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Research article

Pushpamali De Silva, Shazia Bano, Brian W. Pogue, Kenneth K. Wang, Edward V. Maytin
and Tayyaba Hasan*

Photodynamic priming with triple-receptor
targeted nanoconjugates that trigger T cell-
mediated immune responses in a 3D in vitro
heterocellular model of pancreatic cancer
https://doi.org/10.1515/nanoph-2021-0304
Received June 17, 2021; accepted July 16, 2021;
published online August 18, 2021

Abstract: Photodynamic priming (PDP), a collateral effect
of photodynamic therapy, can transiently alter the tumor
microenvironment (TME)beyond thecytotoxic zone. Studies
have demonstrated that PDP increases tumor permeability
and modulates immune-stimulatory effects by inducing
immunogenic cell death, via the release of damage-
associated molecular patterns and tumor-associated anti-
gens. Pancreatic ductal adenocarcinoma (PDAC) is one of
the deadliest of cancers with a stubborn immunosuppres-
sive TME and a dense stroma, representing a challenge
for current molecular targeted therapies often involving

macromolecules. We, therefore, tested the hypothesis that
PDP’s TME modulation will enable targeted therapy and
result in immune stimulation. Using triple-receptor-targeted
photoimmuno-nanoconjugate (TR-PINs)-mediated PDP,
targeting epidermal growth factor receptor, transferrin re-
ceptor, and human epidermal growth factor receptor 2 we
show light dose-dependent TR-PINs mediated cytotoxicity
in human PDAC cells (MIA PaCa-2), co-culturedwith human
pancreatic cancer-associated fibroblasts (PCAFs) in spher-
oids. Furthermore, TR-PINs induced the expression of heat
shock proteins (Hsp60, Hsp70), Calreticulin, and high
mobility group box 1 in a light dose and time-dependent
manner. TR-PINs-mediated T cell activationwas observed in
co-cultures of immune cells with the MIA PaCa-2-PCAF
spheroids. Both CD4+ T and CD8+ T cells showed light dose
and time-dependant antitumor reactivity by upregulating
degranulation marker CD107a and interferon-gamma post-
PDP. Substantial tumor cell death in immune cell-spheroid
co-cultures byday 3 shows the augmentation byantitumor T
cell activation and their ability to recognize tumors for a
light dose-dependent kill. These data confirm enhanced
destruction of heterogeneous pancreatic spheroids medi-
ated by PDP-induced phototoxicity, TME modulation and
increased immunogenicity with targeted nanoconstructs.

Keywords: immunogenic cell death; multitargeting; photo-
dynamic therapy; photoimmuno-nano-conjugates; T cell
priming; tumor heterogeneity.

1 Introduction

Photodynamic therapy (PDT), a Food and Drug Adminis-
tration (FDA)-approved anticancer therapy is based on the

activation of a photosensitizer (PS) with an appropriate

wavelength of light, typically red light. Reactive molecu-

lar species (RMS) generated from the photodynamic
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activation process then provide the cell killing and other
tumor modulation effects [1]. While classically, this is
thought to lead to photoablation of the tumor cells and
subsequent cell death either by direct cytotoxicity or
damage to the tumor vasculature, there is also a host of
sub-lethal cell signaling changes that alter the tumor
milieu. Responses to PDT may be modulated to a large
extent by varying the light dose, PS concentration, and
drug light interval (DLI). Due to its minimally invasive
properties as a therapeutic modality, PDT holds great
promise to be used in alternative treatments or in com-
bination with other conventional anticancer treatments
such as surgery, chemotherapy, or radiotherapy [2]. It is
indeed approved for several indications by the regulatory
authorities worldwide. PDT-activated immune responses
are both local and extended systemically far beyond the
irradiated site [3, 4].

Preclinical and clinical studies have demonstrated
that PDT can affect both the innate and adaptive arms of
the immune system [3, 5–7]. These immune-stimulatory
effects occur through PDT’s ability to induce immunogenic
cell death (ICD), which increases the immunogenicity of
the tumor microenvironment (TME) by the release of
damage-associated molecular patterns (DAMPs) and
tumor-associated antigens (TAAs) [8, 9]. The degree of ICD
by PDT greatly depends on the release of RMS [10]. PDT can
induce a large amount of RMSproduction inside the cancer
cells, thereby causing oxidative stress-based cell death.
PDT generates DAMPs such as calreticulin (CRT), heat
shock proteins (Hsp60, Hsp70, and Hsp90), high mobility
group box 1(HMGB1), and extracellular ATP [8, 11, 12].
DAMPs and cytokines (such as tumor necrosis factor
(TNF)-α, interleukin (IL)-6, and IL-1β) released from PDT
treated cells cause acute inflammation and enhance
infiltration of innate and adaptive immune cells to the
irradiated tumor site [8, 13–18]. PDT enhances antigen
presentation by professional antigen-presenting cells
(APC), such as dendritic cells (DCs), whereby TAAs are
processed and presented to cells of the adaptive immune
system; especially T cells [9, 17, 19]. During PDT-mediated
release of DAMPs and subsequent inflammation, APCs
mature and migrate to the draining lymph nodes. This
transition of DCs involves their activation via the upregu-
lation of major histocompatibility class I and II molecules
(MHC-I and MHC-II) and the costimulatory molecules
CD80 and CD86 on their cell surfaces. Once DCs are acti-
vated they are efficient in priming CD4+ T helper cells and
CD8+ cytotoxic T lymphocytes (CTLs) by the presentation
of TAAs and initiate an effective adaptive immune
response. Antigen-experienced CTLs may migrate to the

tumor site to attack the remaining and/or metastasized
tumor cells [9]. Overall, PDT may turn “immune silent”
tumors into “immune responsive” tumors by inducing ICD
and enhanced immunogenicity following it.

Recent evidence shows that a collateral effect of a
sublethal dose of PDT termed photodynamic priming
(PDP) [20], confers increased immunogenicity [3, 21] by
priming multiple compartments in the TME. PDP-associ-
ated immune-stimulatory effects have been shown to
enhance the infiltration of neutrophils and activated CTLs
in the TME [3, 18, 21]. Also, our work in pancreatic ductal
adenocarcinoma (PDAC) murine models demonstrated
that PDP can prime multiple tumor compartments to
enable a more potent and sustained antitumor chemo-
therapeutic effect [20] or chemotherapy dose reduction
for improved tolerability [22]. PDAC is one of the most
lethal cancers with a low response to treatment of any
kind including immune therapies and a five-year survival
rate of around 10% [23]. PDAC pathophysiology is chal-
lenging for current therapies as immunosuppressive
desmoplastic stroma limits responsiveness to treatments
including macromolecular targeting and immunotherapy
[24–26].

Photoimmunoconjugates that target cell membrane
molecules overexpressed by cancer cells create a combined
photodynamic and receptor antagonist therapeutic agent
for tumor-targeted, activatable photoimmunotherapy (PIT)
[27]. NIR-PIT induces ICD and expression and translocation
of DAMPs followed by maturation of DCs, thus eliciting a
host immune response against the tumor [28]. Combined
with the molecular targeting ability of the receptor-
targeted nanoconstructs, PIT may be a powerful strategy
for inducing ICD in cancer therapy. However, despite
ongoing human trials (NCT02422979; PIT using a conjugate
of the silicon phthalocyanine PS derivative IRDye700DX
with cetuximab [Cet] [29]), complete tumor eradication is
hampered by intratumoral receptor heterogeneity, leading
to the survival of residual resistant tumor cells. The
inability to target multiple receptors simultaneously is a
clinical obstacle for optimal treatment outcomes due to the
heterogeneity of tumors with multiple survival pathways
being operative.

Recently, we reported the targeting of multiple re-
ceptors on tumor cells to address heterogeneity-driven
resistance to molecular targeted PDT. Red-activatable,
triple-receptor-targeted photoimmuno-nanoconjugates
(TR-PINs) platform conferred specificity for epidermal
growth factor receptor (EGFR), transferrin receptor
(TfR), and human epidermal growth factor receptor 2
(HER-2). Multi-targeting enhanced the specificity and
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overall completeness of PDT response in a heteroge-
neous tumor model of MIA PaCa-2 and T47D or SKOV-3
cells when compared to mono-targeting [30]. In this
study, we set out to establish whether PDP multiple
targeting of tumor cells can initiate an antitumor im-
mune response by enhancing tumor immunogenicity
(Figure 1) while taking care of the heterogeneous cell
populations. Following covalent conjugation of func-
tionalized ligands to the surface of photosensitizing
liposomal nanoconstructs, the innovative binding of
TR-PINs to the tumor cells was used to evaluate, PDT
efficacy, associated immune-stimulatory effects, and the
degree of ICD induction in vitro three-dimensional (3D)
heterogeneous tumor model of PDAC and pancreatic
cancer-associated fibroblasts (PCAFs). We quantified
the expression of Hsp60, Hsp70, CRT, and HMGB1. We
also investigated the efficient priming of T cells and
their ability to perform further killing of malignant cells
by co-culturing MIA PaCa-2 and PCAFs with allogenic
human peripheral blood mononuclear cells (PBMC). For
clarity, we term heterocellular MIA PaCa-2-PCAF
spheroids as Pancreatic (Panc) spheroids and where
Panc spheroids are cocultured with immune cells as
Immune-Panc spheroids. TR-PINs were able to exert
direct cytotoxic effects followed by enhanced ICD in
Panc spheroids. We found marked enhancement of T
cell priming and effective tumor cell killing in PDT
treated Immune-Panc spheroids consistent with the
triggering an effective immune response to TR-PINs
mediated PDP.

2 Results and discussion

2.1 Design, preparation, and
characterization of TR-PINs

The preparation of TR-PINs (Figure 2(A)), is published [30].
Briefly, the liposomal photosensitizing nanoconstructs
(PSNs) were formed, incorporating a lysophospholipid
anchored variant of the hydrophobic photosensitizer benzo-
porphyrin derivative (BPD), within the liposomal bilayer.
Lipidation of BPDhadno impact on its absorption properties,
as determined by the lack of any spectral shifts [31, 32]. The
purified lipidated variant (BPD-PC) of PS was characterized
by Matrix Assisted Laser Desorption/Ionization (MALDI) to
verify molecular weight and by HPLC to assess purity [31, 32].
Moreover, BPD-PC containing photosensitizing liposomal
nanoconstructs remained colloidally stable with the BPD
inserted into the hydrophobic bilayer. When incubated with
OVCAR-5 cells, these liposomal nanoconstructs demon-
strated no PS leaching [32]. As such the lipid anchoring
strategy adoptedhere,modulate thePS’smembrane stability,
and promote nanoconstruct integrity. Three ligands, Cet,
holo-transferrin (HT), and trastuzumab (TZ) (Figure 2(B))were
modified and conjugated to the surface of the PSNs [30, 32].
Figure 2(C) provides details of the physical characterizations
that need to be carefully considered for the rational design of
targeted nanoconstructs. TR-PINs exhibit an average hydro-
dynamic size of 112.32 ± 6.0, with the polydispersity indices
0.01±0.02 suggesting a narrow size distribution of liposomal
nanoconstructs. There was an average anionic ζ-potential of

Figure 1: Schematic concept of the study. Photodynamic priming (PDP) induces the expression of HSP60, HSP70, Calreticulin, and HMGB1 in
Panc spheroids, when treated with triple-receptor-targeted photoimmuno-nanoconjugates (TR-PINs). This highlights the direct tumor cell
killing and the induction of immunogenic cell death by TR-PINs, enhancing the immunogenicity of spheroids. Upregulation of degranulation
marker CD107a and interferon-gamma (IFNγ) in CD4+ T cells and CD8+ T cells demonstrates efficient T cell priming due to enhanced immu-
nogenicity. The direct phototoxic effects of TR-PINs and photo-primed antitumor T cells show substantial tumor cell death, suggesting
enhanced tumor killing.
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−19.3 ± 1.3 mV, and 87 ± 6.2 stochastically oriented ligands

(Cet per TR-PIN = 24.5.0 ± 3.0, HT per TR-PIN = 30.9 ± 1.5,

and TZ per TR-PIN = 34.1.0 ± 3.2), on the surface of nano-
constructs. For enhanced PDT efficacy, liposomal entrap-
ped PS must be delivered and accumulated selectively in
targeted tumor cells, to avoid toxic effects in normal tis-
sues. The liposomal membrane provides numerous
immobilization sites for recognition moieties such as an-
tibodies, ligands, peptides, and electric charges [33], which
over the past few decades have provided innovative solu-
tions for improved binding of multiple payloads to cancer
cells and circumventing off-target phototoxicity using
photoactivable liposomal-based nanoconstructs for cancer
cell targeting and the delivery of therapeutics [31–33].

Heterogeneous tumors such as PDAC exhibit patterns

of tumor-associated cell surface receptors (EGFR, TfR, and

HER-2) over-expression, and can be selectively targeted
using PDT, directed against these receptors. Specific
recognition of multiple cell surface targets may increase
the specificity of drug delivery and treatment efficacy in
heterogeneous tumor environments, thereby ultimately
mitigating treatment escape. Using the established EGFR
(1.7 × 105 EGFR/cell) expression levels in MIA PaCa-2 cells
we approximated that MIA PaCa-2 cells also express TfR
(1.9 × 106) and HER-2 (3.7 × 104), which is consistent with
our previous investigations [30, 32]. Similarly, relative cell
surface expression levels of EGFR, HER-2, and TfR in PCAF
cells are approximated usingflow cytometry to be 4.8× 104,
1.5 × 106, and 6.7 × 104, respectively. It was found that the
simultaneous targeting of three receptors demonstrates
significantly higher cellular binding of TR-PINs, relative to
the EGFR, TfR, and HER-2 hyperexpression in MIA PaCa-2

Figure 2: Schematic representation of the design of triple-receptor-targeted photoimmuno-nanoconjugates (TR-PINs).
Designof triple-receptor-targeted photoimmuno-nanoconjugates (TR-PINs) (A) and the ligands (B) conjugated via a copper-free click chemistry
approach. Physical characterization of the TR-PINs (C). TR-PINs exhibit a significant improvement in binding to MIA PaCa-2 cells (D). BPD-PC
emission intensities measured via flow cytometry were used to analyze TR-PINs cellular binding as compared to the photosensitizing
nanoconstructs (PSNs). Representative phototoxicity dose−response curves of the PSNs and the TR-PINs in MIA PaCa-2 monolayers (E). The
NIR photodynamic activation regimen employed 690 nm light irradiation and 20 J/cm2 at 150mW/cm2 (mean± SEM; n= 9–12 for a−c; one-way
ANOVA with a Tukey post-test; ∗∗∗∗P ≤ 0.0001, ∗∗∗P ≤ 0.001, ∗∗P ≤ 0.01).
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cells. Triple-receptor targeting resulted in 45-fold (MIA
PaCa-2 cells) improvements in bindingwith targetingwhen
comparedwith the untargeted-PSNs (Figure 2(D)). CHO-WT
cells, being null for the three receptors do not show en-
hancements in binding with targeting using TR-PINs.
Similar results of higher binding with triple targeting
employing TR-PINs were observed previously for a panel of
cell lines including A431, T47D, SKOV-3, MIA PaCa-2, and
SCC-9, in comparison to mono receptor targeting with the
EGFR-specific PINs [30]. Furthermore, we compared the
efficacy of molecularly targeted TR-PINs with an untar-
geted BPD-PC containing PSNs in MIA PaCa-2 cells (high in
EGFR, TfR, andHEER-2) using 690 nm light at an irradiance
of 150 mW/cm2 and a fluence of 20 J/cm2. Targeting
improved the efficacy of photodestruction significantly
compared to the untargeted PSNs (Figure 2(E)). We also
compared the efficacy of TR-PINs with an untargeted
BPD-PC containing PSNs inMIAPaCa-2 cells (high in EGFR,
TfR, and HER-2) using 690 nm light at an irradiance of 150
mW/cm2 and a fluence of 20 J/cm2. Triple targeting using
TR-PINs improved the efficacy of photodynamic activation
compared to the untargeted PSNs (Figure 2(E)), which is
consistent with its superior binding efficiencies (Figure
2(D)). For all TR-PINs concentrations tested, no dark
toxicity was observed [30].

2.2 NIR light-mediated photodynamic
treatment of 3D heterocellular Panc
spheroids

NIR light-triggered PIT combines the advantages of the tar-
geting and NIR light, conferring the specificity with the
cytotoxicity of PDT to impart rapid and highly selective cell
death. However, targeted destruction with the higher speci-
ficity becomes the central challenge, while addressing the
resistance that arises from receptor heterogeneity. Multiple
studies have reported positivity up to 95% for EGFR [34, 35]
and 69% for HER-2 [36, 37] among patients with pancreatic
tumors. The expression makes EGFR and HER-2 potential
targets for light activatable molecular therapies. Because TfR
over-expression has also been reported in PDAC, we have
included TfR as an additional target.We had shown in earlier
reports that TR-PINs (EGFR, HER-2, and TfR specific) exhibit
expanded cancer cell binding specificities, enhanced cellular
uptake, and superior PDT response compared to the single
receptor-targeted therapy (specific for EGFR only) when
studied in complex heterogeneous tumor models comprising
MIA PaCa-2 cells and low-EGFR-expressing T47D or SKOV-3
cells [30]. Considering that EGFR, HER-2, and TfR over-

expression is prevalent not only in PDAC but also in PCAFs
cells, we thus further evaluated the specificity of TR-PINs for
PS delivery and PDT efficacy in a more complex hetero-
cellular tumor model of PDAC and PCAFs. Heterocellular
spheroids of human PDAC (MIA PaCa-2 cells) and human
PCAF cells are referred to as Panc spheroids from hereon.
Established heterocellular Panc spheroids (MIA PaCa-2 and
PCAFs) were incubated for 6 h with untargeted-PSNs or
TR-PINs (0–1000 nM equivalent of BPD-PC), washed three
times to remove any unbound TR-PINs and then irradiated
with varying light doses (25 or 50 or 75 or 100 J/cm2) at an
irradiance of 150 mW/cm2. These parameters of incubation
time and irradiance previously allowed us to achieve suffi-
cient intracellular PS (BPD-PC) accumulation to enable a
potential PDT-enhancement effect while remaining nontoxic
for spheroids. Following PDT (Figure 3(A)), the spheroids
were co-stained with propidium iodide (Dead) Calcein AM
(Live) reagents before single-plane confocal imaging. Quan-
titative fractional viability heatmap images were generated
using a comprehensive high-throughput image analysis
procedure or structurally complex organotypic cultures for
the viability assessment of the tumor spheroids (Figure 3(B))
[38].

In the absence of photoactivation, neither untargeted
PSNs nor TR-PINs exerted any significant toxic effects on
heterogeneous Panc spheroids (Supplementary Figure 1)
[30, 32]. Untargeted PSNs also did not show any significant
phototoxicity even at the highest concentration of 1000 nM
of BPD-PC equivalent (Supplementary Figure 2) at the
highest light dose of 100 J/cm2 (150 mW/cm2). Irradiation
(in the presence of TR-PINs) induced a PS dose-dependent
increase in spheroid necrosis, which was significantly
higher in spheroids treated with the light dose of 100 J/cm2

(Figure 3(B)). In the Panc spheroids of MIA PaCa-2 and
PCAF, the EGFR-TfR-HER-2 specific TR-PINs were signifi-
cantly more effective in killing cancer cells than the
untargeted PSNs. Compared with low-TR-PINs concentra-
tion (50–100 nMof BPD-PC equivalent), NIR photodynamic
cytotoxicity using high-TR-PINs concentration (500–1000
nM of BPD-PC equivalent) was much stronger, exhibiting
dose-dependence at all light doses used. The Panc spher-
oids viability only decreased to 23% after PDT with the
TR-PINs concentration (100 nM of BPD-PC equivalent)
at a light dose of 100 J/cm2 (150 mW/cm2)
(Figure 3(A)). It is also evident that lower light doses (25 or
50 J/cm2; 150 mW/cm2) were not sufficient to cause sig-
nificant differences in tumor cell viability when treated
with the higher TR-PINs concentration (1000 nM of BPD-PC
equivalent) in the heterocellular Panc spheroid model.
Even though a large proportion (43%) of tumor cells are
eradicated from the Panc spheroids of MIA PaCa-2 and
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Figure 3: Schematic representation of the culturing and treatment of heterocellular Panc (PDAC-PCAF) spheroids followed by an imaging-
based analysis of treatment response.
A comprehensive image analysis procedure for structurally complex organotypic cultureswas used for the quantitation of fractional viability of
spheroids following NIR photodynamic activation (A) using TR-PINs and PSNs (B). The NIR photodynamic activation regimen used was 690 nm
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PCAFs, there are still residual cells remaining. Factors
including differences in light distribution and the reduc-
tion in the rate of 1O2 production [30] (in the presence of a
high number of ligands as in the case of TR-PINs) may
influence the improved PDT in heterocellular 3D spheroids.
In the absence of direct PS-only control it is difficult to
make a definitive statement, as 3D tumor models, recapit-
ulating the in vivo TME to a great extent are heterogenous.
Like a “real” tumor, the distribution of PS and light are not
identical from cell to cell. All these results in heteroge-
neous outcomes. Understanding the mechanisms for why
there remain residual tumor cells following treatment in
the heterocellular spheroids is critical and serves as the
focus of future studies.

Employing a light dose of 100 J/cm2 (150mW/cm2) with
higher TR-PINs concentrations (1000 nM of BPD-PC
equivalent), led to an 80% reduction in Panc spheroid
viability after PDT (Figure 3(C)), suggesting potent cyto-
toxic effects of using a light dose of 100 J/cm2. Moreover,
∼60% reduction in spheroid viability was also observed
after PDT with the TR-PINs (250 nM of BPD-PC equivalent)
at a similar light dose of 100 J/cm2 (Figure 2(D)), suggesting
a combination of optimal TR-PINs concentration of 250 nM
(BPD-PC equivalent) and a light dose of 100 J/cm2 may
provide a better opportunity (Figure 3(D)) to understand
PDP of antitumor immune responses. Thus, we selected
TR-PINs (250 nM of BPD-PC equivalent) for subsequent
experiments. Together, these findings provide compelling
evidence for the potential of TR-PINs to enhance PDT effi-
cacy through a light dose-enhancement effect, encour-
aging further in vivo investigations.

2.3 TR-PINs mediated induction of ICD

Apart from direct tumor cell death, PDT has been reported
to induce ICD, characterized by the exposure or the release
of DAMPs fromdying cells at the site of tumor irradiation [5,
39, 40]. Thesemolecules alert the innate and adaptive arms
of the immune system about the tumor by triggering local
inflammation. DAMPs bind to cellular receptors (Toll-like
receptors) and activate the innate immune cells such as
macrophages or DCs which are highly specialized for pre-
senting antigens to T cells, leading to T cell priming and

enhanced ability to perform tumor cell killing.
PDT-mediated ICD induction seems to be dependent on the
type of PS (its cellular localization and PS concentration),
light dose, DLI, and tumor model among other factors [3].
Therefore, in Panc spheroids we explored the ability of
TR-PINs to induce ICD via the expression of previously
reportedDAMPs that are considered as ‘’hallmarks of ICD,’’
including Hsp60, Hsp70, CRT, and HMGB1. We evaluated
the expression kinetics of these molecules by applying
varying light doses (25–100 J/cm2 at an irradiance of 150
mW/cm2) and analyzing the expression patterns at
different time points (1–72 h post-PDT) using multi-color
flow cytometry. Using gating strategies shown in Supple-
mentary Figure 3(A), we detected surface expression of
Hsp60, Hsp70, CRT, and intracellular expression of
HMGB1.

Our data show that illumination of TR-PINswas able to
induce the expression of Hsp60, Hsp70, CRT, and HMGB1
in a manner dependent upon light dose, PS concentration,
and time, suggesting that TR-PINs mediated ICD (Figure 4
and Supplementary Figure 3(B) and (C)). Median fluores-
cence intensities (MFI) of CRT were comparatively higher
than respective MFI of Hsp60, Hsp70, and HMGB1 for all
light doses and TR-PINs concentrations. Hsp60 and Hsp70
were increased as early as 1 h post-PDT, with peak
expression for both at 1–6 h for both and decreasing at 72 h
relative to untreated controls or TR-PINs without light
activation (data not shown) (Figure 4). Both the 75 and 100
J/cm2 light doses were also effective in inducing high levels
of Hsp60 and Hsp70 at 1 and 6 h. The normal physiological
role of Hsp60 and Hsp70 is to protect cells exposed to
stressful conditions by safeguarding cell integrity and
maintaining functional signaling pathways that are critical
for cell survival and normal cell function [41, 42]. The
protective response of Hsps after PDT seems to depend
upon their cellular localization; intracellular localization
appears related to antiapoptotic function, whereas extra-
cellular Hsps or membrane-bound Hsps mediate immu-
nological functions [43, 44]. Oxidative damage to cells by
PDT-induced RMS modifies cellular proteins via fragmen-
tation, cross-linking, unfolding, and aggregation; in this
situation, Hsps identify unfolded proteins and help to
either refold them or remove them via complex proteolytic
systems. However, excessive accumulation of unfolded

light irradiation with 25 or 50 or 75 or 100 J/cm2 at 150 mW/cm2. Quantitation of fractional viability of MIA PaCa-2 and PCAFs spheroids
following NIR photodynamic activation (25, 50, 75, 100 J/cm2) at a log10 [BPD-PC] (nM) = 2.3 (250 nM of BPD-PC equivalent) using TR-PINs (C).
Viability heatmap images of heterocellular (PDAC + PCAF) spheroids following NIR photodynamic activation of TR-PINs with increasing
concentrations of the photosensitizer BPD-PC (D). Quantitation of fractional viability of spheroids following NIR photodynamic activation (100
J/cm2) using TR-PINs (E). (mean ± SEM; n = 9–12 for b−e; one-way ANOVA with a Tukey post-test; ∗∗∗∗P ≤ 0.0001, ∗∗∗P ≤ 0.001, ∗∗P ≤ 0.01).
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Figure 4: Expression of TR-PINs induced bio-
logical markers of immunogenic cell death in
Panc spheroid cultures. NIR activation of
TR-PINs induces cell surface exposure of
Hsp60, Hsp70, Calreticulin, and the intracel-
lular expression of HMGB1 in Panc (MIA PaCa-2
and PCAF) spheroid cultures in a light dose and
time-dependent manner. Data are representa-
tive of three independent experiments done in
duplicates. Expression levels of Hsp60,Hsp70,
Calreticulin, and HMGB1 were determined by
flow cytometry calculated as the median fluo-
rescence intensity (MFI) after subtraction of the
isotype controlsMFI at 1, 6, 12, 24, 48, and 72 h
after NIR activation of TR-PINs. Graphs with
error bars indicate mean ± SEM from three in-
dependent experiments. Statistical signifi-
cance was determined by a one-way ANOVA
and Tukey's posthoc test. Asterisks denote
statistical significance (*P < 0.05, **P < 0.005,
***P < 0.0005, ****P < 0.00005). The NIR
photodynamic activation regimen used was
690 nm light irradiation with 25 or 50 or 75 or
100 J/cm2 at 150 mW/cm2. Two hundred and
fifty Newton-meters of TR-PINs (BPD-PC equiv-
alent) were used.
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proteins in PDT treated cells can overwhelm the capacity of
Hsp-mediated proteolytic pathways to repair or remove the
abnormal proteins, leading to the formation of aggregates
that are toxic to the cells. Previous studies have demon-
strated PDT-mediated expression of Hsp60 [12, 45] or
Hsp70 [12, 45–49] in various tumor cell line models in vitro.
Consistent with our results, those studies also showed a
temporal expression pattern of Hsps with more pro-
nounced effects seen at highly cytotoxic PDT light doses
[12, 46–49]. As mentioned before, early expression of
membrane-bound Hsp60 and Hsp60 are powerful stimu-
lants of antitumor immunity, helping to enhance TAAs and
tumor cell killing by cytotoxic CD8+ T cells [43, 44].

In our study, CRT expression was significantly upre-
gulated at 12–24 h compared to untreated controls or
TR-PINs (Figure 4) without light activation, with peak
expression at 24 h with increasing light dose. HMGB1
expression showed a slower but steady increasing trend
from 1 to 72 h with high expression at 72 h in a light dose-
dependent manner (Figure 4). CRT is usually located in the
lumen of the endoplasmic reticulum, and it translocates to
the cell surface during an immunogenic response. The cell
surface expression of CRT sends “eat me” signals to
phagocytic immune cells such as macrophages or DCs and
helps these cells for the subsequent cross-presentation of
tumor antigens to T cells. In order to be detected by
phagocytic immune cells or other innate immune cells,
dying cellsmust emit signals in addition to CRT. The release
of HMGB1 from cancer cells undergoing ICD involves the
permeabilization of both the nuclear and the plasma
membranes that enables the translocation of the protein
from the nucleus to the cytoplasm, followed by freeing into
the extracellular space [50, 51]. Extracellular HMGB1 can
bind multiple cell surface receptors to induce immune
stimulation. PDT-mediatedHMGB1 and CRThave beenwell
described in previous studies [46, 52–56]. In our analysis,
we were detecting intracellular HMGB1 levels which may
not reflect its release fromdying cells. These data also show
that expression of Hsp60 and Hsp70 was more rapid
whereas CRT or HMGB1 showed delayed expression during
TR-PIN mediated ICD activation. The TR-PINs’ ability to
induce Hsp60, Hsp70, CRT, and HMGB1 shows the potency
of ICD in these pancreatic in vitro cultures and also high-
lights the possibility of immune stimulation.

2.4 TR-PINs mediated T cell activation and
antitumor reactivity

In order to study the NIR-TR-PINs activation of T cells, we
used Immune-Panc spheroids (Panc spheroids combined

with immune cells; MIA PaCa-2-PCAF and PBMC) (Figure
5(A)). Thismodel was set up based on previously published
protocols with slight modifications [57–60]. Allogenic
PBMC were isolated from healthy human buffy coats and
stimulatedwith anti-CD3 and anti-CD28 tomildly activate T
cells for three days. In parallel, Panc spheroids (MIA PaCa-
2-PCAFs) were cultured (1:1) for two days until they grew to
an optimum size. Then Panc spheroids were exposed to
TR-PIN mediated photodynamic activation on day 2 and
immediately, PBMC were added to the spheroid cultures
(Immune-Panc spheroids) with an effector (T cell) to target
(Panc spheroid cell) ratio of 5:1 and allowed to be in culture
in the presence of IL-2 for seven days [57, 58]. The medium,
including IL-2, was refreshed every three days. To
demonstrate that this system supports T cells priming and
expansion in vitro in the presence of Panc spheroids, we
quantified interferon-gamma (INFγ) [58, 61, 62] and the
degranulation of the cytolytic marker CD107a [58, 61–63]
on CD4+ T cells and CD8+ T cells at baseline (day 0 of
Immune-Panc spheroids in co-cultures), day 3 and day 7
using flow cytometry; our gating strategies are shown in
the Supplementary Figure 4. We used TR-PINs at a con-
centration of 250 nM (the equivalent of BPD-PC) for all
experiments mentioned in this section with varying light
doses (25 or 50 or 75 or 100 J/cm2; 150 mW/cm2).

Light-induced activation of TR-PINs significantly
increased the number of both INFγ and CD107a expressing
CD4+ T cells (Figure 5(B)) and CD8+ T cells (Figure 5(C))
from day 0 to day 7 in co-cultures as compared to untreated
controls or T cells alone. This increase of INFγ and CD107a
positive T cells was more pronounced with increasing light
dose and time in culture. IFNγ is produced by T cells in
response to a variety of inflammatory or immune stimuli
and has shown particular importance in tumor immuno-
surveillance [61]. Tumor cells can be recognized and killed
by CD8+ effector T cells with help from CD4+ helper T cells,
mainly through the immune secretion of lytic granules that
kill target cells [64, 65]. This process involves the fusion of
the granule membrane with the cytoplasmic membrane of
the T cell, resulting in surface exposure of lysosomal-
associated proteins that are typically present on the lipid
bilayer surrounding lytic granules, such as CD107a [66].
Therefore, membrane expression of CD107a indicates
cytotoxic degranulation and constitutes a marker of im-
mune cell activation associated with antitumor immune
reactivity. Our data show that INFγ and CD107a are upre-
gulated, thereby suggesting that TR-PINs mediated T cell
activation and enhanced effector antitumor reactivity. T
cell activation and antitumor immune reactivity induced
after PDT was reported in previous studies in preclinical
models. Wachowska et al. showed that Photofrin-PDT
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Figure 5: TR-PINs mediated priming of antitumor T cell reactivity in Immune-Panc spheroid co-cultures.
(A)MIA PaCa-2 and PACFswere cultured and allowed to grow for 48 h before co-culturewith peripheral bloodmononuclear cells (PBMC). PBMC
were seeded in 6-well plates with plate-bound anti-CD3 (overnight), anti-CD28, and IL-2, and T cells were allowed to proliferate for three days
before addition to 3D spheroid cultures. This was done using a previous protocol with slight modifications [57, 58]. Once the spheroids were
exposed to varying light doses, PBMC consistingmainly ofmildly stimulated T cellswere added to the cultures and allowed to remain for seven
days. T cell priming was evaluated at day 3 and 7 post-PDT by analyzing the surface expression of degranulation marker CD107a and
intracellular expression of INFγ. Also, in the same cultures, spheroid cell death was evaluated by flow cytometry analysis on day 3. The
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leads to strong specific antitumor immune responses along
with increased production of IFNγ and upregulation of
CD107a in both CD4+ and CD8+ T lymphocytes of mice [63].
Another study that incorporated redaporfin-PDT in mice
bearing CT26 tumors demonstrated an increased percent-
age of IFNγ-producing CD4+ and CD8+ T cell populations,
highlighting the PDT mediated activation of antitumor T
cells [67]. Our data add to previous findings by showing
that priming and expansion of antitumor T cells are asso-
ciated with the induction of ICD in pancreatic spheroid
cultures that mimic a tumor immune microenvironment.
The highest light dose that was successful in inducing
potent ICD response (Figure 4) was also able to show
enhanced T cell priming (Figure 5(B) and (C)).

2.5 Enhanced effects of PDT and T cell-
mediated tumor cell killing

Although TR-PINs were able to exert efficient cell killing at
the highest light doses in our initial experiments, we did
not find complete tumor cell killing by TR-PINs after PDT
(Figure 2(A)). Even at the highest dose of TR-PINs (1000 nM
equivalent of BPD-PC) and light (100 J/cm2; 150 mW/cm2),
there were about 20% of viable tumor cells in the Panc
spheroids at day 3 post-PDT (Figure 2(A)). Moreover, ∼60%
reduction in spheroid viability was also observed after PDT
with the TR-PINs (250 nM of BPD-PC equivalent) at a
similar light dose of 100 J/cm2 (Figure 2(D)). Thus, we
evaluated the enhanced effects of both PDP with TR-PINs
(250 nM of BPD-PC equivalent) and T cells (CD8+ T cells) to
exert efficient cellular cytotoxicity. As depicted in the
schematic in Figure 5(A), tumor cell death in Immune-Panc
spheroids was evaluated on day 3 after NIR activation of
TR-PINs using flow cytometry. Different cell death profiles
including necrotic, apoptotic, and dead cells were esti-
mated with propidium iodide and annexin V staining as
shown in Figure 6(A). The percentage of apoptotic cells
was higher in Immune-Panc spheroids exposed to 75 J/cm2

compared to untreated controls (Figure 6(B)). However,
the percentage of dead cells was higher in Immune-Panc
spheroids cultures treated with 100 J/cm2, and the same

cultures showed the highest percentage of complete cell
death (taken as the sum of apoptotic, necrotic, and dead
cells) by day 3 post-PDT. It is interesting to note that only
a minor fraction (<10%) of spheroid cells were viable at
day 3.

The remaining fraction of surviving Panc spheroid
cells could be a concern. However, reports of achieving
100% tumor cell death are not universal in two-
dimensional (2D) or 3D in vitro. There are many reasons
for this observation and heterogeneity even in cell lines
unless they have been carefully derived andmaintained for
monoclonality. Cell killing in 3Dmodels is typically less [8,
30, 68, 69], compared to tumor-killing efficiency in 2D
monolayer tumor models [70]. A possibility that some cells
were still alive in our Immune-Panc spheroids may be
attributed to the fact that the in vitro model used here is a
‘’hard to kill’’ 3D model as PCAFs support tumor cell
growth and possibly create dense desmoplastic 3D struc-
tures [71, 72]. PCAFs could elicit a strong immune sup-
pressive effect on T cells that lead to their apoptosis
[73–75]. Finally, these are 3D models, recapitulating the
TME to a certain extent of the in vivo situation, thus the
distribution of PS and light are not identical from cell to
cell. All these factors bring heterogeneity adding resistance
to the outcome. However, it is interesting to note that
TR-PIN-mediated T cells activation achieving a significant
level of tumor cell killing in our tumor spheroid model.
Further, T cells added to the in Immune-Panc spheroid co-
cultures are not autologous immune cells, which might
limit T cell’s ability to recognize tumor cells in our model.

Although we used a heterotypic 3D in vitro model of
PDAC, the tumor heterogeneity or antitumor immune ef-
fects of PDP are not completely recapitulated by this
model. Therefore, PDP-mediated immune-stimulatory
effects (local as well as systemic immune effects) could
be better understood in an in vivo experimental model.
Because PDP-mediated immune-stimulatory effects are
not limited to the area where light is applied; the immune
priming is that what extends well beyond the irradiated
site [3]. Previous studies in immunocompetent mouse
models show that PDP induces both the local antitumor
responses as well as subsequent systemic immune effects

expression of CD107a and INFγ from day 0 in culture to day 7 was evaluated in (B) CD4+ T cells and (C) CD8+ T cells using multi-color flow
cytometry. Data are means ± SEM from three to four independent experiments done in duplicate. Statistical significance was determined by a
one-way ANOVA and Tukey’s posthoc test. Asterisks denote statistical significance (*P < 0.05, **P < 0.005, ***P < 0.0005). The NIR
photodynamic activation regimen consisted of 690 nm light irradiation with 25 or 50 or 75 or 100 J/cm2 at 150 mW/cm2. TR-PINs (BPD-PC
equivalent) were used at a concentration of 250 nM. All experimental conditions shown involved co-cultures Immune-Panc spheroids along
with the addition of the BPD-containing TR-PINs, except for one condition with PBMC only (T cell only), and another with untreated Immune-
Panc spheroids with added immune cells but no photosensitizer (Unt + T cells).
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that take place at distant tumor sites [4, 76]. These sys-
temic immune effects may be dependent on PDP’s ability
to expand an effector memory T cell pool [77, 78] sup-
porting the notion that PDP’s ability to control the meta-
static disease as evident by the preclinical tumormodels [4,
76, 79–81]. In addition to the immune effects of PDP, there
could be other remote priming effects that could control
tumor metastases shown by our previous works in immu-
nodeficient mouse models of PDAC [20]. Huang et al.

demonstrated that PDP can mitigate drug delivery barriers
in the TME to safely enhance the therapeutic window of
FDA-approved nanoliposomal irinotecan in a preclinical
model of PDAC that also prevented tumor relapse [20].
PDP’s ability to augment efficient drug delivery has been
attributed to enhanced vascular and stromal permeability
as shown by Obaid et al. [32]. Also, a consequent reduction
in metastatic burden, reported [20], possibly through the
regulation of CXCL12/CXCR7/CXCR4 axis [20, 22] which

Figure 6: Synergistic effects on MIA PaCa-2 – PCAF cell killing by TR-PINs and antitumor reactive T cells.
Analysis of cell death was performed using Annexin V and Propidium Iodide (PI) staining. (A) As shown in the gating strategy for cell death
analysis, Panc spheroids were double-stained with Annexin V and PI and analyzed using flow cytometry. Four populations were identified as
viable cells, apoptotic cells, dead cells, and necrotic cells as indicated in the flow cytometry plots. Quantification of apoptotic cells, dead cells,
and total cell death (sumof apoptotic and dead cells including necrotic cells) under different culture conditions, is shown in figure (B). Data are
means ± SEM from three independent experiments done in duplicates. Statistical significance was determined by a one-way ANOVA and
Tukey’s posthoc test. Asterisks denote statistical significance (*P < 0.05). The NIR photodynamic activation regimen used 690 nm light
irradiation with 25 or 50 or 75 or 100 J/cm2 at 150 mW/cm2. TR-PINs (BPD-PC equivalent) were used at a concentration of 250 nM.
Key to conditions: Unt: untreated Panc spheroids (MIA PaCa-2 and PCAF) without T cells nor any nanoconstruct; No PDT: Panc spheroids with
TR-PINs alone but no illumination; Unt + T cells: untreated Panc spheroids with T cells (Immune-Panc spheroids); No PDT + T cells: Immune-
Panc spheroids with TR-PINS without illumination; 25, 50, 25, 75, or 100 J/cm2: Panc spheroids with TR-PINS and PDT at the indicated dose of
lightwithout T cells; 25 J/cm2+ T cells, 50 J/cm2+ T cells, 75 J/cm2+ T cells, or 100 J/cm2+ T cells; Immune-Panc spheroidswith TR-PINS andPDT
at the indicated dose of light.
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helps to normalize PCAFs preventing their involvement in
tumor metastases.

3 Conclusions

The enhancement of the DAMPs and T cells consequent to
PDPandhow they impact the overall killing are examined in
this study using a complex heterogeneous 3D spheroid
model of PDAC either with or without immune cells. A
nanotechnology-enabled strategy, providing evidence that
TR-PINs intensifies PDT efficacy through the light dose-
enhancement effect in heterotypic Panc spheroids of PDAC
and PCAFs. PDP allowed not only effective uptake of the
targeted nanoconstructs but also the priming process
further to inducedpotent ICDhighlightedbyupregulation of
Hsp60, Hsp70, CRT, and HMGB1. ICD mediated enhanced
immunogenicity was able to efficiently prime CD4+ T cells
and CD8+ T cells evidenced by the upregulation of INFγ and
degranulation marker CD107a. These activated T cells
recognized tumor cells and provided further killing of
remaining MIA PaCa-2 and PCAF cells in Immune-Panc
spheroids. While priming effects for immune enhancement
with PDT have been reported previously, to our knowledge,
the effect of multiple targeted PDP has not been reported.
The triple receptor targeting, in addition to our findings of
immune stimulation also addresses tumor heterogeneity.
Although encouraging, much work is warranted in the
future to validate this approach, including testing in
appropriate in vivo models and quantifying the changes in
PSdelivery and immunecell activation alongwith long-term
effects on survival.

4 Experimental section

Complete experimental details can be found in the Supplementary
Material.

Acknowledgments: The authors thank Danian Cao for his
technical assistance, and Laura Maddox and Joseph W. R.
Swain for proofreading the manuscript.
Author contributions: P.D.S., S.B., and T.H. conceived
designed experiments and developed methodology. P.D.S.
and S.B. conducted experiments and performed data
analysis. P.D.S., S.B., and T.H. prepared the manuscript.
BP, KW, andEMcontributed to the overall concepts that led
to this work and contributed to the preparation of the
manuscript.

Research funding: The work was supported by grants from
the National Cancer Institute/National Institutes of Health:
P01 CA084203, R01 CA231606 grant to T.H.
Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.

References

[1] J. P. Celli, B. Q. Spring, I. Rizvi, et al., “Imaging and
photodynamic therapy: mechanisms, monitoring, and
optimization,” Chem. Rev., vol. 110, no. 5, pp. 2795–2838,
2010.

[2] X. Li, J. F. Lovell, J. Yoon, and X. Chen, “Clinical development and
potential of photothermal and photodynamic therapies for
cancer,”Nat. Rev. Clin. Oncol., vol. 17, no. 11, pp. 657–674, 2020.

[3] P. D. Silva, M. A. Saad, H. C. Thomsen, S. Bano, S. Ashraf, and
T. Hasan, “Photodynamic therapy, priming and optical imaging:
potential co-conspirators in treatment design and optimization
— A Thomas Dougherty Award for Excellence in PDT paper,” J.
Porphyr. Phthalocyanines, vol. 24, no. 11n12, pp. 1320–1360,
2020.

[4] C. He, X. Duan, N. Guo, et al., “Core-shell nanoscale coordination
polymers combine chemotherapy and photodynamic therapy to
potentiate checkpoint blockade cancer immunotherapy,” Nat.
Commun., vol. 7, p. 12499, 2016.

[5] S. Nath, G. Obaid, and T. Hasan, “The course of immune
stimulation by photodynamic therapy: bridging fundamentals of
photochemically induced immunogenic cell death to the
enrichment of T‐cell repertoire,” Photochem. Photobiol., vol. 95,
no. 6, pp. 1288–1305, 2019.

[6] M.Wang, J. Rao,M.Wang, et al., “Cancer photo-immunotherapy:
from bench to bedside,” Theranostics, vol. 11, no. 5,
pp. 2218–2231, 2021.

[7] B. Zhou, J. Liu,M. Lin, J. Zhu, andW.R. Chen, “Recent advances in
immunotherapy, immunoadjuvant, and nanomaterial-based
combination immunotherapy,” Coord. Chem. Rev., vol. 442,
p. 214009, 2021.

[8] I. Rizvi, S. Nath, G. Obaid, et al., “A combination of visudyne and
a lipid-anchored liposomal formulation of benzoporphyrin
derivative enhances photodynamic therapy efficacy in a 3D
model for ovarian cancer,” Photochem. Photobiol., vol. 95, no. 1,
pp. 419–429, 2019.

[9] A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic
therapy and anti-tumour immunity,”Nat. Rev. Canc., vol. 6, no. 7,
pp. 535–545, 2006.

[10] I. Adkins, J. Fucikova, A. D. Garg, P. Agostinis, and R. Špíšek,
“Physical modalities inducing immunogenic tumor cell death for
cancer immunotherapy,” OncoImmunology, vol. 3, no. 12,
p. e968434, 2015.

[11] A. D. Garg, D. Nowis, J. Golab, and P. Agostinis, “Photodynamic
therapy: illuminating the road from cell death towards anti-
tumour immunity,” Apoptosis, vol. 15, no. 9, pp. 1050–1071,
2010.

[12] M. Korbelik, J. Sun, and I. Cecic, “Photodynamic therapy-induced
cell surface expression and release of heat shock proteins:
relevance for tumor response,” Canc. Res., vol. 65, no. 3, pp.
1018–1026, 2005.

P. De Silva et al.: Photodynamic activation of Verteporfin to boost antitumor immunity 3211



[13] E. Reginato, P. Wolf, andM. R. Hamblin, “Immune response after
photodynamic therapy increases anti-cancer and anti-bacterial
effects,” World J. Immunol., vol. 4, no. 1, pp. 1–11, 2014.

[14] S. O. Gollnick and C. M. Brackett, “Enhancement of anti-tumor
immunity by photodynamic therapy,” Immunol. Res., vol. 46, nos
1-3, pp. 216–226, 2010.

[15] S. O. Gollnick, S. S. Evans, H. Baumann, et al., “Role of cytokines
in photodynamic therapy-induced local and systemic
inflammation,” Br. J. Canc., vol. 88, no. 11, pp. 1772–1779, 2003.

[16] S. O. Gollnick, B. Owczarczak, and P. Maier, “Photodynamic
therapy and anti-tumor immunity,” Laser Surg.Med., vol. 38, no.
5, pp. 509–515, 2006.

[17] S. O. Gollnick, L. Vaughan, and B. W. Henderson, “Generation of
effective antitumor vaccines using photodynamic therapy,”
Canc. Res., vol. 62, no. 6, pp. 1604–1608, 2002.

[18] P. De Silva, M. A. Saad, A. P. Camargo, et al., “Abstract A17:
enhanced immune infiltration and antitumor immune reactivity
in response to optical priming in pancreatic cancer,” Cancer
Immunol. Res., vol. 8, no. 3 Suppl., p. A17, 2020.

[19] P. Mroz, J. T. Hashmi, Y.-Y. Huang, N. Lange, and M. R. Hamblin,
“Stimulation of anti-tumor immunity by photodynamic therapy,”
Expet Rev. Clin. Immunol., vol. 7, no. 1, pp. 75–91, 2011.

[20] H. C. Huang, I. Rizvi, J. Liu, et al., “Photodynamic priming
mitigates chemotherapeutic selection pressures and improves
drug delivery,” Canc. Res., vol. 78, no. 2, pp. 558–571, 2018.

[21] M. Shams, B. Owczarczak, P. Manderscheid-Kern, D. A. Bellnier,
and S. O. Gollnick, “Development of photodynamic therapy
regimens that control primary tumor growth and inhibit
secondary disease,”Canc. Immunol. Immunother., vol. 64, no. 3,
pp. 287–297, 2015.

[22] S. Anbil, M. Pigula, H.-C. Huang, et al., “Vitamin D receptor
activation and photodynamic priming enables durable low-dose
chemotherapy,” Mol. Canc. Therapeut., vol. 19, no. 6,
pp. 1308–1319, 2020.

[23] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2020,”
CA A Cancer J. Clin., vol. 70, no. 1, pp. 7–30, 2020.

[24] J. L. Humphris, A. M. Patch, K. Nones, et al., “Hypermutation in
pancreatic cancer,” Gastroenterology, vol. 152, no. 1,
pp. 68–74.e2, 2017.

[25] C. Luchini, F. Bibeau, M. J. L. Ligtenberg, et al., “ESMO
recommendations on microsatellite instability testing for
immunotherapy in cancer, and its relationship with PD-1/PD-L1
expression and tumour mutational burden: A systematic review-
based approach,” Ann. Oncol., vol. 30, no. 8, pp. 1232–1243,
2019.

[26] D. Schizas, N. Charalampakis, C. Kole, et al., “Immunotherapy
for pancreatic cancer: A 2020 update,” Canc. Treat Rev., vol. 86,
p. 102016, 2020.

[27] A. O. Abu-Yousif, A. C. E. Moor, X. Zheng, et al., “Epidermal
growth factor receptor-targeted photosensitizer selectively
inhibits EGFR signaling and induces targeted phototoxicity in
ovarian cancer cells,” Canc. Lett., vol. 321, no. 2, pp. 120–127,
2012.

[28] M. Ogawa, Y. Tomita, Y. Nakamura, et al., “Immunogenic cancer
cell death selectively induced by near infrared
photoimmunotherapy initiates host tumor immunity,”
Oncotarget, vol. 8, no. 6, pp. 10425–10436, 2017.

[29] S. R. G. Fernandes, R. Fernandes, B. Sarmento, P. M. R. Pereira,
and J. P. C. Tomé, “Photoimmunoconjugates: novel synthetic

strategies to target and treat cancer by photodynamic therapy,”
Org. Biomol. Chem., vol. 17, no. 10, pp. 2579–2593, 2019.

[30] S. Bano, G. Obaid, J. W. R. Swain, et al., “NIR photodynamic
destruction of PDAC and HNSCC nodules using triple-receptor-
targeted photoimmuno-nanoconjugates: targeting
heterogeneity in cancer,” J. Clin. Med., vol. 9, no. 8, p. 2390,
2020.

[31] G. Obaid, W. Jin, S. Bano, D. Kessel, and T. Hasan, “Nanolipid
formulations of benzoporphyrin derivative: exploring the
dependence of nanoconstruct photophysics and
photochemistry on their therapeutic index in ovarian cancer
cells,” Photochem. Photobiol., vol. 95, no. 1, pp. 364–377, 2019.

[32] “Impacting pancreatic cancer therapy in heterotypic in vitro
organoids and in vivo tumors with specificity-tuned, NIR-
activable photoimmunonanoconjugates: towards conquering
desmoplasia?” Nano Lett., vol. 19, no. 11, pp. 7573–7587, 2019.

[33] G. Obaid, M. Broekgaarden, A.-L. Bulin, et al.,
“Photonanomedicine: A convergence of photodynamic therapy
and nanotechnology,” Nanoscale, vol. 8, no. 25,
pp. 12471–12503, 2016.

[34] H. Q. Xiong, A. Rosenberg, A. LoBuglio, et al., “Cetuximab, a
monoclonal antibody targeting the epidermal growth factor
receptor, in combination with gemcitabine for advanced
pancreatic cancer: A multicenter phase II trial,” J. Clin. Oncol.,
vol. 22, no. 13, pp. 2610–2616, 2004.

[35] S. J. Park, M. J. Gu, D. S. Lee, S. S. Yun, H. J. Kim, and J. H. Choi,
“EGFR expression in pancreatic intraepithelial neoplasia and
ductal adenocarcinoma,” Int. J. Clin. Exp. Pathol., vol. 8, no. 7,
pp. 8298–8304, 2015.

[36] J. D. Day, J. A. Digiuseppe, C. Yeo, et al., “Immunohistochemical
evaluation of HER-2/neu expression in pancreatic
adenocarcinoma and pancreatic intraepithelial neoplasms,”
Hum. Pathol., vol. 27, no. 2, pp. 119–124, 1996.

[37] M. Komoto, B. Nakata, R. Amano et al., “HER2 overexpression
correlates with survival after curative resection of pancreatic
cancer,” Canc. Sci., vol. 100, no. 7, pp. 1243–1247, 2009.

[38] A. L. Bulin, M. Broekgaarden, and T. Hasan, “Comprehensive
high-throughput image analysis for therapeutic efficacy of
architecturally complex heterotypic organoids,” Sci. Rep., vol. 7,
no. 1, p. 16645, 2017.

[39] P. Agostinis, K. Berg, K. A. Cengel, et al., “Photodynamic therapy
of cancer: An update,” CA Canc. J. Clin., vol. 61, no. 4,
pp. 250–281, 2011.

[40] W. Li, J. Yang, L. Luo, et al., “Targeting photodynamic and
photothermal therapy to the endoplasmic reticulum enhances
immunogenic cancer cell death,” Nat. Commun., vol. 10, no. 1,
p. 3349, 2019.

[41] L. Dubrez, S. Causse, N. Borges Bonan, B. Dumétier, and
C. Garrido, “Heat-shock proteins: chaperoning DNA repair,”
Oncogene, vol. 39, no. 3, pp. 516–529, 2020.

[42] A. Mathew and R. I. Morimoto, “Role of the heat-shock response
in the life and death of proteins,” Ann. N. Y. Acad. Sci., vol. 851,
pp. 99–111, 1998.

[43] D. Helbig, J. C. Simon, and U. Paasch, “Photodynamic therapy
and the role of heat shock protein 70,” Int. J. Hyperther., vol. 27,
no. 8, pp. 802–810, 2011.

[44] A. Osterloh, A. Veit, A. Gessner, B. Fleischer, and M. Breloer,
“Hsp60-mediated T cell stimulation is independent of TLR4 and
IL-12,” Int. Immunol., vol. 20, no. 3, pp. 433–443, 2008.

3212 P. De Silva et al.: Photodynamic activation of Verteporfin to boost antitumor immunity



[45] J. G. Hanlon, K. Adams, A. J. Rainbow, R. S. Gupta, and G. Singh,
“Induction of Hsp60 by photofrin-mediated photodynamic
therapy,” J. Photochem. Photobiol, B, vol. 64, no. 1, pp. 55–61,
2001.

[46] I. Beltrán Hernández, M. L. Angelier, T. Del Buono D’Ondes,
A. Di Maggio, Y. Yu, and S. Oliveira, “The potential of nanobody-
targeted photodynamic therapy to trigger immune responses,”
Cancers, vol. 12, no. 4, 2020, https://doi.org/10.3390/
cancers12040978.

[47] F. Zhou, D. Xing, and W. R. Chen, “Dynamics and mechanism of
HSP70 translocation induced by photodynamic therapy
treatment,” Canc. Lett., vol. 264, no. 1, pp. 135–144, 2008.

[48] F. Zhou, D. Xing, and W. R. Chen, “Regulation of HSP70 on
activating macrophages using PDT-induced apoptotic cells,” Int.
J. Canc., vol. 125, no. 6, pp. 1380–1389, 2009.

[49] A. D. Garg, D. V. Krysko, P. Vandenabeele, and P. Agostinis,
“Hypericin-based photodynamic therapy induces surface
exposure of damage-associated molecular patterns like HSP70
and calreticulin,” Canc. Immunol. Immunother., vol. 61, no. 2,
pp. 215–221, 2012.

[50] J. Fucikova, O. Kepp, L. Kasikova, et al., “Detection of
immunogenic cell death and its relevance for cancer therapy,”
Cell Death Dis., vol. 11, no. 11, p. 1013, 2020.

[51] S. Ladoire, D. Enot, F. Andre, L. Zitvogel, and G. Kroemer,
“Immunogenic cell death-related biomarkers: impact on the
survival of breast cancer patients after adjuvant chemotherapy,”
OncoImmunology, vol. 5, no. 2, p. e1082706, 2015.

[52] M. Tanaka, H. Kataoka, S. Yano, et al., “Immunogenic cell death
due to a new photodynamic therapy (PDT) with glycoconjugated
chlorin (G-chlorin),” Oncotarget, vol. 7, no. 30,
pp. 47242–47251, 2016.

[53] E. Panzarini, V. Inguscio, G. M. Fimia, and L. Dini, “Rose Bengal
acetate photodynamic therapy (RBAc-PDT) induces exposure
and release of Damage-Associated Molecular Patterns (DAMPs)
in human HeLa cells,” PloS One, vol. 9, no. 8, p. e105778, 2014.

[54] S. Anand, M. Govande, A. Yasinchak, et al., “Painless
photodynamic therapy triggers innate and adaptive immune
responses in a murine model of UV-induced squamous skin pre-
cancer,” Photochem. Photobiol., vol. 97, no. 3, pp. 607–617,
2021.

[55] V. D. Turubanova, I. V. Balalaeva, T. A. Mishchenko, et al.,
“Immunogenic cell death induced by a new photodynamic
therapy based on photosens and photodithazine,” J.
Immunother. Canc., vol. 7, no. 1, p. 350, 2019.

[56] M. Korbelik, J. BanÃ¡th, K. M. Saw, W. Zhang, and E. ÄŒiplys,
“Calreticulin as cancer treatment adjuvant: combination with
photodynamic therapy and photodynamic therapy-generated
vaccines,” Front. Oncol., vol. 5, p. 15, 2015.

[57] R. W. Jenkins, A. R. Aref, P. H. Lizotte, et al., “Ex vivo profiling of
PD-1 blockade using organotypic tumor spheroids,” Canc.
Discov., vol. 8, no. 2, pp. 196–215, 2018.

[58] K. K. Dijkstra, C. M. Cattaneo, F. Weeber, et al., “Generation of
tumor-reactive T cells by Co-culture of peripheral blood
lymphocytes and tumor organoids,” Cell, vol. 174, no. 6,
pp. 1586–1598.e12, 2018.

[59] J. T. Neal, X. Li, J. Zhu, et al., “Organoid modeling of the tumor
immune microenvironment,” Cell, vol. 175, no. 7,
pp. 1972–1988.e16, 2018.

[60] L. Holokai, J. Chakrabarti, J. Lundy, et al., “Murine- and human-
derived autologous organoid/immune cell Co-cultures as pre-

clinical models of pancreatic ductal adenocarcinoma,” Cancers,
vol. 12, no. 12, 2020. https://doi.org/10.3390/cancers12123816.

[61] G. Makedonas, P. P. Banerjee, R. Pandey, et al., “Rapid up-
regulation and granule-independent transport of perforin to the
immunological synapse define a novel mechanism of antigen-
specific CD8+ T cell cytotoxic activity,” J. Immunol., vol. 182, no. 9,
pp. 5560–5569, 2009.

[62] V. Olivo Pimentel, A. Yaromina, D. Marcus, L. J. Dubois, and
P. Lambin, “A novel co-culture assay to assess anti-tumor CD8+ T
cell cytotoxicity via luminescence and multicolor flow
cytometry,” J. Immunol. Methods, vol. 487, p. 112899, 2020.

[63] M. Wachowska, M. Gabrysiak, A. Muchowicz, et al., “5-Aza-2’-
deoxycytidine potentiates antitumour immune response
induced by photodynamic therapy,” Eur. J. Canc., vol. 50, no. 7,
pp. 1370–1381, 2014.

[64] S. A. Kalams and B. D. Walker, “The critical need for CD4 help in
maintaining effective cytotoxic T lymphocyte responses,” J. Exp.
Med., vol. 188, no. 12, pp. 2199–2204, 1998.

[65] A. Durgeau, Y. Virk, S. Corgnac, and F. Mami-Chouaib, “Recent
advances in targeting CD8 T-cell immunity for more effective
cancer immunotherapy,” Front. Immunol., vol. 9, p. 14, 2018.

[66] M. R. Betts and R. A. Koup, “Detection of T-cell degranulation:
CD107a andb,” inMethods in Cell Biology, USA, Academic Press,
2004, pp. 497–512.

[67] A. C. S. Lobo, L. C. Gomes-da-Silva, P. Rodrigues-Santos,
A. Cabrita, M. Santos-Rosa, and L. G. Arnaut, “Immune
responses after vascular photodynamic therapy with
redaporfin,” J. Clin. Med., vol. 9, no. 1, p. 104, 2019.

[68] G.Obaid, S. Bano, S.Mallidi, et al., “Impacting pancreatic cancer
therapy in heterotypic in vitro organoids and in vivo tumors with
specificity-tuned, NIR-activable photoimmunonanoconjugates:
towards conquering desmoplasia?” Nano Lett., vol. 19, no. 11,
pp. 7573–7587, 2019.

[69] M. Broekgaarden, A. Alkhateeb, S. Bano, et al., “Cabozantinib
inhibits photodynamic therapy-induced auto- and paracrine
MET signaling in heterotypic pancreatic microtumors,”
Cancers, vol. 12, no. 6, 2020, https://doi.org/10.3390/
cancers12061401.

[70] L.Mohammad-Hadi, A. J. MacRobert, M. Loizidou, and E. Yaghini,
“Photodynamic therapy in 3D cancer models and the utilisation
of nanodelivery systems,” Nanoscale, vol. 10, no. 4,
pp. 1570–1581, 2018.

[71] W. J. Ho, E. M. Jaffee, and L. Zheng, “The tumour
microenvironment in pancreatic cancer — clinical challenges
and opportunities,” Nat. Rev. Clin. Oncol., vol. 17, no. 9,
pp. 527–540, 2020.

[72] S. Suklabaidya, P. Dash, B. Das, V. Suresh, P. K. Sasmal, and
S. Senapati, “Experimental models of pancreatic cancer
desmoplasia,” Lab. Invest., vol. 98, no. 1, pp. 27–40, 2018.

[73] L. Gorchs, C. Fernández Moro, P. Bankhead, et al., “Human
pancreatic carcinoma-associated fibroblasts promote
expression of Co-inhibitory markers on CD4+ and CD8+ T-cells,”
Front. Immunol., vol. 10, no. 847, 2019, https://doi.org/10.
3389/fimmu.2019.00847.

[74] H. Takahashi, K. Sakakura, R. Kawabata-Iwakawa, et al.,
“Immunosuppressive activity of cancer-associated fibroblasts in
head and neck squamous cell carcinoma,” Canc. Immunol.
Immunother., vol. 64, no. 11, pp. 1407–1417, 2015.

[75] P. Freeman and A. Mielgo, “Cancer-associated fibroblast
mediated inhibition of CD8+ cytotoxic T cell accumulation in

P. De Silva et al.: Photodynamic activation of Verteporfin to boost antitumor immunity 3213

https://doi.org/10.3390/cancers12040978
https://doi.org/10.3390/cancers12040978
https://doi.org/10.3390/cancers12123816
https://doi.org/10.3390/cancers12061401
https://doi.org/10.3390/cancers12061401
https://doi.org/10.3389/fimmu.2019.00847
https://doi.org/10.3389/fimmu.2019.00847


tumours: mechanisms and therapeutic opportunities,” Cancers,
vol. 12, no. 9, p. 2687, 2020.

[76] X. Duan, C. Chan, W. Han, N. Guo, R. R. Weichselbaum, and
W. Lin, “Immunostimulatory nanomedicines synergize with
checkpoint blockade immunotherapy to eradicate colorectal
tumors,” Nat. Commun., vol. 10, no. 1, p. 1899, 2019.

[77] M. Korbelik, J. Sun, and J. J. Posakony, “Interaction between
photodynamic therapy and BCG immunotherapy responsible for
the reduced recurrence of treated mouse tumors,” Photochem.
Photobiol., vol. 73, no. 4, pp. 403–409, 2001.

[78] Z. Li, C. Wang, H. Deng, et al., “Robust photodynamic therapy
using 5-ALA-incorporated nanocomplexes cures metastatic
melanoma through priming of CD4(+)CD8(+) double positive T
cells,” Adv. Sci., vol. 6, no. 5, p. 1802057, 2019.

[79] E. Kabingu, L. Vaughan, B. Owczarczak, K. D. Ramsey, and
S. O. Gollnick, “CD8+ T cell-mediated control of distant tumours

following local photodynamic therapy is independent of CD4+ T
cells and dependent on natural killer cells,” Br. J. Canc., vol. 96,
no. 12, pp. 1839–1848, 2007.

[80] H. S. Hwang, K. Cherukula, Y. J. Bang, et al., “Combination of
photodynamic therapy and aflagellin-adjuvanted cancer vaccine
potentiated the anti-PD-1-mediated melanoma suppression,”
Cells, vol. 9, no. 11, 2020, https://doi.org/10.3390/
cells9112432.

[81] D. Wang, T. Wang, H. Yu, et al., “Engineering nanoparticles to
locally activate T cells in the tumor microenvironment,” Sci.
Immunol., vol. 4, no. 37, p. eaau6584, 2019.

Supplementary Material: The online version of this article offers
supplementary material (https://doi.org/10.1515/nanoph-2021-
0304).

3214 P. De Silva et al.: Photodynamic activation of Verteporfin to boost antitumor immunity

https://doi.org/10.3390/cells9112432
https://doi.org/10.3390/cells9112432
https://doi.org/10.1515/nanoph-2021-0304
https://doi.org/10.1515/nanoph-2021-0304

	Photodynamic priming with triple-receptor targeted nanoconjugates that trigger T cell-mediated immune responses in a 3D in vitro heterocellular model of pancreatic cancer
	Dartmouth Digital Commons Citation
	Authors

	Photodynamic priming with triple-receptor targeted nanoconjugates that trigger T cell-mediated immune responses in a 3D in  ...
	1 Introduction
	2 Results and discussion
	2.1 Design, preparation, and characterization of TR-PINs
	2.2 NIR light-mediated photodynamic treatment of 3D heterocellular Panc spheroids
	2.3 TR-PINs mediated induction of ICD
	2.4 TR-PINs mediated T cell activation and antitumor reactivity
	2.5 Enhanced effects of PDT and T cell-mediated tumor cell killing

	3 Conclusions
	4 Experimental section
	Acknowledgments
	References

