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Abstract

Mobile health (mHealth) apps and devices are increasingly popular for health research,

clinical treatment and personal wellness, as they offer the ability to continuously monitor

aspects of individuals’ health as they go about their everyday activities. Many believe that

combining the data produced by these mHealth apps and devices may give healthcare-related

service providers and researchers a more holistic view of an individual’s health, increase

the quality of service, and reduce operating costs. For such mHealth data to be considered

useful though, data consumers need to be assured that the authenticity and the integrity of

the data has remained intact—especially for data that may have been created through a series

of aggregations and transformations on many input data sets. In other words, information

provenance should be one of the main focuses for any system that wishes to facilitate the

sharing of sensitive mHealth data. Creating such a trusted and secure data sharing ecosystem

for mHealth apps and devices is difficult, however, as they are implemented with different

technologies and managed by different organizations. Furthermore, many mHealth devices

use ultra-low-power micro-controllers, which lack the kinds of sophisticated Memory

Management Units (MMUs) required to sufficiently isolate sensitive application code and

data.

In this thesis, we present an end-to-end solution for providing information provenance

for mHealth data, which begins by securing mHealth data at its source: the mHealth device.
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To this end, we devise a memory-isolation method that combines compiler-inserted code

and Memory Protection Unit (MPU) hardware to protect application code and data on

ultra-low-power micro-controllers. Then we address the security of mHealth data outside

of the source (e.g., data that has been uploaded to smartphone or remote-server) with our

health-data system, Amanuensis, which uses Blockchain and Trusted Execution Environment

(TEE) technologies to provide confidential, yet verifiable, data storage and computation

for mHealth data. Finally, we look at identity privacy and data freshness issues introduced

by the use of blockchain and TEEs. Namely, we present a privacy-preserving solution for

blockchain transactions, and a freshness solution for data access-control lists retrieved from

the blockchain.
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1
Introduction

Mobile health (mHealth) apps and devices are increasingly popular for health research,

clinical treatment, and personal wellness, as they offer the ability to continuously monitor

health conditions outside of the traditional healthcare setting. Indeed, mHealth technologies

have unlocked a treasure trove of previously unavailable data that many believe will allow

healthcare-related service providers and researchers a more holistic view of an individual’s

health [6, 55, 66, 82, 86, 96]. In turn, providers will be able to more quickly and efficiently

identify health issues and prescribe treatments; thereby increasing the quality of service

while simultaneously reducing operating costs.

For this belief to become a reality there must first exist a data-management system

1



with which providers and individuals can securely and privately share their health data.

Creating such a system is not without its challenges, however, as mHealth technologies

vary and the data they produce may fall under the purview of different parties (e.g., device

manufacturers, healthcare providers, private individuals). Given that mHealth data may

originate from a multitude of sources that cross organizational and technological boundaries,

data provenance – the ability to trace the origin of data – is paramount in designing an

effective mHealth data-management system. Otherwise, without the ability to verify the

authenticity and integrity of data, consumers may not find said data useful. The sensitive

nature of health data poses a significant barrier to providing data provenance, however.

Health data often contains identifying personal information that must be protected by law

(e.g., HIPAA, GDPR), but in many cases it is necessary to reveal this information to prove

the validity and authenticity of said data. Furthermore, many mHealth technologies use ultra-

low-power micro-controllers (MCUs) to meet the energy and size requirements of always-on

mobile devices, but these MCUs lack the kinds of sophisticated Memory Management Units

(MMUs) required to sufficiently isolate sensitive application code and data. So, how does

one provide provenance for sensitive data produced by insecure devices that are managed by

multiple entities while still maintaining data confidentiality and privacy?

Blockchain technology may play a key part in answering this question, because its

distributed trust model, transparency, and immutability offer secure and verifiable data trails

amidst semi-trusted parties [3, 7, 30, 75, 84, 88]. Health-data systems can use a blockchain

to record metadata (e.g., a hash) for health data stored in traditional off-chain databases,

record who has access to what data, and record instances of data access. The blockchain

ensures that the hash and access records are immutable and visible to all participants so that

they can verify the validity and authenticity of health data that is shared with them. While

data confidentiality is maintained (since no actual health data is stored on the blockchain),

we have only achieved a basic level of data provenance; we can track and verify the

movement of health data but not what happens to that data after it has been shared. This
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kind of data provenance is not sufficient for complex data ecosystems, where data may

be aggregated and transformed to create new data, or information [94]. We use the term

information provenance to refer to the ability to trace the origin of information that may

have been derived from a series of aggregations and transformations on many input and

intermediary data sets. Additionally, while the distributed nature of the blockchain ensures

that transactions inside of the network are correctly executed, we still need a mechanism

to enforce and verify actions that take place outside of the blockchain network if we are to

achieve information provenance.

One of the growing sub-fields of blockchain research is that of confidentiality-preserving

smart contracts, which leverage techniques like secure multi-party computing, zero-knowledge

proofs, and Trusted Execution Environment (TEE) hardware in combination with blockchain

technology to create verifiable data trails for sensitive computations performed off-chain.

Previously proposed blockchain-based health-data systems are capable of providing data

provenance, but with confidentiality-preserving smart contract techniques we further their

work to achieve information provenance.

1.1 Contributions

In this thesis, we present solutions for security and privacy issues related to the collection,

storage, and dissemination of sensitive mobile health (mHealth) data. Our initial work

(Chapter 2) focuses on securing mHealth data at the source (i.e., on the mobile health device

itself). To that end, we devise a memory management technique for securing sensitive

mHealth applications and their data. Our memory isolation technique relies on simple

Memory Protection Units (MPUs) that are widely available in commercial ultra-low-power

microcontrollers (the types of MCUs that are often used in mobile health devices today). We

implement and evaluate our solution on the Amulet [42], a custom hardware and software

platform. We find that with a combination of hardware protection (i.e., MPU enforced

3



memory access rules) and software memory access checks (injected at compile-time), we are

able to completely isolate an application’s code and memory from other programs running

on the same mHealth device with a minimal impact on the device’s battery life (less than

0.5% impact).

Next, we shift our focus from the “edge” of the mHealth ecosystem inwards and investi-

gate solutions for securing mHealth data after it has left the mHealth device (Chapter 3). This

investigation leads us to the creation of Amanuensis [38], a concept for a secure, integrated

health-data system that leverages Blockchain and Trusted Execution Environment (TEE)

technologies to achieve information provenance for mHealth data.1 By using a blockchain

to record and enforce data-access policies we removed the need to trust a single entity with

gate-keeping the health data. Instead, participating organizations form a consortium to share

responsibility for verifying data integrity and enforcing access policies for data stored in

private data silos. We require that data access and computation take place inside of TEEs,

which preserve data confidentiality and provide verifiable attestations that are stored on the

blockchain to support information provenance. We also evaluate a prototype implementation

of our health-data system on the VeChain Thor blockchain, which we show to be capable of

supporting up to 14,256,000 mHealth data sources at $0.47 per data source per day.

Lastly, we investigate identity privacy and data freshness issues introduced by the use of

blockchain and TEEs (Chapter 4). Namely, we present solutions for increasing the privacy

of users transacting with the blockchain, and for verifying the authenticity and freshness

of access-control lists retrieved from the blockchain. The issue of identity privacy stems

from the fact that users on the blockchain are identified via pseudonyms (i.e., hexadecimal

character strings), but a naive use of this mechanism leaves room for information leak-

age. For example, re-using the same pseudonym across transactions (and with different

1The old term amanuensis once referred to someone who is an “intimately trusted servant,” a person
responsible for copying what another dictates or for signing documents on behalf of another [27]. In today’s
world, this role is often filled by computers – but today’s distributed data systems can not yet be trusted with
information provenance. Our system, like a traditional amanuensis, creates distributed copies of records that
allow patients and providers to verify how health data is being used and by whom, and to verify the origins of
information derived from data.
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users/organizations) allows an adversary to identify a user’s on-chain relationships and

behaviors. By requiring users to submit transactions through one of the many TEE servers in

Amanuensis, however, we can re-write the transactions so that they appear to originate from

the TEE server. Thus, user identities are hidden behind these TEEs, or “enclave proxies”,

and adversaries with access to the blockchain are no longer able to discern meaningful

on-chain relationships.

With regards to data freshness, TEEs can attest to the integrity of data and code inside

of the trusted boundary, but they cannot make any guarantees about data received from the

outside (e.g., an access control list retrieved from the blockchain database). Furthermore,

delivery of messages from outside of the trusted boundary may be arbitrarily delayed by a

buggy or malicious operating system (OS). This arbitrary delay (combined with the fact that

TEEs do not have access to a trustworthy wall-clock time source) means that TEEs cannot

verify the freshness of data received from the blockchain (e.g., that an access control list

is the most recent version). By combining NOVOMODO [76], a verification method for

digital certificates, with a trusted third-party time service (e.g., NTS-over-TLS), we are able

to verify the authenticity and freshness of access-control lists retrieved from the blockchain.

Thus, adversaries cannot feed TEEs stale access-control lists or arbitrarily delay delivery of

valid lists to gain access to data outside of their allowed time period.

In addition to our work on identity privacy and data freshness, we present an investigation,

implementation, and evaluation of our information provenance model under the Intel SGX

TEE platform. Specifically, we present a protocol for irrevocably tying confidential programs

and their outputs (i.e., information) to Intel SGX attestations for the purpose of information

provenance. Given that data produced by mHealth devices and applications are likely

to be used with machine-learning models, we train several real-world machine-learning

applications to determine the run-time overhead of confidentiality and provenance. We find

that each program exhibits a slowdown between 1.1-2.8x when run inside of the Intel SGX

environment, and took an average of 59 milliseconds to verify the provenance of input and
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output data sets.
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2
Securing Application Code and Data on

Ultra-Low-Power Microcontrollers

Information provenance – the ability to trace the origin of information that may have been

derived from a series of aggregations and transformations on many input and intermediary

data sets – is dependant on a “root of provenance” with which proofs of authenticity and

integrity can be built. For mHealth data, this “root of provenance” is the mHealth device;

as the creator, the mHealth device must guarantee the authenticity and integrity of the data

it produces. Otherwise, any data derived from these original mHealth data sets cannot be

proved to be genuine.
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In this chapter, we introduce our memory-management scheme that provides data secu-

rity and confidentiality for mHealth applications running on multi-tenant ultra-low-power

mHealth devices (i.e., devices that support the concurrent execution of multiple applications).

Note that our memory-management solution provides data integrity and confidentiality, but

not authenticity. It remains the responsibility of mHealth application developers to use

cryptographic techniques (e.g., digital signatures) to ensure the authenticity of data produced

by mHealth devices. By providing developers with confidentiality and integrity, however,

our memory-management technique prevents the modification or disclosure of sensitive

secrets (e.g., keys) used for data authentication by other buggy or malicious software running

on the mHealth device. Thus, by securing the memory of mHealth devices, we have given

developers the ability to create a “root of provenance” for information provenance.

2.1 Contributions

Our work focuses on a fundamental security property: memory isolation, which ensures that

no application can read, write, or execute memory locations outside its own allocated region,

or call functions outside a designated system API. To this end, we present a memory isola-

tion technique, which leverages compiler inserted code and a low-sophistication Memory

Protection Unit (MPU) found in many microcontrollers, to achieve better performance than

software-only memory isolation counterparts. We use the open-source Amulet platform [42]

to implement and evaluate the following isolation methods: (1) compiler-enforced language

limitations (no pointers, no recursion), (2) compiler-inserted run-time memory isolation

(address-space bounds verification), and (3) MPU-supported memory isolation (hardware

enforced failure). The first option is the approach taken by the Amulet team, which limits

the programmer to a subset of C. Pointers are disallowed, and the compiler inserts code

for run-time bounds-checking on arrays. In the second approach, we modify the Amulet

implementation to allow for pointers and recursion, but our custom compiler inserts code to
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validate each pointer dereference to ensure the application stays within its bounds. In the

third approach we implement a new combination, in which the OS and compiler coordinate

the dynamic assignment of the MPU’s limited functionality – and limited compiler-inserted

pointer checking – to enable the desired isolation. In summary, we make the following

contributions:

1. An analysis of design considerations, including security issues, that enable multiple

applications on ultra-low-power wearables, with minimal burden on the programmer

or the user;

2. A memory-isolation technique, using the limited-function hardware memory protec-

tion unit (MPU) found in commodity ultra-low-power microcontrollers, combined

with compile-time analysis of application code, to sandbox application code and

memory;

3. A prototype implementation as a refinement of the open-source Amulet platform [42];

4. An evaluation that compares the performance of the Amulet platform’s limited

language-based memory-isolation mechanism, a full-featured software-only approach,

and a full-featured MPU-assisted mechanism.

2.2 Background

Some mHealth devices are capable of running a variety of apps, including third-party apps

installed by the user. The battery life for multi-application mHealth devices, however, tends

to be far shorter than their single-purpose (application) counterparts. To balance these trade-

offs, some mHealth devices (such as the Amulet [42]) seek to achieve the battery life of

single purpose devices, while still maintaining the capability to run multiple third-party apps,

by using ultra-low-power microcontrollers (MCUs). One of the main challenges with using

ultra-low-power MCUs in multi-application contexts is that they lack the hardware-based

memory-protection mechanisms – such as Memory Management Units (MMU) – needed to
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ensure that applications cannot interfere with each other’s sensitive code and data. Instead of

an MMU, many ultra-low-power MCUs provide a Memory Protection Unit (MPU), which

only allows the user to configure read/write/execute permissions for a few distinct regions of

memory. The lack of adequate memory protection mechanisms makes it difficult to provide

long battery life and strong security properties that allow multiple third-party apps to coexist

on ultra-low-power mHealth devices. We begin with an overview of the Amulet platform on

top of which our implementation is built. Then we detail the capabilities, and shortcomings,

of MPUs and their effects on memory isolation.

2.2.1 Amulet

We apply our memory-isolation technique to the latest open-source build of Amulet1,

which implements memory isolation through compiler-enforced language limitations (no

pointers, no recursion, no goto statements and no inline assembly). The Amulet system

allows an Amulet user to select a customized mix of applications to run on her Amulet

wristband, from a suite of applications developed independently by separate app developers.

The Amulet system consists of three core parts – AmuletOS, Amulet Runtime, and the

Amulet Firmware Toolchain (AFT). AmuletOS provides the core system services and an

event-based scheduler that drives the apps’ state machines, delivering events by calling the

appropriate event-handler function with parameters representing the details of the event.

Amulet Runtime provides a state-machine environment in which all applications run. The

Amulet Firmware Toolchain (AFT) [42], analyzes, transforms, merges, and compiles the

user’s desired applications with the AmuletOS to construct a firmware image for installation

on the user’s Amulet device.
1The latest open-source release of the Amulet platform can be found at https://github.com/

AmuletGroup/amulet-project
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2.2.2 Memory Protection Units (MPUs)

Many ultra-low-power MCUs are equipped with a basic Memory Protection Unit, but they

have some or all of the following shortcomings: (1) they do not provide enough memory

distinct regions to sandbox each application; (2) they do not protect certain segments of

memory (e.g., hardware registers, RAM); and (3) they have arcane protection boundary

rules, because they depend on opaque hardware implementations.

Amulet devices use a TI MSP430FR5969 MCU [49], which does not have support for

virtualizing memory; meaning that all applications (and the OS) running on the MCU share

a single address space. To protect this address space, the MSP430FR5969 provides an

MPU that is capable of dividing the memory space into three distinct regions2, each with

their own set of read, write, and execute permissions. Unfortunately, these MPU-protected

memory regions only apply to main memory (addresses 0x4400 and above), and not to

SRAM, peripheral registers, or the interrupt vector table. Furthermore, there is no notion of

kernel and user space; all code running on the MSP430FR5969 is allowed to modify the

MPU settings regardless of whether it is system code or application code.

2.3 Security Model

Maintaining data confidentiality and integrity is paramount for mHealth devices, as the data

they produce is highly sensitive. Thus, while we wish to remove some of the restrictions and

burdens placed on developers by existing memory-isolation techniques, we need to ensure

that we do so while still maintaining strong security guarantees for applications running on

these ultra-low-power mHealth devices. Below we outline the adversary model and security

assumptions that our memory-isolation technique is designed against.

2Technically, the MSP430FR5969 supports four distinct memory regions, but the fourth region is bounded
to the InfoMem segment whose bounds do not move.
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2.3.1 Adversary Model

Given that our focus is on memory-isolation for multi-application mHealth devices, we

consider an adversarial application that wishes to gain access to the private health data

and/or code of another application running on the same mHealth device for the purpose

of (1) learning something sensitive about one or more individual(s), or (2) modifying private

health data to pass it off as authentic. We assume that an adversarial application may try to

gain access to memory outside of their own context through one of the following methods:

1. By using a specific pointer to access a disallowed memory location.

2. By sending a specific pointer to a system function, causing the system function to

indirectly access a disallowed memory location.

3. By writing to the stack irresponsibly, causing a stack overflow, and the potential for

harm.

2.3.2 Security Assumptions

Our aim for memory isolation is to prevent application-based attacks on code and data. In

other words, we consider attacks carried out via hardware our malicious OS code to be

out-of-scope. We assume the following about the mHealth device platform and OS:

1. the hardware MPU operates correctly, and enforces the memory region boundaries

and permissions that we set

2. our OS (AmuletOS) is unmodified and correctly loaded onto the target device along

with the applications

3. our compile-time tool used to rewrite applications is unmodified and operates correctly
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2.4 Memory Isolation

Typically, memory isolation is enforced via a memory-management unit (MMU), which is a

piece of hardware that translates virtual addresses into physical addresses. This abstraction

(i.e., memory virtualization) is used by operating systems to provide applications with the

illusion that they have a contiguous address space all to themselves. In reality, their code

and data is often intermingled with other applications. Since ultra-low-power MCUs do

not have MMUs the applications they run are able to directly address (and thus read or

modify) other application’s code and data. The lack of an MMU is why the designers

of Amulet chose to enforce memory-isolation via language limitations (e.g., disallowing

pointers). Our memory-isolation technique relaxes these language restrictions by changing

the way applications (and the OS) are laid out in memory, such that a limited-capability

memory protection unit (MPU) in combination with run time software checks are sufficient

for isolating applications on ultra-low-power MCUs. Below we detail our new memory

layout for the Amulet device, as well as how the MPU is configured to enforce memory

isolation.

2.4.1 Memory Map

At compile time, we use the Amulet Firmware Toolchain (AFT) to calculate the size of each

application’s code and data. With this knowledge, then AFT then lays out each application

in memory so that there are contiguous memory segments containing application code,

followed by their data, and finally followed by the application stack (Figure 2.1 details this

new layout). Recall that the MPU in the Amulet device only protects the persistent memory

(i.e., FRAM), but does not apply to the other types of memory in the MCU. Namely, the

MPU will not prevent instructions from reading or writing the peripheral registers, InfoMem,

SRAM, or interrupt vectors. For this reason, we provide each application with their own

stack in FRAM so that we may use the MPU to ensure no other application is able to read or
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modify their stack (and vice-versa).

Additionally, the MPU only allows us to subdivide the FRAM memory into three distinct

segments (each with their own r/w/x permissions). To properly isolate applications, however,

we need at least four MPU-controlled segments: app code, app data/stack, off-limits memory

below the app, and off-limits memory above the app. As such, the MSP430 MPU only has

the ability to prevent accesses above the application’s higher memory boundary but not

below its lower boundary. Thus, to prevent malicious applications from accessing memory

below their lower boundary, we use the AFT to identify unsafe memory operations at

compile-time and wrap them with run-time memory checks. In addition to adding run-time

checks for preventing memory accesses below the application’s boundary, the AFT also

inserts code for re-configuring the MPU settings and stack pointer during a context switch

(e.g., switching to AmuletOS code during a system call).

2.4.2 MPU Configuration

Use of the MPU requires a different memory mapping than in the original Amulet imple-

mentation. We leverage the SRAM for the AmuletOS stack, the low FRAM for AmuletOS

code and data, and the high FRAM for app code and data, grouped by app.3 Each app’s

code and data are separated, with its code in lower addresses than its data. The MPU has

four segments, of which we can make good use of three.4InfoMem, the first segment, is

fixed to a certain address range and its configuration can be changed any time by any code.

Furthermore, only two boundaries are adjustable: the boundary between segment 1 and 2

and the boundary between segment 2 and 3.

To allow application developers to use C pointers, we leverage previously described

MPU hardware. Consider, as an example, Application 2 in Figure 2.1. While Application 2

3If the AmuletOS is too large to fit in the low FRAM, it could span the interrupt vectors, but for simplicity
we do not show it as such in the diagram.

4MPU segment 0 is pinned to the InfoMem, which is only 512 bytes and which we currently do not use.
We anticipate using the InfoMem in future revisions, for a return-address stack that protects the return address
from stack overflow bugs and attacks.

15



is running, we configure the MPU segments as follows:

1. InfoMem (unused; no access);

2. OS, lower-memory apps, and current-running app’s code (execute-only);

3. current-running app’s data and stack (read-write only);

4. higher-memory apps (no access).

All of the app’s code is gathered in one region, all of its data and stack in another region. The

MPU configuration triggers a fault if a stray pointer references anything in higher regions

(shown as Application 3 in the figure), but the MPU cannot fully protect regions in addresses

below the application’s code segment. When Application 2 makes a call to AmuletOS, we

first reconfigure the MPU segments as follows:

1. InfoMem (unused; no access);

2. OS code (execute-only);

3. interrupt vectors and OS data (read-write only);

4. apps (read-write only).

This configuration allows the AmuletOS to run its own code and, as needed, to manipulate

data in both the app and OS regions.

It’s important to note an important design change from Amulet as it was originally

introduced. The Amulet system uses a single stack – shared by both the OS and the current

application. This approach is possible because Amulet uses a run-to-completion approach,

so there is no need to retain a stack for non-running apps. It is also possible because app code

cannot use pointers, and thus cannot read any memory outside its statically allocated global

variables, or outside its current stack frame. If we were to stick with the same single-stack

model, we would need to bzero the stack region every time we switched apps, lest the new
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app glean information from the stack tailings left behind by the prior app. We chose instead

to allocate a distinct region of memory for each app’s stack, removing this cost (and other

costs to ensure stack references remain in-bounds) at the cost of increased memory usage.

That brings us to another important design decision related to security and the application

stack. Languages such as C traditionally place a function’s return address on the stack,

and jump indirectly through that address as part of the function-return instruction. Stack

overflows in buggy or malicious code can overwrite that entry on the stack, however, causing

the function to return to a different address. We leverage the compiler to insert code to

bounds-check the return address before every function return. Furthermore, we place the top

of the app stack below the app’s data in the app’s data/stack segment, and allow the stack to

grow downward. The compiler and linker can compute the size of the app’s data region, and

estimate the maximum stack depth, to ensure the data/stack segment is large enough for the

app’s needs. If the app overflows its stack, for example by too-deep recursive calls, it will

cross an MPU boundary into an execute-only code region and trigger a fault.

2.4.3 Memory Accesses

An important role for the run-time system is to handle application faults; when the app

attempts an invalid memory access, it jumps to a FAULT function to log app-specific

information about the fault. At compile time, the AFT uses its transformation tools to

verify that the app only calls approved API functions and reads approved system global

variables, and to insert code that verifies (at run-time) every pointer dereference before it

occurs. Notice that every one of these checks is a simple comparison against a constant,

followed by a conditional branch (jump) to the fault-handling code. Because all app code is

processed by the AFT, and the app cannot inline any of its own assembly code, the resulting

code is guaranteed to check every pointer used by the app.
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2.4.4 Context Switches

The AmuletOS provides an API for applications to access utilities and system services.

We need to swap MPU configurations and change stacks on each transition, and we need

to carefully handle application-provided pointers passed through API calls to the OS.

Furthermore, because each app, and the OS, has a separate stack segment, we need to change

the stack pointer on every transition between the OS and an app. Thus, the code to adjust the

MPU configuration must also tackle the stack-switch. The compiler wraps an app’s event

handler with assembly code to initialize the app’s stack and stack pointer upon jumping to

the app code. In addition the compiler inserts assembly code to create a stack frame on the

OS stack and set the stack pointer before jumping to the API function inside the OS.

2.4.5 Amulet Firmware Toolchain (AFT)

We extend the Amulet Firmware Tool (AFT) to implement the MPU and software-only

method checks previously described. These tasks are accomplished by the AFT in a four-

phase code analysis. In the first phase, the AFT checks for any still unsupported language

features – such as inline assembly and GOTO statements. In addition, the AFT enumerates

each memory access and OS API call on an app by app basis. Examination of the application

call graph and the stack frame for each function determines the maximum stack size for

each app. In the event of recursion, the maximum stack size cannot be determined and the

AFT cannot guarantee a large enough stack to prevent overflow. During the second phase,

the MPU configuration code and the previously mentioned memory access checks (with

placeholder values for app boundaries) are injected into the code. The third phase marks

apps with memory section attributes for the linker, as well as injecting the assembly code

needed to manipulate the stack pointer. The last phase involves determining the code size

of each app, updating the linker script to place each app in high memory (as detailed in

Figure 2.1), and updating the memory access checks from phase two with the correct app

boundaries. The AFT completes by recompiling the modified code into the final firmware

18



image.

2.4.6 Memory Isolation Summary

To summarize, the MPU memory isolation method consists of configuring the MPU for an

app and inserting lower-bound checks, while the compiler inserted (software-only) method

mentioned earlier consists of not using the MPU and inserting both an upper and lower

memory bound check. Although the MSP430’s MPU itself is not sufficient to protect the

system and other applications from pointer misuse by a buggy (or malicious) app, it is useful:

in our approach, we strategically leverage both the MPU and the compiler to accomplish the

necessary protections. This section details the memory map used for MPU, as well as how

we handle memory accesses and context switches.

2.5 Evaluation

In this section we evaluate the costs of application isolation. Our proposed system allows

developers to write pure C, instead of a constrained Amulet C, enabling them to more

easily write (or port) application code to the Amulet platform. We look at the isolation

overhead of a large set of Amulet applications for three methods in Section 2.5.1, and see

that while the overhead of our isolation method is higher than a feature-limited Amulet C,

the impact of the overhead on battery lifetime is negligible. In Section 2.5.2 we describe

three benchmark applications, and the trade-offs they display between computation-intensive

and OS-intensive applications.

2.5.1 Isolation Overhead

We use the Amulet Resource Profiler (ARP) and the ARP-view tool to count the number

of memory accesses and context switches per state and transition, per application. Using

ARP-view, we can account for the rate of environmental, user, and timer events set by the
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Operation No
Isolation

Feature
Limited MPU Software

Only

Memory Access 23 41 29 32
Context Switch 90 90 142 98

Table 2.1: Average cycle count for basic memory isolation operations.

developer, combine this information with the counted number of memory accesses and

context switches, and extrapolate the number of cycles of overhead for isolating applications.

We can then convert the estimated cycles into energy cost (in Joules) to estimate the negative

impact of isolation on battery lifetime. The results of this experiment are shown in Figure 2.2

for nine applications that are part of the Amulet platform. These applications comprise

thousands of lines of code, and many have been deployed in user studies [11, 12]. For all

applications, isolation using either the MPU or Software Only methods has less than

a 0.5% impact on battery lifetime.
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percentage for a variety of applications. Gathered using the Amulet Resource Profiler
infrastructure.

2.5.2 Benchmark Applications

We further explore the system overhead of application isolation through several benchmark

applications with varying levels of memory accesses. We designed a Synthetic App a

20



simple application whose purpose is to test the two fundamental actions that incur memory-

protection overheads: memory accesses and context switches. We then investigate two major

functions in our Activity Detection App, which correspond to Activity Case 1 and Activity

Case 2 in Figure 2.3. These functions have a high number of memory accesses compared

to context switches. Finally, we design a Quicksort App: an application that runs the

quicksort algorithm with a high number of memory accesses and no context switches. Each

application was run 200 times and a hardware timer on the MSP430FR5969 MCU was used

to measure the time of each iteration (with a precision of 16 cycles).
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Figure 2.3: Percentage slowdown for each memory isolation method calculated by compar-
ing them to running apps with no isolation method.

The results from the synthetic app test in Table 2.1 show that our MPU method had

the fastest memory accesses, but the slowest context switches. This result was expected,

and validates the simulation results, as our method only requires half the number of bounds

checks as the Software Only approach, but incurs extra overhead for reconfiguring the MPU

during context switches. Figure 2.3 further confirms the results from Table 2.1, which is

that our method is the most effective when used for computationally heavy applications.

21



2.6 Related Work

Early operating systems for mobile devices like TinyOS [59] and others [10, 28, 36] reduced

complexity [57], enabled dynamic reprogramming [58], and provided interfaces for concur-

rent execution [29]. These platforms did not provide memory isolation, however, nor did

they allow installation of multiple third-party applications. Recent work on memory isolation

for ultra-low-power MCUs rely on techniques such as language restrictions, compile-time

analysis, and binary-code rewriting.

AmuletOS [42] uses a dialect of ANSI C, termed AmuletC, which disallows pointers and

recursion. TockOS [60] writes kernel code in Rust, a type-safe and memory-safe language,

and isolates their apps using an MPU. While language modifications can make compile-

time analysis easier [91], they tend to limit expressiveness and are rarely enough to ensure

complete application isolation. Language features are often coupled with compiler checks,

binary-code rewriting, or system-implemented dynamic checks. For example, AmuletOS

has a compiler that inserts run-time bounds-checking code around all array accesses [42].

Deputy [20, 21] enforces type safety at compile time; Harbor [56], built on top of SOS [36],

rewrites binary code to check any pointer reference and function call. T-Kernel [35] modifies

code at load time to secure application memory. Each of these compile- and run-time

techniques come with limitations: static (compile-time) techniques depend on language

features (or modifications) and clear OS rules, while dynamic (run-time) techniques incur

run-time overhead to check memory accesses. Other systems virtualize the single memory

space to isolate applications, like Maté [57], or rely on novel hardware mechanisms such as

a Secure Loader hardware unit between the CPU, peripherals, and RAM [53].

MPU-equipped microcontrollers have existed for decades, but in that time MPU capa-

bilities have largely remained the same. Indeed, there are a number of works that propose

new MPU architectures [39, 43, 61, 71, 72, 83, 95] to meet the needs of resource-constrained

multi-application embedded devices because many current MPU implementations do not.

These new MPU designs include support for a larger number of memory segments (e.g., 8,
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16), privilege levels (i.e., kernel vs. user), or protection of peripheral configuration registers.

That said, there are systems that were able to achieve memory-isolation with existing MPU

architectures [2, 51, 87, 108, 111], but they rely on more robust (and power-hungry) 32-bit

microcontrollers which do not meet the ultra-low power constraints of Amulet.

Given these prior techniques, our memory-isolation solution takes a new approach that

leverages the meager capabilities of resource-constrained MPUs with the lessons learned

from years of software-based methods.

2.7 Conclusion

In this chapter, we explore the challenge of memory isolation on ultra-low-power micro-

controllers, which offer primitive hardware support for memory protection. Traditional

approaches use a range of language limitations, compiler analysis, or dynamic checks

(inserted by compiler or other tools); few have leveraged the capabilities of emerging MPUs.

Our solution employs MPU hardware to protect most regions of memory from inappro-

priate access by application code. Our proof-of-concept implementation is limited by the

capabilities of the MSP430 MPU, which cannot protect the region below the current app’s

allocation; thus, the compiler still needs to insert some code for bounds checks – albeit half

as many as in the software-only solution. While our approach leveraging the MPU was not

effective for apps that make frequent API calls, our MPU isolation approach had, for all

applications, less than 0.5% impact on battery lifetime.
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3
Designing a Secure and Verifiable Health

Data System

In Chapter 2 we began our investigation into information provenance by securing mHealth

data at its point of origin: the mHealth device. In this chapter, we shift our focus to ensuring

the provenance of data that has left the device. Specifically, we are interested in data that

may be shared with one or more intermediate parties for the purpose of transforming and

combining it with other data sets to create new data (i.e., information). Naively, one could

solve the provenance problem by simply creating a public record of all data, who accessed it,

and for what purpose. Given the sensitive nature of mHealth data, however, such a solution
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would not work in the “real world”. Indeed, there are often legal frameworks in place (e.g.,

HIPAA, GDPR) to prevent (and punish) the unlawful disclosure of health data. Thus, any

data-management solution that provides information provenance also needs to provide data

confidentiality if it wishes to be adopted in real-world applications.

3.1 Contributions

We present Amanuensis, a concept for a secure, integrated health-data system that leverages

Blockchain and Trusted Execution Environment technologies to achieve information prove-

nance for mHealth data. By using a blockchain to record and enforce data-access policies

we remove the need to trust a single entity with gate-keeping the health data. Instead,

participating organizations form a consortium to share responsibility for verifying data

integrity and enforcing access policies for data stored in private data silos. We require that

data access and computation take place inside of TEEs, which preserves data confidentiality

and provides a verifiable attestation that can be stored on the blockchain in support of

information provenance. We evaluate a prototype implementation of Amanuensis – built

using Intel SGX trusted execution hardware and the VeChain Thor blockchain platform –

which shows that Amanuensis is capable of supporting up to 14,256,000 mHealth data

sources at $0.47 per data source per day.

We begin by presenting background information on Blockchain and Trusted Execution

Environments (Section 3.2), as well as related works on blockchain-based health-data sys-

tems and confidentiality techniques for blockchains (Section 3.12). Then we define our

adversarial and security assumptions (Section 3.3) before introducing the technological

components that comprise Amanuensis (Section 3.4). We provide further details on technical

make-up and inner-workings our TEE (Section 3.5, Section 3.6) and blockchain (Section 3.7)

components, as well as how these components work together to provide information prove-

nance (Section 3.8). Finally, we present a security analysis of our system design (Section 3.9),

25



and an evaluation (Section 3.11) of our prototype implementation (Section 3.10).

3.2 Background

We begin with an overview of Blockchain and Trusted Execution Environment technology,

and define relevant terms that are pertinent to understanding our system design.

3.2.1 Blockchain

While there exist several types of blockchain paradigms, we only present background

information for blockchains based on the Ethereum model as that is the type of blockchain

used in Amanuensis. A blockchain is an append-only database of time-stamped records

that are cryptographically linked to protect them from tampering and revision [40]. Unlike

traditional databases that are managed by a central authority, a blockchain is a distributed

database managed by a number of semi-trusted participants. Users submit transactions

to the blockchain network, which either contain new data to be recorded or invoke smart

contracts (defined below). The servers that maintain the blockchain are referred to as miners,

and are responsible for validating these transactions and periodically bundling groups of

transactions into a block that is cryptographically linked to the prior block. Over time, these

linked blocks form a chain – hence the name blockchain. Each miner maintains and updates

its own local copy of the blockchain via a consensus algorithm, which ensures that the

majority of the nodes agree on exactly what transactions are being added to the blockchain

and in what order. Once a block is added to the blockchain, the details of its transactions

are visible to all participants of the network and cannot be modified or removed. Along

with logging basic transactions (e.g., Bob pays Alice 10 Bitcoin) some blockchains support

smart contracts, which allow developers to encode arbitrary logic that is uploaded to, and

executed by, the miners in the blockchain network. In effect, a smart contract is a permanent,

immutable collection of functions that all nodes execute upon the arrival of certain types of
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transactions. Due to the transparent nature of blockchains, all data that passes through the

blockchain (whether it is input, intermediate, or output) is visible to those participating in

the network and therefore not confidential.

3.2.2 Trusted Execution Environments

The notion of Trusted Execution Environments (TEEs) has been around for decades, yet

there is still no wide agreement on a definition for TEEs or their security properties. Further

adding to the confusion, the terms Enclave or Secure Enclave are sometimes used to refer

to a TEE while other times may simply refer to a Trusted Application running on a TEE.

For the purposes of this thesis, we define Trusted Execution Environments and Enclaves as

follows. An Enclave is an application that is meant to be executed in a Trusted Execution

Environment. The Enclave contains sensitive code and/or data that the developer wishes

to protect from the surrounding system. A Trusted Execution Environment is a secure

computing environment that is resistant to privileged software attacks (i.e., those from

an OS or hypervisor) and lightweight physical attacks (i.e., those on hardware outside of

the CPU). The Trusted Execution Environment guarantees the authenticity and confiden-

tiality of Enclave code and its run-time states, as well as the confidentiality of Enclave

code and data stored off-chip in persistent memory [90]. Furthermore, Trusted Execution

Environments provide Enclaves with several trusted-computing functionalities such as data

sealing, integrity measurement, remote attestation, and secrets provisioning. Data sealing

is the process of encrypting Enclave data for persistent storage outside of the TEE. The

data-sealing key is unique to the TEE platform and Enclave, thus ensuring that encrypted

data is “bound” to that specific Enclave. Integrity measurement is performed by the TEE

when first loading Enclave code to ensure that the code has not been tampered with while

stored in persistent memory. Remote attestation is a process for proving to parties outside

of the TEE platform (i.e., code executing on a different machine) that an Enclave has been

unmodified and is running on a genuine TEE platform. Secrets provisioning is a method
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for establishing a secure communication channel between an enclave and an outside party;

this method is bound to the remote attestation process to ensure that the remote party only

shares secrets with a specific enclave that has been attested.

3.3 Security Model

Amanuensis aims to preserve the confidentiality, integrity, and provenance of sensitive

health data. Data confidentiality, integrity, and provenance must be upheld for both source

data and derived information (i.e., information created through a series of aggregations and

transformations of source data). Below we present the capabilities afforded to an adversary

and the security assumptions for each of the technological components of Amanuensis.

3.3.1 Adversary Model

We consider an adversary that (1) wishes to gain access to private health information to learn

something sensitive about one or more individual(s), (2) wishes to modify private health

information, or (3) wishes to pass off false health information as authentic. We assume the

adversary can (1) gain physical access to a TEE node and remotely compromise the OS,

(2) gain control over some small1 portion of the blockchain network, and (3) arbitrarily read

data from the blockchain and off-chain data storage

3.3.2 Security Assumptions

While some of the following security assumptions may seem implicit based on the techno-

logical definitions presented in Section 3.2, we choose to explicitly state them to clearly

define the scope of security challenges that our system aims to address. Furthermore, we

use these assumptions as the basis for our security analysis in Section 3.11. The security of

1Blockchain networks that use Proof-of-Work (PoW) consensus algorithms can operate correctly if the
majority of the mining nodes act in good faith.
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any system depends on both its design and implementation, but the focus of this chapter is

evaluating the design of our system. Hence, security challenges arising from implementation

choices (e.g., side-channel attacks on Intel SGX) are largely left out-of-scope.

Blockchain Amanuensis uses a blockchain to maintain the integrity of the data it stores

and of the smart-contract operations it performs. For these properties to hold, we must

assume that the consensus algorithm is capable of preventing attackers from modifying the

blockchain even if they control some miners in the blockchain network. In the context of

our implementation, we assume that the majority of the VeChain Authority Nodes act in

good faith when executing the consensus protocol.

Trusted Execution Environments Amanuensis has several secure applications, or En-

claves, that are responsible for storing, retrieving, modifying, and sharing mHealth data.

These Enclaves rely on TEEs to provide a secure and confidential computing environment

for handling sensitive mHealth data. We assume that the TEE hardware and firmware are

designed such that they guarantee the authenticity of the executed code, the integrity of

the run-time states, and the confidentiality of the Enclave’s code and data while preventing

outside entities (OS, hypervisor, applications) from gaining access or control. Furthermore,

we assume that the TEE hardware has the capabilities for correctly and securely providing

the trusted computing features described in Section 3.2 (e.g., data sealing, integrity mea-

surement, remote attestation, and secrets provisioning). We also consider side-channel2 and

Denial-of-Service (DoS) attacks out-of-scope.

Smartphone We assume that an individual’s smartphone correctly and securely aggregates

data from the individual’s mHealth apps and devices and sends the data batches to one of

the Enclaves for storage. In this context, the smartphone correctly executes our health-data-

2In concept, TEEs protect against various forms of physical attack, but in reality some implementations
have been shown to be vulnerable to side-channel attacks, which leverage observable physical traits of a
computing system to infer what operations it is performing and/or what data it is handling.
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collection application and has secure storage for protecting encryption and signing keys and

sensitive health data.

mHealth Apps and Devices We assume that mHealth apps and devices, regardless of

type or manufacturer, operate correctly; they produce accurate data and they can securely

communicate with a smartphone. We also assume that they have ways to authenticate the

user of the device so as not to produce data for the wrong data subject. Physical attacks on

mHealth apps and devices are out-of-scope.

Off-Chain Data Storage We assume nothing about off-chain storage services other than

they can be trusted to correctly write data blobs to storage and return the correct data blob

for a given storage index.

Cryptography We assume that the underlying cryptographic primitives on which our

system is built (e.g., cryptographic hashes, digital signatures, encryption algorithms) are not

breakable in any practical time frame.

3.4 System Components

Amanuensis is comprised of several major technological components (pictured in Figure 3.1)

that work together to provide confidentiality-preserving information provenance. Below we

introduce each component and describe its role in Amanuensis.

3.4.1 Blockchain

The backbone of Amanuensis is its consortium-based blockchain, which provides a suite of

smart contracts that allow individuals to share and manage their mHealth data in a confi-

dential yet verifiable fashion. The consortium is comprised of health-related organizations

(e.g., hospitals, clinics, insurance providers, public-health agencies, researchers, government
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Figure 3.1: System Overview. A high-level depiction of the relationship between the
different components of the Amanuensis system, where ‘1..*’ denotes one or more.
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regulators) that collectively manage the blockchain. This approach eases inter-organization

information sharing, because they can use the blockchain to verify the authenticity and

validity of shared data. As a consortium blockchain, permission to execute, validate, and

add transactions to the blockchain is reserved for miner nodes operated by the consortium

members, but, as the contents of the blockchain are public, individuals can still read data

from the blockchain and submit transactions they wish to be executed. Currently, individuals

trust (often due to a lack of other options) health-service providers to manage their private

health data, but they have no way to verify that their data is being handled correctly. By

forcing healthcare providers to use a publicly-readable blockchain for data-access decisions,

individuals (or watchdogs like consumer-protection organizations) are afforded a look into

how sensitive data is managed. The exact number of nodes required to run the blockchain

component of Amanuensis is implementation-specific, and thus left up to the members

of the health consortium; the number of nodes depends on many factors, including how

many participants are in the network, availability, cost, etc.. All our design for Amanuensis

requires is that each consortium member participates in the blockchain network in some

capacity so as to ensure the availability of the network and to maintain the distributed and

immutable nature of the blockchain.

3.4.2 Trusted Execution Environment

Amanuensis also maintains a distributed network of TEE servers to ensure the availability

of trusted applications, or Enclaves, which are used by individuals and organizations to

manage and share their health data. Similar to the blockchain mining nodes, TEE nodes are

maintained by members of the blockchain consortium (not by individuals). Amanuensis

requires all actions upon mHealth data to occur inside a TEE to ensure that data remains

confidential and that actions can be verified. To this end, Amanuensis provides several

Enclaves that facilitate secure and confidential creation, storage, retrieval, modification, and

dissemination of mHealth data and information.
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By using the TEE’s “remote attestation” feature, enclaves can prove (to relevant indi-

viduals and organizations) that they are legitimate Amanuensis Enclaves executing on TEE

hardware. Attestation reports produced by enclaves, along with other relevant metadata, are

stored on the blockchain to create a transparent record of data creation, storage, sharing, and

modification that can be verified by data owners and consumers without the need to provide

them access to the source data. While provenance metadata is stored in the blockchain, the

actual health data is encrypted and stored in off-chain storage services. Storage services

may be owned and managed by different service providers, but the keys used to encrypt

health data reside in protected TEE memory and on the blockchain (in encrypted form).

Thus, once stored in the system, mHealth data can only be decrypted by one of our secure

enclaves running in our TEE network. Again, like the blockchain component, the number of

TEE nodes is implementation-specific and left up to the members of the health consortium.

Ideally, they would choose a number that is sufficient to guarantee availability of the system

and to ensure that the TEE component remains distributed amongst the consortium mem-

bers. In other words, there should not be a single, centralized, TEE node or cluster that is

responsible for granting access to the blockchain network and off-chain datastore.

3.4.3 Smartphones & mHealth Technologies

Mobile-health technologies can be used to monitor aspects of an individual’s health as they

go about their everyday life and activities. These apps and devices produce streams of data

(e.g., raw sensor data, user input, inferences) that are uploaded to an individual’s smartphone.

The smartphone serves two purposes: (1) to act as a gateway for the storage of mHealth

data in the Amanuensis health-data system, and (2) to create a root of trust that can later be

used to authenticate and verify data produced by an individual’s mHealth app or device. We

present the details of this “root of trust” in Section 3.8.
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3.4.4 Consumer Applications

Amanuensis serves as a back-end data management solution for applications that wish

to consume mHealth data for the purpose of providing healthcare-related services. The

design and implementation of such applications is orthogonal to the design of Amanuensis;

consumer applications should adhere to the protocol laid out in Section 3.8 if they wish to

be compatible with Amanuensis, but outside of that we treat them as black boxes.

3.4.5 Off-Chain Data Store

Similar to consumer applications, we treat the off-chain data store as a black-box component.

The actual design and implementation of the off-chain data store does not effect our system

design, as long as it is capable of storing a data blob and returning an ‘index’ that can later

be used to retrieve that same blob. It is an immutable data store, and needs no other database

features (like indexing, searching, or manipulating data).

3.5 Enclaves

Amanuensis’ distributed network of TEEs runs instances of three different Enclaves: Data

Storage, Data Processing, and Blockchain Interface. Users interact with these enclaves to

store, retrieve, manipulate, and share their mHealth data and derived information. Brief

descriptions for each Enclave are provided below, with detailed breakdowns of the Enclaves’

functionalities and their interactions in Section 3.8.

3.5.1 Data Storage Enclave

The Data Storage Enclave (DSE) is used to store and retrieve mHealth data in the Amanu-

ensis system. More importantly, the DSE is responsible for collecting and validating

provenance metadata every time mHealth data is stored or read from storage.
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3.5.2 Data Processing Enclave

The Data Processing Enclave (DPE) is a secure application for executing confidential smart

contracts in the TEE. This application communicates with the Data Storage application

(DSE) when it needs to retrieve input for a computation or to record the computation’s

output.

3.5.3 Blockchain Interface Enclave

The Blockchain Interface Enclave (BIE) is a secure application that is used by the Data

Processing and Data Storage enclaves to interact with the blockchain. The BIE handles

reading and writing data to and from the blockchain, invoking smart contracts, and verifying

permissions for data requests.

3.6 Keys & Key Management

Amanuensis relies on asymmetric keys for identifying and authenticating users and data

sources, as well as symmetric keys for protecting the confidentiality of sensitive health data.

Below we describe these keys in detail. For quick reference, a list of keys and their symbols

can be found in Table 3.1.

Table 3.1: Keys used in Amanuensis.
Name Symbol Type
Identification Key PK Asymmetric
Signing Key SK Asymmetric
Data Key K Symmetric
Sealing Key S Symmetric
Master Data Key KMASTER Symmetric
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3.6.1 Identification Key

We use the term Identification Key to refer to the public component of an asymmetric key

pair, (PK, SK). Identification keys are denoted PKNAME , where NAME is the name of

the entity the key belongs to (e.g., a health app, health device, confidential computation, or

an individual). As the name suggests, Identification keys are used to identify a particular

individual or entity in the Amanuensis system. Furthermore, each Identification key has

verification function, denoted PK(), that is used to verify a signature created by the

corresponding Signing key in the pair (PK, SK).

As part of the blockchain protocol, all users (e.g., individuals, consortium members)

are given asymmetric key pairs that are used to identify and authenticate themselves when

transacting on the blockchain. We assume that all mHealth devices and applications come

with baked-in unique asymmetric key pairs that can be used to identify and authenticate data

sources.

3.6.2 Signing Key

We use the term Signing Key to refer to the private component of an asymmetric key pair,

(PK, SK). Signing keys are denoted SKNAME , where NAME is the name of the entity the

key belongs to (e.g., a health app, health device, confidential computation, or an individual).

As the name suggests, Signing keys provide a function, denoted SK(), that allow the owner

of a Signing Key to sign (i.e., authenticate) data.

3.6.3 Data Key

We use the term Data Key to refer to a symmetric encryption key that is used to encrypt data

streams. Data keys are denoted KNAME , where NAME is the name of device or application

that produced the data stream. Data keys provide a function for encrypting/decrypting data,

denoted K(). Data keys are used by the Data Storage Enclaves to encrypt incoming mHealth
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data streams before writing them to off-chain storage. We store Data Keys on the blockchain

so that they persist and are accessible to all DSE instances; when necessary, any TEE server

may service the mHealth data source. Storing Data keys in plaintext on the blockchain

would make them available to anyone, of course, so Data keys are first encrypted with the

Master Data Key (described below) before being written to the blockchain.

3.6.4 Sealing Key

We use the term Sealing Key to refer to a symmetric encryption key that is unique to, and

can only be derived by, a specific enclave running on a specific TEE platform. Sealing

keys are denoted SNAME , where NAME is the name of the relevant enclave (e.g., DSE,

DPE, or BIE). Sealing keys provide a function for encrypting/decrypting data, denoted S().

Sealing keys are used by enclaves to encrypt “secrets” (e.g., cryptographic keys and sensitive

data) that should persist between enclave execution instances. For example, if an enclave is

provisioned with a secret that it wishes to reuse the next time it is instantiated it can “seal”

that secret and write it to persistent storage. The next time the enclave is instantiated it can

re-derive its Sealing Key and decrypt the secret. In Amanuensis, Enclaves use their Sealing

Key to encrypt the Master Data Key so that they continue to have access to it after being

stopped and restarted.

3.6.5 Master Data Key

We use the term Master Data Key to refer to the symmetric encryption key that is used

to encrypt and decrypt Data Keys stored on the blockchain. Whereas there are multiple

Identification, Signing, Data, and Sealing keys, there is only one Master Data Key in the

Amanuensis System. The Master Data Key is denoted KMASTER, and its function for en-

crypting/decrypting data is denoted KMASTER(). During a one-time setup phase, the Master

Data Key is generated by one DSE, which then registers itself with the EnclaveRegistry

contract described in Section 3.7. Subsequent DSEs that join the network can then look-up
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existing enclaves on the registry and retrieve the Master Data Key through the remote

attestation and secrets provisioning mechanisms provided by TEEs.

3.7 Smart Contracts

Amanuensis uses a blockchain to track off-chain health data, provenance metadata, data-

access policies, mHealth apps and devices, and confidential computation binaries. These data

are organized and accessed via smart contracts, which are programs that are stored on, and

executed by, the miners in the blockchain network. Much like traditional programs, smart

contracts have variables, functions, and persistent memory. The Amanuensis blockchain

provides five distinct smart contracts for interacting with the blockchain: DataSource,

ConfidentialComputation, SourceRegistry, ComputationRegistry, and EnclaveRegistry. We

describe each contract below.

Algorithm 1 DataSource smart contract
1: struct record t = {hash, index, key, attestationDSE}
2: var dataSourceID
3: var dataSourceOwner
4: mapping(timestamp→ record t) records
5: mapping(address→ bool) permissions
6:
7: function grantDataAccess(consumer)
8: function revokeDataAccess(consumer)
9: function hasDataAccess(consumer)

10: function addData(timestamp, hash, index, key
11: attestationDSE)
12: function getData(timestamp)

3.7.1 DataSource Smart Contract

The DataSource contract (Algorithm 1) records information for identifying a particular

mHealth data source (e.g., mHealth application or device), the data that it produces, and

for setting data-access policies. On the blockchain, there is an instance of the DataSource
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contract for every mHealth data source in the Amanuensis system. There are two entities

that directly interact with this contract: the data source owner and the Blockchain Interface

Enclave (BIE). Data source owners make calls to the grantDataAccess and revokeDataAccess

functions (via a smartphone or desktop application) to grant, or revoke, access to their data –

by adding or removing a data consumer’s blockchain identity to or from the permissions

mapping variable. The BIE serves as a proxy for the other Enclaves (Data Storage and Data

Processing) when they wish to interact with the blockchain. Some of these interactions

involve adding and retrieving provenance metadata to and from DataSource contracts, as

well as verifying data-access permissions for a given data consumer. Every time a new

batch of data is added to the system (i.e., saved in off-chain storage), provenance metadata

is added to the DataSource contract associated with the device that produced the batch of

data. To track provenance metadata, the DataSource contract makes use of a struct record t

comprised of (1) a hash of the mHealth data batch, (2) an index that can be used to locate

that batch in off-chain storage, (3) an encrypted form of the key that was used to encrypt the

batch of mHealth data, and (4) an attestation report generated by the Enclave that stored the

data.

Algorithm 2 ConfidentialComputation smart contract
1: struct record t = {hashes, indexes, key, appID
2: attestationDSE, attestationDPE}
3: var computationID
4: var computationOwner
5: string computationBinary
6: mapping(timestamp→ record t) records
7: mapping(address→ bool) permissions
8:
9: function grantDataAccess(consumer)

10: function revokeDataAccess(consumer)
11: function hasDataAccess(consumer)
12: function addData(timestamp, hash, indexes, key
13: appID, attestationDSE, attestationDPE)
14: function getData(timestamp)
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3.7.2 ConfidentialComputation Smart Contract

Functionally similar to the DataSource contract, the ConfidentialComputation contract

(Algorithm 2) records information for identifying confidential programs, their resulting

data (i.e., information), and for setting data-access policies. On the blockchain, there is

an instance of the ConfidentialComputation contract for every confidential program in the

Amanuensis system. There are two entities that directly interact with this contract: the

computation owner and the Blockchain Interface Enclave (BIE). The information maintained

by the ConfidentialComputation contract consists of (1) a public identifier of the confidential

program’s owner, (2) an encrypted binary of the confidential program, (3) a list of data

hashes, (4) a list of storage indexes, (5) a list of attestation reports, (6) a list of authorized

data consumers, and (7) a list of input data. The binary is stored on the blockchain to ensure

that it never changes and remains tied to the data that it produced and a list of input data

storage indexes are kept to provide informational-level provenance (i.e., you can tie the

resulting data of a confidential computation to all of its input data, which themselves have

attestations and proofs of provenance). While the confidential program’s binary is stored

on the blockchain, it is never actually executed by nodes in the blockchain network (the

way that smart contracts are). Instead, the encrypted binary is sent to an enclave where

it is decrypted and executed to ensure that the computation and the data it uses remains

confidential. The details of the process are described in Section 3.8.

3.7.3 Registry Smart Contracts

There are three registry contracts – SourceRegistry, ComputationRegistry, and EnclaveReg-

istry – that make it easy locate specific smart contracts and enclaves. Whereas there is

a different smart contract instance for every mHealth data source and each confidential

program, there is only one instance of each registry contract. These registry contracts should

be deployed by an admin account managed by the blockchain consortium. When users

deploy a smart contract instance for their health data source or confidential program, they
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register it with the SourceRegistry or ComputationRegistry (respectively) so that our Enclave

applications can find its contract when performing data storage, retrieval, and modification

operations. The EnclaveRegistry is populated by the blockchain consortium and contains a

list of IP addresses of active Amanuensis TEE servers on which users can interact with our

Enclaves.

3.8 Data Life Cycle

In our system, all derived health information can ultimately be traced back to its original

source, i.e., to data generated by mHealth apps and devices. We need to guarantee that data

produced by these mHealth technologies are stored and shared in a secure but verifiable way

if we wish to provide information provenance for subsequent modifications and aggregations

made to the source data. Below we detail how we provide confidential but verifiable

information provenance by describing the three major data-flows in our system: Adding

mHealth Data, Confidential Computations, and Adding Information. Table 3.2 provides a

quick-reference list of symbols we use.

3.8.1 Adding mHealth Data

Our data life cycle begins with mHealth technologies and the streams of health data that

they produce. Amanuensis provides users with the ability to securely store, share, and verify

such data streams, but the data must first be added to the system. Imagine a scenario in

which a data subject, Bob, owns an mHealth device, HD, and a smartphone, SP . Bob’s

device produces health data and uploads it to his smartphone, which serves as a gateway to

the Amanuensis system. The process for uploading a batch of data, D, generated by HD

is depicted in Figure 3.2 and described in detail below. All inter-entity communications

are carried over pre-established secure channels that provide confidentiality, integrity, and

reliability (for data in transit) using standard Internet techniques, e.g., TLS over TCP/IP; for
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Table 3.2: List of symbols used in Section 3.8.
Symbol Meaning
A attestation report
APP mHealth application
BIE Blockchain Interface Enclave
C batch of mHealth data (ciphertext)
CC confidential computation
D batch of mHealth data (plaintext)
DPE Data Processing Enclave
DSE Data Storage Enclave
H hash
HD mHealth device
I storage index
J Data Key (ciphertext)
K Data Key (plaintext)
KMASTER Master Data Key
L list of input data batches
M mHealth data message
P provenance packet
PK Identification Key
R data processing request result
SIG signature
SK Signing Key
SP smartphone
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Figure 3.2: Adding mHealth Data. After being generated, mHealth data is sent to a
smartphone, which serves as a gateway to the Amanuensis system. The smartphone uploads
the mHealth data to a Data Storage Enclave, which encrypts and saves the data to off-chain
storage. Afterwards, a Data Storage Enclave records provenance metadata on the blockchain
so that future data consumers can verify the authenticity and integrity of mHealth data stored
in off-chain storage.

brevity, the details of these connections are not shown. Furthermore, while only a single

enclave instance (e.g., Data Storage, Data Processing, Blockchain Interface) is depicted in

our figures, there exist a number of TEE nodes in Amanuensis that each host one or more

enclave instances.

1. HD creates a signature, SIGHD, to identify itself as the creator of the health data,

DHD. Then, HD appends its signature to the batch of health data to create a message,
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MHD, which it sends to Bob’s smartphone.

SIGHD = SKHD(DHD) (3.1)

MHD = DHD || SIGHD (3.2)

2. Upon receiving MHD, Bob’s smartphone creates a signature using Bob’s Signing

Key, SKBOB, to indicate that Bob is the subject of the data. Then, SP appends

Bob’s signature to MHD to create an updated message, MSP , which it sends to a Data

Storage Enclave, DSE.

SIGBOB = SKBOB(MHD) (3.3)

MSP = MHD || SIGBOB (3.4)

3. DSE encrypts MSP with the Data Key, KHD, which is unique to the data stream

produced by HD. The encrypted data, CHD, is then sent to an off-chain Datastore

Service for storage.

CHD = KHD(MSP ) (3.5)

4. The Datastore Service treats CHD as a blob and writes it to off-chain storage.

5. The Datastore Service returns a storage index, IHD, to DSE that indicates the location

of CHD.

6. After receiving IHD, DSE generates an attestation report,3 ADSE , and calculates a

hash, HHD, of MSP . Then, DSE encrypts KHD with the Master Data Key, KMASTER,

3TEE hardware mechanisms generate a report containing integrity measurements and signatures that are
bound to a specific enclave and TEE platform. This report can then be submitted to the TEE vendor for
verification, though Amanuensis does not perform this last verification step until the next time this specific
batch of health data is used.
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to produce JHD. Finally, DSE bundles the provenance information into a packet,

PHD, and sends it to a Blockchain Interface Enclave, BIE.

HHD = h(MSP ) (3.6)

JHD = KMASTER(KHD) (3.7)

PHD = ADSE || PKHD || IHD || HHD || JHD (3.8)

7. BIE adds PHD to the smart contract associated with HD.

For efficiency, the mHealth data source, or the smartphone, may choose to upload data

records through this pipeline in batches. For example, a pulse oximeter might batch its

readings once per minute for upload to the smartphone, which may further batch the data

once per hour for upload into the Data Storage Service. The protocols above apply equally

well to such batches; the selection of batch intervals is application-dependent.

3.8.2 Confidential Computations

Users of Amanuensis can grant others permission to access and/or process their health

data and information, but instead of sending these “data consumers” a copy of the data we

require them to perform their computations using a Data Processing Enclave. Since a Data

Processing Enclave is executed in a TEE, we can ensure the confidentiality of sensitive

health data while still providing the consumer proof that their computations were performed

correctly. For some data consumer’s application, APP , we depict the process of retrieving

and computing upon data in Figure 3.3 and describe the steps in detail below.

1. APP creates a data-processing request consisting of its Identification key, PKAPP ,

the Identification Key of the computation it would like to execute, PKCC , and a list

of indexes, L, that are used to locate the input health data and information sets. Then
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Figure 3.3: Confidential Computations. mHealth data stored within the Amanuensis
system can be confidentially computed upon using a Data Processing Enclave. Before the
confidential computation is performed, the provenance of the input mHealth data is verified
to ensure the validity of any information resulting from the computation.
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APP creates a signature, SIGAPP , over the request and appends it to the request to

create message MAPP , which it sends to a Data Processing Enclave, DPE.

SIGAPP = SKAPP (PKAPP || PKCC || L) (3.9)

MAPP = PKAPP ||PKCC || L || SIGAPP (3.10)

2. DPE requests the input data and confidential computation binary from a Data Storage

Enclave, DSE, by forwarding it MAPP .

3. DSE requests provenance metadata and the confidential computation binary from a

Blockchain Interface Enclave, BIE, by forwarding it MAPP .

4. BIE checks PKAPP against permission lists recorded in the blockchain for each of

the specified input data sets contained in L.

5. For every input data set for which PKAPP has access, its provenance metadata is

returned by the blockchain to BIE.

6. Similarly, BIE must also check that PKAPP has permission to use the computation

specified by PKCC .

7. If PKAPP has permission to use PKCC , an encrypted binary containing the computa-

tion and an encrypted encryption key is returned by the blockchain to BIE.

8. BIE returns the provenance metadata and binary to DSE.

9. If the confidential computation binary or any provenance metadata is missing, or

one or more permissions checks failed, DSE returns a permission failure to DPE.

Otherwise, DSE verifies SIGAPP contained in MAPP .

(true|false) = PKAPP (SIGAPP ) (3.11)
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If the permissions checks pass and SIGAPP is verified, DSE forwards L to the

Datastore Service to request the input data sets.

10. The Datastore Service retrieves the encrypted data sets specified by L and returns

them, C, to DSE.

11. DSE first decrypts each encrypted Data Key, J , contained in the provenance metadata

packets using its Master Data Key, KMASTER. Then, DSE uses each decrypted Data

Key, K, to decrypt each encrypted health data set, C. With C decrypted, DSE may

then verify the hash of the input data sets and their signatures. Finally, DSE verifies

any enclave attestations contained within the provenance metadata packets by sending

them to the attestation service. If all of these provenance checks pass, the plaintext

data sets and confidential computation binary are returned to DPE.

MSP = KHD(CHD) (3.12)

where MSP = DHD || SIGHD || SIGBOB (3.13)

(true|false)← HHD == h(MSP ) (3.14)

(true|false) = PKHD(SIGHD) (3.15)

(true|false) = PKSP (SIGBOB) (3.16)

12. If DPE receives all of the specified input data and the confidential computation

binary, then it can assume the application has the appropriate permissions and that the

input data sets passed the provenance checks. It should then carry out the specified

computation using the input data sets.

The results of the computation are then returned to APP , and written to off-chain

storage by DSE (as described in the following section).
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Figure 3.4: Adding Information. The output of confidential computations is new mHealth
data, or information. Similar to the process for adding mHealth data, information is added
to our system by a Data Storage Enclave. On top of the provenance metadata recorded
for mHealth data, the Data Storage Enclave must record provenance metadata to show
what computation was performed, and on what input data sets, to produce the resulting
information.

3.8.3 Adding Information

Applications can process raw mHealth data and information via our Data Processing Service.

Any new information created as a result of this processing must be added to the Amanuensis

system and returned to the requesting application. This process is depicted in Figure 3.4 and

is described in detail below.

1. After completing a data-processing request, a Data Processing Enclave, DPE, returns

the resulting information, RCC , to APP . DPE generates an attestation report, ADPE ,

showing that it correctly executed the requested computation. This attestation report,
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ADPE , is then bundled together with the resulting information, RCC , the application’s

Identification Key, PKAPP , the computation’s Identification Key, PKCC , and the

list of input data set indexes, L, to form a message, MDPE , which is sent to a Data

Storage Enclave, DSE.

MDPE = RCC ||L||PKAPP ||PKCC ||ADPE (3.17)

2. DSE encrypts MDPE with the Data Key, KCC , which is unique to the computation

that produced RCC . The encrypted data, CCC , is then sent to the Datastore Service

for storage.

CCC = KCC(MDPE) (3.18)

3. The Datastore Service treats CCC as a blob and writes it to off-chain storage.

4. The Datastore Service returns a storage index, ICC , to DSE that indicates the location

of CCC .

5. After receiving ICC , DSE generates an attestation report, ADSE , and calculates a

hash, H , of MDPE . Then, DSE encrypts KCC with the Master Data Key, KMASTER,

to produce JCC . Finally, DSE bundles the provenance information into a packet,

PCC , and sends it to a Blockchain Interface Enclave, BIE.

HCC = h(MDPE) (3.19)

JCC = KMASTER(KCC) (3.20)

PCC = ADPE||ADSE||HCC ||ICC ||JCC (3.21)

(3.22)

6. BIE adds PCC to the smart contract associated with CC.
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3.9 Security Analysis

Drawing on the security model described in Section 3.3, and the system design described

in Section 3.4, we can reason about Amanuensis’ ability to thwart the type of adversaries

envisioned in our adversary model. Recall that physical and software attacks on mHealth

apps and devices are out-of-scope because we assume that they operate correctly, can

securely communicate with other system components, and can authenticate users (secure

solutions to these challenges are well understood and out of scope of this thesis). Thus,

here we need only consider an adversary that wishes to access health information via the

blockchain, enclaves, or off-chain data storage. For reference, our adversary model affords

the following capabilities to an adversary:

• An adversary can remotely compromise the TEE OS.

• An adversary can gain physical access to any TEE node.

• An adversary can gain control over (at most) a minority of nodes in the blockchain

network.

• An adversary can arbitrarily read data from the blockchain and off-chain storage.

3.9.1 Blockchain Security

While the blockchain does not directly store mHealth data, it does maintain permission

lists that determine who has access to, and may compute on, off-chain data. A blockchain

adversary, ABC , may attempt to modify these lists for the sake of tricking the rest of the

system into thinking that ABC has permission to consume some set(s) of mHealth data.

Below we describe different attacks ABC may use to modify permission lists, as well how

Amanuensis prevents them from being successful.

Attack 1: Consensus Mechanism. Recall that a blockchain is a distributed-database

that is updated via a consensus mechanism. When a node in the blockchain network wishes
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to update the state of the blockchain, it broadcasts the changes to the rest of the network,

which then performs a consensus protocol to determine whether the changes are valid. If the

changes pass consensus, then the rest of the nodes update their local blockchain database to

reflect the updated state of the blockchain. For the first attack, adversary ABC tries to gain

access to mHealth data by passing-off an illegitimate version of the blockchain to the rest of

the network.

1. Assume that ABC has gained control over a minority of the nodes in the blockchain

network.

2. ABC then modifies any permission list of its choosing by rewriting the local blockchain

databases on the node(s) under its control.

3. After creating a false blockchain, BFALSE , containing the modified permission lists,

ABC instructs its nodes to broadcast BFALSE to the rest of the blockchain network.

4. At this point, the attack succeeds only if the rest of the network accepts BFALSE

as valid. The type of blockchain and consensus mechanism used in Amanuensis,

however, requires a majority of the blockchain network to agree on changes to the

state of B. Thus, since ABC only controls a minority of the blockchain nodes, BFALSE

will be rejected by the consensus algorithm.4

Attack 2: Transaction Signatures. Transactions are the method by which users can

interact with, and update, the state of the blockchain. For example, a data owner, Alice,

can grant a data consumer, Bob, access to her mHealth data by submitting a transaction to

the Amanuensis blockchain network stating that Bob should be added to her list of verified

data consumers. In our second attack, ABC will attempt to gain access to mHealth data by

forging an illegitimate, but valid, transaction. In this attack scenario, let us assume that ABC

4Note that exact numbers for what constitutes minorities and majorities will vary depending on the specific
consensus mechanism used (e.g., minority for PBFT is < 1/3 but for PoW is < 1/2), but our assumption
states that adversaries will never be capable of controlling a majority of the blockchain nodes in any blockchain
implementation.
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is attempting to gain access to Alice’s mHealth data by creating a transaction that appears to

be from Alice and that grants ABC access to her data.

1. ABC may try to modify and replay one of Alice’s previous transactions so that instead

of granting access to the intended consumer (say, Bob) it instead grants ABC access

to her mHealth data. This modified transaction, TFALSE will not pass validation,

however, as it contains a signature tied to the transaction data and by changing the

data (i.e., changing Bob to ABC) the signature will no longer match the transaction.

2. For ABC to make the transaction appear valid, it would also need to modify the

signature tied to the data within a transaction; thus, ABC will need to gain access

to Alice’s private signing key, SKALICE . ABC could obtain SKALICE by attacking

Alice’s smartphone where the key is stored, or by guessing the value of SKALICE .

3. Similarly, creating an entirely new transaction would require ABC to gain access to

SKALICE for generating a legitimate signature.

4. Given our security assumptions in Section 3.3, which states that all smartphones used

to interact with Amanuensis have secure storage for encryption and signing keys,

we know that ABC will not be able to retrieve SKALICE from Alice’s smartphone.

Similarly, given our cryptographic primitive assumptions, our attacker is incapable of

guessing SKALICE in any practical time period.

3.9.2 Enclave Security

There are two enclaves that handle mHealth data in plaintext (Data Storage Enclave and

Data Processing Enclave), and as such are prime targets for attack by some enclave attacker,

AEN . Below we describe different attacks AEN may use to gain access to mHealth data

being handled by the Data Storage and Data Processing Enclaves. Recall that side-channel

attacks attacks are out-of-scope for this thesis.
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Attack 1: Data Processing Request. To ensure the confidentiality and provenance of

mHealth data stored in Amanuensis, we require that computations on mHealth data take

place within a Data Processing Enclave. To initiate a computation, data consumers must

submit a data processing request detailing the specific input data and computation they wish

to be executed. Much like the transaction signature attack on blockchain, AEN may submit

a false data processing request in an attempt to gain access to the result of some sensitive

computation. In this attack scenario, let us assume that Alice has granted Bob access to her

mHealth data, which AEN will try to gain access to by forging a data processing request.

1. AEN may try to modify and replay one of Bob’s previous data processing requests

so that instead of returning the result of the computation to Bob it returns to AEN .

In fact, AEN may specify a different computation, one that simply returns the input

data without performing any sort of computation over the data at all. This modified

data processing request, RFALSE will not pass validation, however, as it contains a

signature tied to the request data and by changing the data (i.e., changing Bob to AEN )

the signature will no longer match the request.

2. For AEN to make the request appear valid, it would also need to modify the signature

tied to the data within a request; thus, AEN will need to gain access to Bob’s private

signing key, SKBOB . AEN can obtain SKBOB by attacking Bob’s smartphone where

the key is stored, or by guessing the value of SKBOB.

3. Similarly, creating an entirely new request would require AEN to gain access to

SKBOB for generating a legitimate signature.

4. Given our security assumptions in Section 3.3, which states that all smartphones used

to interact with Amanuensis have secure storage for encryption and signing keys, we

know that AEN will not be able to retrieve SKBOB from Bob’s smartphone. Similarly,

given our cryptographic primitive assumptions, our attacker is incapable of guessing

SKBOB in any practical time period.
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Attack 2: Data Retrieval Request. One of the responsibilities of the Data Storage

Enclave is to retrieve and decrypt mHealth data that the Data Processing Enclave needs for

computations. AEN may create a modified Data Processing Enclave that submits false data

retrieval requests to the Data Storage Enclave. In this attack scenario, let us assume that

AEN has gained access to a TEE node so that it can deploy its modified Data Processing

Enclave, DPEFALSE .

1. Before enclave instances communicate with each other (e.g., send and receive data

retrieval requests), they first perform an attestation process to ensure the authenticity

and integrity of each other. This attestation process involves using a number of

trusted-computing functionalities exposed to the enclaves by the Trusted Execution

Environment in which they run. Thus, to submit a false data retrieval request, AEN

must create an enclave that passes the integrity measurement and attestation trusted-

computing checks.

2. If AEN were to create a custom DPE, DPEFALSE , for submitting false data re-

trieval requests then the value of the integrity measurement would not match that of

DPETRUE , as the measurements are calculating by taking cryptographic hashes over

the enclave application. Thus, the probability of this attack being successful (i.e.,

AEN creating a valid enclave image) is equal to the probability of AEN finding two

input values that map to the same output value of a cryptographic hash. Given our

cryptographic primitive assumptions, our attacker is incapable of guessing a valid

enclave image in any practical time period.

3.9.3 Off-Chain Data Storage Security

Lastly, an adversary ADS may try to steal mHealth data directly from off-chain storage.

We assume nothing about off-chain data-storage services other than they can be trusted to

correctly write data to storage and return the correct data for a given storage index.
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Attack 1: Reading Data. Given that off-chain storage is assumed to be insecure, and

the storage indexes are stored on the blockchain for all to see, ADS could simply retrieve

data from off-chain storage. Since the data is encrypted by the Data Storage Enclave before

transmission to a storage server, however, ADS will not be able to decipher any of the

information. To decrypt the mHealth data obtained from off-chain storage, ADS would have

to (1) gain access to the encryption key from the DSE’s secure memory or (2) guess the

value of the encryption key. Both of these options contradict the security assumptions of our

system, namely that ADS cannot break into secure TEE storage and that ADS is not capable

of breaking cryptographic primitives (e.g., encryption algorithms) in a time period that is

practically useful.

Attack 2: Modifying Data. ADS may also attempt to modify data stored in off-chain

storage. Indeed, because we assume these data-storage services are not secure, ADS may

succeed in adding fake data, replacing legitimate data with fake data, or deleting legitimate

data. We consider data deletion to be a denial-of-service attack, however, which is out-of-

scope for our work. Modifications to legitimate data, on the other hand, will be caught by the

DSE the next time the data is requested, because the DSE performs integrity and provenance

checks using metadata stored on the blockchain. To successfully modify mHealth data or

information, ADS would have to modify both the data in off-chain storage and convincingly

update its corresponding metadata in the blockchain so as to pass the DSE provenance

checks. Of course, to modify the state of the blockchain, ADS would need to carry out an

attack on the blockchain, which we have already shown to be improbable.

3.10 Implementation

Below we describe the specific blockchain and trusted execution environment technologies

used in our prototype implementation of Amanuensis.
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3.10.1 VeChain Thor Blockchain

We implemented the blockchain component of Amanuensis using the VeChain Thor plat-

form [101]. Thor is based on the Ethereum [105] blockchain, and, as such, supports the

account/balance model and provides a custom virtual machine for executing smart contracts.

Thor differs from Ethereum in several ways, however, as it introduces a dual-coin model, a

consensus mechanism called Proof-of-Authority (PoA), and support for transaction clauses

and enforced transaction ordering. Unlike Proof-of-Work (PoW) consensus algorithms

that allow anybody to validate transactions, PoA entrusts a small consortium of authorized

entities (authority nodes) with validating and adding new blocks to the blockchain. Limiting

those able to validate blocks makes PoA more centralized than traditional public consensus

algorithms, but it also allows PoA to achieve much higher transaction throughput than

its public counterparts. Amanuensis expects a consortium of healthcare-related service

providers to manage the blockchain, not the general public, so Thor’s PoA consensus mech-

anism is a good fit for our system design. Furthermore, the higher transaction throughput is

necessary as many mHealth data sources may frequently and periodically upload data to the

system. Unlike Ethereum transactions, which are used to perform a single task (i.e., transfer

crypto, call a smart-contract function), Thor transactions support “clauses” which make it

possible to pack multiple tasks into one transaction and thereby increase the throughput

of the blockchain platform. Our current implementation, however, does not make use of

VeChain Thor’s transactions clauses and simply treats transactions as if they only have the

capabilities of standard Ethereum transactions.

3.10.2 Intel SGX & GrapheneSGX

First introduced in their 6th generation processors (Skylake), Intel’s Software Guard Ex-

tensions (SGX) [50] has gone on to become one of the most widely used TEE platforms.

As such, SGX hardware is readily available and its usage well documented, which is why

we chose to implement the TEE component of Amanuensis with SGX. The challenge with
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the SGX platform is that applications (i.e., Enclaves) need to be coded to explicitly use

the SGX API to create, and execute in, a trusted context. We want users to upload their

data processing programs to Amanuensis so that we can execute them inside of a TEE to

provide data confidentiality and provenance, but users may be less likely to participate in the

Amanuensis ecosystem if they need to modify their programs to fit the SGX paradigm. Thus,

we use GrapheneSGX [31], a library OS that can be used to deploy unmodified applications

on SGX. GrapheneSGX supports a number of unmodified applications including Apache,

GCC, and the R interpreter [31].

3.11 Evaluation

In this section, we present an evaluation of our Amanuensis prototype. As the main

contribution of this chapter is the architectural design of Amanuensis, the goal of the

prototype implementation and evaluation is to demonstrate the feasibility of, and thus

validate our decision to use, blockchain and trusted execution environment technologies

for managing mHealth data. To this end, we evaluate the throughput of the blockchain for

reading and writing data, as well as the overhead incurred by running applications on a

trusted execution platform.

3.11.1 Blockchain Performance

Here we evaluate several important aspects of the Amanuensis blockchain: read latency,

write throughput, and operational cost. Our blockchain tests were conducted against our

DataSource smart contract, which we deployed on the VeChain test network.5 To deploy and

interact with our smart contracts, we used VeChain’s ‘Sync’ web browser. Sync exposes an

instance of their JavaScript library, Connex, which is used to create and submit transactions

(e.g., deployments, smart-contract calls) on VeChain’s test network.

5Unfortunately, at this writing there is no public information available regarding the configuration of the
VeChain test network.
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Reading Data

Every time the Data Storage Enclave retrieves data from off-chain storage, it must also

retrieve its associated provenance metadata recorded on the blockchain. In our implementa-

tion, there are two main functions related to retrieving provenance metadata: getData() and

hasDataAccess(), where getData() returns the contents of our record t struct and hasDataAc-

cess() returns a boolean value indicating whether the specified consumer has permission

to access the data. Transactions are not required when reading data from the blockchain,

which means anyone can read from the blockchain without paying transaction fees (i.e.,

“gas”). We deployed our DataSource smart contract to VeChain’s test network and called

each function 5,000 times. On average, getData() took 261 msec to return the provenance

metadata and hasDataAccess() took 30 msec to return the boolean access value.

Writing Data

Every time the Data Storage Enclave writes data to off-chain storage, it also writes prove-

nance metadata to the blockchain. Unlike reading data, writing data to the blockchain

requires that the user (in this case, the BIE) submit a transaction to the miners. The VeChain

Thor blockchain is theoretically capable of handling up to 10,000 transactions per sec-

ond [73], but the maximum transaction rate seen on their production network thus far is 165

transactions per second [14].6 Regardless, to achieve practical transaction rates Amanuensis

will require new data to be ‘batched’ at the app, device, or smartphone level, reducing the

number of blockchain transactions required. Assuming 165 tx/s can be maintained, we cal-

culated the number of mHealth data sources that the Amanuensis blockchain could support

given they batch data every 1, 4, 8, 12, and 24 hours. The results of these calculations are

presented in Table 3.3. Note that these calculations assume the blockchain is only being

used for writing provenance metadata, and does not consider updating permissions lists,

adding new smart contracts, or other actions that require blockchain transactions. Thus, the

6As of 3 March 2020.
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values in Table 3.3 may overestimate the real number of mHealth data sources that could be

supported.

Table 3.3: The number of mHealth sources Amanuensis blockchain could support for a
given transaction rate and data batch.

Tx/s Batch Rate (hours) Sources
165 1 594,000
165 4 2,736,000
165 8 4,752,000
165 12 7,128,000
165 24 14,256,000

Gas Cost

In VeChain’s Thor (or other Ethereum-based blockchain systems), each blockchain transac-

tion requires payment in a currency called gas. The gas concept, and the requirement to pay

for transactions, was introduced by Ethereum as an incentive for miners to carry-out smart-

contract invocations. In Thor, the fee size depends on the complexity of the smart-contract

function. As an example of the cost for interacting with Amanuensis’ smart contracts, we

present the gas costs for functions in the DataSource contract and their corresponding cost

in U.S. dollars. We leave the decision of whether or not to require gas payments up to those

implementing our system design, but we provide theoretical gas costs for their consideration.

The VeChain Thor Token (VTHO) is used to pay gas costs on the blockchain, and 1 VTHO

= 1000 gas. We can use the price of VTHO ($0.0045585 [19])7 to estimate the dollar cost

for interacting with the DataSource smart contract, as shown in Table 3.4. Depending on the

batch rate of their mHealth data source, a user can expect to pay between $0.47-$11.28 per

day to store their mHealth data in the Amanuensis system.

Although transactions on the VeChain Thor production network cost money, a hypotheti-

cal Amanuensis consortium can run its own blockchain and mutually agree to not charge any

7As of 13 April 2022.
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Table 3.4: Monetary cost for each invocation of the DataSource smart contract.
Function Cost (in Gas) Cost (in $)
Deploy Contract 711,385 $3.24
addData 103,193 $0.47
grantAccess 28,552 $0.13
revokeAccess 25,639 $0.12

fees for transacting on their blockchain instance, perhaps arranging off-chain mechanisms

to share/distribute operational costs.

3.11.2 Enclave Performance

Here we present the impact of using Intel SGX (more specifically, GrapheneSGX) to execute

sensitive mHealth data computations. Running applications on TEE platforms is inherently

slower then running them on untrusted platforms, as the TEEs need to perform certain trusted

computing features (e.g., data unsealing/sealing, integrity measurement, attestation) before,

during, and after execution of an application. GrapheneSGX reports overheads ranging

“from matching a Linux process to less than 2x in most single-process cases” [31]. Looking

at their results, the operations that achieve overheads similar to that of an unmodified

Linux process are those that do not involve memory allocation, garbage collection, or any

other communications with the host system. Examples of operations that perform well

in GrapheneSGX are matrix computations, sorting, and linear regression. We timed the

execution for two programs running as regular Linux programs and as SGX enclaves within

GrapheneSGX.8 Those programs are a sum of squares linear regression on one million data

points and quicksort on a reversed array (worst case). The results are presented in Table 3.5,

and looking at the “System” timings we can see that SGX requires a significant amount

of time to initialize enclaves – on the order of seconds. This overhead is unfortunately

unavoidable if we wish to execute in a confidential context. If we examine the time spent in

“User” space, SGX imposes a 3.2x slowdown for quicksort and 1.9x slowdown for linear

8Tests were performed on a Dell Optiplex 7060 with Intel Core i7-8700 CPU running Ubuntu 18.04.4 LTS.
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regression. Due to the enclave initialization and destruction time, computations on large

datasets (i.e., those that will take a long time) will see less relative overhead imposed by

SGX than short-lived computations.

Table 3.5: Execution times of plain Linux programs vs GrapheneSGX.
Benchmark User System
Quicksort 0.187s 0.000s
QuicksortSGX 0.591s 1.505s
Linear Regression 0.350s 0.004s
Linear RegressionSGX 0.661s 1.497s

3.12 Related Work

Amanuensis is certainly not the first blockchain-based health-data system nor the first TEE-

enabled blockchain. Many prior systems provided inspiration and guidance in designing

the Amanuensis system. One notable work is ShareHealth [33], a health-data system that

secures mHealth data streams from various devices and vendors and provides cryptographic

temporal-based access-control. Though ShareHealth does not use blockchain or trusted

execution technology, it initially shaped the goals and design choices for Amanuensis. Below

we detail prior research related to blockchain-based health-data systems and confidentiality-

preserving blockchain techniques.

3.12.1 Blockchain-Based Health-Data Systems

Many have proposed that the transparency, immutability, and distributed trust afforded by

blockchain may bolster the security, interoperability, and auditability of existing health-

data systems [3, 7, 30, 75, 84, 88]. Based on recent surveys of the use of blockchain in

healthcare [1,37,44,46,100], the majority of proposed blockchain-based health-data systems

have focused on access control for provider-managed Electronic Health Record (EHR)
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data [6, 16, 22, 23, 32, 47, 52, 67, 69, 74, 77, 104, 106]. These blockchain-based health-data

systems allow patients greater control over their provider-managed health data by using

a blockchain network to store and enforce data-access policies. Providers (and in some

cases, patients) participate in running the blockchain network, thereby removing the need

to trust any one entity with correctly upholding the data-access policies. Along with

data-access policies, the blockchain stores hashes for maintaining the integrity of health

data being stored off-chain and records instances of data access for auditing purposes.

Though most of the surveyed systems focused on controlling access to EHR data, several

leveraged the immutability and transparency of blockchain to increase the reliability of data

provenance in applications like clinical drug trials, medical referrals, or risk and vulnerability

assessment [52, 62, 63, 65, 70, 78, 80, 89, 110]. Others used blockchain to provide access

control for mHealth data streams [18, 98, 99, 107].

While current blockchain-based health-data systems provide secure and distributed

access control, data immutability, and auditability they do not support confidential and

efficient ways for computing on sensitive health data. Smart contracts are capable of

computation, but they would reveal sensitive health data to all of the network participants

and be highly inefficient due to blockchain’s transparency and the redundant execution of

smart contracts by every mining node. It is important to note that blockchains can only

attest to computations run inside the blockchain, but not actions that happen off-chain. Thus,

while users can trust the computations that happen in the blockchain are valid and that the

data is immutable, they have no way of verifying that the data added to the blockchain was

created legitimately and that access policies are upheld outside of the blockchain.

3.12.2 Confidentiality Preserving Blockchains

Transparency is touted as one of the many benefits of blockchains, but it is also one of the

main obstacles to blockchain’s broader adoption. Certain applications only benefit from

blockchain’s distributed data-management model if said data remains confidential (e.g.,
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collecting and evaluating bids for an auction). To this end, several techniques for achieving

data confidentiality on blockchains have emerged: Zero-Knowledge Proofs (ZKPs), Multi-

Party Computations (MPCs), and Trusted Execution Environments. ZKPs and MPCs

provide greater cryptographic security guarantees than TEEs, but are computationally more

expensive – making it difficult to support complex operations. Amanuensis uses TEEs for

data confidentiality because we want to support general computations; we thus focus here

on related work for TEEs.

Introduced by Ethereum, smart contracts allow application developers to deploy code

to the blockchain network. These smart contracts serve as the back-end business logic

component to front-end web applications, often referred to as decentralized applications

(dApps). Several works address smart-contract data confidentiality by augmenting the

blockchain with trusted execution environments so that sensitive smart contracts can be

executed inside of a TEE instead of the mining nodes [13, 17, 54, 109]. Using this concept

of a TEE-enabled blockchains, others use confidential smart contracts to build ML and

AI data marketplaces [24, 25, 48], confidential cryptocurrency applications [8, 68, 97], and

secure IoT [5, 26] and healthcare [66] data management systems. While these systems have

the building blocks necessary to provide information provenance, only Liang et al. [66]

explicitly attempts to do so. They take a passive approach to information provenance,

however, and do not require periodic enclave attestations or verify data before it is used –

data is only verified if requested, and only after the fact – whereas we perform regular

attestations and verify the provenance of data before it is used.

3.13 Conclusion

Previous works on blockchain-based health-data systems largely focus on developing secure

methods for sharing and tracking Electronic Medical Records (EMRs), but do not consider

mHealth data. Furthermore, these systems only track the movement of health data, not
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the transformation (e.g., computation, aggregation) of health data. In this chapter, we

present a blockchain-based health-data system capable of securing mHealth data streams,

providing individuals with a better view of how their data is being used, and allowing for the

confidential, but verifiable, consumption of sensitive health data. By combining blockchain

and trusted execution environments, Amanuensis provides participants with transparent

and immutable data trails that can be used to verify mHealth data and information streams.

Furthermore, Amanuensis allows users to confidentially share and consume said data and

information. We present a prototype implementation of Amanuensis that is capable of

supporting up to 14,256,000 mHealth data sources at $0.47 per data source per day.
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4
Provenance, Privacy, and Permission in

TEE-Enabled Blockchain Data Systems

In previous chapters, we achieved information provenance by securing mHealth data at the

point of its creation (Chapter 2) and at every point in which it is shared or transformed

(Chapter 3). In this chapter, we build on our data-management system, Amanuensis, to

address several issues that arise from the combination of blockchain and trusted execu-

tion environments. For instance, current TEE hardware platforms (e.g., Intel SGX [50])

have limited RAM (on the order of megabytes), whereas blockchain databases span tens

to hundreds of gigabytes. This memory constraint makes running blockchain software
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inside of a TEE impractical as the cost of reading blockchain data in/out of disk storage,

decrypting/encrypting, and integrity checking may deteriorate blockchain performance to

the point where it is no longer useful to higher-level applications. Thus, programs running

inside of TEEs must rely on software outside of the trusted area to retrieve data (e.g., a

data analysis program and encrypted sensitive inputs) from the blockchain database. Fur-

thermore, while we have removed sensitive data operations from the blockchain (i.e., data

computation), simply tracking who is interacting (and with what) on the blockchain may

reveal sensitive information about an individual or organization (e.g., Bob is sharing data

with an oncologist).

4.1 Contributions

We build on our TEE-enabled blockchain data system, Amanuensis [38], which is designed

to facilitate the sharing and computation of mobile health (mHealth) data between disparate

healthcare providers. Namely, this chapter makes three major contributions:

• assured freshness of access-control lists stored on the blockchain,

• expanded privacy for users interacting on blockchain, and

• secured protocol for verifying the provenance of data produced by confidential TEE

programs.

We expand and evaluate our Amanuensis prototype to measure the cost of information

provenance and confidentiality. Although the impact of our solution is substantial at times –

with slowdowns ranging from 3.2x to 188x depending on program and input configuration –

applications that require confidential but verifiable computations may find these overheads

acceptable (e.g., the offline processing of sensitive health data). Though our work is framed

in the context of mHealth data, the techniques and protocols within can be applied to

sensitive data of any nature.
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4.2 Background

We expand on the blockchain and TEE background information provided in Section 3.2 by

describing several concepts related to our data freshness, identity privacy, and information

provenance solutions.

4.2.1 Blockchain

Blockchains that support smart contracts are implemented with two databases. The first is

an append-only database of time-stamped blocks that are cryptographically linked to protect

them from tampering and revision. The second is a mutable database that stores the current

state of smart contract variables and memory. The integrity of the smart contract data is

maintained via Merkle tree, which is a binary tree built by hashing the leaf node values

(e.g., smart-contract state) and iteratively hashing pairs of hashes together until one value is

left. This final hash value essentially serves as a ‘snapshot’ of the data in the leaf nodes and

is re-calculated and stored within every new block that gets added to the first database. Given

the newest block in the blockchain, a user can validate smart contract data by recreating the

Merkle tree path from the leaf node (i.e., smart contract data) to the root node (i.e., integrity

snapshot). This path is known as a ‘Merkle proof’ and consists of log2(N) values, where N

is the total number of smart contracts on the blockchain [15].

Users submit transactions to the blockchain network that contain directives for updating

the state of the blockchain (e.g., record a new piece of data, invoke a smart-contract function).

Contained within these transactions are the identities of the users that authorized said

transactions. Instead of identifying users by their name, however, they are identified via

cryptographic public-keys (represented as alphanumeric character strings). For this reason,

blockchains are considered to be ‘pseudo-anonymous’, but this level of anonymity has been

shown to be easily broken [41, 79, 85].
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4.2.2 Trusted Execution Environments

The Intel SGX Trusted Execution Environment provides Enclaves with a trusted-computing

feature known as remote attestation, which is a process for proving to parties outside

of the TEE platform (i.e., code executing on a different machine) that an Enclave has

been unmodified and is running on genuine Intel SGX hardware. The first step in remote

attestation is local attestation, which is the process where an attesting Enclave proves to

the Quoting Enclave – a trusted program written by Intel – that it is running in a TEE

context on the same hardware platform. Specifically, the attesting Enclave invokes special

hardware instructions to take cryptographic integrity measurements of its code and data.

These measurements are bundled and signed with a key only available to programs running

in the trusted execution context (a key that is baked into the hardware at manufacture time).

This signed message is then sent to the Quoting Enclave where it is verified, signed, and

returned to the attesting Enclave. This second message, or ‘quote’, is then sent to the Intel

Attestation Service (IAS) where it is verified, signed, and returned to the attesting Enclave.

This last message is the attestation report and it contains the quote verification status, the

quote, other platform related information, and an IAS signature over the report. Finally,

the attesting Enclave provides the remote verifier (i.e., the program that asked the Enclave

to attest to itself) with the attestation report, which can be used to verify the integrity and

authenticity of the attesting Enclave along with the fact that it is running on genuine Intel

SGX hardware.

4.2.3 Amanuensis

Amanuensis is a TEE-enabled blockchain system designed to facilitate the sharing and

computation of mobile health (mHealth) data between disparate healthcare providers [38].

The backbone of Amanuensis is its consortium-based blockchain, which provides a suite of

smart contracts that allow individuals to share and manage their mHealth data in a confi-

dential yet verifiable fashion. The consortium is comprised of health-related organizations
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(e.g., hospitals, clinics, insurance providers, public-health agencies, researchers, government

regulators) that collectively manage the blockchain. This approach eases inter-organization

information sharing, because they can use the blockchain to verify the authenticity and

validity of shared data. As a consortium blockchain, permission to execute, validate, and

add transactions to the blockchain is reserved for miner nodes operated by the consortium

members, but, as the contents of the blockchain are public, individuals can still read data

from the blockchain and submit transactions they wish to be executed. Without a solution

like Amanuensis, individuals must trust health-service providers to manage their private

health data – and largely do – but they have no way to verify that their data is being han-

dled correctly. By forcing healthcare providers to use a publicly-readable blockchain for

data-access decisions, individuals (or watchdogs like consumer-protection organizations)

are afforded a look into how sensitive data is managed. The exact number of nodes required

to run blockchain component of Amanuensis is implementation-specific, and thus left to the

members of the health consortium; the number of nodes depends on many factors, including

the number of participants in the network, availability requirements, and cost. All our design

for Amanuensis requires is that each consortium member participates in the blockchain

network in some capacity so as to ensure the availability of the network and to maintain the

distributed and immutable nature of the blockchain.

Amanuensis also maintains a distributed network of TEE servers to ensure the avail-

ability of trusted applications (SGX Enclaves), which are used by individuals and organiza-

tions to share and compute upon their health data. As with the blockchain mining nodes,

TEE nodes are maintained by members of the blockchain consortium (not by individuals).

Amanuensis requires all actions upon mHealth data to occur inside a TEE to ensure that

data remains confidential and that actions can be verified. Utilizing the TEE’s ‘remote attes-

tation’ feature, enclaves can prove (to relevant individuals and organizations) that they are

legitimate Amanuensis Enclaves executing on genuine TEE hardware. Attestation reports

produced by enclaves, along with other relevant metadata, are stored on the blockchain
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to create a transparent record of data creation, storage, sharing, and modification that can

be verified by data owners and consumers without the need to provide them access to the

source data. While provenance metadata is stored in the blockchain, the actual health data

is encrypted and stored in off-chain storage services. Storage services may be owned and

managed by different service providers, but the keys used to encrypt health data reside in

protected TEE memory and on the blockchain (in encrypted form). Thus, once stored in

the system, mHealth data can only be decrypted by one of our secure enclaves running

in our TEE network. Again, like the blockchain component, the number of TEE nodes is

implementation-specific and left to the members of the health consortium. Ideally, they

would choose a number that is sufficient to guarantee availability of the system and to ensure

that the TEE component remains distributed across the consortium members. In other words,

there should not be a single, centralized, TEE node or cluster that is responsible for granting

access to the blockchain network and off-chain datastore.

4.3 Security Model

Amanuensis aims to preserve the confidentiality, integrity, and provenance of sensitive

health data. More specifically, data confidentiality, integrity, and provenance must be upheld

for both source data and derived information (i.e., information created through a series of

aggregations and transformations of source data). Below we present the capabilities afforded

to an adversary and the security assumptions for each of the technological components of

Amanuensis.

4.3.1 Adversary Model

We consider an adversary that (1) wishes to gain access to private health information to learn

something sensitive about one or more individual(s), (2) wishes to modify private health

information, or (3) wishes to pass off false health information as authentic. We assume
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the adversary can (1) gain physical access to a TEE node or remotely compromise the OS,

(2) gain control over some small1 portion of the blockchain network, and (3) arbitrarily read

data from the blockchain and off-chain data storage.

4.3.2 Security Assumptions

While some of the following security assumptions may seem implicit based on the technolog-

ical definitions presented in Section 3.2 and Section 4.2, we choose to explicitly state them to

clearly define the scope of security challenges that our system aims to address. Furthermore,

we use these assumptions as the basis for our security analysis in Section 3.9. The security

of any system depends on both its design and implementation, but the focus of this paper is

evaluating the design of our system. Hence, security challenges arising from implementation

choices (e.g., side-channel attacks on Intel SGX) are largely left out-of-scope.

Blockchain Amanuensis uses a blockchain to maintain the integrity of the data it stores

and of the smart-contract operations it performs. For these properties to hold, we must

assume that the consensus algorithm is capable of preventing attackers from modifying

the blockchain even if they control some miners in the blockchain network. That is, we

assume that the majority of the miner nodes act in good faith when executing the consensus

protocol.

Trusted Execution Environments Amanuensis relies on TEEs to provide a secure and

confidential computing environment for handling sensitive mHealth data. We assume that

the TEE hardware and firmware are designed such that they guarantee the authenticity

of the executed code, the integrity of the run-time states, and the confidentiality of the

Enclave’s code and data – while preventing outside entities (OS, hypervisor, applications)

from gaining access or control. Furthermore, we assume that the TEE hardware has the

1Blockchain networks that use Proof-of-Work (PoW) consensus algorithms can operate correctly if the
majority of the mining nodes act in good faith.
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capabilities for correctly and securely providing the trusted computing features described in

Section 3.2 (e.g., integrity measurement, remote attestation). We also consider side-channel2

and Denial-of-Service (DoS) attacks out-of-scope.

mHealth Apps and Devices We assume that mHealth apps and devices, regardless of

type or manufacturer, operate correctly; they produce accurate data and they can securely

communicate with a smartphone. We also assume that they have ways to authenticate the

user of the device so as not to label data with the wrong data subject. Physical attacks on

mHealth apps and devices are out-of-scope.

Smartphone We assume that an individual’s smartphone correctly and securely aggregates

data from the individual’s mHealth apps and devices and sends the data batches to one of

the TEEs for storage. In this context, the smartphone correctly executes our health-data-

collection application and has secure storage for protecting encryption and signing keys and

sensitive health data.

Off-Chain Data Storage We assume nothing about off-chain storage services other than

they can be trusted to correctly write data blobs to storage and return the correct data blob

for a given storage index.

Trusted Time Service We assume that the time service can be trusted to respond with the

correct wall-clock time upon request, and that communications between the time service

and enclaves are secure.

Cryptography We assume that the underlying cryptographic primitives on which our

system is built (e.g., cryptographic hashes, digital signatures, encryption algorithms) are not

2In concept, TEEs protect against various forms of physical attack, but in reality some implementations
have been shown to be vulnerable to side-channel attacks, which leverage observable physical traits (e.g.,
memory-access patterns, CPU power-draw) of a computing system to infer what operations it is performing
and/or what data it is handling.

73



breakable in any practical time frame.

4.4 Data Freshness

The ‘transparency’ and ‘decentralized trust’ that blockchain purportedly offers is only truly

available to those who participate in maintaining and updating the state of the blockchain

(i.e., miners). By keeping their own local copy of the database and participating in consensus,

miners are assured that the state of their blockchain (and thus the data contained within)

is correct.3 Other participants in the blockchain network, however, are required to place a

certain degree of trust in miners. Indeed, a user that queries a miner for blockchain data

trusts that the returned data is correct but there remains a possibility that the data is wrong

(either through malicious actions or some error on the miner’s part). To verify the received

data, a user would have to contact multiple miners to request the same piece of data (which

still only provides some statistical guarantee of correctness) or they would have to download

the entire blockchain and validate all transactions starting from the genesis block up to the

most current block.

Current Intel SGX implementations have limited RAM availability for enclaves (128-256

megabytes), but blockchain databases tend to span tens to hundreds of gigabytes. The cost

of paging data in and out of disk for enclaves is particularly expensive, because they must

perform encryption and integrity checks on all data that pass through the trust boundary.

This high paging cost makes running a miner inside of an enclave impractical for most appli-

cations and is the reason Amanuensis uses enclaves for performing sensitive data operations

but not for maintaining the blockchain. The issue with this split computation paradigm,

however, is that the enclave is not able to validate data received from the blockchain. When

an enclave receives a request for a sensitive data operation it first queries the blockchain

for the access-control list to check that the requester has the proper permissions. How then

3Data entered into the blockchain is subject to change for some period of time; users must wait until the
data is sufficiently ‘deep’ in the blockchain to be assured that the state will not change due to a fork [45]
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does the enclave know that the list returned to it is correct and that it is the most recent

version? Without having its own copy of the blockchain, the enclave has no way to prevent

a malicious miner from feeding it a false or stale access-control list.

Below we detail how to employ the digital certificate validation method known as

NOVOMODO in conjunction with a trusted timing server to verify the freshness of access-

control lists received from the blockchain.

4.4.1 NOVOMODO

Amanuensis maintains a smart-contract instance on the blockchain for each mHealth data

source, and each instance contains a list of approved data consumers for that mHealth data

source. In our prior design, these lists contained the blockchain IDs of the approved data

consumers, but we now propose tracking digital certificates instead – certificates which

we will verify using NOVOMODO: a scalable small-bandwidth method for validating the

integrity, authenticity, and freshness of digital certificates. The certificates contain the

following information:

• blockchain address – address of the data consumer’s blockchain account

• issue date – date and time that this certificate was issued

• expiration date – date and time that this certificate expires

• revocation period – granularity of time after which revocation takes effect (e.g., one

day)

• Xn – the ‘validity target’, or value used to prove freshness of this certificate

• SigOWNER – signature of the data source owner

To explain how validating a NOVOMODO certificate works, we must first look at how

Xn is generated. Imagine an mHealth data source owner, Bob, who wishes to grant a data
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consumer, Alice, access to one of his mHealth data sources for a period of one year with a

revocation period of one day beginning on 1 January.

1. Bob generates a random 20-byte value known as X0.

2. Bob hashes X0 n = 365 times to produce values X1 through X365, where Xi =

H(Xi−1) and H(x) is a cryptographically secure one-way hash function.

3. Bob makes the final value X365 (i.e., the validity target) public by including it in the

signed certificate, but keeps X1 through X364 secret.

4. As the year passes and as long as Bob desires Alice to retain access, Bob sends Alice

a ‘validity proof’, X365−i, on day i.

5. Suppose Alice desires access to the data on day i; Alice sends an enclave a data

request containing the validity proof X365−i.

6. The enclave verifies that Alice still has access to Bob’s data by hashing X365−i i times;

if the final hash value matches the validity target X365 contained in the certificate then

Alice must still have permission to use Bob’s data.

Unless Alice was (1) somehow able to steal X365−i from Bob’s secure storage or (2) break

the cryptographic hash function used to produce X365, we can assume X365−i proves the

continued validity (i.e., freshness) of Alice’s data access permission. Bob can suspend or

revoke Alice’s access simply by not providing her with that day’s validity proof. The effect

of revocation may be delayed as long as the revocation period – if Bob already provided

Alice with that day’s validity proof then the certificate will be valid for the remainder of the

day even if Bob removes the certificate from the blockchain (assuming a malicious miner

saves and provides the certificate to an enclave even after it was removed).

The NOVOMODO method alone is not enough to guarantee freshness of the certificate,

however, as it relies on the enclave having access to a trusted time source. Indeed, the
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enclave is in the same situation as before: it has no way to determine whether the X365−i

value provided by the data requester is for the current or past revocation period.

4.4.2 Freshness Protocol

SGX enclaves do not have a trustworthy real-time clock, but we can assume the existence of

a trustworthy time service, available over the Internet, whose reports of the current real time

can be cryptographically verified as authentic.4 The challenge, however, is for an enclave to

ensure that any such reports are ‘fresh’, that is, to bound the amount by which the reported

time lags behind the true current time. Recall that enclaves can only attest to information

inside of the TEE boundary; any data received from outside of this boundary (e.g., network

messages) are subject to modification or delay by the host operating system (OS) [4].

To illustrate why this delay is problematic, imagine that Bob decides on the afternoon of

May 11 to revoke Alice’s access to his data for the remainder of the year and tells her as

much. Furthermore, assume that Bob had already sent her May 11’s validity proof, Xj . By

NOVOMODO’s definition of revocation, it is valid to allow Alice access to Bob’s data until

the end of May 11, but not after.

Alice, not wishing to respect this constraint, may conspire with a malicious OS on an

enclave server to delay responses to that enclave from the time service – responses that

contain a wall-clock time falling on May 11 – such that the responses are delivered to the

enclave after May 11. If, for example, the enclave asks the time service for the time, on

May 11, and the service returns a timestamp like 8:01pm May 11, the malicious OS might

not deliver that message to the enclave until May 12 or even later. The enclave would then

believe that the validity proof Xj is still fresh and thus that Alice currently deserves access

to Bob’s data, violating the revocation intent. Alice’s requests to that enclave server may

thus provide her access to data she is not authorized to receive.

4The Network Time Security (NTS) protocol for example, which secures the Network Time Protocol (NTP)
via TLS [34].
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Fortunately, there is a straightforward solution. Every computation request requires

four fundamental steps: (1) verify the requester’s authorization to access the input data,

(2) retrieve the input data, (3) perform the computation, (4) write the output data. The first

step requires the enclave to contact the time server for a certified statement about the current

time; on receipt, though, it only knows that the actual time is later than the reported time. If

the actual time is much later than the reported time, the second step might access data for

which the requester is no longer authorized. The solution is to switch the order of steps (1)

and (2): to fetch all the input data, then request the current time from the time server and

verify it against Xj; if valid, the enclave can be assured the access occurred at a valid time

because it occurred before the timestamp was even requested from the time server. If not

valid, the data is discarded and the computation cancelled.5

4.5 Identity Privacy

As mentioned in Section 4.2, users are identified on the blockchain not with their real

name but with a cryptographic public-key (represented as an alphanumeric character string).

The use of these strings provides a level of ‘pseudoanonymity’ that (unfortunately) in

many applications is easily broken. For instance, imagine an individual Bob who wishes

to share some mHealth data with his healthcare provider Alice. Given the nature of the

healthcare provider-patient relationship, Alice almost certainly knows Bob’s real-world

identity. When Bob grants Alice access to this data by updating the access-control list on the

blockchain she will learn his blockchain pseudonym as well. By searching the blockchain

for all instances of that pseudonym, Alice can determine if Bob has relationships with other

healthcare providers. So, even though the blockchain is pseudonymous, it may still leak

private information about its users.

5Although this approach may waste some effort, fetching data that may no longer be allowed for use, it
would only happen when access has been revoked and the time-server response has been inordinately delayed;
an unusual occurrence.
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The issue of identity privacy – a blockchain user’s ability to conceal personally identi-

fying information (PII) from other users of the blockchain – has not gone unnoticed in the

blockchain community. There exist several solutions to this problem (e.g., zero-knowledge

proofs, ring signatures, mixing services), none of which we believe are a good fit for our

system design. Coincidentally, by forcing Amanuensis users to submit data computation

requests directly to enclave instances, we already have a partial solution to identity privacy.

Indeed, the only blockchain related by-products of these requests are enclave generated

transactions containing provenance metadata for validating the computation output. Any-

body with access to the blockchain can track and validate the creation of new data (i.e.,

information), but they cannot discern who is responsible for the request as the only identity

tied to the transaction is the enclave’s. We take this idea, which we refer to as enclave

proxies, and extend it to every transaction in the Amanuensis blockchain network (instead

of just provenance metadata transactions).

4.5.1 Enclave Proxies

Our enclave proxy model requires Amanuensis users to submit all blockchain transactions

to enclave instances instead of directly to the blockchain network. Enclaves then rewrite

transactions to make it appear as though the enclave was the creator of the transaction before

submitting them to the blockchain network on behalf of the end user. Before we describe

the necessary changes to transactions and smart contracts, we define several relevant terms.

DataSource Smart Contract

records information for identifying a particular mHealth data source (e.g., mHealth applica-

tion or device), the data that it produces, and data-access policies. On the blockchain, there

is an instance of the DataSource contract for every mHealth data source in the Amanuensis

system.
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Data Key

a symmetric encryption key that is used to encrypt data streams. Data keys are used by

the Amanuensis enclaves to encrypt incoming mHealth data streams before writing them

to off-chain storage. We store Data Keys on the blockchain so that they persist and are

accessible to all enclave instances; when necessary, any TEE server may service the mHealth

data source. Data keys are first encrypted with the Master Data Key before being written to

the blockchain.

Master Data Key

the symmetric encryption key that is used to encrypt and decrypt Data Keys stored on the

blockchain. Whereas there are multiple Data keys, there is only one Master Data Key in

the Amanuensis System. During a one-time setup phase, the Master Data Key is generated

by one enclave, which then registers itself with the EnclaveRegistry contract. Subsequent

enclaves that join the network can look-up existing enclaves on the registry and retrieve

the Master Data Key through the remote attestation and secrets provisioning mechanisms

provided by TEEs.

4.5.2 Smart Contracts

By removing user pseudonyms from transactions, we eliminate an attacker’s ability to trace

a user’s activity on the blockchain. A by product of our proxy method, however, is that we

have undermined the blockchain network’s ability to verify (i.e., authenticate) that a given

user has the authority to make a particular transaction (e.g., update an access-control list

in a DataSource contract). Indeed, smart contracts often include code at the beginning of

sensitive functions to check that the caller is the owner of said smart contract. So, how do

smart contracts authenticate users hidden behind enclave proxies? Instead of relying on

smart contracts to verify function callers, we require that enclaves perform this verification
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before making any call to a smart contract.

This authentication process is detailed below, beginning with the deployment of a smart

contract:

1. Bob obtains a new mHealth device whose data he wishes to manage with Amanuensis.

Bob creates a transaction containing a contract creation call for one of our DataSource

smart contracts, which he then sends to an enclave instance.

2. Upon receiving Bob’s contract creation request, the enclave rewrites the transaction

so that the enclave appears as both the creator of the transaction and owner of Bob’s

new smart contract. The enclave then generates a new Data Key, which it uses to

encrypt Bob’s public blockchain pseudonym. The Data Key is then encrypted with

the Master Data Key. Both Bob’s encrypted pseudonym and encrypted Data Key are

included as an argument to the smart-contract creation call. The newly formed (and

signed) transaction is then submitted to the blockchain network.

3. Afterwards, the enclave returns the transaction receipt received from the blockchain

network to Bob, which he can use to locate his smart contract.

4. With Bob’s smart contract successfully deployed and containing his encrypted pseudonym,

the enclave need only retrieve and decrypt the pseudonym to verify subsequent calls

to his smart contract.

4.5.3 Transactions

The process for rewriting transactions is as follows:

1. A user, Bob, wants to grant Alice access to the data produced by one of his mHealth

devices. Bob creates a blockchain transaction containing a call to the grantDataAccess

function of the smart contract associated with the particular mHealth device that he
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wishes to share. Bob signs the transaction with his private key (the one associated with

his public blockchain pseudonym) and sends this transaction to an enclave instance.

2. Upon receiving Bob’s transaction, the enclave first verifies Bob’s signature by retriev-

ing his public identity, which is stored in an encrypted form in his mHealth device’s

smart contract (the details of which are described in Section 4.5.2).6

3. If Bob’s signature is verified, the enclave generates an transaction identical in content

but signed by the enclave. The newly created and signed transaction is then submitted

to the blockchain network.

4. The enclave returns the transaction receipt received from the blockchain network to

Bob so that he may locate the block containing his transaction.

It is important to note the significance of encrypting Bob’s public pseudonym before

storing it on the blockchain with his mHealth device’s smart contract. Since Data Keys

are unique to each smart contract (and thus to each mHealth data stream), Bob’s encrypted

pseudonym will also be distinct across every smart contract that he owns. In other words, we

have effectively provided Bob with multiple pseudonyms that prevent attackers from linking

his smart contracts with each other. Thus, even if Alice somehow learns Bob’s encrypted

pseudonym for a particular smart contract she cannot use it to locate his other smart contracts.

Similarly, by encrypting the pseudonyms of authorized data consumers (e.g., Alice) with the

Data key we can prevent the linking of data consumers across mHealth devices and patients.

Even though Bob knows Alice’s encrypted pseudonym for his particular smart contract,

he cannot use that to locate other smart contracts that she has been given access to as her

encrypted pseudonym will be different.

6Normally, Bob’s signature would be verified by miners in the blockchain network, but in our new protocol
miners never see Bob’s signature as it is replaced by the enclave’s. Thus, it is now the enclave’s responsibility
to ensure that Bob has the authority to make that particular smart-contract call.
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4.6 Information Provenance

One of the goals of Amanuensis is to provide information provenance for data generated via

one or more computations on intermediate and source data sets. The key to our information

provenance solution is the remote attestation feature provided by our trusted execution

environment. Previous systems (including our own) claim that by having an enclave generate

an attestation we are guaranteed the program’s output to be ‘correct’ (i.e., that the program’s

code is unchanged and thus that any output it generates is as expected). Furthermore, that

we can use attestations to prove to other parties that the enclave’s output is correct. How

exactly does this attestation process work, and how does it fit into the overall system to

achieve a goal such as information provenance?

It turns out providing information provenance is more nuanced than simply “requesting

an attestation” and passing it on to the next data consumer. While attestations are crypto-

graphically tied to an enclave’s code and the hardware platform that it is running on, they

are not inherently tied to the program’s output. For example, imagine that Bob connects to

an Amanuensis enclave and asks for a remotely-verifiable attestation report. The enclave

returns a report to Bob, which he uses to verify that (1) the enclave is running on genuine

Intel SGX hardware, (2) that its code has not been modified, and (3) that it is the authentic

Amanuensis program it purports to be. Satisfied, Bob requests that the enclave perform

a computation on some mHealth data. The enclave performs this request and returns the

output of the computation: 42. Having just requested and verified an attestation report, Bob

accepts that 42 is the correct output of his requested computation. Now say Bob shares this

result and attestation report with Alice. Is she assured that 42 came from Bob’s specific

computation request? Alice is able to verify that the report was generated by a genuine

Amanuensis enclave running on Intel SGX hardware, but there is nothing to tie the report to

the output 42 – Bob could have provided her with any number and she would have no way

to determine how and when it was generated by the enclave.

In the following subsections we detail our method for achieving information provenance
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via attestation reports and metadata recorded on the blockchain.

4.6.1 Provenance Packet Structure

For every data upload and computation, an enclave generates a corresponding ‘provenance

packet’ and uploads it to the blockchain. This packet includes the following fields:

• storage index – index for locating the output data set

• input count – number of input data sets to the computation (0 for data upload)

• input indexes (optional) – indexes for locating input data sets to computation

• input hashes (optional) – cryptographic hashes of input data sets to check integrity

• output hash – cryptographic hash of output data set to check integrity

• computation nonce (optional) – nonce to distinguish between identical requests

• computation ID (optional) – unique string identifying the computation performed

The same packet structure is used for both data upload and computation requests, though

some fields are left empty for data uploads. The importance of this packet is that it can later

be used (in combination with an attestation report) to verify a specific action taken, and

specific output generated, by an Amanuensis enclave.

4.6.2 Attestation Reports

Intel SGX attestation reports contain (1) a report signature, (2) an embedded ‘quote’, and

(3) embedded ‘user data’. Generally speaking, attestation begins with an enclave generating

a ‘quote’, which is then sent to the Intel Attestation Service (IAS) for verification. It is

the IAS that responds with an attestation report, not the enclave, at which point the remote

verifier performs the following checks.
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1. Verify the report signature for authenticity; if the signature was made by IAS, then

the verifier can trust the rest of the information embedded within the report.

2. Check the quote status; if OK, then IAS has determined the provided quote was

generated by genuine Intel hardware.

3. Check the enclave signature within the quote to ensure that it is a genuine Amanuensis

enclave.

4. Check the enclave measurement value to ensure that the enclave’s code as not been

modified.

If all of the checks pass, then the remote verifier is assured to be communicating with

an unmodified Amanuensis enclave running on genuine Intel SGX hardware. Not yet

mentioned is ‘user data’, which is an optional 64-byte field containing user-defined data

provided at the time the quote was generated. It is this field that enables us to tie the enclave

to its specific actions and outputs. After completing a request, an enclave calculates a

cryptographic hash of the output provenance packet and includes it as the ‘user data’ in the

attestation quote. Upon receiving the attestation report from the IAS, the enclave uploads

both the provenance packet and attestation report to the blockchain, which together contain

all of the information needed to verify the provenance of the enclave’s output.

Now, for every data set uploaded to Amanuensis there is a corresponding attestation

report proving that an enclave received and saved said data. Furthermore, before a data set is

used in a computation, an enclave fetches and verifies its attestation report and provenance

packet to ensure the authenticity and integrity of the input data set. Afterwards, the enclave

generates an attestation report for the output data, which is tied to the input report(s) by the

‘user data’ field. Thus, we have a chain of reports and provenance packets that can be used

to verify the provenance of data that has been created through a series of aggregations and

transformations (i.e., information).
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4.7 Security Analysis

Based on the security model described in Section 4.3, and our data freshness (Section 4.4)

and identity privacy (Section 4.5) solutions, we can reason about Amanuensis’ ability

to thwart the type of adversaries envisioned in our adversary model. For reference, our

adversary model and security assumptions allow an adversary to

• compromise the TEE OS (locally or remotely),

• compromise some nodes in the blockchain network, and

• read data from the blockchain and off-chain storage,

but do not allow an adversary to

• compromise TEE hardware protections,

• control a majority of nodes in the blockchain network,

• compromise mHealth apps and devices,

• compromise the trusted time service, or

• break standard cryptographic algorithms and protocols.

These latter assumptions are foundational to secure systems, or have well-known solutions

outside the scope of this paper. Given this security model, we present the possible attack

scenarios on data freshness and identity privacy (and how our system design prevents them).

4.7.1 Data Freshness

An adversary that previously had legitimate access to some data set may attempt to re-gain

access by passing off a stale data-access certificate to one of the Amanuensis TEEs. Thus,

our system must ensure that attackers are not able to (1) manipulate the TEE’s notion of time
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to pass off stale certificates as valid (i.e., ‘fresh’) or (2) gain access to the current revocation

period’s validity proof.

Attack 1: Time Manipulation. Recall that data access is granted by a data owner

generating and signing a NOVOMODO certificate containing the data consumer’s identity

and a validity target. For each revocation period, the data owner provides the data consumer

with a fresh validity proof. This proof is then used by the data consumer to prove its

continued access to the data set. Additionally, the TEE must have a correct view of the

current wall-clock time to determine the number of times to hash the validity proof (before

comparing the final result to the validity target). For the first attack, assume that adversary

A’s data-access certificate expired the previous day (for which they received a validity

proof) and they now wish to gain access to that same data today by manipulating the TEE’s

perception of time.

1. A submits a data-access request to the TEE containing the previous day’s validity

proof Xi−1.

2. The TEE requests the data-access certificate from the blockchain. Assume A intercepts

this message and responds with the stale (but validly signed) certificate.

3. The TEE verifies the data owner’s signature on the certificate, as well as the public

identity of A contained within the certificate.

4. The TEE requests the current time from the trusted-time service.

5. Given our security assumptions, A is not able to masquerade as the time service or

modify the contents of the time service’s response (without being detected); the only

action A may take is to delay delivery of the time-service’s response. Thus, the TEE

will always receive a time that is equal to or later than day i. Meaning, the TEE will

hash Xi−1 one (or more) times too many and the final result will not match the validity

target contained in the data-access certificate.
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Attack 2: Validity Proofs. For the second attack, assume that adversary A was not

given the validity proof for the current revocation period, but still wishes to access the data

set. Thus, A must gain access to the validity proof that is in the data owner’s possession or

generate the proof without the help of the data owner.

1. Given our assumption that smartphones have secure storage for keys and data (e.g.,

validity proofs), A is not able to gain access to the data owner’s validity proofs.

Furthermore, accessing the smartphone’s secure storage via bugs in the phone’s

software or social engineering techniques on the phone’s user are considered out-of-

scope.

2. Thus, A must generate the current revocation period’s validity proof. Given that

validity proofs are generated with a cryptographically secure one-way hash function,

this is not possible. Indeed, even if A has the validity proof for the previous revocation

period i− 1, it cannot be used to figure out the proof for period i because that would

require breaking the underlying hash function.

4.7.2 Identity Privacy

An adversary may try to learn private information about an individual based on their on-chain

interactions (e.g., it looks like Alice is sharing data with a well-known oncologist). Under

our enclave proxy model all transactions appear to originate from TEEs, however, so there

is no information for the adversary to glean. The identities of data owners and consumers

are stored in smart contracts – but only in encrypted form.

Attack 3: Information in Smart Contracts. Recall that blockchain users are identified

with a ‘pseudonym’ (typically, a public key generated by the user) and not their real-world

identity. Additionally, recall that all blockchain data (including smart-contract data) are

public in the Amanuensis system.

1. Assume that adversary A learns Alice’s blockchain pseudonym. A then searches
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the blockchain for all transactions that include her pseudonym. Note that while

transactions are not signed by Alice (they are signed by a TEE), the transaction data

may be a smart-contract function call where the argument(s) include her pseudonym

(e.g., grant Alice access to Bob’s data).

2. A will not locate any transactions containing Alice’s pseudonym, however, as our

TEE proxy encrypts pseudonyms with keys unique to each contract. Meaning, A

would have to obtain the encryption key used on Alice’s pseudonym by stealing it

from the TEE or guessing it (both of which break our security assumptions).

3. Furthermore, because there are unique keys for each contract, A would have to obtain

keys for every contract in which it thinks Alice’s pseudonym may appear. Thus, even

if A were able to obtain the encryption key for one contract involving Alice, it would

not be able to use that information to locate other contracts involving Alice.

4.7.3 Discussion

Under the described security model, our system design ensures that attackers are incapable

of (1) gaining access to sensitive mHealth data via stale data-access control certificates or

(2) discerning meaningful on-chain relationships between blockchain users. Any imple-

mentation of our system design, however, would need to be analyzed to ensure that these

properties are correctly implemented such that the privacy of blockchain users and freshness

of data-access control certificates are still upheld. Indeed, there are implementation-specific

attacks (e.g., side-channel attacks on Intel SGX) that could be used to break the underlying

primitives on which we have built our identity privacy and data freshness solutions. For this

paper, however, attacks on system implementations (e.g., side channels, software bugs, phish-

ing) as well as those that simply aim to degrade system performance (e.g., denial-of-service)

remain out-of-scope.
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4.8 Evaluation

The primary function of Amanuensis is to provide confidential yet verifiable data storage and

computation. To measure the impact of data confidentiality and information provenance on

these operations we implemented and evaluated a prototype Amanuensis enclave. Normally,

enclave applications must be coded explicitly to use the Intel SGX TEE environment, but

to simplify our prototype development we used the GrapheneSGX library OS [31], which

allowed us to deploy unmodified C programs as enclaves. Our implementation consists of

six C programs:

• server.c – the Amanuensis enclave, which services data upload and computation

requests from remote clients,

• client.c – a program that connects to the Amanuensis server enclave and simulates

realistic user data upload and computation requests,

• linreg.c – a program that runs the linear regression algorithm on provided input data,

• logreg.c – a program that runs the logistic regression algorithm on provided input

data,

• ranfor.c – a program that runs the random forest algorithm on provided input data,

and

• svm.c – a program that runs the support vector machine algorithm on provided input

data.

We evaluated our programs on a Dell OptiPlex 7060 with the following specifications:

• 6-core Intel i7-8700 CPU @ 3.2GHz

• 16GB RAM

• Ubuntu 20.03.3 LTS
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• 300 Mbps wireless connection

4.8.1 Data Upload Requests

The simpler of the two operations, data upload, involves receiving data from a remote

client, encrypting said data, writing it to our datastore, and generating an output provenance

metadata and attestation report message. We measure the amount of CPU time taken by

server.c to service data upload requests of sizes: 1KB, 10KB, 100KB, and 1MB.7 We ran

each case twenty-five times, both for server.c running as a plain C program and for it running

as an enclave, the results of which are shown in Table 4.1.

Table 4.1: The average CPU time (in milliseconds) taken by server.c to receive and save
data from a remote client.

Version 1KB 10KB 100KB 1MB
plain 0.4 0.7 7.5 39.3
sgx w/o report 243.6 243.2 253.9 350.8
sgx w/report 475.3 645.7 434.5 798.9

Notice that we report average times for our SGX server both with and without the

attestation report-generation phase. Such reports are generated (remotely) by the Intel

Attestation Service (IAS), and the time thus depends on (1) network bandwidth and (2) the

IAS response time. While most report generation times fall within 150 to 300 milliseconds,

at least one iteration of every test (e.g., 1KB, 10KB) saw a report response time ranging from

1 to 5 seconds, which skewed the overall request time. We have no way of knowing whether

such delays are a result of IAS, or the Internet, or whether such delays are common, so we

include the time ‘w/o report’ to focus on aspects of performance specific to Amanuensis and

SGX.

Table 4.2 depicts the average slowdown factor of data upload requests for our server

when run as an enclave. I/O operations (e.g., writing files, receiving networked messages)

are extremely costly for enclaves, which is why we see less slowdown for larger data upload
7We use KB and MB to refer to the numbers 210 and 220, though the actual sizes of our input data sets may

slightly differ from these values due to the data format requirements of our computation programs.
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sizes – as we spend more time in the enclave encrypting data for storage, the overhead for

reading it in begins to have less of an impact. Indeed, for upload request sizes of 1MB we

only see an 8.9x slowdown (15.2x including attestation report generation) for our server

when run inside an enclave versus when run as a plain C program. Larger requests amortize

much of the fixed overhead. For small data upload sizes, however, the vast majority of

enclave execution time is dedicated to network I/O (both for receiving the data and for

receiving the attestation report).

Table 4.2: The average slowdown factor for uploading data to our server when run as an
enclave versus a plain C program.

Version 1KB 10KB 100KB 1MB
sgx w/o report 627.4 329.5 34.1 8.9
sgx w/report 1137.3 603.0 58.3 15.2

4.8.2 Confidential Computation Requests

Confidential computations are a more involved process than data upload requests. We present

timing measurements for the two major steps of this process (verifying the provenance of

input data and executing the specified computation), as well as for the entire request itself

(i.e., the combined time of the server and computation program).

4.8.3 Verifying Information Provenance

Upon receiving a computation request, the server must first verify the provenance of all

input data. Specifically, for each input data set used in the computation the server must:

1. verify the IAS signature over an attestation report,

2. verify the enclave signature and code hash values,

3. verify user data hash vs. the input provenance packet,

4. fetch and decrypt the input data from the datastore,
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5. verify input data set vs. the provenance packet, and

6. re-encrypt the input data and write it out to the computation’s input file.

Note that the plain version of server.c differs in that it does not have to perform steps 1 and

2.

We measured the average amount of (CPU) time our server took to perform provenance

verification on the following input data set configurations:

• 1000 input data sets, each with a size of 1KB

• 100 input data sets, each with a size of 10KB

• 10 input data sets, each with a size of 100KB

• 1 input data set, with a size of 1MB

Each input configuration test case was run 25 times, the results of which are presented in

Table 4.3.

Table 4.3: The average CPU time (in milliseconds) and slowdown factor taken by server.c to
verify the provenance of input data sets for a computation request.

Version 1KB (1000) 10KB (100) 100KB (10) 1MB (1)
plain 178.8 160.7 88.1 35.9
sgx 27,758.2 3,213.3 462.0 175.2
slowdown 155.3 20.0 5.2 4.9

The operations directly related to verifying the provenance of input data sets (e.g.,

verifying digital signatures, calculating hashes, comparing strings) incur very little overhead,

as evidenced by the single 1MB data set that only sees a 4.9x slowdown between the SGX

and plain version. In fact, the majority of our overhead stems from reading the data set(s) into

the enclave. Even though the total amount of data for all four configurations is (relatively)

the same, configurations involving many reads of small input data sets experience especially

large slowdowns (155x in the worst case).
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4.8.4 Executing the Computation Program

Here we present results of running real computations (linreg.c, logreg.c, ranfor.c, svm.c),

each of which consists of reading and decrypting the input data file and performing a

machine-learning computation. We measured the amount of CPU time taken by each

program for each of the four input configurations described above. Each test case was run

25 times, the results of which are presented in Table 4.4.

Table 4.4: The average CPU time (in milliseconds) taken by the four computation programs.
Program 1KB (1000) 10KB (100) 100KB (10) 1MB (1)
linreg.c (plain) 50.5 49.4 81.7 576.2
linreg.c (sgx) 112.3 112.3 141.8 633.8
linreg.c slowdown 2.2 2.3 1.7 1.1
logreg.c (plain) 2,764.7 2,883.1 3,083.4 6,182.1
logreg.c (sgx) 6,914.7 6,986.7 7,187.3 10,445.5
logreg.c slowdown 2.5 2.4 2.3 1.7
ranfor.c (plain) 2,709.4 443.2 470.1 807.4
ranfor.c (sgx) 3,124.5 619.3 586.7 955.3
ranfor.c slowdown 1.2 1.4 1.2 1.2
svm.c (plain) 29.8 29.7 45.9 952.2
svm.c (sgx) 83.1 82.9 105.6 1,908.6
svm.c slowdown 2.8 2.8 2.3 2.0

As expected, the slowdown factors tend to trend downwards from 1KB (1000) to 1MB

(1) for every computation program, but the results for the CPU time are much more varied

across programs. For instance, the linreg.c program CPU time increases from 1KB (1000)

to 1MB (1), whereas the ranfor.c program starts with its highest run time for the 1KB

(1000) case before drastically falling and rising again at 1MB (1). The inconsistent behavior

between programs for the same test cases is likely due to the fact that (1) their input data

are formatted differently (e.g., one program may expect a test case with 8 integers whereas

another expects 5 doubles) and (2) that they perform vastly different operations (e.g., linear

regression vs. random forest). It is clear that one input data set configuration does not fit all,

and that developers should profile their programs to determine which data set sizes work

best. Nonetheless, the slowdowns for all of the computation programs are relatively small
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compared to those seen in Section 4.8.1 and Section 4.8.3, with no program experiencing a

slowdown greater than 2.8x for any input configuration.

4.8.5 Overall Performance

Thus far, we have looked at the time taken by the server to verify the provenance of input

data and the time taken by the computation program itself. Now we look at the total time

for the server to complete a computation request (i.e., verify input data, spawn and wait on

the computation program, and generate an output provenance packet and attestation report).

As we will see, the complete process includes one more large source of overhead: the time

taken to instantiate the computation program.

To spawn the computation programs the server must perform a call to fork() and exec().

When running as a plain C program, this poses no issue for our server, but when run as

an enclave there are serious security implications associated with these function calls. An

enclave using the standard library implementations of fork() and exec() succeeds in spawning

a new process to execute the computation program, but this process executes as a plain C

program. In other words, the ‘confidential computation’ is not in fact ‘confidential’ because

it is not executing in a trusted execution context.

Thankfully, the GrapheneSGX library used in our implementation wraps these system

calls to ensure that the new process is instantiated as an enclave, but the cost of doing

so is substantial. Indeed, we saw that on average it takes 9.1 seconds to instantiate the

computation enclave. Thus, we present the overheads both for computation requests with

and without the enclave instantiation time. In Table 4.5 we present the total time taken by

server.c to complete a computation request for each computation under each of the four input

configurations. Note that ‘sgx1’ are times that do not include instantiation time, whereas

‘sgx2’ times do.

Although high, the cost for instantiating an enclave is fixed. Meaning, regardless of

the input configuration, it will always take ∼9 seconds to spawn the computation program.
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Table 4.5: The average CPU time (in milliseconds) taken by the server to complete compu-
tation requests for each of the computation programs.

Program 1KB (1000) 10KB (100) 100KB (10) 1MB (1)
linreg.c (plain) 229.6 210.4 169.9 612.3
linreg.c (sgx1) 28,304.5 3,971.7 1,242.5 1,251.7
linreg.c (sgx2) 37,830.1 12,926.9 10,094.7 10,184.3
logreg.c (plain) 2,941.9 3,046.2 3,169.6 6,217.8
logreg.c (sgx1) 34,809.1 10,567.8 8,091.6 11,022.5
logreg.c (sgx2) 44,306.9 19,553.2 16,897.6 19,953.4
ranfor.c (plain) 2,883.4 540.4 540.5 846.5
ranfor.c (sgx1) 31,268.8 4,282.7 1,465.7 1,535.2
ranfor.c (sgx2) 40,781.1 13,262.1 10,310.5 10,468.2
svm.c (plain) 203.5 106.1 128.8 991.8
svm.c (sgx1) 28,645.3 3,721.0 973.9 2,497.0
svm.c (sgx2) 38,170.0 12,758.5 9,857.3 11,488.5

Thus, programs with longer run times (e.g., minutes, hours) will be less impacted by this

instantiation time. Indeed, the slowdown results depicted in Table 4.6 show that for our

longest running program, logreg.c, our server only runs 3.2 to 15.1 times slower in an

enclave than as a plain C program. If logreg.c were to run for a longer period of time –

long enough to where the instantiation time becomes negligible – then we expect to see a

slowdown within the range of 1.8 to 11.8 (depending on the input configuration).

Table 4.6: The average factor slowdown for the server to complete a computation request as
an enclave versus as a plain C program.

Program 1KB (1000) 10KB (100) 100KB (10) 1MB (1)
linreg.c (sgx1) 123.3 18.9 7.3 2.0
linreg.c (sgx2) 164.8 61.4 59.4 16.6
logreg.c (sgx1) 11.8 3.5 2.6 1.8
logreg.c (sgx2) 15.1 6.4 5.3 3.2
ranfor.c (sgx1) 10.8 7.9 2.7 1.8
ranfor.c (sgx2) 14.1 24.5 19.1 12.4
svm.c (sgx1) 140.8 35.1 7.6 2.5
svm.c (sgx2) 187.6 120.2 76.5 11.6
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4.8.6 Observations

Although even the smallest overheads incurred by SGX (e.g., 3.2x) may seem extreme to

some readers, these are typical for multi-process programs (like server.c, which forks and

execs other programs) executing in the SGX trusted execution context due to the high-cost

of enclave instantiation and securing inter-process communications (IPC). The creators

of GrapheneSGX report enclave creation times between 0.5 to 5s, but note that this time

is “determined by the latency of the hardware and the Intel kernel driver, and is primarily

a function of the size of the enclave” [31]. Thus, the larger the program (e.g., linreg.c)

the longer the instantiation time; though, for a given program on a given platform, the

instantiation time will remain relatively constant (as we saw with our programs over a range

of input configurations).

On the other hand, the overheads for single-process programs (e.g., linreg.c) “range from

matching a Linux process to less than 2x in most single-process cases” [31]. Indeed, for our

single-process computations we saw slowdowns between 1.1x and 2.8x, where programs

that had a higher ratio of computation time to I/O time experienced less slowdown. Based

on this observation, we would expect to see smaller overall slowdowns when our server.c

executes computations with longer run times – specifically, computations that spend more

time computing than performing I/O – as it would amortize the cost of instantiation time

and expensive IPC operations.

4.9 Related Work

Sensitive applications cannot take advantage of blockchain’s distributed data-management

model because data and computations on the blockchain are not confidential. The need for

confidentiality on the blockchain has spurred research in areas related to Zero-Knowledge

Proofs (ZKPs), Multi-Party Computations (MPCs), and Trusted Execution Environments

(TEEs). ZKPs and MPCs provide greater cryptographic security guarantees than TEEs, but
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are computationally more expensive – making it difficult to support complex operations [9].

Amanuensis uses TEEs for data confidentiality because we want to support general compu-

tations; we thus focus on related work for TEE-enabled blockchain systems. Several works

address smart-contract (i.e., computation) confidentiality by executing smart-contract func-

tions inside trusted execution environments rather than in the mining nodes [13, 17, 54, 109].

By leveraging TEE-enabled blockchains, others use confidential smart contracts to build ML

and AI data marketplaces [24, 25, 48], confidential cryptocurrency applications [8, 68, 97],

smart-vehicle trust frameworks [102, 103], and secure IoT [5, 26] and healthcare [66, 102]

data-management systems.

While these systems have the building blocks necessary to provide information prove-

nance, only Liang et al. [66] explicitly attempts to do so. They take a passive approach to

information provenance, however, and do not require periodic enclave attestations or verify

data before it is used – data is only verified if requested, and only after the fact – whereas

we perform regular attestations and verify the provenance of data before it is used. Bentov

et al. [8] and Cheng et al. [17] address blockchain data freshness. Bentov et al. maintains a

FIFO queue inside the enclave to store blockchain block headers, which are used to verify the

correctness of blocks (and the data within) received from the blockchain. The enclave must

verify every header in the blockchain upon startup (or from some hard-coded checkpoint),

however, and communicate with multiple blockchain nodes to guarantee the correctness

of the received headers. Cheng et al. flips the data freshness problem around by having

the blockchain check the validity of the TEE output; if the output was generated based on

stale data from the blockchain, then the blockchain miners will not add the result to the

blockchain. This approach requires modifications to the consensus algorithm and blockchain

software, and requires the computations to conform to their state-transition model. Many

of the aforementioned systems list ‘privacy’ as one of their main goals, but often what

they are actually referring to is data privacy (i.e., data confidentiality) and not user privacy

(i.e., identity privacy). Only Tran et al. [97] and Kosba et al. [54] address identity privacy
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as it relates to transactions on the blockchain, but both solutions are designed only for

cryptocurrency applications and would not work for obscuring the types of smart-contract

relationships in our system.

4.10 Conclusion

Previous work explored the use of Trusted Execution Environments (TEEs) with Blockchain

technology to provide confidentiality for sensitive data and operations that would otherwise

be unprotected on the open blockchain network. In this chapter, we further this work by

addressing identity privacy on the blockchain, the freshness of data (access-control lists)

received from the blockchain, and the provenance of confidential data for TEE-enabled

blockchain systems. We expand and evaluate our Amanuensis prototype to measure the

cost of information provenance and confidentiality. Although the impact of our solution is

substantial at times – with slowdowns ranging from 3.2x to 188x depending on program and

input configuration – applications that require confidential but verifiable computations may

find these overheads acceptable (e.g., the offline processing of sensitive health data).
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5
Summary and Future Directions

In this thesis we present an end-to-end solution for providing information provenance for

mobile health data. In Chapter 2, we begin our investigation into information provenance by

securing mHealth data at the source (i.e., on the mobile health device itself). We present a

memory-isolation solution for securing sensitive mHealth applications that relies on simple

Memory Protection Units (MPUs) that are available in many commodity microcontrollers.

We implement and evaluate our solution on the Amulet [42] mHealth platform, and show that

we are able to completely isolate an application’s code and memory from other programs

running on the same mHealth device with a minimal impact on the device’s battery life (less

than 0.5% impact).
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In Chapter 3, we investigate solutions for securing mHealth data after it has left the

mHealth device, which leads us to the creation of Amanuensis: a secure and integrated health-

data system that leverages Blockchain and Trusted Execution Environment (TEE) technolo-

gies to achieve information provenance for mHealth data [38]. By using a blockchain to

record and enforce data-access policies we removed the need to trust a single entity with

gate-keeping the health data. Additionally, by requiring that data access and computation

take place inside of TEEs, we preserve data confidentiality and provide verifiable attestations

that are stored on the blockchain to support information provenance. We evaluate a prototype

of Amanuensis on the VeChain Thor blockchain, and find that it is capable of supporting up

to 14,256,000 mHealth data sources at $0.47 per data source per day.

In Chapter 4, we present solutions for increasing the privacy of users transacting with the

blockchain, and for verifying the authenticity and freshness of access-control lists retrieved

from the blockchain. By requiring users to submit transactions through one of the many

TEE servers in Amanuensis, however, we can re-write the transactions so that they appear

to originate from the TEE server. Thus, user identities are hidden behind these TEEs,

or “enclave proxies”, and adversaries with access to the blockchain are no longer able to

discern meaningful on-chain relationships. With regards to data freshness, we combine

NOVOMODO [76], a verification method for digital certificates, with a trusted third-party

time service (e.g., NTS-over-TLS), to verify the authenticity and freshness of access-control

lists retrieved from the blockchain. Thus, adversaries cannot feed TEEs stale access-control

lists or arbitrarily delay delivery of valid lists to gain access to data outside of their allowed

time period. In addition to our work on identity privacy and data freshness, we present a

protocol for irrevocably tying confidential programs and their outputs (i.e., information) to

Intel SGX attestations for the purpose of information provenance. We tested several real-

world machine-learning applications to determine the run-time and find that each program

exhibits a slowdown between 1.1-2.8x when run inside of the Intel SGX environment, and

took an average of 59 milliseconds to verify the provenance of input and output data sets.
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We conclude this thesis by identifying and discussing related research questions and

areas that warrant further investigation.

5.1 Hardware Improvements in Ultra-Low-Power MCUs

Our memory-isolation solution employs MPU hardware to prevent applications from ac-

cessing memory outside of their boundaries, but our proof-of-concept implementation is

limited by the capabilities of the MSP430 MPU (or lack thereof). Since we do not have

a sufficient number of MPU memory regions, we must insert code to check for illegal

memory accesses (albeit half as many checks than if we did not have the MPU at all). While

there are die-space limits and complexity issues that prevent very sophisticated MPUs on

constrained processors, we expect many MPUs lack functionality because microcontrollers

are typically used to implement simple single-function, single-tenant embedded systems. As

these ultra-low-power MCUs are increasingly being used to enable multi-application mobile

devices, we recommend a greater focus be placed on developing MPUs that support a large

number of memory regions (4 or more), and MPUs that are capable of protecting different

kinds of memory (e.g., RAM, peripheral configuration registers). With these improvements,

we would expect a drastic reduction in the run-time overhead of our solution as more MPU

memory regions would remove the need for software checks and the ability to protect

different memory types would allow us to reclaim use of SRAM for application stacks (as

opposed to FRAM, which is slower and more energy expensive to use [49]).

5.2 Identity Privacy in Blockchain Networks

Our identity privacy solution routes transactions through enclave proxies to achieve identity

privacy for users on the blockchain. What this solution does not address, however, is identity

privacy at the network level. Although users have a unique pseudonym for each relationship

on the blockchain, attackers can track users at the network level via their IP address to
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discern on-chain relationships. Note that under our enclave proxy solution users need only

contact a single enclave to submit a transaction, which in turn broadcasts that transaction

to the blockchain network. Since users are no longer required to broadcast transactions to

the blockchain network, they can take advantage of anonymous communication protocols

(e.g., mix nets, DC nets, or onion routing) [93] – protocols that may be inefficient under

broadcast – when communicating with an enclave.

5.3 Trusted Time Sources

Our data freshness solution verifies the freshness of access-control lists received from the

blockchain network via a combination of cryptographic hash-chaining and a trusted third-

party time service. We acknowledge that requiring trust in a centralized third-party time

service is less than ideal, however, as it goes against the spirit of blockchain (i.e., distributing

trust). There has been recent work on implementing trusted real-time clocks on (unmodified)

Intel SGX hardware [64], but these solutions are still vulnerable to arbitrary delays by the

OS. Indeed, we could remove the need for a trusted third-party time service by using the

local hardware instead, but we would still have to fetch input data before requesting the

time in case the OS delays delivery of the response. Thus, future work should focus on

trusted real-time clock implementations that mitigate delay-of-delivery attacks. Given that

the attack is made possible due to the current Intel SGX trusted architecture and computing

paradigm, solutions may depend on Intel updating their hardware and microcode.

5.4 Intel SGX Side-Channels and Deprecation

Intel SGX is known to suffer from a number of side-channel attacks [92] that can be used to

retrieve sensitive data (e.g., encryption keys) from enclaves. We do not address these risks

with our current solution; practical implementations of Amanuensis will that use SGX will

have to develop methods to limit its vulnerability to such attacks, or explore the use of other
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TEE platforms. Furthermore, Intel has recently deprecated SGX beginning with its 11th and

12th generation commodity CPUs – while there was no explicit reason given, it is fair to

assume that the plethora of side-channel attacks on SGX played a large part in the decision.

That said, SGX will continue to be available in their server-grade CPUs (e.g., Xeon), and

any businesses or organizations running hardware that pre-dates the new generation of CPUs

will still have access to SGX. Therefore, we see a continued need for research related to the

(safe) use of Intel SGX in data-sensitive applications and systems such as Amanuensis.

5.5 TEE Optimizations

TEEs provide confidentiality and integrity for program code and data at the cost of run-time

performance, and this run-time degradation often deters those who might otherwise consider

using a TEE. Thus, future work should focus on optimizing TEE run-time performance.

For instance, data swapped out of RAM is first encrypted and integrity checked (likewise,

data read into RAM is decrypted and integrity checked), but increasing the amount of RAM

available to enclaves would reduce the number of these expensive page-swaps.

In our evaluation of the Intel SGX platform (Section 4.8), we saw that enclave instantia-

tion time incurred significant overheads. For confidential computation programs that are run

frequently, however, this overhead can be greatly reduced by keeping the enclave open even

after program completion. Thus, when the program gets called again its code and data are

already initialized in the TEE context; the only modifications that may need to be made are

to its arguments, but this is negligible compared to instantiating a new enclave.

Typically, programs must be explicitly written to use the Intel SGX API to create, and

execute in, a trusted context. To expedite our prototyping process, however, we used the

GrapheneSGX library [31] which allowed us to deploy unmodified applications on the

Intel SGX platform. While GrapheneSGX simplifies development, it does so at the cost of

code size and run-time performance. Thus, developers may consider writing programs as
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native SGX applications if run-time performance is more important than compatibility and

ease-of-development.

Machine-learning and artificial-intelligence algorithms often involve highly paralleliz-

able matrix operations and as such are often trained on GPUs, but trusted execution envi-

ronments have historically only been available on CPUs. Thus, in addition to incurring the

standard TEE run-time overheads, ML and AI applications cannot take advantage of GPU

performance benefits if they wish to execute in a TEE context. NVIDIA recently announced

their Hopper architecture for GPUs [81], however, which includes confidential-computing

capabilities (e.g., confidential code and data, integrity measurement, remote attestation).

Future work should focus on the combination of CPU and GPU-based TEEs to realize

confidential ML and AI applications that perform on a practical time-scale.

5.6 Confidential Computation Security

Our TEE-enabled blockchain data system, Amanuensis, guarantees the correct and confiden-

tial execution of programs that compute on sensitive health data. We use ‘correct’ to refer to

the integrity of the program (not the security of the overall system). Indeed, programs are

executed exactly as the developers have written them; a malicious developer could write

a program that simply decrypts and outputs the sensitive health data and that would be

allowed under our current architecture and implementation. Thus, future work might focus

on techniques for analyzing programs (e.g., language analysis, binary analysis, open-source

code review) to ensure that they do not violate the security principles of our system (e.g.,

the confidentiality of input data) or the data-usage policies of the consortium operating

Amanuensis.
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5.7 Complex Data Access-Control Policies

Currently, our data access-control policies only support a simple data sharing and compu-

tation scenario. Namely, when access is granted to an mHealth data source that access is

complete – all data ever produced by said source is available to the data consumer and may

be used as input in any computation. Realistically, data-sharing scenarios are more nuanced

and complex, however. For example, Bob may only want to grant Alice access to a subset

of his data (e.g., data produced by device X during the month of May), and only for use as

input in a particular computation (e.g., computation Y ) [33]. Furthermore, there are legal

questions that need to be answered such as “who owns the derived information?”. While

this may be a legal matter, it is one that has technical implications on the design and imple-

mentation of a data-sharing system. Additionally, the syntax for expressing access-control

policies given some set of rules regarding data sharing and ownership needs to be carefully

considered; verifying that all combinations of access-control policies adhere to these rules

may not be a trivial task.
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[44] M. Hölbl, M. Kompara, A. Kamišalić, and L. N. Zlatolas. A systematic review of the

use of blockchain in healthcare. Symmetry, 10(10), 2018. DOI 10.3390/sym10100470.

Citation on page 62.

[45] P. Hooda. Blockchain Forks. Online at https://www.geeksforgeeks.org/

blockchain-forks/. Citation on page 74.

[46] H. M. Hussien, S. M. Yasin, S. N. I. Udzir, A. A. Zaidan, and B. B. Zaidan. A

Systematic Review for Enabling of Develop a Blockchain Technology in Healthcare

Application: Taxonomy, Substantially Analysis, Motivations, Challenges, Recom-

mendations and Future Direction. Journal of Medical Systems, 43(10):320, 10 2019.

DOI 10.1007/s10916-019-1445-8. Citation on page 62.

113

http://dx.doi.org/10.1109/MSP.2018.3111245
http://dx.doi.org/10.1109/MSP.2018.3111245
http://dx.doi.org/10.1007/978-3-319-17016-9{_}1
http://dx.doi.org/10.1145/2994551.2994554
http://dx.doi.org/10.1145/1852611.1852634
http://dx.doi.org/10.3390/sym10100470
https://www.geeksforgeeks.org/blockchain-forks/
https://www.geeksforgeeks.org/blockchain-forks/
http://dx.doi.org/10.1007/s10916-019-1445-8


[47] R. H. Hylock and X. Zeng. A Blockchain Framework for Patient-Centered Health

Records and Exchange (HealthChain): Evaluation and Proof-of-Concept Study.

Journal of Medical Internet Research, 21(8):e13592, 8 2019. DOI 10.2196/13592.

Citation on page 63.

[48] N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song. A demonstration of sterling:

A privacy-preserving data marketplace. Proceedings of the VLDB Endowment,

11(12):2086–2089, 2018. DOI 10.14778/3229863.3236266. Citation on pages 64

and 98.

[49] T. INSTRUMENTS. MSP430FR5969 16 mhz ultra-low-power microcontroller

featuring 64 kb fram, 2kb sram, 40 io,, 2017. Citation on pages 11 and 102.

[50] Intel. Intel Software Guard Extensions. Online at https://www.intel.com/content/

www/us/en/architecture-and-technology/software-guard-extensions.html. Citation

on pages 57 and 66.
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