[s]

b̃i(r1, y1) b̃i(r2, y2) ã(r1, y1, r2, y2) (4.27)

and adds this quantity to the accumulator. Note that the workspace is reused when

the stream moves on from Ui to Ui+1. By eq. (4.26), after the last set Uℓ is streamed,

the accumulator holds p(r1, r2).

Help and verification costs. We argued above that the hcost is Õ(t2). Meanwhile, Ver-

ifier’s storage is dominated by the s × s array he maintains, leading to a vcost of

Õ(s2).

Therefore, we obtain a [t2, s2]-scheme for any parameters t, s with ts = n. In other

words, we get an [h, v]-scheme for any h, v with hv = n2.

Scheme for CROSSEDGECOUNT (Proof of Lemma 4.3.6). Our solution for INDUCED-

EDGECOUNT can easily be modified to obtain a protocol for CROSSEDGECOUNT with the

197

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

same costs. If Bi and Ci are the indicator vectors of the sets Ui and Wi, respectively, then

the desired output is

M =
ℓ∑
i=1

∑
v1,v2∈V

Bi(v1)Ci(v2)A(v1, v2) , (4.28)

where we used the fact that each Ui ∩Wi = ∅. Since eq. (4.28) has essentially the same

form as eq. (4.24), a scheme very similar to the previous one solves CROSSEDGECOUNT:

Verifier simply keeps track of arrays corresponding to Ci alongside ones corresponding to

Bi.

4.3.5. Maximum Matching

We now turn to the MAXMATCHING problem, again giving a frugal scheme. Our input is

an edge stream of an n-vertex graph G = (V,E) and we would like to determine α′(G),

the cardinality of a maximum matching in G. We follow the broad outline of the semi-

streaming scheme for MAXMATCHING by Thaler [164]. That scheme has two parts. In

the first part, Prover convinces Verifier that α′(G) ≥ k, for some integer k. In the second

part, she convinces him that α′(G) ≤ k. For the former, Prover simply provides a suitable

matchingM and convinces Verifier thatM ⊆ E using the SUBSET scheme from Fact 4.1.3.

For the latter, Prover uses the Tutte-Berge formula [49], which states that

α′(G) =
1

2
min
U⊆V

(
|U |+ |V | − odd(G \ U)

)
, (4.29)

where odd(G \ U) denotes the number of connected components in G \ U with an odd

number of vertices. The most challenging part of the scheme is evaluating odd(G \ U),

which involves the sub-problem of verifying whether all the connected components of a

graph (as claimed by the Prover) are disconnected from each other. Thaler comments that

this is the part that acts as a barrier in reducing the vcost to o(n) without increasing the

198

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

hcost to Ω(n2). We present a novel frugal scheme for this sub-problem. The rest of the

protocol solves the same sub-problems as the aforementioned paper. Most of their sub-

schemes for these sub-problems, however, were trivial for Õ(n) space. We need schemes

for the same problems that use only o(n) space and hence require more work. We describe

our protocol below.

To convince the Verifier that the size of a maximum matching in G is k, Prover proves

that it is (a) at least k, and (b) at most k. For (a), she simply sends (as a stream) a set

M of k edges that constitutes a matching of G. Verifier can easily check using O(log n)

space that the set has size k. Next, he needs to check that M ⊆ E, and that M is indeed

a matching. For the former, we can use the SUBSET scheme (Fact 4.1.3) and get an [h, v]-

scheme, where v is the o(n) value we are aiming for and h = n2/v. To verify that M

is a matching, we check whether every vertex in M appears exactly once in this stream.

Treating M as a stream of vertices, we can do this as follows: First, compute F2, the

second frequency moment of the stream, using an [h, v]-scheme where v is the o(n) vcost

we want, and h = n/v ([57], Theorem 4.1). Next, verify that it equals 2k (this happens iff

all 2k elements are distinct).

For (b), we apply eq. (4.29). Prover sends U∗ ⊆ V and claims that k = 1
2
(|U∗|+ |V | −

odd(G \U∗)). To check this, Verifier just needs to compute odd(G \U∗). We do this in the

following way.

Let [C] be the set of C connected components of G \ U∗. For c ∈ [C] and u ∈ G \ U∗,

Prover sends an array L of pairs (c, u) such that u ∈ c. The array L is sorted in non-

decreasing order of c, i.e., she first sends the vertices in connected component 1, followed

by those in component 2, and so on. If L is indeed as Prover claims, then odd(G \ U∗) is

equal to the number of components c that arrive with an odd number of vertices in L. Since

L is sorted with respect to c, Verifier can count this number easily using O(log n) space.

He can verify that the vertices in the tuples of L constitute G \ U∗, and that no vertex u is

199

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

repeated in different tuples of L, using frugal schemes implied by the standard protocols

mentioned above.

Thus, it only remains to verify that L is as claimed. For this, we need to check whether

the following two properties hold:

(i) For each c ∈ [C], the vertices in G \U∗ that are claimed to be in component c are all

connected in G \ U∗.

(ii) For every pair (u, v) of vertices in G \ U∗ that are claimed to be in different compo-

nents, we have (u, v) ̸∈ E.

For Property (i), Prover sends a spanning tree for each connected component c and

Verifier can check if all of them are valid using an [n1+α, n1−α]-scheme, for any α ∈ [0, 1]

([57], Theorem 7.7) so as to get the desired o(n) vcost.

Checking Property (ii) is the most challenging part. We give a novel protocol for this

part that uses o(n) vcost and o(n2) hcost. Slightly abusing notation, consider the array L in

the form of aC×|G\U∗|matrix, such thatLcu = 1 if u ∈ c, andLcu = 0 otherwise. Denote

the ones’ complement of this matrix by L. LetA be the adjacency matrix ofG\U∗. Finally,

let γ denote the total number of cross edges that go between two connected components in

G \ U∗. Then, we have

2γ =
∑
c∈[C]

u,v∈G\U∗

LcuLcvAuv . (4.30)

Property (ii) is satisfied iff γ = 0. Recalling that C = O(n) and |G \ U∗| = O(n),

we note that eq. (4.30) has a similar form as that of eq. (4.13). Thus, it can be exploited in

essentially the same way as the [t3, s2]-scheme for TRIANGLECOUNT, for parameters t, s

with ts = n. Once again, setting t = nα for α ∈ (1/2, 2/3), we get a frugal scheme.

The next theorem summarizes the result in this section.

Theorem 4.3.7. For any parameters t, s with ts = n, there is a [t3, s2]-scheme for MAX-

MATCHING. In particular, there is an (o(n2), o(n))-scheme for MAXMATCHING.

200

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

This disproves yet another conjecture of Thaler [164], which stated that MAXMATCH-

ING has no frugal scheme.

Optimal Frugal Scheme. To optimally check that the purported connected components

of H are indeed disconnected from each other, we use the INDUCEDEDGECOUNT scheme

as a subroutine. Prover streams the vertices in H by listing its connected components in

some order ⟨U1, . . . , Uℓ⟩. Verifier uses Lemma 4.3.5 to count m1 := |E(H)| (invoking that

lemma with a single subset V (H)). In parallel, using the same scheme, Verifier computes

the sum m2 =
∑ℓ

i=1 |E(G[Ui])|. The subsets Ui are pairwise disconnected iff m2 = m1,

which Verifier checks. The sub-checks of whether Uis are indeed pairwise disjoint (as sets)

and whether U∗ ⊔ V (H) = V (G) can be done via fingerprinting (as in section 4.1).

Help and verification costs. Prover streams U∗ and the vertices in H in a certain order,

which adds O(n log n) bits to the hcost of the INDUCEDEDGECOUNT protocol. The vcost

stays the same, asymptotically, giving us an [n+h, v]-scheme for MAXMATCHING for any

h, v with hv = n2. Overall, we have established the following theorem.

Theorem 4.3.8. There is an [nt, s]-scheme for MAXMATCHING. This is optimal up to

logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2) [57].

Protocol for Space Larger Than n. There is no laconic scheme known for the general

MAXMATCHING problem. The barrier seems to be that a natural witness for the problem is

an actual maximum matching of the graph, which can be of size Θ(n). We show that large

maximum matching size α′(G) is indeed the sole barrier to obtaining a laconic scheme. In

particular, for any graph G, we give a scheme for MAXMATCHING with hcost α′(G). This

yields a laconic scheme for the case when α′(G) = o(n).

Let H = G \ U∗ as above, and let U1, . . . , Uℓ be the connected components of H .

By the Tutte-Berge formula (eq. (4.29)), we have 2k = |U∗| + (n − odd(H)). This

leads to the following observations.

201

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Observation 4.3.9. |U∗| = O(k).

Observation 4.3.10. The number of edges in a spanning forest of H is |V (H)| − ℓ ≤

n− odd(H) = O(k).

We now describe our protocol, which is along the lines of the protocol above, but this

time we crucially use the fact that we are allowing Verifier a space usage of v ≥ n.

To show that α′(G) ≥ k, Prover sends a matching M of size k. Verifier stores M

explicitly and checks that it is indeed a matching. Then, he verifies that M ⊆ E using the

Subset Scheme (Fact 4.1.3). Therefore, this part of the scheme uses hcost Õ(k + h) and

vcost Õ(v) for any h, v with hv = n2 and v ≥ n.

Recall that to show that α′(G) ≤ k, it suffices to compute odd(H). Prover sends

the set U∗. By Observation 4.3.9, this takes Õ(k) hcost. Verifier has Ω(n) space, and

hence, he can store V \ U∗ = V (H). Next, Prover sends a spanning forest F of H . By

Observation 4.3.10, this again incurs hcost Õ(k). Verifier stores F and verifies that F ⊆ E

using the Subset Scheme (Fact 4.1.3). From F , Verifier explicitly knows the purported

connected components U1, . . . , Uℓ of H . He finally verifies that Ui’s are disconnected from

each other by checking that all edges in H are contained in these components. He can do

this by checking whether |E∩(V (H)×V (H))| = |E∩(∪ℓi=1Ui×Ui)| using the Intersection

Scheme (Fact 4.1.3). If the check passes he goes over the Uis to compute odd(H) and thus,

this part can also be solved using a [k+ h, v] scheme for any h, v with hv = n2 and v ≥ n.

Hence, we obtain the following theorem.

Theorem 4.3.11. For any h, v with hv ≥ n2 and v ≥ n, there is an [α′ + h, v]-scheme

for MAXMATCHING, where α′ is the size of the maximum matching of the input graph. In

particular, there is an [α′, n2/α′]-scheme.

202

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

4.3.6. Applications to Other Graph Problems

In Section 4.3.5, we used a scheme for INDUCEDEDGECOUNT to obtain an optimal frugal

scheme for MAXMATCHING. Below, we give applications of edge-counting schemes to

several other well-studied graph problems.

Triangle-Counting. A scheme for TRIANGLECOUNT follows immediately from IN-

DUCEDEDGECOUNT. For v ∈ [n], set the subsets Uv = N(v), the neighborhood of vertex

v. Then, observe that INDUCEDEDGECOUNT returns three times the total number of tri-

angles in the graph. The sets Uv, however, need to be sent in some order by Prover, and

so the additional hcost to INDUCEDEDGECOUNT is Õ (
∑

v |N(v)|) = Õ(m). As Prover

basically repeats the edge stream in a different order, we can check if it’s consistent with

the input stream by fingerprinting (see Section 4.1). Hence, we get an [m + h, v]-scheme

for any h, v with hv = n2.

Theorem 4.3.12. For any h, v with hv ≥ n2, there is an [m+h, v]-scheme for TRIANGLE-

COUNT. In particular, there is an [m,n2/m]-scheme.

The only other scheme for TRIANGLECOUNT achieving hv = n2 tradeoff with vcost

= o(n) was an [n2, 1]-scheme by Chakrabarti et al. [57]. Our result generalizes it for any

graph with m edges, thus achieving a better hcost and a smooth tradeoff for sparse graphs.

We note that in the above scheme, Prover needs to send the sets Uv = N(v) because

the INDUCEDEDGECOUNT protocol needs the neighborhood of each vertex to arrive con-

tiguously in the stream. This is essentially the input stream order in the adjacency-list or

the vertex-arrival streaming model. Thus, for the problem TRIANGLECOUNT-ADJ, Veri-

fier gets the Uvs in the desired order as part of the input; so Prover need not repeat them,

saving the huge Õ(m) hcost. However, there is another issue in directly applying the IN-

DUCEDEDGECOUNT subroutine in this case. In the definition of INDUCEDEDGECOUNT,

we assume that all the edges in the graph arrive before the vertex subsets Ui. Here, the Uvs

and the edges arrive in interleaved manner (although each Uv arrives contiguously). But

203

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

we show that we can still apply the scheme for INDUCEDEDGECOUNT to get the desired

output. Let the order in which the Uvs appear be ⟨U1, . . . Un⟩, and let Gv denote the graph

consisting of edges seen till the arrival of Uv = N(v). Then, applying INDUCEDEDGE-

COUNT, what we count is

∑
v∈[n]

|E(Gv[N(v)])| =
∑
v∈[n]

#{triangles incident on v in Gv} = 2T .

The last equality follows since every triangle whose vertices appear in the order ⟨v1, v2, v3⟩

will be counted twice: once when v2 arrives and once when v3 arrives. We therefore obtain

the following theorem.

Theorem 4.3.13. For any h, v with hv ≥ n2, there is an [h, v]-scheme for TRIANGLECOUNT-

ADJ.

Maximal Independent Set (MIS). Recent works [17, 70] have studied the problem of

finding a maximal independent set in the basic data streaming model. They show a lower

bound of Ω(n2) for a one-pass streaming algorithm. This implies a lower bound of hv ≥ n2

for any [h, v]-scheme for MIS. Hence, we aim for hv = n2 and describe a frugal scheme

using INDUCEDEDGECOUNT. Since the output size of the problem can be Θ(n), it would

only make sense in the frugal regime if the Prover sends the output as a stream and the

Verifier checks that it is valid using o(n) space.

Let U be an MIS in the graph G. Prover sends U and Verifier uses INDUCEDEDGE-

COUNT to count the number of edges in G[U] and verifies that it equals 0. If the check

passes, U is indeed an independent set. It remains to check the maximality of U . If U is

maximal, then, for each vertex v in G \ U , there must be a vertex u in U , such that (v, u)

is an edge. Prover points out such a vertex u ∈ U for each v ∈ G \ U . Let F denote

this set of |G \ U | purported edges. Now, we use Subset Scheme (Fact 4.1.3) to verify that

F ⊆ E, i.e., all these edges are actually present in G. We can use fingerprinting (as in

204

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Section 4.1) to check that F contains an edge for each vertex in G \ U and the Intersection

Scheme to verify that the set of their partners is disjoint from G \ U , i.e., belong to U .

Thus, the additional hcost to INDUCEDEDGECOUNT, Subset, and Intersection Schemes is

Õ(n), the number of bits required to send U and F . Therefore, by Lemma 4.3.5, we get an

[n + h, v]-scheme for MIS for any h, v with hv = n2. Thus, our scheme is optimal for the

frugal regime.

Theorem 4.3.14. For any t, s with ts = n, there is an [nt, s]-scheme for MIS. This is

optimal up to logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2).

Acyclicity Testing and Topological Sorting. We now turn to the ACYCLICITY problem

in directed graphs. It is easy to prove that a graph is not acyclic by showing the existence

of a cycle C. Verifier checks that C ⊆ E using Subset Scheme (Fact 4.1.3). Hence, this

can be done using an [h, v]-scheme for any h ≥ |C|.

The more interesting case is when the graph is indeed acyclic. Note that a directed

graph is acyclic if and only if it has a topological ordering. Thus, it suffices to show a

valid topological ordering of the vertices. TOPOSORT is a fundamental graph algorithmic

problem of independent interest. ACYCLICITY has a one-pass lower bound of Ω(n2) in the

basic data streaming model. Recently, Chakrabarti et al. [60] showed that TOPOSORT also

requires Ω(n2) space in one pass. These translate to a lower bound of hv ≥ n2 for any

[h, v]-scheme for these problems. Hence, we aim for a scheme with hv = n2 and design

a protocol for TOPOSORT in the frugal regime. Since this problem has output size Θ̃(n),

we aim for a protocol where Prover sends a topological ordering of the graph and Verifier

checks its validity using o(n) space. Moreover, this protocol can be used for the YES case

of ACYCLICITY.

Verifier uses CROSSEDGECOUNT to solve this. As Prover sends the topological order

⟨v1, . . . , vn⟩, for each i ∈ [n − 1], Verifier sets Ui = {v1, . . . , vi} and Wi = {vi+1} for

CROSSEDGECOUNT. Thus, the protocol counts precisely the number of forward edges

205

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

induced by the ordering. If it equalsm, then the ordering is indeed a valid topological order.

Note that since Ui+1 = Ui ∪ {vi+1}, Prover doesn’t need to send Ui+1 afresh; just vi+1 is

enough for Verifier to update his sketch. Verifier can use fingerprinting (see Section 4.1)

to make sure that precisely the set V was sent in some order. Hence, the additional hcost

to CROSSEDGECOUNT is the number of bits required to express the topological order, i.e.,

Õ(n). Therefore, by Lemma 4.3.6, we get a [n+ h, v]-scheme for any hv = n2.

Theorem 4.3.15. For any t, s with ts = n, there is an [nt, s]-scheme for TOPOSORT. This

is optimal up to logarithmic factors, since any (h, v)-scheme is known to require hv =

Ω(n2).

Corollary 4.3.16. For any t, s with ts = n, there is an [nt, s]-scheme for ACYCLICITY.

This is optimal up to logarithmic factors, since any (h, v)-scheme is known to require hv =

Ω(n2).

For dense graphs, our result generalizes the [m, 1]-scheme of Cormode et al. [71] for

ACYCLICITY by achieving a smooth tradeoff.

Graph Connectivity. The graph connectivity problem has garnered considerable atten-

tion in the basic and annotated streaming settings [5, 57, 164]. For any t, s with ts = n,

Chakrabarti et al. [57] gave an [nt, s]-scheme that determines whether an input graph is

connected or not. Their scheme cannot, however, solve the more general problem of re-

turning the number of connected components. The [t3, s2]-scheme (for any ts = n) of

Chakrabarti and Ghosh [59] does solve this problem, but has a worse tradeoff. As noted

in Section 4.3.5, we can use INDUCEDEDGECOUNT to check that all purported connected

components are indeed disconnected from each other. On the other hand, the scheme of

Chakrabarti et al. [57] can check whether each component is actually connected. Hence,

we can verify the number of connected components claimed by Prover by running these

schemes parallelly. Thus, we generalize the result of Chakrabarti et al. [57] by obtaining

an [nt, s]-scheme for counting the number of connected components of a graph.

206

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Theorem 4.3.17. For any t, s with ts = n, there is an [nt, s]-scheme for counting the

number of connected components of a graph.

4.3.7. Path Problems

In this section, we focus on path-related problems. Specifically, we study ST-KPATH for

k ≥ 3 and the fundamental ST-SHORTESTPATH problem. Simple reductions from the

INDEX N problem, forN = n2, show that a one-pass algorithm for either of these problems

would require Ω(n2) space in the basic (sans prover) streaming model. They also show

that a one-pass scheme would require a total cost of Ω(n). We present a scheme for ST-

KPATH for general k that can also be used to solve ST-SHORTESTPATH. It is a semi-

streaming scheme when k is polylogarithmic in n, and hence matches the lower bound (up

to polylogarithmic factors). Next, we explore if we can break the Ω(n) barrier for schemes

for ST-KPATH at the cost of allowing a few more passes over the input. We achieve this

for constant k by generalizing the protocol for ST-3PATH. We present all our schemes for

undirected graphs, but they can easily be modified to work for directed graphs as well.

A Semi-Streaming Scheme for Detecting Short Paths. For ST-3PATH, it is easy to obtain

a semi-streaming scheme by checking (using Fact 4.1.3) whether the set N [vs]×N [vt] and

the edge set E are disjoint. For k > 3, things are not that direct and we require more work.

We describe the protocol below for a multigraph G.

Let A denote the adjacency matrix of the multigraph G and let Ã be the F-extension of

A, for some large finite field F. For u ∈ Ni+1(vs), let du,i be the number of (in-)neighbors

of u in Ni(vs). It follows that

du,i =
∑

v∈Ni(vs)

A(v, u) . (4.31)

We are now ready to describe the protocol.

207

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Stream processing. Verifier picks r ∈R F and stores Ã(v, r) for each v ∈ [n], maintain-

ing them dynamically as the stream arrives (using Fact 4.1.1). He also stores the set

N1(vs).

Help message. At the end of the stream, Prover sends Verifier k−1 polynomials p̂1, . . . , p̂k−1,

and she claims p̂i ≡ pi for each i ∈ [k], where

pi(U) =
∑

v∈Ni(vs)

Ã(v, U) . (4.32)

Verifier’s computation. Verifier iteratively constructs Ni(vs) for i ∈ [k]. Each time,

after computing Ni(vs) for a distance parameter i, he checks whether vt ∈ Ni(vs).

If so, he stops and outputs YES. Otherwise, he proceeds to compute Ni+1(vs). If he

finds that ∀i ∈ [k] : vt /∈ Ni(vs), then he outputs NO. The inductive neighborhood

computation is done as follows.

Assume that Verifier has the set Ni(vs) for some i ∈ [k−1]; this holds initially, since

he has stored N1(vs). He computes pi(r) using Equation (4.32) and checks whether

p̂i(r) = pi(r). If the check passes, he believes that p̂i ≡ pi and evaluates p̂i(u) for

each u ∈ V . By eq. (4.31), pi(u) equals du,i, which is non-zero iff u ∈ Ni+1(vs).

Hence, he sets Ni+1(vs) = {u : p̂i(u) ̸= 0}.

Error probability. The protocol errs when we have p̂i ̸≡ pi for some i, but Verifier’s

check passes. This implies that r is a root of the non-zero polynomial p̂i − pi. For a

given i, the total degree of this polynomial is at most 2n. Then, probability that r is a

root is at most 2n/|F| < 1/n2, for large enough choice of |F|. Taking a union bound

over all i ∈ [k], we get that the probability that r is a root of p̂i − pi for some i is at

most 1/n.

Help and Verification costs. Since the degree of each pi is ≤ 2n, the total hcost is

Õ(kn). Verifier stores Ã(v, r) for each v ∈ [n], which requires Õ(n) space. Ad-

208

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

ditionally, to compute Ni+1(vs) for some i ∈ [k], he needs only the set Ni(vs). Thus,

we can store the Ni(vs) sets by reusing space repeatedly, and this requires O(n)

space. Hence, the total vcost of this protocol is Õ(n). Therefore, we get a [kn, n]-

scheme for checking for the existence of a path of length at most k from vs to vt.

Theorem 4.3.18. Given an n-vertex (directed or undirected) multigraphG(V,E) and spec-

ified vertices vs, vt ∈ V , for any k ≤ n − 1, there is a [kn, n]-scheme for ST-KPATH. In

particular, there is a semi-streaming scheme for ST-KPATH when k is polylogarithmic in

n.

Applications. Based on the scheme in Theorem 4.3.18, we have the following straight-

forward corollaries. Contrast these results with Theorem 7 of Cormode et al. [71]. They

give an [h, v]-scheme for a weighted version of ST-SHORTESTPATH for any h, v such that

hv ≥ Dn2 and h ≥ Dn, where D is the maximum distance from vs to any other vertex

reachable from it. A similar result holds for vs–vt connectivity in directed graphs with

diameter D. Their schemes work only for simple graphs, whereas ours naturally work for

multigraphs; on the other hand, we only solve the unweighted version of the problem. No-

tably, there is a significant difference in the underlying techniques: their schemes are based

on linear programming duality, while we have a more directly algebraic approach.

Corollary 4.3.19. Given a (directed or undirected) multigraph G(V,E), with edge multi-

plicities polylogarithmic in n, and specified vertices vs, vt ∈ V , there is a [kn, n]-scheme

for ST-SHORTESTPATH, where k is length of the shortest vs–vt path.

Proof. If there is no vs–vt path, Prover sends the connected component C that vs is in.

Verifier first checks that C is indeed connected ([57], Theorem 7.7). Next, he verifies that

there is no edge going out from C by checking whether the set C × (V \ C) and the edge

set E are disjoint (Fact 4.1.3). Both of these are [n, n]-schemes.

If there is a vs–vt path, and the shortest such path H has length k, then Prover sends

it to Verifier, who checks whether H is indeed a vs–vt path and whether H ⊆ E using an

209

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

[n, n]-scheme, using the polylogarithmic bound on the edge multiplicities (Fact 4.1.3). In

parallel, he uses a [kn, n]-scheme to verify that there is no vs–vt path of length at most k−1

(Theorem 4.3.18).

Corollary 4.3.20. Given a directed n-vertex multigraph G, with edge multiplicities poly-

logarithmic in n, there is a [Dn, n]-scheme for checking vs–vt connectivity, where D is

the maximum distance from vs to any other vertex reachable from it. In particular, there

is a semi-streaming scheme for checking vs–vt connectivity in a directed multigraph with

diameter polylogarithmic in n.

Proof. If there is a vs–vt path H , then Prover sends it to the Verifier, and he can check

whether H ⊆ E using an [n, n]-scheme, as edge multiplicity is polylogarithmic in n

(Fact 4.1.3). If not, then we verify that there is no vs–vt path of length at most D using a

[Dn, n]-scheme (Theorem 4.3.18).

Unweighted Shortest Path. We shall design a scheme that works even if the same edge

appears multiple times in the stream (unlike prior work [71] that assumes that an edge

appears at most once).

Prover sends distance labels d̂ist[v] for all v ∈ V , claiming that d̂ist[v] = dist(vs, v),

the actual distance from the source vertex vs to v. Let the radius-d ball around vs be

Bd := {v ∈ V : dist(vs, v) ≤ d} and let B := {Bd : d ∈ [D]} be the family of such balls.

Let B̂d be the corresponding balls implied by Prover’s d̂ist labels, and B̂ := {B̂d : d ∈ [D]}.

To check correctness, Verifier uses fingerprinting (Section 4.1) modified as follows.

Letting B, B̂ also denote the respective characteristic vectors, define fingerprint polynomi-

als

φB(X, Y) :=
∑
i∈[n]

∑
d∈[D]

Bd(i)X
iY d , φB̂(X, Y) :=

∑
i∈[n]

∑
d∈[D]

B̂d(i)X
iY d ,

As the d̂ist labels are streamed, Verifier constructs the fingerprint φB̂(β1, β2) for some

β1, β2 ∈R F.

210

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Over the course of the protocol, using further help from Prover, Verifier will construct

the sets Bd inductively and, in turn, the “actual” fingerprint φB(β1, β2). The next claim

shows that comparing this with φB̂(β1, β2) validates Prover’s d̂ist labels.

Claim 4.3.21. If B̂d = Bd for all d, then d̂ist[v] = dist(vs, v) for all vertices v.

Proof. Suppose not. Let d∗ be the smallest d such that ∃u ∈ Bd∗ with d̂ist[u] ̸= dist(vs, u).

Therefore, dist(vs, u) = d∗. Now, d∗ cannot be 0 since vs is the only vertex in B0 and

Verifier would reject immediately if d̂ist(vs) ̸= 0. Since Bd∗ = B̂d∗ , we have u ∈ B̂d∗ .

This means d̂ist(u) ≤ d∗. Since d̂ist(u) ̸= d∗, we have d̂ist(u) ≤ d∗ − 1. Thus, u ∈ B̂d∗−1,

i.e., u ∈ Bd∗−1, which is a contradiction to the minimality of d∗.

As before, A denotes the adjacency matrix of the graph. Putting

qd(u) :=
∑
v∈V

Bd(v)A(v, u) , for each u ∈ V , (4.33)

we have Bd+1 = {u ∈ V : qd(u) ̸= 0} . (4.34)

To apply the shaping technique to (4.33), rewrite v as (x, y) ∈ [t] × [s]. This reshapes A

into a t× s× n array a(x, y, u) and Bd into a t× s array bd(x, y). As usual, let ã and b̃d be

the respective F-extensions for a suitable finite field F. Then, eq. (4.33) gives

qd(u) =
∑
x∈[t]

pd(x, u) , where (4.35)

pd(X,U) :=
∑
y∈[s]

b̃d(X, y) ã(X, y, U) . (4.36)

Stream processing. Verifier picks r1, r2 ∈R F and maintains ã(r1, y, r2). When he sees

vertices in B1, i.e., vs and its neighbors, he maintains b1(r1, y) for all y ∈ [s] and also

updates the fingerprint φB(β1, β2) accordingly.

211

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Verifier wants to construct the values bd(r1, y) inductively for d ∈ [D]. For con-

structing bd+1 values for some d, he wants all u such that qd(u) ̸= 0 (eq. (4.34)) in

streaming order since he doesn’t have enough space to either store the entire poly-

nomial of degree n − 1 that agrees with qd (so as to go over all evaluations), or to

parallelly evaluate it at n values while its coefficients are streamed. Hence, he asks

for the following help message.

Help message processing. Prover continues her proof stream by sending ⟨p̂1, Q1, . . . , p̂D, QD⟩,

where Qd := ⟨q̂d(u) : u ∈ V ⟩, claiming that p̂d ≡ pd and q̂d(u) = qd(u) for each

d ∈ [D] and u ∈ [n].

While p̂d is streamed, Verifier computes the following in parallel:

• p̂d(r1, r2);

• pd(r1, r2), using eq. (4.36);

• the fingerprint gd :=
∑

u∈[n]
∑

x∈[t] p̂d(x, u)β
u (for some β ∈R F).

After reading p̂d, he checks whether p̂d(r1, r2) = pd(r1, r2). If so, he believes that

p̂d ≡ pd and, in turn, that gd =
∑

u∈[n] qd(u)β
u (by eq. (4.35)). Next, as Qd is

streamed,

• Verifier computes the fingerprint g′d :=
∑

u∈[n] q̂d(u)β
u.

• For each u with q̂d(u) ̸= 0, due to eq. (4.34) (and assuming for now that the

q̂d values are correct), he treats u as a stream update for Bd+1, and (i) main-

tains bd+1(r1, y) for all y ∈ [s], and (ii) accordingly updates the fingerprint

φB(β1, β2).

After readingQd, he checks if the fingerprints gd and g′d match. If they do, he believes

that all q̂d values in Qd were correct and hence, the bd+1 values he constructed are

correct as well. He moves on to the next iteration, i.e., starts reading p̂d+1.

212

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Final Verification. After theDth iteration, Verifier checks if the two fingerprintsφB(β1, β2)

and φB̂(β1, β2) match. If the check passes, then he believes that the d̂ist labels were

correct, at least upto distance D (by Claim 4.3.21). Finally, he checks if fingerprints

for BD and BD+1 match to verify that vertices in V \BD are indeed unreachable.

Error probability. Verifier does O(D) fingerprint-checks and O(D) sum-checks, using

degree-O(n) polynomials. Using |F| > n3 (and a union bound), the soundness error

is < 1/n.

Help and verification costs. The set of d̂ist labels sent by the Prover has size Õ(n). Each

polynomial p̂d has nt monomials and each Qd has O(n) field elements, and hence,

size Õ(n). Therefore, the total hcost is Õ(Dnt). Initially, the Ã and b̃1 values are

stored using Õ(s) space. Next, the b̃d and gd values are maintained reusing space of

bd−1 and gd−1 values respectively. We also useO(1) many other fingerprints that take

O(log n) space each. Hence, the total vcost is Õ(s).

Theorem 4.3.22. There is a [Dnt, s]-scheme for unweighted SSSP, whereD = max
v∈V

dist(vs, v).

Corollary 4.3.23. There is a [Knt, s]-scheme for ST-SHORTESTPATH, whereK = dist(vs, vt).

Proof. The protocol for SSSP incurs a factor of D in the hcost since it constructs Bd for

each d ∈ [D]. For the simpler ST-SHORTESTPATH problem, we can inductively construct

balls and stop as soon as we find the destination vertex vt in someBd (i.e., get q̂d−1(vt) ̸= 0).

We must find it in BK where K is the length of a shortest vs–vt path. Thus, we will only

incur a factor of K in the hcost, which implies a [Knt, s]-scheme for ST-SHORTESTPATH.

Thus, we generalize the [Dnt, s]-scheme of Cormode et al. [71] from ST-SHORTESTPATH

to SSSP. Our result for ST-SHORTESTPATH generalizes the [Kn, n]-scheme of Chakrabarti

and Ghosh [59] by giving a smooth tradeoff and also improves upon the [Dnt, s]-scheme

of Cormode et al. [71], since K can be arbitrarily smaller than D.

213

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

Weighted SSSP Schemes. Here, we consider the general weighted version of SSSP and

give schemes for the problem in the vanilla streaming model as well as the turnstile weight

update model.

Turnstile weight update. Assume that the edge weights are positive integers. Each stream

update increments/decrements the weight of an edge. The distance from vertex u to vertex v

refers to the weight of the shortest path from u to v. Let D be the longest distance from the

source s to any other vertex reachable from it, and W be the maximum weight of an edge.

Define

δw(X) :=
∏

w′∈[W]
w′ ̸=w

(X − w′)
/ ∏

w′∈[W]
w′ ̸=w

(w − w′) .

Let A denote the adjacency matrix of the weighted graph G, i.e., A(u, v) is the weight

of the edge (u, v). Let Bd (resp. Nd) denote the set of vertices at a distance of at most

(resp. exactly) d from the source vertex vs. Then,

Nd+1 = {u ∈ V \Bd : pd(u) ̸= 0} , (4.37)

where pd(U) =
∑
v∈Bd

δw(v)(Ã(v, U)) and w(v) = d+ 1− dist[v] . (4.38)

Stream processing. Verifier chooses r ∈R F and maintains Ã(v, r) for all v. He stores

B1 with dist[v] labelled as 1 for each v ∈ B1.

Help message processing and verification. Prover sends polynomials p̂d and claims that

p̂d ≡ pd for each d ∈ [D]. Verifier computes Bd inductively for d ∈ [D] as follows.

Assume that, for some d ∈ [D − 1], he has the set Bd with dist[v] labeled on each

vertex v ∈ Bd; this holds initially as he has stored B1. He computes pd(r) using

eq. (4.38) and checks whether p̂d(r) = pd(r). If the check passes, he believes that

p̂d ≡ pd and evaluates p̂d(u) for each u ∈ V \Bd and constructsNd+1 using eq. (4.37).

Then, Bd+1 is given by Nd+1 ⊎Bd.

214

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

After BD is obtained, we get all vertices reachable from s along with their distances

from s. Finally, Verifier checks if the other vertices are indeed unreachable from s

by verifying that there is no cross-edge between BD and V \ BD, i.e., if E ∩ (BD ×

(V \BD)) = ∅. (Intersection scheme, see Fact 4.1.3)

Error probability. Verifier uses the same element r for O(D) invocations of the sum-

check protocol, where each application of the sum-check protocol is to a univariate

polynomial of degree O(Wn). Choosing |F| > DWn2, the soundness error for each

invocation of the sum-check protocol is at most 1/(Dn). Taking a union bound over

all O(D) invocations, we get that the total error probability of the protocol is at most

O(1/n).

Help and verification costs We have deg pd = O(Wn) for each d ∈ [D] and hence,

hcost is Õ(DWn). Verifier needs to store all vertices and Ã(v, r) for each v ∈

[n], and hence, vcost is Õ(n). The final disjointness can be checked by an [n, n]

intersection scheme.

Theorem 4.3.24. There is a [DWn, n]-scheme for SSSP in the turnstile weight update

model.

Vanilla Stream. We now describe a protocol for SSSP in the model where the edges arrive

with their weights, without any further update on them. This is the “vanilla” streaming

model.

At the end of the stream, Prover sends the distances dist[v] and prev[v]— the parent of

v in the shortest path tree rooted at s—for all v ∈ V . Verifier checks whether the edges

and their weights implied by this proof are correct, using a [Wn, n] subset scheme. Thus,

if Prover is honest, we get the distance as well as shortest path from s to each vertex. But

we also need to check that there is no path to any vertex shorter than the ones claimed by

Prover. We describe a protocol for this.

215

4.3 GRAPH PROBLEMS STREAMING VERIFICATION

For u, v ∈ V and w ∈ [W], define the indicator function f as f(u, v, w) = 1 iff

A(u, v) = w. Let f̃ be the F-extension of f , for some large finite field F.

Retain the definitions of Bd and Nd from last section with the definition of the polyno-

mial pd changed to

pd(U) =
∑
v∈Bd

f̃(v, U, d+ 1− dists[v]) (4.39)

Hence, it still holds that

Nd+1 = {u ∈ V \Bd : pd(u) ̸= 0} . (4.40)

Stream processing. The stream updates are of the form (u, v, w) denoting thatA(u, v) =

w. Verifier picks r ∈R F and maintains f̃(v, r, w) for each v ∈ V and w ∈ [W]. He

also stores the set B1 with dists labels set to 1 for each vertex in the set.

Help message processing and verification. This part is similar to the turnstile weight up-

date protocol. Of course, this time, the Verifier computes pd(r) using Equation (4.39).

Error probability. Each polynomial pd has degree O(n). Verifier does sum-checks for

O(D) such polynomials. Choosing |F| ≫ Dn, we can make the error probability

small by union bound.

Help and Verification costs. Since the degree of each pd is at most n, the total hcost is

Õ(Dn). Verifier stores f̃(v, r, w) for each v ∈ V and w ∈ [W], which requires

Õ(Wn) space. We also need to store all vertices as we go on assigning the distance

labels. Hence, the total vcost of this protocol is Õ(Wn).

Theorem 4.3.25. There is a [Dn,Wn]-scheme for SSSP in the vanilla streaming model.

216

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

Section 4.4

Multipass Stream Verification

Consider the problems INDSETTEST and ST-3PATH. The key task underlying these prob-

lems is counting the number of edges crossing between two subsets U and W of V that

arrive in some adversarial streaming order along with the edges: for INDSETTEST, U and

W are the same set; for ST-3PATH, they are (closed) neighborhoods of the designated ver-

tices vs and vt. This is precisely the abstract problem of CROSSEDGECOUNT. Clearly, a

scheme for this problem can be used as a subroutine to solve INDSETTEST and ST-3PATH.

Any one-pass (h, v)-scheme for CROSSEDGECOUNT, INDSETTEST, or ST-3PATH must

have hv ≥ n2 and hence, total cost h+ v = Ω(n).

We therefore consider two-pass schemes for these problems. In particular, we design

such a scheme for CROSSEDGECOUNT with total cost Õ(n2/3) and apply it to obtain sim-

ilar bounds for other graph problems.

We also note that our schemes can be implemented in one pass each, under natural

assumptions on the way the stream is ordered; this is addressed in Section 4.4.2.

4.4.1. One-Pass Lower Bounds

We quickly review some relevant material from communication complexity. In the INDEXN

problem, there are two players: Alice, who holds a vector x ∈ {0, 1}N , and Bob, who holds

an index k ∈ [N]. Their goal is to output the bit xk. To prove lower bounds for one-pass

schemes, we consider the Online Merlin–Arthur (OMA) communication model.7 Here, in

addition to Alice and Bob, there is a super-player, Merlin, who knows both their inputs, but

is not to be blindly trusted. Merlin sends a message to Bob; then Alice sends a randomized

message to Bob; finally, Bob either outputs either a bit or ⊥. If Merlin is honest, Bob

7Note that our semantics are slightly different from the usual definition of Merlin–Arthur where Bob is
supposed “accept” each 1-input and reject each 0-input with probability at least 2/3.

217

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

should output xk with probability at least 2/3; if he is dishonest, Bob should output⊥ with

probability at least 2/3.

The cost of an OMA protocol is the total number of bits communicated to Bob. The

OMA complexity of a communication game is the minimum cost of a correct OMA pro-

tocol for it. Chakrabarti et al. [57, Theorem 3.1] showed that the OMA Complexity of

INDEX N is Ω(
√
N). Our lower bounds follow from this result, using simple reductions

from INDEXN to the various graph problems.

Using a canonical bijection from [n]2 to [N], Alice rewrites her input vector x ∈ {0, 1}N

as a matrix (xij)i,j∈[n], while Bob looks at his input index k ∈ [N] as (y, z) ∈ [n]2. Our

reduction creates a graph G = (V,E) on 2n vertices: the vertex set V is L ⊎ R (here, ⊎

denotes disjoint union), where |L| = |R| = n. We denote the ith vertex of L (resp. R) by

ℓi (resp. ri). The edge set E is given by {(ℓi, rj) : xij = 1}. Now, by checking if (ℓy, rz)

is an independent set in G, or whether there’s a cross-edge between the sets {ℓy} and {rz},

or solving ST-3PATH in the graph G′ = (V ∪ {vs, vt}, E ∪ {(vs, ℓy), (rz, vt)}), Bob can

solve the INDEX N problem. Thus, a one-pass scheme that solves any of these problems

must have a total cost of Ω(n). We remark that Fact 4.1.3 implies matching semi-streaming

upper bounds for each of them.

4.4.2. Two-pass Scheme for CROSSEDGECOUNT with Applications

We now design a two-pass scheme for CROSSEDGECOUNT, aiming for total cost o(n).

Let γ = γ(U,W,G) denote the number of Cross-edges between U andW in a (directed

or undirected) graph G. Formally, it is the number of ordered pairs (u,w) ∈ U × W

such that (u,w) ∈ E. Note that, in an undirected graph, γ counts an edge (u,w) with

multiplicity 2 whenever u,w ∈ U ∩W . For some applications (e.g., counting number of

3-walks in an undirected graph), we do need to count them with multiplicity. We discuss

later how we can remove this multiplicity if needed.

We describe a scheme that works even on turnstile graph streams, i.e., a stream of the

218

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

vertices in U and W intermixed with updates to edge multiplicities. Let L and F denote

the characteristic vectors of the sets U and W respectively and let A be the (weighted)

adjacency matrix of G. Then,

γ =
∑

u∈U,w∈W

LuAu,wFw . (4.41)

Let t and s be integer parameters such that ts = n. As usual, using a canonical bijec-

tion, we represent each vertex v ∈ V by a pair of integers (x, y) ∈ [t] × [s]. As a re-

sult, the vectors L, F transform into 2-dimensional arrays ℓ, f given by ℓ(x, y) = Lv and

f(x, y) = Fv. As before, the adjacency matrix A turns into a 4-dimensional array a, such

that a(x1, y1, x2, y2) = Av1v2 . Let ℓ̃, f̃ and ã be F-extensions of ℓ, f and a respectively, for

a sufficiently large finite field F. Now, eq. (4.41) yields

γ =
∑

x1,x2∈[t]

p(x1, x2) , where (4.42)

p(X1, X2) =
∑

y1,y2∈[s]

ℓ̃(X1, y1) ã(X1, y1, X2, y2) f̃(X2, y2) . (4.43)

For i ∈ {1, 2}, degXi
p = 2t− 2. Thus, it follows that the number of monomials in p is at

most O(t2), and the total degree of p is O(t).

We are now ready to design a two-pass scheme for CROSSEDGECOUNT.

Stream processing. Verifier first chooses r1, r2 ∈R F. For y ∈ [s], define

g(y) :=
∑
y′∈[s]

ã(r1, y, r2, y
′)f̃(r2, y

′) (4.44)

Thus,

p(r1, r2) =
∑
y∈[s]

ℓ̃(r1, y)g(y) . (4.45)

219

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

Pass 1. Only process the vertices in L and F in the stream. Maintain (using

Fact 4.1.1) two s-dimensional vectors: ℓ̃(r1, y) and f̃(r2, y), where y ∈ [s].

Pass 2. Only process the edges in the stream. We want to maintain the s-dimensional

vector g(y) so that we can compute p(r1, r2) using eq. (4.45). Suppose that the

jth edge update (x1, y1, x2, y2)j adds ∆j to that edge’s multiplicity. This results in

updates to several entries of ã, but we want to use only O(s) space, so we cannot

afford to maintain ã directly. Instead, for each j ∈ [m], let gj and ãj denote the

values of g and ã (respectively) after the jth stream update. Then

gj(y) =
∑
y′∈[s]

f̃(r2, y
′) ãj(r1, y, r2, y

′)

=
∑
y′∈[s]

f̃(r2, y
′)
(
ãj−1(r1, y, r2, y

′) + ∆j δ(x1,y1,x2,y2)j(r1, y, r2, y
′)
)

(4.46)

= gj−1(y) + hj(y) ,

where eq. (4.46) follows from eq. (4.2) and

hj(y) :=
∑
y′∈[s]

f̃(r2, y
′)∆j δ(x1,y1,x2,y2)j(r1, y, r2, y

′) . (4.47)

Hence, after the jth update, the Verifier can compute hj(y) and maintain the vector

g(y).

Help message. After the second pass, Prover sends a polynomial p̂(X1, X2) (as a stream

of coefficients) that she claims equals p(X1, X2).

Verification and output. At the end of the second pass, Verifier gets g(y)m = g(y) for

each y. Now, he uses eq. (4.45) to compute the check value p(r1, r2) and the result

value γ̂ :=
∑

x1,x2∈[t] p̂(x1, x2). If he finds that p(r1, r2) ̸= p̂(r1, r2), he outputs ⊥.

Otherwise, he believes that p̂ ≡ p and exploiting eq. (4.42), outputs γ̂ as the answer.

220

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

Now, we analyze the correctness and complexity parameters of the scheme.

Error probability. The protocol errs only when p̂ ̸≡ p, but Verifier’s check passes. Then,

(r1, r2) ∈ F2 must be a root of the nonzero polynomial p̂− p. We noted that its total

degree is O(t). Thus, the Schwartz-Zippel Lemma bounds the error probability by at

most O(t)/|F| < 1/n, for large enough choice of |F|.

Help and Verification costs. The polynomial p̂ has O(t2) monomials, and so, the hcost

is Õ(t2). Verifier stores constant many vectors of size s at a time and incurs a vcost

of Õ(s).

Thus, we obtain a two-pass [t2, s]-scheme for CROSSEDGECOUNT, for parameters

t, s with ts = n. Setting t = n1/3 and s = n2/3, we get a scheme with total cost

Õ(n2/3).

Finally, we discuss how one can count cross-edges between U and W when they are

defined as unordered pairs. Define this problem as CROSSEDGECOUNT-UNIQ. Let γ′ be

the number of edges that γ counts with multiplicity 2, i.e., the number of undirected edges

(u,w) ∈ U ×W such that u,w ∈ U ∩W . Then,

γ′ =
∑

u∈U,w∈W

LuFuAu,wLwFw . (4.48)

Hence, we modify the definitions of p(X1, X2) and g(y) as

p(X1, X2) :=
∑

y1,y2∈[s]

ℓ̃(X1, y1)f̃(X1, y1) ã(X1, y1, X2, y2) ℓ̃(X2, y2)f̃(X2, y2) . (4.49)

g(y) :=
∑
y′∈[s]

ã(r1, y, r2, y
′)ℓ̃(r2, y

′)f̃(r2, y
′). (4.50)

Then, proceeding as in CROSSEDGECOUNT, we compute γ′. Thus, we can compute γ and

γ′ in parallel and finally output γ − γ′ as the answer to CROSSEDGECOUNT-UNIQ.

221

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

Theorem 4.4.1. For parameters t, s with ts = n, there are two-pass [t2, s]-schemes for

CROSSEDGECOUNT and CROSSEDGECOUNT-UNIQ. In particular, there are two-pass

schemes with total cost Õ(n2/3).

Applications. Our scheme for CROSSEDGECOUNT can be used as a black box for solving

a number of other problems. These include standard problems like INDSETTEST and ST-

3PATH, as well as their generalizations or variations such as the following problems.

• INDUCEDEDGECOUNT: Given a graph G = (V,E) and a subset U of V , find the

number of edges in G that are induced by U .

• ROOTEDTRIANGLECOUNT: Given a (directed or undirected) graph G = (V,E) and

a vertex vr ∈ V , find the number of triangles in G that are rooted at vr.

Corollary 4.4.2. Let t and s be parameters such that ts = n. Then each of the prob-

lems INDUCEDEDGECOUNT, INDSETTEST, ST-3PATH, and ROOTEDTRIANGLECOUNT

admits a two-pass [t2, s]-scheme; in particular, each of them admits a two-pass scheme

with total cost Õ(n2/3).

Proof. For INDUCEDEDGECOUNT, if the input graph is undirected, then considering U

andW as the same set, solve CROSSEDGECOUNT-UNIQ. (Alternatively, solve CROSSEDGE-

COUNT and divide the answer by two.) If the graph is directed, then solve CROSSEDGE-

COUNT.

For INDSETTEST, solve INDUCEDEDGECOUNT on U and check whether the answer

equals zero.

For ST-3PATH, use a scheme for CROSSEDGECOUNT to find the number of cross-edges

between the closed neighborhoods N [vs] and N [vt] of vertices vs and vt. This actually

solves the more general problem of counting the number of walks of length at most 3 from

vs to vt. Checking whether this number is non-zero decides ST-3PATH.

222

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

Finally, for ROOTEDTRIANGLECOUNT, if the input graph is undirected, solve IN-

DUCEDEDGECOUNT onN(vr). Otherwise, solve CROSSEDGECOUNT on the out-neighborhood

N+(vr) and in-neighborhood N−(vr) of vr.

One-Pass Schemes for Certain Stream Orderings. Our two-pass solution to the

CROSSEDGECOUNT problem, as well as its corollaries, allowed the vertices and edge up-

dates to be arbitrarily intermixed in the input stream. That said, it is interesting to focus on

a natural restriction of these problems where the vertices are streamed first, followed by the

edge updates. For the ST-3PATH problem, the corresponding restriction is that the edges

incident to vs and vt appear before any other edges in the stream; for ROOTEDTRIANGLE-

COUNT, it is that the edges incident to vr appear first.

Under such a restriction on the stream ordering, our two-pass solutions naturally be-

come one-pass, as we now note.

Proposition 4.4.3. The schemes for CROSSEDGECOUNT and CROSSEDGECOUNT-UNIQ

in Theorem 4.4.1 and for INDUCEDEDGECOUNT, INDSETTEST, ST-3PATH, and ROOT-

EDTRIANGLECOUNT in Corollary 4.4.2 can each be implemented in one pass under a

restricted stream ordering as noted above.

Proof. Consider the protocol described in Section 4.4.2. Note that the first pass processes

only vertices and the second pass processes only edges. This implies the claimed results

for CROSSEDGECOUNT, CROSSEDGECOUNT-UNIQ, INDUCEDEDGECOUNT, and IND-

SETTEST. For ST-3PATH, note that requiring edges incident to vs and vt to arrive first is

equivalent to the vertex sets N(vs) and N(vt) arriving first. A similar consideration applies

to ROOTEDTRIANGLECOUNT.

It is important to note that despite the restriction on the stream ordering, the schemes

in Proposition 4.4.3 are nontrivial. Without Prover’s help, the problems remain hard, even

with multiple passes. We give the simple proof for the basic problem CROSSEDGECOUNT.

223

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

Proposition 4.4.4. Any p-pass streaming algorithm for CROSSEDGECOUNT, with vertices

streamed before edges, requires Ω(n/p) space, even for insertion-only streams.

Proof. We reduce from DISJn, the set-disjointness communication problem on the universe

[n]. Recall that, in DISJn, Alice holds a set x ⊆ [n] and Bob holds a set y ⊆ [n]. Their goal

is to determine whether or not x ∩ y = ∅. This problem has randomized communication

complexity R(DISJn) = Ω(n) [153].

Consider an (n + 1)-vertex graph G where V (G) = {0, . . . , n} and E(G) = {{0, i} :

i ∈ y}. Let U = {0} and W = x. Then the number of cross edges in G from U to W is

non-zero iff x ∩ y ̸= ∅. The result now follows along standard lines.

4.4.3. A Multi-Pass Scheme for Detecting Short Paths

In Section 4.4, we obtained a scheme for ST-3PATH of total cost o(n) using two passes over

the input. We investigate if the same is true for ST-KPATH (for k > 3) if we allow “a few”

more passes. For constant k, we answer this in the affirmative as we generalize the scheme

for ST-3PATH and obtain such a scheme for ST-KPATH with ⌈k/2⌉ passes.

As usual, A denotes the adjacency matrix of the multigraph G. Let L and F be the

characteristic vectors of N [vs] and N(vt) respectively. Let κ = κ(G) denote the number of

walks of length at most k from vs to vt in G. Then,

κ =
∑

u1,...,uk−1∈V

Lu1

(
k−2∏
i=1

Aui,ui+1

)
Fuk−1

. (4.51)

Note that there is a path of length at most k from vs to vt iff κ > 0. Therefore, computing

κ suffices.

Let h and v be integer parameters with hv = n. Again, using a canonical bijection, we

represent each vertex u ∈ V by a pair of integers (x, y) ∈ [h] × [v]. The vectors L and F

become 2-dimensional arrays ℓ and f , given by ℓ(x, y) = Lu and f(x, y) = Fu. Again, the

adjacency matrix A turns into a 4-dimensional array a, such that a(x, y, x′, y′) = Auu′ . Let

224

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

ℓ̃, f̃ , and ã be F-extensions of ℓ, f , and a respectively, where F is a finite field of cardinality

q and q is a prime chosen uniformly at random from [n3, n4]. Then eq. (4.51) gives

κ =
∑

x1,...,xk−1∈[h]

p(x1, . . . , xk−1) , where (4.52)

p(X1, . . . , Xk−1) =
∑

y1,y2∈[v]

ℓ̃(X1, y1)

(
k−2∏
i=1

ã(Xi, yi, Xi+1, yi+1)

)
f̃(Xk−1, yk−1) .

(4.53)

For i ∈ [k − 1], degXi
p = 2h − 2. Therefore, the number of monomials in p is at most

O(hk−1) and the total degree is O(kh).

We present a ⌈k/2⌉-pass protocol for ST-KPATH.

Stream processing. Verifier chooses r1, . . . , rk−1 ∈R F.

Pass 1. Process only the vertices in N1[vs] and N1(vt) in the stream. We maintain,

for each y ∈ [v], two vectors of size v: ℓ̃(r1, y) and f̃(rk−1, y), where y ∈ [s].

Pass i, for 2 ≤ i ≤ ⌈k/2⌉. Define g0(y) := ℓ̃(r1, y) and gk(y) = f̃(rk−1, y).

For each y ∈ [v], compute gi−1(y) :=
∑

y′∈[v] ã(ri−1, y, ri, y
′)gi−2(y

′) as well as

gk−i+1(y) :=
∑

y′∈[v] ã(rk−i, y, rk−i+1, y
′)gk−i+2(y

′). The gj(y) values are updated

dynamically with the stream updates in a similar way as in the protocol for CROSSEDGE-

COUNT in Section 4.4.2.

Help message. At the end of the final pass, Prover sends a polynomial p̂(X1, . . . , Xk−1)—

as a stream of coefficients—that she claims equals p(X1, . . . , Xk−1).

Verification and output. After the final pass, Verifier computes
∑

y∈[v] g⌈k/2⌉(y)g⌈k/2⌉+1(y),

which, by Equation (4.53), equals p(r1, . . . , rk−1). If he finds that it doesn’t equal

p̂(r1, . . . , rk−1), he outputs ⊥. Otherwise, he believes that p̂ ≡ p and, following

eq. (4.52), computes κ̂ :=
∑

x1,...,xk−1∈[h] p̂(x1, . . . , xk−1). He outputs YES if κ̂ > 0

225

4.4 MULTIPASS STREAM VERIFICATION STREAMING VERIFICATION

and NO otherwise.

Error probability. We err when p̂ ̸≡ p, but Verifier’s check passes. In this case, (r1, . . . , rk−1) ∈ Fk−1

is a root of the nonzero polynomial p̂ − p. We noted that its total degree is at most

O(kh). By the Schwartz-Zippel Lemma (Fact 4.1.2), the probability of this event

is at most O(kh)/|F| < 1/n. We err also when κ̂ is non-zero, but the prime q di-

vides κ̂, making κ̂ mod q = 0. But κ̂ can have value at most 2nn!, and so has at

mostO(n log n) distinct prime factors. Since we chose q uniformly at random within

[n3, n4], by the Prime Number Theorem, the probability that q equals one of the prime

factors of κ̂ is at most 1/n2. Hence, the total error is at most 1/n+ 1/n2.

Help and Verification costs. The number of monomials of p̂ is O(hk−1), giving an hcost

of Õ(hk−1). Verifier reuses space and, during each pass, storesO(1) many v-dimensional

vectors, each entry of which is O(log n) bits long. Thus, the vcost is Õ(v).

This gives a ⌈k/2⌉-pass [hk−1, v]-scheme for ST-KPATH, for parameters h, v with

hv = n. Setting h = n1/k and v = n1−1/k, we get a scheme with total cost Õ(n1−1/k).

Theorem 4.4.5. There is a ⌈k/2⌉-pass [n1−1/k, n1−1/k]-scheme for ST-KPATHCOUNT in a

(directed or undirected) multigraph. In particular, for constant k, there is constant-pass

scheme with total cost o(n).

We note the contrast between this result and that of Guruswami and Onak [95]. They

showed a lower bound of Ω(n1+Ω(1/k)/kO(1)) for ST-KPATH in k/2− 1 passes in the basic

(sans prover) streaming model (for even k). Our results show that using ⌈k/2⌉ passes, we

can obtain a scheme for the same problem with total cost of Õ(n1−1/k).

226

Chapter 5

Conclusions and Future Directions

In this thesis, we resolved some important questions about the space complexity of several

graph problems in multiple variants of the data streaming model. In Chapter 2, we studied

the most popular and well-studied variant that we call the classical or standard streaming

model. In Section 2.1, we carried out an investigation on directed graph problems in this

model. The main message from our investigation was that while many fundamental digraph

problems such as topological sorting and feedback arc set are hard for general streaming

digraphs even when the stream is randomly ordered, they turn out to have interesting and

efficient algorithms for the important and well-studied class of tournament graphs. In Sec-

tion 2.2, we designed a graph coloring framework with the number of colors parameterized

by the graph degeneracy κ and showed that for a large class of graphs, it gives signif-

icantly more color-efficient algorithms than any (∆ + 1)-coloring algorithm not only in

the streaming model, but also in graph query and distributed models of computation such

as MPC, Congested Clique, and LOCAL, where graph coloring is an extensively studied

problem. We also showed that while any graph is both (∆+ 1)- and (κ+ 1)-colorable, the

space complexity of attaining such colorings vary significantly in the streaming model: a

(∆+1)-coloring is achievable in semi-streaming space but a (κ+1)-coloring is not possible

in sublinear space. In Chapter 3, we considered the adversarially robust streaming setting

227

CONCLUSIONS AND FUTURE DIRECTIONS CONCLUSIONS AND FUTURE DIRECTIONS

and showed that graph coloring is harder in this model even with respect to ∆: fixing the

number of colors to O(∆), there is a quadratic gap in space complexity, while fixing the

space to semi-streaming, we have a quadratic gap for number of colors. This is the first

separation between classical and robust streaming for a natural problem. In Chapter 4, we

explored streaming verification in the annotated streaming setting. In Section 4.2, we de-

signed two new verification schemes for the fundamental problem of computing frequency-

based functions: the schemes are much simpler than the state of the art, and in addition,

improve upon the space and communications cost. This yields improved subroutines for

many graph problems as frequency-functions have wide applications in graph streaming.

Finally, in Section 4.3, we designed efficient schemes for a variety of graph problems:

some of them remarkably improve upon the state of the art, some of them were rather un-

expected, while some of them achieve smooth optimal tradeoffs between space usage and

proof size, thus settling the complexity of the respective problems in broad regimes.

We conclude by discussing some open questions and future research directions that

emanate from the results in this thesis.

Stronger lower bounds for vertex-ordering problems. In classical streaming, we showed

that similar to the case of adversarial stream order, problems like STCONN-DAG, ACYC, and

TOPO-SORT require roughly Ω(n1+1/p) space for p passes on random-order streams. How-

ever, there is no known upper bound anywhere close to these lower bounds. In particular,

the question is there an O(log n)-pass semi-streaming algorithm for any of these problems

(which is not ruled out by the existing lower bounds) is still open. In fact, it is open for the

random-order model, even with error probability loosened to 1/pp (rather than constant for

any p). In other words, a matching upper bound for Theorem 2.1.9 is unknown.

We believe such upper bounds are unknown because they do not exist, at least for the

harder adversarial order version. Concretely, we conjecture that s-t connectivity does not

admit any O(polylog(n))-pass semi-streaming algorithm. As discussed in Section 2.1.9,

228

CONCLUSIONS AND FUTURE DIRECTIONS CONCLUSIONS AND FUTURE DIRECTIONS

there has been some progress on multipass lower bounds for this problem, albeit only for

O(
√
log n) passes.

Settling the streaming complexity of degeneracy-based coloring. Theorem 2.2.15

shows that coloring in semi-streaming space requires κ+Ω̃(
√
κ) colors. Our semi-streaming

algorithm achieves κ + κ/polylog(n) colors. Closing this gap remains an open problem:

find λ = λ(κ) ∈ [
√
κ, κ] such for graph coloring in semi-streaming space, κ+Θ̃(λ) colors

are necessary and sufficient. More generally, can we achieve a smooth and tight color-

space tradeoff to fully settle the one-pass streaming complexity of κ-based coloring? Note

that improving upon our semi-streaming upper bound would require fairly new techniques

since we showed that using only palette sparsification techniques, our bound is the best

that one can get. Further, another interesting future direction is considering the problem in

the multipass setting so as to improve upon the number of colors. In particular, how many

passes do we need to obtain a (κ+ 1)-coloring?

Robust algorithms for graph streams with deletions. The recent surge of interest in

adversarially robust streaming has developed its literature considerably over the last couple

of years; yet graph problems remained mostly unexplored in this setting until our work.

We observed that this might be due to the fact that a large number of graph problems have

streaming algorithms that are either already robust or can be “robustified” incurring only a

slight increase in space by using known general frameworks. But these frameworks apply

for insertion-only streams; when deletions are allowed, we still do not know efficient ro-

bust streaming algorithms for many graph problems. An interesting direction would be to

explore whether there exist efficient robust dynamic streaming algorithms for well-studied

graph problems (such as triangle counting, densest subgraphs), which have efficient algo-

rithms in the classical setting even when deletions are allowed. In fact, our robust color-

ing algorithms for insert-delete streams use sublinear space only when the stream length

is O(n · poly(∆)); they are inefficient for longer streams. We ask can we design a ro-

229

CONCLUSIONS AND FUTURE DIRECTIONS CONCLUSIONS AND FUTURE DIRECTIONS

bust poly(∆)-coloring o(n∆)-space algorithm for dynamic graph streams of any length?

Whether efficient robust algorithms for turnstile streams can be obtained is open even for

classical data streaming problems such as frequency moments and other statistical estima-

tion problems on which most of the robust streaming literature has focused. In fact, it is

believed that there is a large separation between insert-only and turnstile streams for these

problems in the robust setting; proving such a separation is one of the major open questions

in the area.

Settling the annotated-streaming complexity of frequency-based functions. An impor-

tant open problem in the field of stream verification is to determine the asymptotic complex-

ity of the general problem of computing frequency-based functions. Chakrabarti et al. [57]

showed that any online or prescient (h, v)-scheme for the problem requires hv ≥ n. Note

that this lower bound leaves open the possibility of a (
√
n,
√
n)-scheme, while the best

known scheme achieves (Õ(n2/3), Õ(n2/3)) for both online and prescient settings. Can we

match the lower bound (up to polylogarithmic factors) and get an (Õ(
√
n), Õ(

√
n))-scheme

for the problem, even if prescient? What about for even special cases like F0 or F∞? Re-

call that there do exist such online schemes for the kth frequency moment for any constant

k ∈ Z+ [57]. Also, it is possible to get such a scheme for F0 if we allow multiple rounds of

interaction [94]. Any strict improvement on the lower bound would be extremely interest-

ing and a breakthrough. Currently, we don’t know of a function in the turnstile streaming

model for which any online (h, v)-scheme must have total cost h + v ≥ ω(
√
N) where N

is the lower bound on its classical streaming complexity. This is related to the major open

question of breaking the “
√
N barrier” for the Merlin-Arthur (MA) communication model.

Fully settling the annotated-streaming complexities of TRIANGLECOUNT and MAX-

MATCHING. We obtained a [t, ns]-scheme for TRIANGLECOUNT for any t, s satisfying

ts = n. It matches the lower bound hv ≥ n2 for any (h, v)-scheme [57]. Thus, for the

regime of (hcost ≤ n, vcost ≥ n), which we call the laconic regime, the complexity of

230

CONCLUSIONS AND FUTURE DIRECTIONS CONCLUSIONS AND FUTURE DIRECTIONS

the triangle counting problem is settled. However, for the opposite regime of (hcost ≥ n,

vcost ≤ n) that we call the frugal regime, the best we have is an [nt2, s]-scheme, which

is not known to be optimal. We ask if we can match the lower bound for this regime as

well, and fully settle the complexity of triangle counting in the annotated streaming model:

does there exist [nt, s]-schemes for triangle counting for all t, s satisfying ts = n? We

conjecture that the answer is yes since it does hold for the settings (t = n, s = 1) and

(t = 1, s = n). Also, there does not seem to be an information theoretic bottleneck that

prevents the smooth tradeoff.

For any t, s satisfying ts = n, we have an [nt, s]-scheme for MAXMATCHING, thus

matching the lower bound of hv ≥ n2 for any [h, v]-scheme. It settles the complexity

of the problem in the frugal regime. Now, for the opposite laconic regime, we do not

know any scheme for the general problem, let alone optimal. The barrier seems to be

that a natural “witness” for the problem is an actual maximum matching of the graph,

which can be of size Θ(n), making the hcost Ω(n). In fact, we showed that large matching

size is indeed the sole barrier to obtaining a laconic scheme for the problem: for a graph

with max-matching size α′, we gave an [α′, n2/α′]-scheme, which is laconic when α′ =

o(n). Hence, we ask the following question: does there exist an [o(n), o(n2)]-scheme for

MAXMATCHING? We conjecture that the answer is negative. The barrier of a Θ(n)-

length proof seems inherent. If we can prove this, it would imply that our upper bounds

for MAXMATCHING are essentially optimal for any regime, which would fully settle its

complexity in the annotated streaming model.

There are several other problems for which we get optimal frugal schemes but are un-

able to get any laconic scheme because a natural witness has size Θ(n). These include

MIS, TOPO-SORT, and ACYC, for which natural proofs are, respectively, a valid maximal

independent set, a valid topological ordering, and a cycle (for the NO case) or a topological

ordering (for the YES case). We conjecture that all these problems belong to the same class

231

CONCLUSIONS AND FUTURE DIRECTIONS CONCLUSIONS AND FUTURE DIRECTIONS

as MAXMATCHING: there are no laconic schemes for these problems for general graphs.

232

Bibliography

[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz, Smaller cuts, higher

lower bounds, CoRR abs/1901.01630 (2019).

[2] Amirali Abdullah, Samira Daruki, Chitradeep Dutta Roy, and Suresh Venkatasubra-

manian, Streaming verification of graph properties, Proc. 27th International Sympo-

sium on Algorithms and Computation, 2016, pp. 3:1–3:14.

[3] Farid Ablayev, Lower bounds for one-way probabilistic communication complexity

and their application to space complexity, Theor. Comput. Sci. 175 (1996), no. 2,

139–159.

[4] Kook Jin Ahn and Sudipto Guha, Graph sparsification in the semi-streaming model,

Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP

2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, Lecture Notes in Com-

puter Science, vol. 5556, Springer, 2009, pp. 328–338.

[5] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor, Analyzing graph structure

via linear measurements, Proc. 23rd Annual ACM-SIAM Symposium on Discrete

Algorithms, 2012, pp. 459–467.

[6] Nir Ailon, Active learning ranking from pairwise preferences with almost opti-

mal query complexity, Advances in Neural Information Processing Systems 24

233

BIBLIOGRAPHY

(J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, eds.),

Curran Associates, Inc., 2011, pp. 810–818.

[7] Nir Ailon, Moses Charikar, and Alantha Newman, Aggregating inconsistent infor-

mation: Ranking and clustering, J. ACM 55 (2008), no. 5, 23:1–23:27.

[8] Noga Alon and Sepehr Assadi, Palette sparsification beyond (∆+1) vertex coloring,

Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference,

LIPIcs, vol. 176, 2020, pp. 6:1–6:22.

[9] Noga Alon, László Babai, and Alon Itai, A fast and simple randomized parallel

algorithm for the maximal independent set problem, Journal of algorithms 7 (1986),

no. 4, 567–583.

[10] Noga Alon, Yossi Matias, and Mario Szegedy, The space complexity of approximat-

ing the frequency moments, J. Comput. Syst. Sci. 58 (1999), no. 1, 137–147, Prelim-

inary version in Proc. 28th Annual ACM Symposium on the Theory of Computing,

pages 20–29, 1996.

[11] Stanislav Angelov, Keshav Kunal, and Andrew McGregor, Sorting and selection

with random costs, LATIN 2008: Theoretical Informatics, 8th Latin American Sym-

posium, Búzios, Brazil, April 7-11, 2008, Proceedings, 2008, pp. 48–59.

[12] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis, Dis-

tributed k-core decomposition and maintenance in large dynamic graphs, Proceed-

ings of the 10th ACM International Conference on Distributed and Event-based Sys-

tems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016, 2016, pp. 161–168.

[13] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy,

Proof verification and the hardness of approximation problems, J. ACM 45 (1998),

234

BIBLIOGRAPHY

no. 3, 501–555, Preliminary version in Proc. 33rd Annual IEEE Symposium on Foun-

dations of Computer Science, pages 14–23, 1992.

[14] Sanjeev Arora and Shmuel Safra, Probabilistic checking of proofs: A new character-

ization of NP, J. ACM 45 (1998), no. 1, 70–122, Preliminary version in Proc. 33rd

Annual IEEE Symposium on Foundations of Computer Science, pages 2–13, 1992.

[15] Sepehr Assadi, Sublinear algorithms for (∆ + 1) vertex coloring, Lecture at

Sublinear Algorithms and Nearest-Neighbor Search Workshop, Simons Institute;

available online at https://www.youtube.com/watch?v=VU7Y_8ZcNu0&t=

2206, 2018.

[16] Sepehr Assadi, Andrew Chen, and Glenn Sun, Deterministic graph coloring in the

streaming model, arXiv preprint arXiv:2109.14891 (2021), To appear in STOC 2022.

[17] Sepehr Assadi, Yu Chen, and Sanjeev Khanna, Sublinear algorithms for (∆+ 1) ver-

tex coloring, Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms,

2019, pp. 767–786.

[18] Sepehr Assadi, Sanjeev Khanna, and Yang Li, On estimating maximum matching

size in graph streams, Proc. 28th Annual ACM-SIAM Symposium on Discrete Al-

gorithms, 2017, pp. 1723–1742.

[19] Sepehr Assadi, Pankaj Kumar, and Parth Mittal, Brooks’ theorem in graph streams:

A single-pass semi-streaming algorithm for ∆-coloring, CoRR abs/2203.10984

(2022), To appear in STOC 2022.

[20] Sepehr Assadi and Ran Raz, Near-quadratic lower bounds for two-pass graph

streaming algorithms, 61st IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, IEEE, 2020,

pp. 342–353.

235

https://www.youtube.com/watch?v=VU7Y_8ZcNu0&t=2206
https://www.youtube.com/watch?v=VU7Y_8ZcNu0&t=2206

BIBLIOGRAPHY

[21] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer, A framework for

adversarial streaming via differential privacy and difference estimators, CoRR

abs/2107.14527 (2021).

[22] Gary D. Bader and Christopher WV Hogue, An automated method for finding molec-

ular complexes in large protein interaction networks, BMC Bioinformatics 4 (2003),

no. 1, 2.

[23] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii, Densest subgraph in

streaming and mapreduce, International Conference on Very Large Data Bases 5

(2012), no. 5, 454–465.

[24] Balabhaskar Balasundaram and Sergiy Butenko, Graph domination, coloring and

cliques in telecommunications, Handbook of Optimization in Telecommunications,

Springer, 2006, pp. 865–890.

[25] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan, Count-

ing distinct elements in a data stream, Proc. 6th International Workshop on Random-

ization and Approximation Techniques in Computer Science, 2002, pp. 128–137.

[26] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar, Reductions in streaming algo-

rithms, with an application to counting triangles in graphs, Proc. 13th Annual ACM-

SIAM Symposium on Discrete Algorithms, 2002, pp. 623–632.

[27] Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen,

Marcel Roeloffzen, and Sander Verdonschot, Dynamic graph coloring, Workshop

on Algorithms and Data Structures, 2017, pp. 97–108.

[28] Leonid Barenboim, Deterministic (∆+ 1)-coloring in sublinear (in ∆) time in static,

dynamic, and faulty networks, Journal of the ACM (JACM) 63 (2016), no. 5, 47.

236

BIBLIOGRAPHY

[29] Leonid Barenboim and Michael Elkin, Sublogarithmic distributed mis algorithm

for sparse graphs using nash-williams decomposition, Distributed Computing 22

(2010), no. 5-6, 363–379.

[30] Leonid Barenboim and Michael Elkin, Deterministic distributed vertex coloring in

polylogarithmic time, Journal of the ACM (JACM) 58 (2011), no. 5, 23.

[31] Leonid Barenboim and Michael Elkin, Distributed graph coloring: Fundamentals

and recent developments, Synthesis Lectures on Distributed Computing Theory,

Morgan & Claypool Publishers, 2013.

[32] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider, The locality

of distributed symmetry breaking, Journal of the ACM (JACM) 63 (2016), no. 3, 20.

[33] Nicolas Barnier and Pascal Brisset, Graph coloring for air traffic flow management,

Annals of operations research 130 (2004), no. 1-4, 163–178.

[34] MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni, Almost op-

timal streaming algorithms for coverage problems, Proceedings of the 29th ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washing-

ton DC, USA, July 24-26, 2017, 2017, pp. 13–23.

[35] Anubhav Baweja, Justin Jia, and David P. Woodruff, An efficient semi-streaming

PTAS for tournament feedback arc set with few passes, 13th Innovations in Theoret-

ical Computer Science Conference, ITCS 2022, LIPIcs, vol. 215, Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2022, pp. 16:1–16:23.

[36] Paul Beame, Paraschos Koutris, and Dan Suciu, Communication steps for parallel

query processing, J. ACM 64 (2017), no. 6, 40:1–40:58.

[37] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis, Efficient semi-

streaming algorithms for local triangle counting in massive graphs, Proceedings

237

BIBLIOGRAPHY

of the 14th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, ACM, 2008, pp. 16–

24.

[38] Soheil Behnezhad, Mahsa Derakhshan, and Mohammad Taghi Hajiaghayi, Brief

announcement: Semi-mapreduce meets congested clique, CoRR abs/1802.10297

(2018).

[39] Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak, Adversarially robust streaming

via dense-sparse trade-offs, Symposium on Simplicity in Algorithms (SOSA), 2022,

pp. 214–227.

[40] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev, A frame-

work for adversarially robust streaming algorithms, Proc. 39th ACM Symposium

on Principles of Database Systems, 2020, p. 63–80.

[41] Omri Ben-Eliezer and Eylon Yogev, The adversarial robustness of sampling, Proc.

39th ACM Symposium on Principles of Database Systems, ACM, 2020, pp. 49–62.

[42] Suman K. Bera and Amit Chakrabarti, Towards Tighter Space Bounds for Counting

Triangles and Other Substructures in Graph Streams, 34th Symposium on Theoret-

ical Aspects of Computer Science (STACS 2017), 2017, pp. 11:1–11:14.

[43] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh, Graph coloring via degener-

acy in streaming and other space-conscious models, 47th International Colloquium

on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saar-

brücken, Germany (Virtual Conference), LIPIcs, vol. 168, 2020, pp. 11:1–11:21.

[44] Suman Kalyan Bera and Prantar Ghosh, Coloring in graph streams, CoRR

abs/1807.07640 (2018).

238

BIBLIOGRAPHY

[45] Anup Bhattacharya, Arijit Bishnu, Gopinath Mishra, and Anannya Upasana, Even

the easiest(?) graph coloring problem is not easy in streaming!, 12th Innovations in

Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual

Conference, LIPIcs, vol. 185, 2021, pp. 15:1–15:19.

[46] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon

Nanongkai, Dynamic algorithms for graph coloring, Proceedings of the Twenty-

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New

Orleans, LA, USA, January 7-10, 2018, SIAM, 2018, pp. 1–20.

[47] Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C. Liu,

and Shay Solomon, Fully dynamic (∆+1)-coloring in constant update time, CoRR

abs/1910.02063 (2019).

[48] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma, Preventing

unraveling in social networks: The anchored k-core problem, SIAM Journal on

Discrete Mathematics 29 (2015), no. 3, 1452–1475.

[49] J.A. Bondy and U.S.R Murty, Graph theory, 1st ed., Springer Publishing Company,

Incorporated, 2008.

[50] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep

Silwal, and Samson Zhou, Adversarial robustness of streaming algorithms through

importance sampling, Advances in Neural Information Processing Systems 34: An-

nual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,

December 6-14, 2021, virtual, 2021, pp. 3544–3557.

[51] Harry Buhrman and Ronald de Wolf, Complexity measures and decision tree com-

plexity: a survey, Theor. Comput. Sci. 288 (2002), no. 1, 21–43.

239

BIBLIOGRAPHY

[52] Gregory J Chaitin, Register allocation & spilling via graph coloring, ACM Sigplan

Notices, vol. 17, 1982, pp. 98–105.

[53] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke, Martin E

Hopkins, and Peter W Markstein, Register allocation via coloring, Computer lan-

guages 6 (1981), no. 1, 47–57.

[54] Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler, Annotations

for sparse data streams, Proc. 25th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2014, pp. 687–706.

[55] Amit Chakrabarti, Graham Cormode, and Andrew McGregor, Annotations in data

streams, Proc. 36th International Colloquium on Automata, Languages and Pro-

gramming, 2009, pp. 222–234.

[56] Amit Chakrabarti, Graham Cormode, and Andrew McGregor, Robust lower bounds

for communication and stream computation, Theor. Comput. 12 (2016), no. 1, 1–

35, Preliminary version in Proc. 40th Annual ACM Symposium on the Theory of

Computing, pages 641–649, 2008.

[57] Amit Chakrabarti, Graham Cormode, Andrew McGregor, and Justin Thaler, Anno-

tations in data streams, ACM Trans. Alg. 11 (2014), no. 1, Article 7.

[58] Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh

Venkatasubramanian, Verifiable stream computation and Arthur-Merlin communi-

cation, Proc. 30th Annual IEEE Conference on Computational Complexity, 2015,

pp. 217–243.

[59] Amit Chakrabarti and Prantar Ghosh, Streaming verification of graph computations

via graph structure, Proc. 33rd International Workshop on Randomization and Ap-

proximation Techniques in Computer Science, 2019, pp. 70:1–70:20.

240

BIBLIOGRAPHY

[60] Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova, Vertex

ordering problems in directed graph streams, Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2020, pp. 1786–1802.

[61] Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl, Adversarially Robust Col-

oring for Graph Streams, 13th Innovations in Theoretical Computer Science Con-

ference (ITCS 2022), vol. 215, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2022, pp. 37:1–37:23.

[62] Amit Chakrabarti, Prantar Ghosh, and Justin Thaler, Streaming Verification for

Graph Problems: Optimal Tradeoffs and Nonlinear Sketches, Approximation, Ran-

domization, and Combinatorial Optimization. Algorithms and Techniques (AP-

PROX/RANDOM 2020), Leibniz International Proceedings in Informatics (LIPIcs),

vol. 176, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 22:1–22:23.

[63] Amit Chakrabarti and Sagar Kale, Submodular maximization meets streaming:

matchings, matroids, and more, Math. Program. 154 (2015), no. 1–2, 225–247, Pre-

liminary version in Proc. 17th Conference on Integer Programming and Combina-

torial Optimization, pages 210–221, 2014.

[64] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng,

The complexity of (∆+1) coloring in congested clique, massively parallel compu-

tation, and centralized local computation, Proc. ACM Symposium on Principles of

Distributed Computing, 2019, pp. 471–480.

[65] Yi-Jun Chang, Wenzheng Li, and Seth Pettie, An optimal distributed (∆+ 1)-

coloring algorithm, Proc. 50th Annual ACM Symposium on the Theory of Com-

puting, 2018, pp. 445–456.

241

BIBLIOGRAPHY

[66] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song,

and Huacheng Yu, Almost optimal super-constant-pass streaming lower bounds for

reachability, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of

Computing, Virtual Event, Italy, June 21-25, 2021, ACM, 2021, pp. 570–583.

[67] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi

Muthukrishnan, One trillion edges: Graph processing at facebook-scale, Proc.

VLDB Endow. 8 (2015), no. 12, 1804–1815.

[68] Fred C Chow and John L Hennessy, The priority-based coloring approach to register

allocation, ACM Transactions on Programming Languages and Systems (TOPLAS)

12 (1990), no. 4, 501–536.

[69] Don Coppersmith, Lisa Fleischer, and Atri Rudra, Ordering by weighted number

of wins gives a good ranking for weighted tournaments, ACM Trans. Algorithms 6

(2010), no. 3, 55:1–55:13.

[70] Graham Cormode, Jacques Dark, and Christian Konrad, Independent sets in vertex-

arrival streams, Proc. 46th International Colloquium on Automata, Languages and

Programming, 2019, pp. 45:1–45:14.

[71] Graham Cormode, Michael Mitzenmacher, and Justin Thaler, Streaming graph com-

putations with a helpful advisor, Algorithmica 65 (2013), no. 2, 409–442.

[72] Graham Cormode and S. Muthukrishnan, An improved data stream summary: the

count-min sketch and its applications, J. Alg. 55 (2005), no. 1, 58–75, Preliminary

version in Proc. 6th Latin American Theoretical Informatics Symposium, pages 29–

38, 2004.

[73] Graham Cormode, Justin Thaler, and Ke Yi, Verifying computations with streaming

interactive proofs, Proc. VLDB Endowment 5 (2011), no. 1, 25–36.

242

BIBLIOGRAPHY

[74] Jeffrey Dean and Sanjay Ghemawat, Mapreduce: Simplified data processing on

large clusters, Proc. 6th Symposium on Operating System Design and Implemen-

tation, 2004, pp. 137–150.

[75] Michael Elkin, Distributed exact shortest paths in sublinear time, Proc. 49th Annual

ACM Symposium on the Theory of Computing, 2017, pp. 757–770.

[76] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math-

ematica Academiae Scientiarum Hungarica 17 (1966), no. 1, 61–99.

[77] Hossein Esfandiari, Silvio Lattanzi, and Vahab S. Mirrokni, Parallel and streaming

algorithms for k-core decomposition, Proceedings of the 35th International Confer-

ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,

July 10-15, 2018, 2018, pp. 1396–1405.

[78] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan, Approximating minimum feed-

back sets and multicuts in directed graphs, Algorithmica 20 (1998), no. 2, 151–174.

[79] Martín Farach-Colton and Meng-Tsung Tsai, Tight approximations of degeneracy

in large graphs, LATIN 2016: Theoretical Informatics, Springer Berlin Heidelberg,

2016, pp. 429–440.

[80] Uriel Feige and Joe Kilian, Zero knowledge and the chromatic number, Annual IEEE

Conference on Computational Complexity, 1996, p. 278.

[81] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang, On graph problems in a semi-streaming model, Theor. Comput. Sci. 348

(2005), no. 2–3, 207–216, Preliminary version in Proc. 31st International Collo-

quium on Automata, Languages and Programming, pages 531–543, 2004.

[82] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang, Graph distances in the data-stream model, SIAM J. Comput. 38 (2008),

243

BIBLIOGRAPHY

no. 6, 1709–1727, Preliminary version in Proc. 16th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 745–754, 2005.

[83] Philippe Flajolet and G. Nigel Martin, Probabilistic counting algorithms for data

base applications, J. Comput. Syst. Sci. 31 (1985), no. 2, 182–209.

[84] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski, Local conflict coloring,

Proc. 57th Annual IEEE Symposium on Foundations of Computer Science, 2016,

pp. 625–634.

[85] Eugene C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29

(1982), no. 1, 24–32.

[86] Sumit Ganguly and Graham Cormode, On estimating frequency moments of data

streams, Approximation, Randomization, and Combinatorial Optimization. Algo-

rithms and Techniques, 10th International Workshop, APPROX 2007, and 11th In-

ternational Workshop, RANDOM 2007, Lecture Notes in Computer Science, vol.

4627, 2007, pp. 479–493.

[87] Mohsen Ghaffari and Christiana Lymouri, Simple and near-optimal distributed col-

oring for sparse graphs, 31st International Symposium on Distributed Computing

(DISC 2017), 2017, p. 20.

[88] Mohsen Ghaffari and Ali Sayyadi, Distributed Arboricity-Dependent Graph Col-

oring via All-to-All Communication, 46th International Colloquium on Automata,

Languages, and Programming (ICALP 2019), Leibniz International Proceedings in

Informatics (LIPIcs), vol. 132, 2019, pp. 142:1–142:14.

[89] Prantar Ghosh, New verification schemes for frequency-based functions on data

streams, Proc. 40th IARCS Annual Conference on Foundations of Software Tech-

nology and Theoretical Computer Science (FSTTCS), 2020, pp. 22:1–22:15.

244

BIBLIOGRAPHY

[90] Anna C. Gilbert and Piotr Indyk, Sparse recovery using sparse matrices, Proceed-

ings of the IEEE 98 (2010), no. 6, 937–947.

[91] Ashish Goel, Michael Kapralov, and Sanjeev Khanna, On the communication and

streaming complexity of maximum bipartite matching, Proc. 23rd Annual ACM-

SIAM Symposium on Discrete Algorithms, 2012, pp. 468–485.

[92] Oded Goldreich, Introduction to property testing, Cambridge University Press, 2017.

[93] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff,

Pseudo-Deterministic Streaming, Proc. 20th Conference on Innovations in Theo-

retical Computer Science, vol. 151, 2020, pp. 79:1–79:25.

[94] Tom Gur and Ran Raz, Arthur–Merlin streaming complexity, Proc. 40th Interna-

tional Colloquium on Automata, Languages and Programming, 2013, pp. 528–539.

[95] Venkatesan Guruswami and Krzysztof Onak, Superlinear lower bounds for multi-

pass graph processing, Algorithmica 76 (2016), no. 3, 654–683.

[96] Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan, Near-

optimal distributed degree+1 coloring, CoRR abs/2112.00604 (2021), To appear in

STOC 2022.

[97] Moritz Hardt and David P. Woodruff, How robust are linear sketches to adaptive

inputs?, Proc. 45th Annual ACM Symposium on the Theory of Computing, 2013,

pp. 121–130.

[98] David G Harris, Johannes Schneider, and Hsin-Hao Su, Distributed (∆+ 1)-coloring

in sublogarithmic rounds, Proc. 48th Annual ACM Symposium on the Theory of

Computing, 2016, pp. 465–478.

245

BIBLIOGRAPHY

[99] Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu, Greedy and local ratio al-

gorithms in the mapreduce model, Proceedings of the 30th on Symposium on Par-

allelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16-18,

2018, 2018, pp. 43–52.

[100] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stem-

mer, Adversarially robust streaming algorithms via differential privacy, Advances

in Neural Information Processing Systems 33: Annual Conference on Neural In-

formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,

2020.

[101] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby, A pseudo-

random generator from any one-way function, SIAM J. Comput. 28 (1999), no. 4,

1364–1396.

[102] Monika Henzinger and Pan Peng, Constant-time dynamic (∆+1)-coloring, 37th In-

ternational Symposium on Theoretical Aspects of Computer Science, STACS 2020,

March 10-13, 2020, Montpellier, France, LIPIcs, vol. 154, 2020, pp. 53:1–53:18.

[103] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan, Computing

on data streams, External memory algorithms (1999), 107–118.

[104] Zhiyi Huang, Sampath Kannan, and Sanjeev Khanna, Algorithms for the general-

ized sorting problem, IEEE 52nd Annual Symposium on Foundations of Computer

Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, 2011, pp. 738–

747.

[105] Piotr Indyk and David P. Woodruff, Optimal approximations of the frequency mo-

ments of data streams, Proc. 37th Annual ACM Symposium on the Theory of Com-

puting, 2005, pp. 202–208.

246

BIBLIOGRAPHY

[106] Madhav Jha, C. Seshadhri, and Ali Pinar, A space efficient streaming algorithm for

triangle counting using the birthday paradox, Proc. 19th Annual SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, 2013, pp. 589–597.

[107] Ce Jin, Simulating random walks on graphs in the streaming model, 10th Innovations

in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San

Diego, California, USA, 2019, pp. 46:1–46:15.

[108] Öjvind Johansson, Simple distributed ∆+ 1-coloring of graphs, Information Pro-

cessing Letters 70 (1999), no. 5, 229–232.

[109] Hossein Jowhari, Mert Saglam, and Gábor Tardos, Tight bounds for lp samplers,

finding duplicates in streams, and related problems, Proc. 30th ACM Symposium

on Principles of Database Systems, 2011, pp. 49–58.

[110] A. B. Kahn, Topological sorting of large networks, Commun. ACM 5 (1962), no. 11,

558–562.

[111] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova, The com-

plexity of counting cycles in the adjacency list streaming model, Proc. 38th ACM

Symposium on Principles of Database Systems, 2019, pp. 119–133.

[112] Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun, Counting arbi-

trary subgraphs in data streams, Automata, Languages, and Programming, Springer

Berlin Heidelberg, 2012, pp. 598–609.

[113] Daniel M. Kane, Jelani Nelson, and David P. Woodruff, On the exact space complex-

ity of sketching and streaming small norms, Proc. 21st Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, 2010, pp. 1161–1178.

247

BIBLIOGRAPHY

[114] Daniel M. Kane, Jelani Nelson, and David P. Woodruff, An optimal algorithm for the

distinct elements problem, Proc. 29th ACM Symposium on Principles of Database

Systems, 2010, pp. 41–52.

[115] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer, Separating adap-

tive streaming from oblivious streaming using the bounded storage model, Advances

in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,

CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, Lecture

Notes in Computer Science, vol. 12827, Springer, 2021, pp. 94–121.

[116] Michael Kapralov, Better bounds for matchings in the streaming model, Proc. 24th

Annual ACM-SIAM Symposium on Discrete Algorithms, 2013, pp. 1679–1697.

[117] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon, Efficient sampling algo-

rithm for estimating subgraph concentrations and detecting network motifs, Bioin-

form. 20 (2004), no. 11, 1746–1758.

[118] Claire Kenyon-Mathieu and Warren Schudy, How to rank with few errors: A PTAS

for weighted feedback arc set on tournaments, Electronic Colloquium on Computa-

tional Complexity (ECCC) 13 (2006), no. 144.

[119] Shahbaz Khan and Shashank K. Mehta, Depth first search in the semi-streaming

model, Proc. 36th International Colloquium on Automata, Languages and Program-

ming, 2019, pp. 42:1–42:16.

[120] Subhash Khot and Ashok Kumar Ponnuswami, Better inapproximability results for

maxclique, chromatic number and min-3lin-deletion, International Colloquium on

Automata, Languages and Programming, 2006, pp. 226–237.

[121] L. Kirousis and D. Thilikos, The linkage of a graph, SIAM Journal on Computing

25 (1996), no. 3, 626–647.

248

BIBLIOGRAPHY

[122] Hartmut Klauck and Ved Prakash, Streaming computations with a loquacious

prover, Proc. 4th Conference on Innovations in Theoretical Computer Science, 2013,

pp. 305–320.

[123] Hartmut Klauck and Ved Prakash, An improved interactive streaming algorithm for

the distinct elements problem, Automata, Languages, and Programming - 41st Inter-

national Colloquium (ICALP), LNCS, vol. 8572, 2014, pp. 919–930.

[124] Kishore Kothapalli and Sriram Pemmaraju, Distributed graph coloring in a few

rounds, Proc. 30th ACM Symposium on Principles of Distributed Computing, 2011,

pp. 31–40.

[125] Eyal Kushilevitz and Noam Nisan, Communication complexity, Cambridge Univer-

sity Press, Cambridge, 1997.

[126] Frank Thomson Leighton, A graph coloring algorithm for large scheduling prob-

lems, Journal of research of the national bureau of standards 84 (1979), no. 6, 489–

506.

[127] Christoph Lenzen, Optimal deterministic routing and sorting on the congested

clique, Proc. 32nd ACM Symposium on Principles of Distributed Computing, 2013,

pp. 42–50.

[128] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman, The dynamics of viral

marketing, ACM Trans. Web 1 (2007), no. 1, 5–es.

[129] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos, Graphs over time: Densi-

fication laws, shrinking diameters and possible explanations, Proceedings of the

Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data

Mining, KDD ’05, 2005, p. 177–187.

249

BIBLIOGRAPHY

[130] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford large network dataset

collection, http://snap.stanford.edu/data, June 2014.

[131] Feifei Li, Ke Yi, Marios Hadjieleftheriou, and George Kollios, Proof-infused

streams: Enabling authentication of sliding window queries on streams, Proc. 33rd

International Conference on Very Large Data Bases, 2007, pp. 147–158.

[132] Vahid Lotfi and Sanjiv Sarin, A graph coloring algorithm for large scale scheduling

problems, Computers & operations research 13 (1986), no. 1, 27–32.

[133] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg, Minimum-weight span-

ning tree construction in O(log log n) communication rounds, SIAM J. Comput. 35

(2005), no. 1, 120–131.

[134] Michael Luby, A simple parallel algorithm for the maximal independent set problem,

SIAM J. Comput. 15 (1986), no. 4, 1036–1053.

[135] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan, Algebraic meth-

ods for interactive proof systems, J. ACM 39 (1992), no. 4, 859–868.

[136] Andrew McGregor, Finding graph matchings in data streams, Proc. 8th International

Workshop on Approximation Algorithms for Combinatorial Optimization Problems,

2005, pp. 170–181.

[137] Andrew McGregor, Graph stream algorithms: a survey, ACM SIGMOD Record 43

(2014), no. 1, 9–20.

[138] Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T Vu, Densest sub-

graph in dynamic graph streams, International Symposium on Mathematical Foun-

dations of Computer Science, 2015, pp. 472–482.

250

http://snap.stanford.edu/data

BIBLIOGRAPHY

[139] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu, Better algorithms for count-

ing triangles in data streams, Proc. 35th ACM Symposium on Principles of Database

Systems, 2016, pp. 401–411.

[140] Ilya Mironov, Moni Naor, and Gil Segev, Sketching in adversarial environments,

SIAM J. Comput. 40 (2011), no. 6, 1845–1870.

[141] Jayadev Misra and David Gries, Finding repeated elements, Sci. Comput. Program.

2 (1982), no. 2, 143–152.

[142] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu, Scalable large near-clique detection in large-scale networks

via sampling, Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’15, 2015.

[143] Farnaz Moradi, Tomas Olovsson, and Philippas Tsigas, A local seed selection al-

gorithm for overlapping community detection, 2014 IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM 2014),

2014, pp. 1–8.

[144] Jelani Nelson, Huy L. Nguyên, and David P. Woodruff, On deterministic sketching

and streaming for sparse recovery and norm estimation, Approximation, Random-

ization, and Combinatorial Optimization. Algorithms and Techniques - 15th Inter-

national Workshop, APPROX 2012, and 16th International Workshop, RANDOM

2012, Lecture Notes in Computer Science, vol. 7408, 2012, pp. 627–638.

[145] M. E. J. Newman, The structure and function of complex networks, SIAM Rev. 45

(2003), no. 2, 167–256.

[146] Noam Nisan, Pseudorandom generators for space-bounded computation, Proc. 22nd

Annual ACM Symposium on the Theory of Computing, 1990, pp. 204–212.

251

BIBLIOGRAPHY

[147] Alessandro Panconesi and Aravind Srinivasan, On the complexity of distributed net-

work decomposition, Journal of Algorithms 20 (1996), no. 2, 356–374.

[148] Stavros Papadopoulos, Yin Yang, and Dimitris Papadias, Cads: Continuous authen-

tication on data streams, Proc. 33rd International Conference on Very Large Data

Bases, 2007, pp. 135–146.

[149] Taehoon Park and Chae Y Lee, Application of the graph coloring algorithm to the

frequency assignment problem, Journal of the Operations Research society of Japan

39 (1996), no. 2, 258–265.

[150] Merav Parter, (∆+1) coloring in the congested clique model, Proc. 45th International

Colloquium on Automata, Languages and Programming, 2018, pp. 160:1–160:14.

[151] Merav Parter and Hsin-Hao Su, Randomized (∆+1)-Coloring in O(log∗∆) Con-

gested Clique Rounds, Proc. 32nd International Symposium on Distributed Comput-

ing, 2018, pp. 39:1–39:18.

[152] Jaikumar Radhakrishnan, Saswata Shannigrahi, and Rakesh Venkat, Hypergraph

two-coloring in the streaming model, arXiv preprint arXiv:1512.04188 (2015).

[153] Alexander Razborov, On the distributional complexity of disjointness, Theor. Com-

put. Sci. 106 (1992), no. 2, 385–390, Preliminary version in Proc. 17th International

Colloquium on Automata, Languages and Programming, pages 249–253, 1990.

[154] Ryan A. Rossi and Nesreen K. Ahmed, The network data repository with interactive

graph analytics and visualization, Proceedings of the Twenty-Ninth AAAI Confer-

ence on Artificial Intelligence, 2015.

[155] Václav Rozhon and Mohsen Ghaffari, Polylogarithmic-time deterministic network

decomposition and distributed derandomization, Proc. 52nd Annual ACM Sympo-

sium on the Theory of Computing, 2020.

252

BIBLIOGRAPHY

[156] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy, Estimating pagerank on

graph streams, J. ACM 58 (2011), no. 3, 13.

[157] Johannes Schneider and Roger Wattenhofer, A new technique for distributed symme-

try breaking, Proc. 29th ACM Symposium on Principles of Distributed Computing,

2010, pp. 257–266.

[158] Adi Shamir, IP = PSPACE, J. ACM 39 (1992), no. 4, 869–877.

[159] Uri Stemmer, Separating adaptive streaming from oblivious streaming, Lecture at

STOC 2021 Workshop: Robust Streaming, Sketching and Sampling, available on-

line at https://www.youtube.com/watch?v=svgv-xw9DZc&t=7679s, 2021,

Based on joint work with Haim Kaplan, Yishay Mansour, and Kobbi Nissim.

[160] Michael Stiebitz and Bjarne Toft, A Brooks type theorem for the maximum local edge

connectivity, Electronic Journal of Combinatorics 25 (2016), P1.50.

[161] George Szekeres and Herbert S. Wilf, An inequality for the chromatic number of a

graph, Journal of Combinatorial Theory 4 (1968), no. 1, 1 – 3.

[162] Robert Endre Tarjan, Edge-disjoint spanning trees and depth-first search, Acta In-

formatica 6 (1976), no. 2, 171–185.

[163] Justin Thaler, Data stream verification, Encyclopedia of Algorithms, Springer New

York, 2016, pp. 494–499.

[164] Justin Thaler, Semi-streaming algorithms for annotated graph streams, Proc.

43rd International Colloquium on Automata, Languages and Programming, 2016,

pp. 59:1–59:14.

[165] Simon Thevenin, Nicolas Zufferey, and Jean-Yves Potvin, Graph multi-coloring for

a job scheduling application, Discrete Applied Mathematics 234 (2018), 218–235.

253

https://www.youtube.com/watch?v=svgv-xw9DZc&t=7679s

BIBLIOGRAPHY

[166] Peter A. Tucker, David Maier, Lois M. L. Delcambre, Tim Sheard, Jennifer Widom,

and Mark P. Jones, Punctuated data streams, 2005.

[167] Stanley Wasserman and Katherine Faust, Social network analysis: Methods and

applications, vol. 8, Cambridge university press, 1994.

[168] David P. Woodruff, Optimal space lower bounds for all frequency moments, Proc.

15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 167–175.

[169] David P. Woodruff and Samson Zhou, Tight bounds for adversarially robust streams

and sliding windows via difference estimators, 62nd IEEE Annual Symposium on

Foundations of Computer Science (FOCS 2021), Denver, CO, USA, February 7-10,

2022, 2021, pp. 1183–1196.

[170] Andrew C. Yao, Some complexity questions related to distributive computing, Proc.

11th Annual ACM Symposium on the Theory of Computing, 1979, pp. 209–213.

[171] Amir Yehudayoff, Pointer chasing via triangular discrimination, Tech. Report

TR16-151, ECCC, 2016.

[172] Ke Yi, Feifei Li, Marios Hadjieleftheriou, George Kollios, and Divesh Srivastava,

Randomized synopses for query assurance on data streams, Proc. 24th International

Conference on Data Engineering, 2008, pp. 416–425.

[173] David Zuckerman, Linear degree extractors and the inapproximability of max clique

and chromatic number, Proc. 38th Annual ACM Symposium on the Theory of Com-

puting, 2006, pp. 681–690.

254

	Space-Efficient Algorithms and Verification Schemes for Graph Streams
	Recommended Citation

	Abstract
	Acknowledgements
	Introduction
	Overview of Results and Contributions
	The Classical Streaming Model
	The Adversarially Robust Streaming Model
	The Annotated Streaming Model

	Standard Techniques
	Sketching
	Communication Complexity

	Notations, Terminology, and Basic Tools

	Classical Graph Streaming
	Directed Graph Problems
	Our Results
	Previous Work
	Problems and Preliminaries
	General Digraphs and the Hardness of Some Basic Problems
	Sink Finding in Tournaments
	Feedback Arc Set in Tournaments
	Topological Ordering in Random Graphs
	Rank Aggregation
	Subsequent Works

	Graph Coloring
	Our Results and Techniques
	Related Work and Comparisons
	Preliminary tools
	LDP: A Generic Framework for Coloring
	Streaming Algorithm for Degeneracy-Based Coloring
	Streaming Lower Bounds
	Applications in Various Space-Conscious Models
	A Combinatorial Lower Bound
	Subsequent works

	Adversarially Robust Streaming
	Motivation and Context
	Adversarially Robust Coloring
	Our Results and Contributions
	Preliminaries
	Overview of Techniques
	Hardness of Adversarially Robust Graph Coloring
	Upper Bounds: Adversarially Robust Coloring Algorithms
	An Algorithm Based on Palette Sparsification
	Sketch-Switching Based Algorithms for Turnstile Streams

	Streaming Verification
	Preliminaries, Setup, and Terminology
	Frequency-Based Functions
	Our Results and Techniques
	The Misra-Gries Algorithm
	Computing Frequency-based Functions in Turnstile Streams
	Modifications for Longer Streams

	Graph Problems
	Our Techniques
	Triangle Counting
	Generalization: Counting Copies of an Arbitrary Subgraph
	A Technical Result: Counting Edges in Induced Subgraphs
	Maximum Matching
	Applications to Other Graph Problems
	Path Problems

	Multipass Stream Verification
	One-Pass Lower Bounds
	Two-pass Scheme for CrossEdgeCount with Applications
	A Multi-Pass Scheme for Detecting Short Paths

	Conclusions and Future Directions
	References

