
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

Spring 6-1-2022

Machine Learning and the Network Analysis of Ethereum Trading Machine Learning and the Network Analysis of Ethereum Trading

Data Data

Santosh Sivakumar
Santosh.Sivakumar.22@Dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Sivakumar, Santosh, "Machine Learning and the Network Analysis of Ethereum Trading Data" (2022).
Dartmouth College Undergraduate Theses. 265.
https://digitalcommons.dartmouth.edu/senior_theses/265

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/265?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Machine Learning and the Network Analysis of

Ethereum Trading Data

Santosh Sivakumar

Undergraduate Computer Science Thesis

Advised by

Professor Dan Rockmore

Dartmouth College

Hanover, New Hampshire

June 1, 2022

ABSTRACT

Since their conception, cryptocurrencies have captured the public interest, motivating a

growing body of research aimed at exploring blockchain-based transactions. This said, little

work has been done to draw conclusions from transaction patterns, particularly in the realm

of predicting cryptocurrency price movements. Moreover, research in the cryptocurrency

sphere largely focuses on Bitcoin, paying little attention to Ethereum, Bitcoin’s second-in-

line with respect to market capitalization.

In this paper, we construct hourly networks for a year of Ethereum transactions, using

computed graph metrics as features in a series of machine learning models. We find that

regression-based approaches to predicting Ether prices/price deltas primarily and almost ex-

clusively rely on using current prices, motivating the need for classification models to predict

price/up down movements rather than raw prices. Across a handful of such classification

models, using hourly network metrics as input features, we are able to outperform baseline

up/down prediction F-1 scores by up to 14%, accuracy by up to 5%, precision by up to 50%,

and recall by up to 7%. These findings have implications for the future of cryptocurrency

price prediction and trading activity, and suggest further research.

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Dan Rockmore, for his consistent patience and

thoughtful suggestions throughout this research process. I’d also like to thank Professors

Soroush Vosoughi and Professor Andrew Campbell for their willingness to serve on my

Honors Thesis committee.

I am immensely grateful to each and every one of my Dartmouth Computer Science

professors. As I look back on my CS experience, I am consistently impressed by the way

this program brought me (an intimidated freshman with zero experience) in with open arms,

and through the years inspired within me a sense of confidence and intellectual curiosity.

I look back on my time at Dartmouth with the utmost fondness. For the countless

memories I’ve made, I have my incredible friends to thank.

I would like to thank my brother, whose hardworking and grounded nature has always

inspired me to step outside of my comfort zone.

Finally, it is impossible for me to enumerate the ways in which I am grateful to my

parents. I thank them for their endless love and support, and for each and every sacrifice

they have made to get me here.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

1 INTRODUCTION . 2

2 RELATED WORK . 4
2.1 Financial Transaction Networks . 4
2.2 Cryptocurrency Transaction Networks . 5
2.3 Machine learning and Product Prices . 6
2.4 Machine learning and Cryptocurrency Prices 6

3 METHODS . 8
3.1 Data Collection . 8

3.1.1 Transactions Data . 8
3.1.2 Ethereum Price Data . 8
3.1.3 Data Timeframe . 9

3.2 Building Transactions Graph . 9
3.3 Network features/metrics . 10

3.3.1 Metrics for all nodes . 10
3.3.2 Metrics for top-ranking participants 12
3.3.3 Comparative cross-hour metrics . 12

3.4 Models - Regression . 13
3.4.1 Baseline . 13
3.4.2 Previous hour Price . 13
3.4.3 Linear Regression . 14

3.5 Regression without Previous Price Features 15
3.6 Regression with Price Deltas . 15
3.7 Evaluation Metrics - Feature Relevance . 15
3.8 Evaluation Metrics - Regression . 16

3.8.1 MSE . 16
3.8.2 Normalized MSE . 16
3.8.3 MAD . 17
3.8.4 Normalized MAD . 17

3.9 Models - Classification . 17
3.9.1 Baseline . 18
3.9.2 Probability-Based Baseline . 18
3.9.3 Previous Price Movement Baseline 18
3.9.4 Logistic Regression-based Classification 18
3.9.5 Support Vector Classification . 19
3.9.6 Gradient Boosting Classification . 19
3.9.7 K-Neighbors Classification . 19

iv

3.9.8 Linear Discriminant Analysis Classification 20
3.9.9 Random Forest Classification . 20
3.9.10 Perceptron/Neural Network Classification 20

3.10 Evaluation Metrics - Classification . 21
3.10.1 Confusion Matrix . 21
3.10.2 Accuracy . 21
3.10.3 Precision . 21
3.10.4 Recall . 22
3.10.5 F-1 Score . 22
3.10.6 ROC Curve . 22

4 DATA . 23
4.1 Number of transactions . 24
4.2 Ethereum Price . 25
4.3 Ethereum Price Movement . 26

5 RESULTS . 27
5.1 Price Regression . 27
5.2 Price Delta Regression . 30
5.3 Price Regression without Previous Price . 33
5.4 Feature Analysis for Regression Models . 35
5.5 Classification . 38
5.6 Feature Analysis for Classification Models 39

6 DISCUSSION . 42
6.1 Limitations + Further Research . 46
6.2 Conclusion . 47

REFERENCES . 48

A FEATURE PLOTS . 50
A.1 Total Flow . 50

A.1.1 Timeframe: day . 50
A.1.2 Timeframe: month . 50

A.2 Mean transaction value . 51
A.2.1 Timeframe: day . 51
A.2.2 Timeframe: month . 51

A.3 Total passthrough - top 3 nodes . 52
A.3.1 Timeframe: day . 52
A.3.2 Timeframe: month . 52

A.4 Closeness centrality - top 3 nodes . 53
A.4.1 Timeframe: day . 53
A.4.2 Timeframe: month . 53

A.5 Number of new addresses . 54
A.5.1 Timeframe: day . 54
A.5.2 Timeframe: month . 54

v

A.6 Number of new address transactions . 55
A.6.1 Timeframe: day . 55
A.6.2 Timeframe: month . 55

B RESIDUAL FOR LINEAR REGRESSION PREDICTION — RIDGE 56

C PRICE REGRESSION WITH LOGGED FEATURE VALUES 57

D TRADING SIMULATION USING SVM CLASSIFICATIONS 58

vi

1

CHAPTER 1

INTRODUCTION

Decentralized cryptocurrencies, created in 2009 with the goal of changing the financial-asset

transfer paradigm by introducing security and anonymity, continue to capture public inter-

est and grow in popularity. Transfer of currency ownership is done through the blockchain,

a secure and verifiable system built around data validation and cryptography. Cryptocur-

rencies are independent of centralized authority, and the system holds the information of

currency owners, units, and mechanisms to “create” new currencies. Because cryptocurren-

cies are fiat-based and lack intrinsic value, their prices are influenced by a variety of factors,

including market risk and volatility risk (Nadler and Guo [2020]). Accordingly, transaction

volume and distribution are of extreme importance when trying to understand and predict

currency trading prices. For this reason, as well as the short lifespan of cryptocurrency re-

search to date, any new insights regarding buyer/seller networks, transaction concentrations,

and market participant dynamics are highly valuable and informative.

In this paper, we focus on Ethereum, a relatively new cryptocurrency whose primary

coin Ether (ETH) was released to the public for the first time in 2015. Since then, Ether is

only second to Bitcoin in cryptocurrency market capitalization. For Ethereum, as with most

cryptocurrencies, the primary access point was and remains the ability to transfer ownership

of Ether between parties on the blockchain. As a result, it is both possible and informative

to analyze the transaction relationships that lie within Ethereum blockchain data. Explor-

ing transaction relationships is a worthwhile task in terms of illustrating the way Ether is

transferred between parties and, in particular, different from the patterns of equity transfers.

Given the volatile and relatively unexplored nature of cryptocurrency price movements, par-

ticularly the ways in which prices may serve as a function of transaction patterns, we push

our analysis of Ethereum beyond merely exploring transaction mechanisms.

In this paper, we address two main questions. First, how can we represent and visualize

2

the transaction network for Ethereum trading, keeping in mind the rapid and evolving na-

ture of trading activity? Second, how can we leverage the power of the transaction network

representation to inform predictions of Ether price movements and price changes?

There are several motivations for this research. First, it provides a glimpse into the way

Ether is transferred across parties, enabling us to understand (in standard network analytic

terms) Ether flow through hourly networks and on per-transaction levels, and the significance

of top transactors when comparing incident transactions across market participants. Next,

this research allows us to identify which machine learning models are useful for predicting

future Ether prices, both for predicting raw prices and classifying the movement of trading

prices across time periods. Third, this work allows us to seemingly establish, for the first

time, a link between transaction network metrics and the prediction of future Ether trading

price, identifying those features relevant for various prediction tasks.

This second motivation, predicting future prices and price movements, drives this research.

Ethereum’s market capitalization currently stands at 237 billion dollars, with a single unit

of ETH currently trading at 1954 dollars. Over the past two years (indeed, since the time-

frame of our studied data), the trading price of Ethereum has risen tenfold, indicating the

increasing importance of accurate and continuously improving price indicators. For those

involved in cryptocurrency (and, in general, equities) trading, the smallest improvements in

the ability to predict price, as well as price movement direction, prediction, can result in

significant financial gains.

3

CHAPTER 2

RELATED WORK

An abundance of research has been conducted in the area of financial product (including

cryptocurrency) network analysis, as well as in product price prediction and movement

classification. We examine related works systematically.

2.1 Financial Transaction Networks

Network-based approaches have been taken to analyze financial product prices, particularly

equities, at varying levels of specificity and complexity. On the more robust end, Leibon et al.

[2008] create a topological structure to explore NYSE and NASDAQ-based stock movement

patterns, in doing so unraveling unique capital flow rotation patterns and identifying distinct

network partitions. Their work is primarily used to understand the complexity of structure

found within the equities market and the extent to which correlation structures in such sys-

tems can be understood.

At a more macroscopic, necessarily less robust, level, Dimitrios and Vasileios [2015] an-

alyze the general stock relationship network found in data from the Greek Stock Market

before and after periods of crisis. In their work, they find important distinctions between

networks based on the degree of price movement correlation; moreover, they find that Greek

stock networks exhibit the herd rule, whereby more connected stocks are more susceptible

to large price fluctuations. Importantly, they conceptualize the characteristic of a shallow

network, where actions by big actors/external factors significantly impact the composition

of the constructed network.

Aslam et al. [2020] take a more comparative approach to network analysis of stocks,

examining the impact of the COVID-19 pandemic on the connected stock price network

established before the pandemic’s beginning. They find significant contagion effects and

4

clustering according to geographic proximity.

It’s interesting to note, when restricting our scope to equities (ignoring the case of cryp-

tocurrencies, which we will soon explore), that transaction networks are fundamentally dif-

ficult to set up, due to the fact that such transactions occur on the open market, where user

data is often anonymized and necessarily difficult to acquire. It is for this reason that any in-

sight into transaction patterns of stock traders (abstracting the nuances between traditional

equity and cryptocurrency purchasers) is relatively novel.

2.2 Cryptocurrency Transaction Networks

For the aforementioned reason, cryptocurrency transactions provide a rich angle with which

to explore trade flow patterns. Motamed and Bahrak [2019] take a comprehensive approach

to constructing transaction networks across a wide scope of cryptocurrencies, looking at

Bitcoin, Ethereum, Litecoin, Dash, and Z-Cash. They find that transaction graphs are sur-

prisingly non-assortative, meaning that transaction partners are generally property-agnostic

(i.e. no selection based on partner in/out-degree). They also introduce a robust set of rele-

vant cryptocurrency graph analysis metrics, relevantly the density, assortativity coefficient,

and clustering coefficient.

Significantly, Guo et al. [2019] analyze a collection of graph metrics for Ethereum, making

use of the publicly available nature of Ether transaction data. They find that transaction

volume, relation, and component structure may be approximated with a power-law function,

a finding which remains consistent across cryptocurrencies.

With Ethereum specifically, Wu et al. [2021] provide a useful collection of checks and met-

rics to construct and productively analyze transactions graphs, introducing the technique of

temporal weighted digraphs, which we make use of in this research. Wu et al. [2021] also

introduce the distinction between traditional blockchain and spam-address-cleaned data.

5

2.3 Machine learning and Product Prices

Perhaps the largest collection of research related to this work lies in the domain of machine

learning and financial product prices. While equity-based models (as discussed in section

2.1) generally don’t make use of transaction data, we nonetheless review some stock price

modeling for insightful techniques.

The work of Shen et al. [2012] builds on a large volume of SVM and regression-based

approaches to stock price prediction, and introduces a cross-country method using such fea-

tures as national currency price and commodity prices, with the aid of SVM and decision

tree techniques.

Mehtab et al. [2021] present a thorough and classic approach to the task of predict-

ing stock returns using a wide variety of machine learning techniques. Importantly, Mehtab

et al. [2021] flesh out the mechanism of using regression-based (linear, logistic, random forest,

decision tree) and classification-based (logistic, k nearest-neighbor, SVM, neural network)

methods, many of which we implement here.

2.4 Machine learning and Cryptocurrency Prices

We now explore the class of related work most similar to ours: the use of machine learning

techniques for the prediction of future cryptocurrency prices/price movements. Alessan-

dretti et al. [2018] implement a collection of basing trading algorithms (regression using

prices, market capitalization, share, volume as features; regression using historical price

features; long short-term memory neural networks) to compare against a baseline moving-

day-average scheme. Using this, they find that supervised learning methods significantly

outperform baseline price predictions; this said, it’s important to note that this research was

conducted at the onset of large-scale cryptocurrency trading, and therefore the extent of such

baseline outperformance is likely to have significantly diminished amidst the advancement

6

of more nuanced trading strategies.

In support of this final qualification, Akyildirim et al. [2021] find that machine learning

models using technical price/quantity indicators are able to achieve a 3% outperformance

over a random baseline for ETH price prediction at the hourly level, a result which tempers

our expectations of what network metrics may be able to achieve.

Greaves and Au [2015] apply the most similar overall approach to their research, ex-

ploring the predictive strength of Bitcoin transaction network metrics on future prices/price

up-down movements. Notably, they introduce a relevant collection of features for such tasks,

emphasizing the relative importance of the largest transactors’ behavior over general network

patterns. While their research is similar in scope, they focus on Bitcoin, a different currency,

which has important network-specific differences (specifically, the inability to explore multi-

ple transactions involving the same user).

This paper novelly occupies the unique cross-section between Ethereum, a relatively un-

explored cryptocurrency; transaction network metrics as ML model features, a relatively

unstudied approach; and it utilizes new data up to the onset of the COVID-19 pandemic.

7

CHAPTER 3

METHODS

3.1 Data Collection

3.1.1 Transactions Data

Data documenting ether transactions was scraped from a Kaggle dataset1, which keeps a

record of all historical Ethereum blockchain transactions. The daily dataset records, for

every transaction of Ether, the timestamp, value (in Wei, the smallest quantifiable Ether

currency denomination), as well as the sender and recipient addresses. Due to the necessarily

large nature of the 7-year dataset (563,000,000 recorded transactions), our code makes use

of Google’s BitQuery function to access data as needed to construct hourly graphs. For

each hour of data in the selected timeframe, we query in and pull out the data for every

transaction. We then store this loaded hourly transactions information in a data table. Each

hour of data has on the order of 15,000 blockchain transactions.

3.1.2 Ethereum Price Data

Ethereum price data was collected from a different Kaggle dataset2, which implemented a

python scraper to aggregate hourly prices from a dynamic site charting evolving cryptocur-

rency prices. Since our models aim to predict prices on a per-hour basis, the data points

collected were limited to timestamp and opening price. These values were collected and

placed alongside the outputs from our graph metric computations, to be used as the out-

put of learning models. Due to the smaller nature of the price dataset, the full file was

downloaded and loaded into our model-setup code.

1. Ether transactions data: https://www.kaggle.com/datasets/bigquery/ethereum-blockchain

2. Ethereum price data: https://www.kaggle.com/datasets/sudalairajkumar/cryptocurrencypricehistory

8

https://www.kaggle.com/datasets/bigquery/ethereum-blockchain
https://www.kaggle.com/datasets/sudalairajkumar/cryptocurrencypricehistory

Data entry snapshot:

3.1.3 Data Timeframe

We use data from January 1, 2019, to December 31, 2019, a choice motivated by the dual

goals of analyzing data as recent as possible but prior to the COVID-19 pandemic.

3.2 Building Transactions Graph

Using a combination of Python’s Pandas and NetworkX packages, our code turns the data

table into a weighted digraph, with nodes representing blockchain participants and weighted

edges representing the value of transactions between participants. Using each hourly data

table, we assemble individual hourly graphs. Notably, Ethereum’s account-based construc-

tion allows us to identify repeat transaction participants through the use of account-specific

(as opposed to account-transaction-specific) address hashes, in a way that other currencies

do not. We make use of a slightly manipulated definition of the MTG from Motamed and

Bahrak [2019] below.

Definition 1: Monthly Transaction Graph (MTG) is a graph that is represented in

9

the form MTGn = (Vn, En) where Vn is the set of nodes of this graph and each node v ∈ Vn is

an account address and Vn is the set of all account addresses that appeared in the (n+1)− th

[hour] since beginning of the activity of that coin. En is the set of edges of this graph where

each edge e = u, v shows transfer between two vertices u, v ∈ Vn.

Example Toy Graph:

3.3 Network features/metrics

We collect a variety of features/metrics from each hourly network, with the goal of using

some subset as the feature set for our models. We choose values to compute based on related

literature, we define these values below.

3.3.1 Metrics for all nodes

Definition 2: Total Flow for an MTGn = (Vn, En), is the sum Σe∈En
we where we rep-

resents the weight (value) on edge e. Total flow records the total transacted value across a

graph, irrespective of direction.

Definition 3: Number of Transactions for an MTGn = (Vn, En) is the cardinality |En|

of the edge set in a graph. Given that each edge represents a transaction between two-parties,

10

this measure computes the total number of transactions in an hour of data.

Definition 4: Mean Transaction Value for an MTGn = (Vn, En) is the total flow,

Σe∈En
we, divided by the number of transactions, |En|, and represents the average transacted

value (in ETH) in an hour of transactions/data.

Definition 5: Mean Node Degree for an MTGn = (Vn, En) is the total number of

edges/transactions, |En|, divided by the number of transaction participants, |Vn|. Notably,

this measure makes use of the account-based system found in Ethereum (as discussed in Sec-

tion 3.2) and is increasingly informative due to the removal of empty/nontransacting nodes

from our graph.

Definition 6: Median Node Degree for an MTGn = (Vn, En) is the middle value across

all node degrees, and is computed by sorting the list of degrees for the list of nodes Vn and

retrieving the middle element. When transactions are heavily dominated by a few major

players, this metric proves more informative than a simple average.

In accordance with the research of Dimitrios and Vasileios [2015] and, notably, Greaves and

Au [2015], we are also particularly interested in isolating the transaction patterns of the

largest players in our transactions graph, specifically those transactors who are involved

with a materially larger value of transacted currency than the average network participant.

To this end, we first construct the following definition of a rank-i graph participant.

Definition 7: Rank-i graph participant for an MTGn = (Vn, En) is the node j whose

total transacted value tj = Σe∈Enj
we ranks i-th, when compared to the corresponding value

tk for all other nodes k ∈ Vn. It is worth noting that the transacted-value-approach is just

one metric of quantifying the “biggest participants”, and existing literature also implements

11

node degree-based approaches.

3.3.2 Metrics for top-ranking participants

Given that we have formalized this definition, we now compute two metrics making use of

the Rank-i participants for i ∈ {1, 2, 3} — in plain English, the top 3 biggest participants,

as is done in the related literature Greaves and Au [2015]. We define them below, keeping

in mind that this choice of 3 participants is inherently arbitrary. We discuss the limitations

of such a choice in our final section.

Definition 8: Total passthrough for a Rank-i participant pi in a graph MTGn = (Vn, En)

is the sum Σe∈Enpi
we where Enpi is the set of all edges e such that e either flows into or out of

node pi. Put simply, it computes the total value of all purchases/sales for a top participant pi

Definition 9: Closeness centrality for a Rank-i participant pi in a graph MTGn =

(Vn, En) is computed as Cpi =
1

Σqd(pi,q)
, where q is a node such that there exists an edge

between q and pi, and d(x, y) is a measure of the distance between two nodes x and y.

3.3.3 Comparative cross-hour metrics

The final class of features we extract from our graph involves the comparison of a current

hour’s data to the data from the previous hour. We outline them below.

Definition 10: Number of new addresses between a graph MTGn = (Vn, En) from

time n and a graph MTGm = (Vm, Em) from time m = n − 1 is computed as |Vn\Vm|,

representing the cardinality of the set of addresses (vertices) found at the time n graph that

do not transact during the hour represented in the time m graph.

12

Definition 11: Number of new transactions between a graph MTGn = (Vn, En) from

time n and a graph MTGm = (Vm, Em) from time m = n−1 is computed as Σv∈Vn\Vm|Evn|,

representing the number of transactions (the cardinality of the edge set) involving a new ver-

tex found at time n.

Finally, we include the previous hour’s price, price delta, and the sign of price delta as

features for the relevant models, as is standard with related literature.

3.4 Models - Regression

We test and compare the performance of a collection of regression models for specific price

forecasting on the hourly scale, making use of our aggregated data from hourly networks.

We make heavy use of the Python implementations of such machine learning models found

within the SKLearn packages. We outline each model below.

3.4.1 Baseline

For our dummy model with which we compare the results of our more advanced predictors,

we take an approach found in similar literature and apply a price increase equal to the mean

of the price increases found within the training dataset. Mathematically, let’s say ETH price

pt for an arbitrary time t, on average is equal to some pa computed across the training set.

To create the baseline prediction yi for the price pi for some time i, we merely apply the

following formula: yi = pa.

3.4.2 Previous hour Price

Since we expect, in accordance with Greaves and Au [2015], that the price of the previous

hour holds significant predictive weight, we implement a second baseline predictor, where

the price pi for an hour i is simply predicted to be the price pi−1 from the hour before. We

13

use this to identify and cement the fact that the previous hour’s price has the most (and the

vast majority of) predictive strength, a finding we use to motivate models beyond raw price

prediction. Formally, we set yi = pi−1 for all periods i in our test sample.

3.4.3 Linear Regression

Linear regression fits a linear model with coefficients θT (x) = θ0 + θ1(x) + + θn(x) to

minimize the residual sum of squares between the observed targets in the dataset and the

targets predicted by the linear approximation.

Formulas for the n-variable linear regression:

Hypothesis: hθ(x) = θT (x) = θ0 + θ1(x) ++ θn(x)

Parameters: θ0, θ1, ...θn

Cost function: J(θ0, θ1, ...θn) =
1
2m

∑m
i=1(hθ(x

(i))− y(i))2

Goal: minimizeθ0,θ1,...,θnJ(θ0, θ1, ...θn)

Based on standard techniques, we make 3 tuning updates to the model, implementing three

forms of regularization, each described as follows.

Ridge (L2) Regularization uses the L2-norm to impose a penalty on the size of the

coefficients within a Linear Regression output vector, specifically aiming to reduce the signif-

icance of overfitted data. Using SKLearn, Ridge regularization is represented by a minimiza-

tion of the objective function ||y −Xθ||22 + α · ||θ||22

Lasso (L1) Regularization makes use of the L1-norm to minimize the significance

of uninformative coefficients, eliminating them from the model’s coefficient vector subject to

the optimization objective 1
2ns

· ||y − Xθ||22 + α · ||w||1, where ns represents the number of

samples.

14

Elastic Net Regularization makes use of both L1 and L2 regularization, and is there-

fore subject to the optimization objective 1
2ns

· ||y−Xθ||22+ l1 ·α · ||w||1+0.5 ·α ·(1− l1) · ||w||22,

where l1 represents the L1 regularization ratio found in the Elastic Net combination.

3.5 Regression without Previous Price Features

We replicate our linear regressions for the same set of features, eliminating the feature that

holds the value of the previous price pi−1. We do this to understand the extent to which the

previous price has a strong predictive role in predicting raw future prices, and to get a sense

of the extent to which other (non-price) features can contribute to the prediction of future

raw prices, exploring the coefficients associated with each other feature systematically.

3.6 Regression with Price Deltas

The second class of predictor models we establish aims to predict the change in price, or δpi

between a time period i−1 and i. We do this primarily to begin isolating the effects of graph

features (particularly when compared to the previous hour’s price, which we have established

holds significant predictive weight when predicting raw prices). Further, regressing with price

changes allows us to begin exploring the realm of directional price movement, a fact that is

quite significant given the trading implications of buying/selling shares of ETH.

3.7 Evaluation Metrics - Feature Relevance

For each of our models (where applicable), we examine the relevance of each input fea-

ture, with the goal of understanding the extent to which each feature plays a role in the

regression/classification task. In the results section, we display the feature coefficients for all

applicable models. This metric proves useful when comparing against such baselines as pre-

vious price/previous delta, allowing us to understand the differentiated value that network

15

features may contribute.

3.8 Evaluation Metrics - Regression

3.8.1 MSE

Our first evaluation metric lines up with the largest subset of existing literature, and is

simply the mean-squared-error (MSE) using our prediction set. Formally,

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

where Yi corresponds to the actual value for data point i and Ŷi is the corresponding predicted

value.

3.8.2 Normalized MSE

Mean squared error simply aggregates squared error across the entire sample, and is therefore

not normalized to the size of the test sample values. Formally,

MSEnorm =

∑n
i=1(Yi − Ŷi)

2

| 1n
∑n

i=1 Yi|

where Yi corresponds to the actual value for point i, and the denominator represents the

mean y value in the sample. We take the absolute value of the mean and explore this metric

when evaluating the performance of the price delta predictors, particularly to put the results

in the context of the small size of our sample values.

16

3.8.3 MAD

The next metric is simply the mean-absolute-deviation (MAD) using our prediction set.

Formally,

MAD =
1

n

n∑
i=1

|(Yi − Ŷi)|

where Yi corresponds to the actual value for data point i and Ŷi is the corresponding predicted

value.

3.8.4 Normalized MAD

Mean absolute deviation simply aggregates error across the entire sample and is therefore

not normalized to the size of the test sample values. Formally,

MADnorm =

∑n
i=1 |(Yi − Ŷi)|
| 1n

∑n
i=1 Yi|

where Yi corresponds to the actual value for point i, and the denominator represents the

mean y value in the sample. We take the absolute value of the mean and explore this metric

when evaluating the performance of the price delta predictors, particularly to put the results

in the context of the small size of our sample values.

3.9 Models - Classification

We test and compare the performance of a collection of binary classification models (specif-

ically predicting the up/down price movement) on the hourly scale, making use of the ag-

gregated data from hourly networks. We heavily utilize, once again, the Python implemen-

tations of such machine learning classification models found within the SKLearn packages3.

We outline each model below.

3. https://scikit-learn.org/

17

https://scikit-learn.org/

3.9.1 Baseline

In accordance with similar literaure, our dummy model takes the most common classification

output (a 0, corresponding to an downward price movement) as the predicted output for our

data. For a time period k and an overall timeframe n,

pk = max(freq(0), freq(1))nt=1

3.9.2 Probability-Based Baseline

We implement a second baseline model, which computes the probabilities of each output

class in the training set. From this, for each point in the test set, the model simply applies

a probability-weighted sample and assigns the sample output to the predicted y value. We

consider this analogous to a weighted coin flip, where the weights on each coin face correspond

to the incidence of that face in the training set.

3.9.3 Previous Price Movement Baseline

Our final baseline model simply accesses the direction of price movement from the previous

time period and predicts the same value for the time period of interest. Formally, pk = pk−1,

where p holds the value of the price movement direction (1.0 for an upward movement, 0.0

for a downward movement). We do this to understand the extent to which price movements

travel together, potentially indicating the existence of price movements lasting longer than

an hour.

3.9.4 Logistic Regression-based Classification

Logistic regression is a linear classifier, which makes use of a linear function called the logit.

The logistic regression function p(x) is the sigmoid function of f(x), and is represented by

p(x) = 1
1+e−f(x) . As such, it’s often close to either 0 or 1, and is interpreted as the predicted

18

probability that the output for a given x is equal to 1. Logistic regression determines the best

predicted weights such that the function p(x) is as close as possible to all actual responses,

and maximizes the log-likelihood function (LLF) for all observations through a method called

the maximum likelihood estimation. Formally,

Sigmoid Function: p(x) = 1
1+e−f(x)

3.9.5 Support Vector Classification

A support vector machine takes classified training data points and outputs the hyperplane

that best separates the points by classification. This line is the decision boundary, and for

each new data point seen (i.e. test set), points are classified based on which side of the

decision boundary they fall under.

3.9.6 Gradient Boosting Classification

Gradient boosting classifiers are examples of ensemble learning methods, which means that

they make use of a collection of other models in the learning/training process. Gradient

boosting is an iterative functional gradient algorithm where each predictor tries to improve

on its predecessor by reducing the errors. However, instead of fitting a predictor on the data

at each iteration, it actually fits a new predictor to the residual errors made by the previous

predictor.

3.9.7 K-Neighbors Classification

K-neighbors-based classification is a type of instance-based learning or non-generalizing

learning: it does not attempt to construct a general internal model, but simply stores in-

stances of the training data. Here, classification is computed from a simple majority vote of

the nearest k neighbors of each point: a query point is assigned the data class which has the

most representatives within the k neighbors of the point.

19

3.9.8 Linear Discriminant Analysis Classification

Linear discriminant analysis4 performs supervised dimensionality reduction by projecting the

input data to a linear subspace consisting of the directions which maximize the separation

between classes. Dimensions are ranked on the basis of their ability to maximize the distance

between the clusters and minimize the distance between the data points within a cluster and

their centroids.

3.9.9 Random Forest Classification

A random forest consists of a large number of individual decision trees that operate as

an ensemble, with each individual tree generating a class prediction. The class, across all

ensemble trees, with the most outputs, becomes the predicted value and is contingent on the

fundamental idea that a large number of relatively uncorrelated models (trees) operating as

a committee will outperform any of the individual constituent models.

3.9.10 Perceptron/Neural Network Classification

The perceptron5 is a linear machine learning algorithm for binary classification tasks, and

unlike logistic regression, it learns using the stochastic gradient descent optimization algo-

rithm. It takes an input data vector and multiplies data by the corresponding weights; taking

this weighted sum and the bias, it inputs this value into an activation function to determine

the predicted output class. The initial values for the model weights are set to small random

values, and the training dataset is shuffled prior to each training epoch. This is by design to

accelerate and improve the model training process.

4. https://stackabuse.com/implementing-lda-in-python-with-scikit-learn/

5. https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/

20

https://stackabuse.com/implementing-lda-in-python-with-scikit-learn/
https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/

3.10 Evaluation Metrics - Classification

3.10.1 Confusion Matrix

We can represent the output of a classification task using a confusion matrix, which sum-

marizes the total number of true positives, TP , true negatives, TN , false positives FP , and

false negatives FN . In the example confusion matrix 3.1, TP = a, FP = b, FN = c, TP = d,

where the positive class corresponds to an upward price movement and the negative class

corresponds to a downward price movement.

Figure 3.1: Example Confusion Matrix

True movement

Up Down Total

Predicted movement Up a b a+ b

Down c d c+ d

Total a+ c b+ d N

3.10.2 Accuracy

Accuracy A is the percentage of trained samples predicted correctly, as

A =
a+ d

a+ b+ c+ d

3.10.3 Precision

Precision P is the ratio of correctly predicted positive values to total predicted positive values,

and identifies how often the predicted positive value is correct. In 3.1, it is represented by

P =
a

a+ b

21

3.10.4 Recall

Recall R is the ratio of correctly predicted positive values to total actual positive values, and

identifies how often actual positive values are recognized. In 3.1, it is represented by

R =
a

a+ c

3.10.5 F-1 Score

The F-1 score is a weighted average of precision and recall, and is represented by

F − 1 =
2 ·R · P
R + P

3.10.6 ROC Curve

We also plot the receiver operating characteristic curve for each of our classification models.

This curve shows the performance of a classification model at all thresholds. The diagonal

line from bottom left to top right represents a random model (i.e. a flip of a fair coin across

both output classes), and any improvement to this is represented by a curve that lies to the

left/above the diagonal.

22

CHAPTER 4

DATA

Below is a table of the summary information for the network features.

Table 4.1: Data Summary (all currency amounts in Wei = 1
1018

ETH)

Feature N Mean Median St. Dev. Min Max

Total flow 8471 8.0922 6.7422 7.2922 5.5721 2.0224

Number of Transactions 8471 1.694 1.644 5213.82 6.673 6.24

Mean transaction value 8471 4.7618 4.0618 4.2418 6.2117 1.2820

Mean node in-degree 8471 1.05 1.05 0.042 0.93 1.47

Median node in-degree 8471 0.75 1 0.43 0 1

Median node out-degree 8471 0.99 1 0.12 0 1

Total passthrough (top 3 nodes) 8471 1.7419 1.5017 2.7120 0 1.522

Closeness centrality (top 3 nodes) 8471 2.80−3 2.19−4 8.7−3 0 0.15

Number of new addresses 8471 1.284 1.244 3941.1 4.973 5.914

Number of new transactions 8471 1.784 1.724 5644.3 6.943 7.004

We observe that the mean transaction value is quite large, indicating that it is the effect of

a few large players in the network. Similarly, the mean and median node in-degrees are very

small, indicating (like with the related literature) that this graph is heavily dominated by a

cluster of big transactors. Particularly when we compare the total passthrough of the top 3

nodes to the total flow, we see that (even restricting our top nodes to n = 3) a large portion

of the transacted value is accounted for by major network participants.

We plot three attributes for the data - number of transactions, Ethereum price, and price

up/down movement. More visualizations can be found in the appendix.

23

4.1 Number of transactions

Figure 4.1: Timeframe: day

Figure 4.2: Timeframe: month

24

4.2 Ethereum Price

Figure 4.3: Timeframe: day

Figure 4.4: Timeframe: month

25

4.3 Ethereum Price Movement

Figure 4.5: Timeframe: day

26

CHAPTER 5

RESULTS

5.1 Price Regression

Our results from a collection of linear regression models are shown below.

Table 5.1: Mean-Squared Error for Price Regressions:

Regression MSE

Baseline 724.1372137537435

Previous Price 1.2323796663190816

Lasso 1.2318923390725545

Ridge 1.230936344879986

Elastic 1.2318852325826923

We observe that a significant portion of the MSE improvement is accounted for by simply

taking a previous price, and that improvements to the linear regression model using other

features are marginal.

27

Table 5.2: Mean Absolute Deviations for Price Regressions:

Regression MAD

Baseline 20.3040725999777

Previous Price 0.7224921793534929

Lasso 0.7226343987257658

Ridge 0.7212890515654306

Elastic 0.7226357611452228

We observe that a significant portion of the MAD improvement is accounted for by simply

taking a previous price, and that improvements to the linear regression model using other

features are marginal here as well.

Plotted predictions are below. For the sake of clarity, we only plot prediction data for the

first day of the test sample (October 1, 2019). Due to the high similarity between each of

the regression models, only such a time window allows for visualizable differences between

the predictors.

28

Figure 5.1: Price Regression - Data from October 1, 2019

29

5.2 Price Delta Regression

Our results from a collection of linear regression models, regressing change in price on an

assortment of features, are shown below.

Table 5.3: Mean-Squared Error for Price Delta Regressions:

Regression MSE

Baseline 4.508864811344313−5

Previous Delta 9.035466545260578−5

Lasso 4.509038664778869−5

Ridge 4.5016012422187665−5

Elastic 4.50774604320323−5

We observe that there are very small improvements to our baseline prediction, but that using

previous deltas does not prove helpful in the way that previous prices do.

Table 5.4: Normalized Mean-Squared Error for Price Delta Regressions:

Regression Norm-MSE

Baseline 5.509575150701545

Previous Delta 11.040823807250167

Lasso 5.509787589664117

Ridge 5.5006994842901635

Elastic 5.508208079962587

Looking at our N-MSE, we note that adding in network features only slightly improves our

predictive value, as compared to the baseline mean value.

30

Table 5.5: Mean Absolute Deviations for Price Delta Regressions:

Regression MAD

Baseline 0.004330233063623503

Previous Delta 0.006615928278936393

Lasso 0.004324560862397466

Ridge 0.004316295039062451

Elastic 0.004323669472671209

Table 5.6: Normalized Mean Absolute Deviations for Price Delta Regressions:

Regression Norm-MAD

Baseline 529.1297362489145

Previous Delta 808.4286304779181

Lasso 528.4366256715886

Ridge 527.4265892932056

Elastic 528.3277029406826

Looking at our N-MAD, we note that adding in network features only slightly improves our

predictive value, as compared to the baseline mean value. The baseline value, however, out-

performs previous delta semi-significantly.

Plotted predictions are below. For the sake of clarity, we only plot prediction data for the

first day of the test sample (October 1, 2019). Due to the high similarity between each of

the regression models, only such a time window allows for visualizable differences between

our predictors.

31

Figure 5.2: Price Delta Regression - Data from October 1, 2019

32

5.3 Price Regression without Previous Price

Our results from replicated linear regression models, removing previous price from the set

of input features, are shown below.

Table 5.7: Mean-Squared Error for Price Regressions (not including previous price):

Regression MSE

Baseline 724.1372137537435

Lasso 718.8783243406571

Ridge 791.005519936303

Elastic 720.5326734178254

We see that after removing previous price, we are able to achieve only small (1%) improve-

ments to reducing MSE.

Table 5.8: Mean Absolute Deviations for Price Regressions (not including previous price):

Regression MAD

Baseline 20.3040725999777

Lasso 21.5189828962225

Ridge 22.72712618707084

Elastic 21.547386323506753

We see that after removing previous price, we are not able to outperform the baseline mean

prediction when evaluating using MAD.

Plotted predictions are below. For the sake of clarity, we only plot prediction data for the

first day of the test sample (October 1, 2019).

33

Figure 5.3: Price Regression without Previous Price - Data from October 1, 2019

34

5.4 Feature Analysis for Regression Models

We display normalized coefficient tables for the best-performing regression model from each

of the tasks (predicting raw prices including previous price features, predicting price deltas,

predicting raw prices excluding previous price features), below.

Table 5.9: Normalized coefficients for standard price regression — Ridge

Feature Coefficient (Relevance)

Total Flow 0.000

Number of Transactions 0.000

Mean Transaction Value 0.000

Mean Node Indegree 0.07293

Median Node Indegree 0.05761

Median Node Outdegree 0.16487

Top Nodes Passthrough 0.000

Top Nodes Closeness Centrality 0.02185

Number of New Addresses 0.00001

Number of New Transactions 0.000

Previous Price 0.68273

We observe the relative significance of previous price on future prices, as is consistent with

the literature.

35

Table 5.10: Normalized coefficients for delta price regression — Ridge

Feature Coefficient (Relevance)

Total Flow 0.000

Number of Transactions 0.00001

Mean Transaction Value 0.000

Mean Node Indegree -0.30573

Median Node Indegree -0.09442

Median Node Outdegree -0.42885

Top Nodes Passthrough 0.000

Top Nodes Closeness Centrality -0.31746

Number of New Addresses -0.00003

Number of New Transactions 0.000

Previous Price 0.00137

Previous Price Delta 2.14511

These models as a whole did not successfuly predict future prices, so the coefficients aren’t

of significance.

36

Table 5.11: Normalized coefficients for price regression without price feature — Lasso

Feature Coefficient (Relevance)

Total Flow 0.000

Number of Transactions 0.50583

Mean Transaction Value 0.000

Mean Node Indegree 0.07293

Median Node Indegree 0.05761

Median Node Outdegree 0.16487

Top Nodes Passthrough 0.000

Top Nodes Closeness Centrality 0.02185

Number of New Addresses 0.27467

Number of New Transactions 0.21950

After removing previous price from our feature, we observe that certain network character-

istics begin to take on significance.

37

5.5 Classification

Our results from a collection of classification models are shown below. We print accuracy

and F-1, then plot the ROC curve for all models. For each model, we display the F-1 scores

achieved by toggling the hyperparameter h, which represents the number of hours of prior

data used as features to the model. We then plot the ROC curves obtained from the models

with an h = 1. For all other hyperparameters, we defer to the standard SKLearn default

values.

Table 5.12: Classification and F-1 Scores for various h-values:

Classification h = 1 h = 6 h = 12 h = 24

Common Value Baseline 0.0 0.0 0.0 0.0

Probability Baseline 48.04 48.29 48.82 48.27

Previous Delta Baseline 48.3 48.3 48.3 48.3

Logistic Regression 64.02 39.29 41.36 45.11

Support Vector 53.81 49.20 43.17 40.36

Gradient Boost 46.49 50.99 50.20 45.98

K-Neighbors 49.39 47.45 49.44 47.26

Linear Discriminant Analysis 51.14 52.06 49.31 40.40

Random Forest 46.26 43.56 44.04 31.68

Perceptron 0.0 0.04 0.29 64.99

Outperforming values are italicized, and outperforming values that beat a random baseline

(50%) are bolded.

38

Table 5.13: Classification and Accuracy/Precision/Recall Scores for h = 1:

Classification Accuracy Precision Recall

Common Value Baseline 51.09 0.0 0.0

Probability Baseline 49.79 47.76 48.64

Previous Delta Baseline 45.09 43.82 43.86

Logistic Regression 49.90 91.15 49.34

Support Vector 55.42 53.09 54.54

Gradient Boost 56.00 39.23 57.32

K-Neighbors 50.31 49.60 49.21

Linear Discriminant Analysis 55.16 47.97 54.74

Random Forest 55.53 37.95 56.78

Perceptron 51.09 0.00 0.00

Outperforming values are italicized, and outperforming values that beat a random baseline

(50%) are bolded. Logistic regression performs very well, as well as SVM and LDA.

5.6 Feature Analysis for Classification Models

We also display the coefficients for the relevant models (i.e. ones that assign coefficients to

features) below. Because we use a SVM with a non-linear kernel and K-Neighbors classifi-

cation does not implement a coefficient-based system, we ignore these two models below.

39

Table 5.14: Classification model coefficients

Feature LR GB LDA RF NN

Total Flow -0.0013 0.049 0.0 0.038 0.366

Number of transactions 0.0 0.085 0.0 0.028 0.0

Mean transaction value -0.0047 0.078 0.0 0.072 -0.0070

Mean node in-degree 0.0 0.154 0.166 0.059 0.0

Median node in-degree 0.0 0.0074 -0.028 0.0036 0.0

Median node out-degree 0.0 0.0082 -0.069 0.018 0.0

Total passthrough (top 3 nodes) 1.00 0.050 0.0 0.044 0.64

Closeness centrality (top 3 nodes) 0.0 0.045 -0.03 0.034 0.0

Number of new addresses 0.0 0.068 0.0 0.023 0.0

Number of new transactions 0.0 0.090 0.0 0.037 0.0

Previous price 0.0 0.11 0.00014 0.096 0.0

Previous delta 0.0 0.25 0.91 0.348 0.0

Previous delta sign 0.0 3.9−5 0.049 0.195 0.0

We observe that, across the board, the activity patterns of the top transactors, as well as the

mean node in-degree, hold predictive value.

40

Figure 5.4: ROC curve for assorted classification models

We observe that curves that lie to the left/above our baseline predictors represent improve-

ments. As with the scores, logistic regression, SVM, and LDA all perform well.

41

CHAPTER 6

DISCUSSION

We proceed with our discussion systematically, exploring results from each modeling task

separately.

The task of regressing raw prices on an assortment of network features proved generally

unsuccessful with respect to outperforming the baseline estimates, a fact we can largely at-

tribute to the high predictive power of a previous hour’s price in predicting the opening price

for the next hour. Indeed, the MSE and MAD of the estimates affirmed this, as shown by the

very small difference in MSE (sans normalization) found across the test set, whether or not

we added network features. For a 2.5-month hourly dataset, the predicted price on average

(taking the most successful model, the ridge-regularized linear regression) only missed the

mark by 1.23 Wei, a successful error-minimizing prediction.

To figure out precisely how predictive previous price data is when compared against net-

work features (for the task of predicting raw prices), we need only look at Section 5.3, where

we perform the same regression having eliminated previous price data as a feature. Indeed,

we see that the MSE of the models shoots up significantly, only beating the baseline (in the

best case) by less than 10% (of MSE). Further, the MAD, in all cases, does worse than the

baseline mean regression. Given these results, we can reasonably conclude that there is little

predictive information available from the constructed networks when exploring raw prices.

When looking at Figure 5.9, which decomposes the strength of each feature by displaying

the associated coefficients, we see that previous price has a significantly higher normalized

coefficient, accounting for the majority of the predictive information. We would be remiss

to ignore the presence (albeit weak) of the coefficient for mean node out-degree, which may

work in tandem with previous price and account for the marginal improvement to price base-

line predictions. When exploring coefficients for the regression without previous price (Table

5.11), we see that network features begin to take on significance, with coefficient increases

42

seen across the feature set (notably number of transactions and new participants). The pos-

itive relationship between higher network metrics and upward price movement checks out

with our expectations of increased trading activity relating to price ascent. We speculate

that, without previous prices as a feature, network features take on more significance pri-

marily using the transaction value and the metrics that compare graphs across hours. If this

is the case, there may be some predictive value in quantifying the impact of new entrants to

the transactions space.

While a fair bit of trading activity is focused around the estimation of prices, changes

in price often hold much more significance. Indeed, even if the error is a fraction of a

cent off, predicting price in the wrong direction could have significant implications in terms

of buying/selling product. For this reason, we place heavier emphasis on understanding

hour-to-hour price movement, a task whose two approaches, regression and classification, we

analyze now.

Predicting price changes proved to be a much more interesting task, particularly with

respect to the importance of previous hour data. Firstly, because our price dataset was

at the hourly level, there was only so much granularity available with respect to compare

price information across hours (particularly when Ether trades at the sub-second level). In-

stead of using previous prices as a baseline, we instead looked at the predictive strength

of simply taking the previous hour’s delta, a method that reflects the fact that directional

price movements often occur together and last often many hours (“spikes” or “free-falls”).

Interestingly enough, this pattern was not reflected in the data, and simply taking the mean

delta across the training dataset proved more predictive than replicating the previous hour’s

delta (perhaps largely due to the lower variance and corresponding error seen here). This

regression showed a slight sign of the predictive power of network metrics, as indicated by the

lower MSE/norm-MSE/MAD/norm-MAD for the ridge and elastic net regression models,

which implemented a collection of features. When looking at Table 5.10 — the normalized

coefficients for the price delta regression — we notice that more features begin to take on

43

significance, but that, interestingly, an upward price delta prediction is negatively related

to increased mean and median node degrees, as well as top node closeness centrality. The

best guess we have for an explanation is that increased participation (centrality) from the

top players (a mechanism which is also reflected in the transaction volume of smaller players

and, accordingly, their node degrees) may be indicative of rapid selloff movement, which is

interpreted by the market as indicative of imminent price fall. This said, these results are

generally weak and heavily dominated by the previous price delta.

When exploring the visualized data, we notice that all of the models cling tightly to a

zero value for delta, indicating that movement-magnitude wise it proves much stronger to

predict no movement than to predict movement and risk capturing the wrong direction. It

is for this reason that the ability to classify movement more definitively (rather than just

deferring to an expectation of zero delta) is all the more interesting.

This classification task, as anticipated, proved much more informative. With respect to

the hyperparameter test, barring a few exceptions (gradient boost and LDA, notably) we

observe that an increase in the number of hours of past data explored adds little (potentially

negative) predictive value, and therefore we largely focus our analysis on the case of h = 1.

We further make this judgment call because the magnitude of baseline outperformance seen

in non h = 1 cases is limited. Particularly when we perform a cost-benefit analysis of time

and computation space versus performance success, we largely favor the h = 1 case. It is

worth pointing out that with an increase in the time window of the data, the perceptron

significantly outperforms all other classification models.

Exploring our results, we find significant improvements in the classification task using

the logistic regression, support vector machine, and linear discriminant analysis approaches,

each of which makes use of previous hour prices and an assortment of network features. Most

notably, the logistic regression model is able to classify with an F-1 of 64.02, a significant im-

provement to the probability baseline of 48.04 (and to the best baseline, a random up/down

prediction, with a score of 50.00). With respect to accuracy, support vector, gradient boost,

44

and LDA classification were also able to achieve material outperformance of the common

value baseline, in the best case (gradient boost) beating the baseline by 5%. In terms of

precision, the logistic regression model performed very well, achieving an impressive preci-

sion of 91.15 (alongside high Accuracy and Recall scores, it is worth noting) — this finding

is perhaps the most significant from the lens of predicted upward movements being correct.

Indeed, for a market participant looking for a good time to buy Ether, the high precision

rating can mean a confident approach to predicting when trading prices will go up. With

respect to recall, a handful of models achieved very good results, in the best case (the gra-

dient boost algorithm) achieving a recall score of 57.32. This finding is similarly notable,

particularly from the angle of correctly recognizing when prices will move up.

When exploring the coefficients, we observe that different classification models take signifi-

cantly different approaches to placing weights on our features. Across the board, however,

total passthrough of the top 3 nodes seems to be indicative of price upward movement, in

accordance with similar findings from Guo et al. [2019].

This research is very promising in terms of the significance of transaction pattern metrics

on prediction and understanding of price movement, particularly in the context of cryp-

tocurrency, which are known for rapid transaction movement and high-speed ownership

transfers. All things considered, however, the significance of previous price demonstrated

through regressions, as well as the generally bounded nature of the ability to outperform

baseline predictions, seems to indicate that the movement of Ethereum prices may also be

significantly tied to macroeconomic/time-specific factors, a fact which may nonetheless be

connected to transaction patterns.

45

6.1 Limitations + Further Research

There are a few key limitations to this approach, in terms of the structure of data, as

well as the feature set we use to model. Due to the mismatch in available timeframes

between the transactions dataset (per minute or per hour) and the price dataset (per hour),

we only analyze price movement on a per-hour basis. Cryptocurrencies, like most traded

financial products, are subject to very rapid price movements and fluctuations, and as a

result, simply looking at hourly fluctuations obscures a lot of available information in more

real-time contexts. In these cases, we expect previous time-window prices to be equally, if not

more, predictive, but nonetheless immediate transaction behaviors may be very indicative

of price movements in the immediate aftermath, especially when considering such market

events as sell-offs or short squeezes. Indeed, when looking at figure 4.3, we see that each hour

is characterized by semi-significant price movements. To the extent that collected data can

help narrow this price movement down, the robustness of predictions can be improved. With

respect to feature selection, this research is limited in the sense that we ignore the impact of

features beyond the narrow scope of transactions data, failing to acknowledge the influence

of such macroeconomic factors as world events, cryptocurrency and cryptocurrency exchange

news, and the ability to mine new cryptocurrency units. Particularly when examining the

interaction between such features and the evolution of our transactions network, there is

likely room for material improvements to classification model performance.

A final limitation has to do with the choice, as discussed previously, of selecting the

top 3 performing nodes for our top-participants metrics. Indeed, this is in accordance with

the work of Greaves and Au [2015], but given the way transaction value is distributed

across graph participants (the fact that a large majority is being transacted by the top

participants, with very little involvement from smaller players), a more informative approach

may be to take the subset of participants that constitute some k percentage of transactions

and utilize their information. Further, this k could be a hyperparameter, tuned on even a

smaller timeframe, to maximize the predictive value extracted from the network asymmetry.

46

These limitations frame the discussion in terms of further research, particularly work that

focuses on improving the granularity of data and set of interacting input features. This study

ends prior to the start of the COVID-19 pandemic, attempting to understand the patterns of

transaction data/cryptocurrency prices during normal times. When tracking the movement

of financial markets, and, notably, cryptocurrency prices today, we see that times of crisis

introduce a whole new set of circumstances to grapple with when predicting price movements.

Informative further research could isolate predictive models to various pre/during/post-crisis

time frames, decomposing the relevance of input features across such time horizons. Finally,

in the same way this research builds on the work of Greaves and Au [2015] with respect to

analyzing Ethereum, there is lots of work to be done across the cryptocurrency sphere, and

similar analyses for sibling cryptocurrencies will likely prove equally, if not more, insightful.

6.2 Conclusion

As the cryptocurrency landscape evolves, each axis with which we can conduct analysis adds

a dimension of clarity to what remains a complex and unexplored landscape.

While this study was necessarily limited in the scope of data analyzed and used for

modeling, we were able to find interesting patterns in terms of transaction network evolution

and significant predictability of price up/down movement from network metrics. Already,

these models outperform baseline predictions in material ways, and it is our hope that the

task of sourcing new price-prediction-features (particularly as such network metrics, where

helpful, diminish in their usefulness) remains of paramount importance to those interested

in making or understanding successful trading decisions.

47

48

REFERENCES

Erdinc Akyildirim, Ahmet Goncu, and Ahmet Sensoy. Prediction of cryptocurrency returns
using machine learning. Annals of Operation Research, 297:3–36, 2021.

Laura Alessandretti, Abeer ElBahrawy, Luca Maria Aiello, and Andrea Baronchelli. Antic-
ipating cryptocurrency prices using machine learning. Complexity, 2018:1–16, nov 2018.

Faheem Aslam, Yasir Tariq Mohmand, Paulo Ferreira, Bilal Ahmed Memon, Maaz Khan,
and Mrestyal Khan. Network analysis of global stock markets at the beginning of the
coronavirus disease (covid-19) outbreak. Borsa Istanbul Review, 20:49–61, 2020.

Kydros Dimitrios and Oumbailis Vasileios. A network analysis of the greek stock market.
Procedia Economics and Finance, 33:340–349, 2015.

Alex Greaves and Benjamin Au. Using the bitcoin transaction graph to predict the price of
bitcoin. 2015.

Dongchao Guo, Jiaqing Dong, and Kai Wangc. Graph structure and statistical properties of
ethereum transaction relationships. Information Sciences, 492:58–71, 2019.

Gregory Leibon, Scott Pauls, Daniel Rockmore, and Robert Savell. Topological structures
in the equities market network. Proceedings of the National Academy of Sciences, 105(52):
20589–20594, 2008.

Sidra Mehtab, Jaydip Sen, and Abhishek Dutta. Stock price prediction using machine
learning and LSTM-based deep learning models. pages 88–106, 2021.

Amir Pasha Motamed and Behnam Bahrak. Quantitative analysis of cryptocurrencies trans-
action graph. 2019.

Philip Nadler and Yike Guo. The fair value of a token: How do markets price cryptocurren-
cies? Research in International Business and Finance, 52, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Shunrong Shen, Haomiao Jiang, and Tongda Zhang. Stock market forecasting using machine
learning algorithms. 2012.

Jiajing Wu, Jieli Liu, Yijing Zhao, and Zibin Zheng. Analysis of cryptocurrency transactions
from a network perspective: An overview. Journal of Network and Computer Applications,
190, 2021.

Tony Yiu. Understanding random forest: How the algorithm works and why it is so effective.
2019.

49

APPENDIX A

FEATURE PLOTS

A.1 Total Flow

A.1.1 Timeframe: day

A.1.2 Timeframe: month

50

A.2 Mean transaction value

A.2.1 Timeframe: day

A.2.2 Timeframe: month

51

A.3 Total passthrough - top 3 nodes

A.3.1 Timeframe: day

A.3.2 Timeframe: month

52

A.4 Closeness centrality - top 3 nodes

A.4.1 Timeframe: day

A.4.2 Timeframe: month

53

A.5 Number of new addresses

A.5.1 Timeframe: day

A.5.2 Timeframe: month

54

A.6 Number of new address transactions

A.6.1 Timeframe: day

A.6.2 Timeframe: month

55

APPENDIX B

RESIDUAL FOR LINEAR REGRESSION PREDICTION —

RIDGE

We observe a residual plot where the y-values are clustered around zero, evenly distributed.

56

APPENDIX C

PRICE REGRESSION WITH LOGGED FEATURE VALUES

Table C.1: Mean-Squared Error for Price Regression with logged features:

Regression MSE

Baseline 724.1372137537435

Previous Price 1.2323796663190816

Lasso 45.5261465250828

Ridge 38.91704880229184

Elastic 532.6538658068824

We observe that taking the log of our feature values actually diminishes the performance with

respect to MSE.

Table C.2: Mean Absolute Deviations for Price Regressions with logged features:

Regression MAD

Baseline 20.3040725999777

Previous Price 0.7224921793534929

Lasso 6.467496081118304

Ridge 5.611526362134112

Elastic 18.331372290426255

With respect to MAD, we see that logging our features once again diminishes model perfor-

mance.

57

APPENDIX D

TRADING SIMULATION USING SVM CLASSIFICATIONS

The final task implemented used the results from our SVM classifier, the best overall per-

former, and took a simple approach to a trading simulation. The rules were as follows (and

assume that at any point, buying/selling is possible — necessarily abstracted).

1. Retrieve SVM-predicted price up/down movement

2. If the price is predicted to move up, buy 1 unit and sell in the next time period

3. If the price is predicted to move down, sell 1 unit and buy back in the next time period

balance = 0

for i in range(len (svc)): iterate through classified predictions

movement = svc[i]

if movement == 1: up movement

balance += (prices[i+1] - prices[i])

elif movement == 0: down movement

balance += (prices[i] - prices[i+1])

Across our 3-month test period, following this simple algorithm yielded a final balance of

$176.09, implying the marginal, yet notable, financial gains of such research. Had our

algorithm correctly predicted movement every time, the profit would have been $1437.35.

A lot more work is needed to fully capture this difference, but nonetheless our model holds

some notable predictive significance with real-world relevance.

58

59

	Machine Learning and the Network Analysis of Ethereum Trading Data
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Related Work
	Financial Transaction Networks
	Cryptocurrency Transaction Networks
	Machine learning and Product Prices
	Machine learning and Cryptocurrency Prices

	Methods
	Data Collection
	Transactions Data
	Ethereum Price Data
	Data Timeframe

	Building Transactions Graph
	Network features/metrics
	Metrics for all nodes
	Metrics for top-ranking participants
	Comparative cross-hour metrics

	Models - Regression
	Baseline
	Previous hour Price
	Linear Regression

	Regression without Previous Price Features
	Regression with Price Deltas
	Evaluation Metrics - Feature Relevance
	Evaluation Metrics - Regression
	MSE
	Normalized MSE
	MAD
	Normalized MAD

	Models - Classification
	Baseline
	Probability-Based Baseline
	Previous Price Movement Baseline
	Logistic Regression-based Classification
	Support Vector Classification
	Gradient Boosting Classification
	K-Neighbors Classification
	Linear Discriminant Analysis Classification
	Random Forest Classification
	Perceptron/Neural Network Classification

	Evaluation Metrics - Classification
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F-1 Score
	ROC Curve

	Data
	Number of transactions
	Ethereum Price
	Ethereum Price Movement

	Results
	Price Regression
	Price Delta Regression
	Price Regression without Previous Price
	Feature Analysis for Regression Models
	Classification
	Feature Analysis for Classification Models

	Discussion
	Limitations + Further Research
	Conclusion

	References
	Feature Plots
	Total Flow
	Timeframe: day
	Timeframe: month

	Mean transaction value
	Timeframe: day
	Timeframe: month

	Total passthrough - top 3 nodes
	Timeframe: day
	Timeframe: month

	Closeness centrality - top 3 nodes
	Timeframe: day
	Timeframe: month

	Number of new addresses
	Timeframe: day
	Timeframe: month

	Number of new address transactions
	Timeframe: day
	Timeframe: month

	Residual for Linear regression prediction — Ridge
	Price Regression with logged feature values
	Trading simulation using SVM classifications

