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Abstract

Crop yields are sensitive to extreme weather events. Improving the understanding of the

mechanisms and the drivers of the projection uncertainties can help to improve decisions.

Previous studies have provided important insights, but often sample only a small subset of

potentially important uncertainties. Here we expand on a previous statistical modeling

approach by refining the analyses of two uncertainty sources. Specifically, we assess the

effects of uncertainties surrounding crop-yield model parameters and climate forcings on pro-

jected crop yield. We focus on maize yield projections in the eastern U.S.in this century. We

quantify how considering more uncertainties expands the lower tail of yield projections. We

characterized the relative importance of each uncertainty source and show that the uncer-

tainty surrounding yield model parameters is the main driver of yield projection uncertainty.

1. Introduction

Increasing greenhouse gas concentrations lead to warmer climates and more frequent extreme

weather events [1]. Climate change poses threats to many economic sectors. For example, agri-

cultural yields can be highly sensitive to temperature and precipitation change, raising con-

cerns about food security [2].

The net impact of climate change on agriculture is highly uncertain due to our limited

knowledge about drivers of yield anomalies and future climates [3–5]. Improving our under-

standing of climate change impacts on crop yields and quantifying the surrounding uncertain-

ties is a potentially important avenue to improve decisions.

Statistical models are often used to represent the weather-crop yield relationship and to

produce yield projections [6]. Statistical models empirically relate historical weather data and

crop yield observations. Another approach to study the weather-crop yield relationship uses

process-based dynamical simulations, which simulate the physiological processes of crop

growth. Compared with dynamical models, statistical models have lower computation cost.

This drastically simplifies the uncertainty assessments surrounding yield projections [6, 7].
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Schlenker and Roberts (2009) uses statistical models to identify a nonlinear effect of tem-

perature on crop yields and shows that crop yields increase modestly as temperature increases

and decrease sharply once temperature exceeds a particular threshold [4]. Based on this non-

linear weather-yield relationship, Schlenker and Roberts (2009) projects a maize yield decrease

of 63%-82% with 95% confidence level by the end of this century (2070–2099) under the most

extreme warming scenario considered [4].

Previous studies provide valuable insights about weather impacts on crop yields, but they

often sample a rather small subset of potentially important uncertainties. Some studies apply a

simple “delta method” to climate projections [4, 8]. In other words, these studies approximate

the future climate distribution by a linear shift of the past climate. This assumption is inconsis-

tent with observations that suggest that the shape of summer temperature distributions has

already changed in the past [9]. More recent studies adopt more complex and realistic climate

forcings when projecting crop yields [10, 11]. Burke et al (2015) reports the 95% confidence

intervals of maize yields projections in multiple climate forcings based on a relatively simple

statistical model [10]. Keane and Neal (2018) lists the range of yield projections under 19 gen-

eral circulation models (GCM) and three representative concentration pathway (RCP) emis-

sion scenarios [11]. These studies are, however, mostly silent on the relative importance of

different uncertainty sources.

Here we expand on the statistical analysis of Schlenker and Roberts (2009) by incorporating

and quantifying the effects as well as the relative importance of two main uncertainty sources

on yield projections [4]: (i) uncertainties surrounding model parameters and (ii) climate for-

cings. We focus on maize as it is widely grown in most U.S. states and has high data availabil-

ity. Following past studies [4, 8, 12], we consider six weather variables in a simple regression

model and allow each variable to be either neglected or included in a linear or quadratic term

in the model. To approximate the effects of model parameter uncertainty, we sample model

parameters that pass a simple pre-calibration test [13, 14] based on observation data and the

best estimates of yield hindcasts. To sample the climate forcing uncertainty, we use an ensem-

ble of downscaled climate products to represent sampled climate conditions in future. We

project the yield distribution based on sampled model parameters and climate forcings.

Finally, we quantify the relative importance of these uncertainty sources by using a cumulative

uncertainty approach based on the standard deviations when considering different uncertainty

sources [15].

We address two main questions: (i) How does the incorporation of different uncertainties

change the maize yield projection? (ii) What is the relative importance of each uncertainty

source? The remaining text introduces the chosen yield data as well as climate data (section 2),

describes the process of model regression and uncertainty analysis in detail (section 3), reports

the main results (section 4), discusses methods and results (section 6) as well as caveats and lim-

itations (section 7). The last section summarizes the conclusions and points to research needs.

2. Data

We collect county-level annual maize yield data from the United States Department of Agricul-

ture [16]. We focus on 24 states in the eastern U.S. because they often rely more on precipitation

than irrigation [4]. These yield data are reported as unit yield per growing area (bushel/acre)

along with growing area in each county. We drop the counties with unreported data. We calcu-

late the annual average yields for the entire study region weighted by reported growing areas.

We use METDATA historical climate data, a relatively high-spatial resolution (4km�4km)

daily surface meteorological data product covering the contiguous U.S. [17]. We choose the

historical study period from 1979 to 2018. We consider five weather variables based on
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previous research: maximum temperature, minimum temperature, precipitation, maximum

relative humidity and minimum relative humidity [12]. We use weather data within the maize

growing season each year defined as a 6-month interval after the 21-day moving average tem-

perature reaches 10˚C [12].

For the climate projections, we use MACAv2-METDATA [18]. This dataset uses the Multi-

variate Adaptive Constructed Analogs (MACA) statistical method to downscale GCMs bias

corrected by METDATA observations. We analyze the 2019–2099 period from these projec-

tions to extend the observed data. We focus on two 30-year time windows to represent the

near (2020–2049) and far future (2070–2099). Similar to how we dealt with the METDATA

observations, we extract the same daily weather variables within the maize growing season. We

choose to use projections following the business-as-usual RCP8.5 scenario [19] for compara-

bility with other studies [4, 11, 12].

We aggregate all weather data to the county level based on each grid center’s longitude and

latitude [8]. For each county, we find the grids whose centers fall inside the county boundary.

We take the mean of these grids to serve as county level average weather data.

To capture some measure of the uncertainty in climate forcing, we use an ensemble of

MACAv2-METDATA projections that comprises 18 climate projections based on different

Coupled Model Intercomparison Project v5 (CMIP5) models [20]. These climate projections

differ considerably. We consider these ensemble members as equally likely, as there is little

evidence that one model outperforms the others in terms of root-mean-square errors (RMSE)

over space and time compared with observations [10].

To simplify the comparison with previous studies, we also apply the delta downscaling

method for climate projection as a scenario without considering climate forcing uncertainty

[21]. We realize that this is a strong approximation and use this as an idealized scenario for

comparison only [8]. For each 30-year time window, we calculate the mean difference or ratio

of each weather variable between MACAv2-METDATA projection and hindcast, and then

shift the METDATA observations of 1981–2010 to generate a new climate. Specifically, for

each 30-year projection period, we calculate the 30-year mean value for each weather variable

in each MACAv2-METDATA projection dataset. We then use the multi-model ensemble

mean from the 18 climate projections as the mean projection for each variable [22]. We further

calculate each variable’s 30-year hindcast mean value from MACAv2-METDATA hindcast

dataset for a time window of 1981–2010. We shift the observational temperatures linearly

based on the absolute difference between projection mean and hindcast mean, and multiply

the observational precipitation and relative humidity proportionally based on the ratio

between projection mean and hindcast mean.

3. Methods

The design of the analysis is illustrated in the flow diagram (Fig 1). We consider six weather

variables that previous work identified as important based on the five weather variables

reported in the historical climate data: maximum temperature, minimum temperature, precip-

itation, vapor pressure deficit (VPD) calculated by temperature and relative humidity, growing

degree days (GDD) and extreme degree days (EDD) calculated by temperature [12].

We calculate VPD (in hPa) using Eq (1), where Tmean is the average of maximum and mini-

mum temperature in degrees Celsius, and RHmean is the average of maximum and minimum

humidity:

VPD ¼ 6:112� e17:269 � Tmean
Tmean� 237:3 � ð1 � RHmeanÞ: ð1Þ
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We adopt 10˚C to 29˚C as maize’s growing temperature range and use it to calculate GDD

and EDD [4]. A simple estimation method of GDD and EDD follows Eqs (2) and (3) based on

daily maximum and minimum temperature [23]:

GDD ¼
Tmax þ Tmin

2
� 10; ð2Þ

and

EDD ¼
Tmax þ Tmin

2
� 29: ð3Þ

To calculate GDD, we treat any temperature higher than 29˚C as 29˚C, and any tempera-

ture lower than 10˚C as 10˚C. Similarly, to calculate EDD, we treat any temperature lower

than 29˚C as 29˚C.

We analyze a set of model structures and determine the best choice of model structure by

minimizing cross validation errors. Specifically, for each variable, we allow the model to

include an up-to-quadratic relationship. This means the model may include both quadratic

and linear terms, only the linear term, or nothing. The full model is shown in Eq (4).

yield ¼ b1GDDþ b2GDD
2 þ b3EDDþ b4EDD

2 þ b5Tmaxþ b6Tmax2 þ b7Tminþ b8Tmin2

þ b9Pr þ b10Pr
2 þ b11VPDþ b12VPD

2 þ b13:ð4Þ

For each model structure, we apply ten-fold cross validation. We divide the observation

data into ten equally sized groups, and we train the model using data from nine groups and

test the hindcast performance of the last group. We calculate the RMSE for the test data to

assess each model’s predictive skill. We repeat this process for each group and calculate the

Fig 1. Analysis flow diagram. We adopt county level weather data and yield data to model the weather impact on maize yields. We consider

parameter uncertainty through a pre-calibration method and climate forcing uncertainty through an ensemble of downscaled climate

products.

https://doi.org/10.1371/journal.pone.0259180.g001
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cross-validation error as the mean of ten RMSE calculations. We adopt the model with the

smallest cross-validation error as the best model to estimate the yield hindcasts (Eq 5). We

treat this model (Eq 5) as a reference model to represent the common approach and to calcu-

late the yield anomalies.

yield ¼ b1GDDþ b2GDD
2 þ b3EDDþ b4Tminþ b5Tmin2 þ b6Pr þ b7Pr

2 þ b8VPD
þ b9VPD

2 þ b10:ð5Þ

We transform the yield data into anomalies based on the reference model (Eq 5). In order

to reduce the influence of other factors than weather, we include additional fixed effect terms

in the reference model (Eq 5) and estimate these fixed effects. The temporal fixed effects cap-

ture factors that are approximately constant in space such as technology trend, market price

and CO2 concentration. The spatial fixed effects approximate the effects of factors that are

approximately constant in time such as local soil quality. Following previous work, we subtract

the best estimates of temporal fixed effects in each year from yield observations [4]. We do not

subtract the spatial effects because we are not specifically focusing on a particular region and

we work in anomalies space. We then normalize the yield anomalies by subtracting the area-

weighted mean yield so that the historical mean yield anomaly is zero. In the analyses of

parameter uncertainties and yield projections, the calculations are based on normalized yield

anomalies.

We use a simple pre-calibration approach to sample the model parameter uncertainty [13,

14]. The goal of pre-calibration is to characterize the parameter uncertainties and to drop unre-

alistic parameter samples by comparing the hindcasts with observations. The pre-calibration

approach can provide several advantages. For example, it does not require a specific functional

form for the parameter estimates. In addition, it provides a simple and straightforward way to

sample the parameters with consideration of parameter interactions. Instead of directly apply-

ing the best model, we consider the full model shown in Eq (4) for the pre-calibration process.

The best model treats the parameters that are excluded from the full model as zero. Hence the

uncertainties of these parameters are neglected if the uncertainty characterization is based on

the best model.

For each parameter, we specify a wide uniform range around the best estimate to sample

from. The range width for all parameters (except the EDD terms) is twenty standard deviations

around the best estimate of the full model. For EDD terms we use 50 standard deviations in

order to cover the best estimates of the best model. We use Latin hypercube sampling to draw

1010 samples within this range without considering correlation [24]. We define a plausible

hindcast range to be a symmetric band around the best estimate of hindcasts from Eq (4). We

adopt the width of this band as the minimum width that enables the band to cover 95% of the

area-weighted annual yield anomaly observation. We accept a parameter sample if the yield

hindcast falls within this plausible range. We can observe the correlation between each pair of

parameters from a two-dimensional heat map of accepted parameter samples after the pre-

calibration (S1 and S2 Figs). Altogether we accept 19,231 samples. We do not find strong evi-

dence that the yield projections change drastically when using more samples (S3 Fig). We

hence consider the sample size of 1010 a reasonable approximation. This pre-calibration

approach can certainly be refined [25], but it provides a simple and intuitive benchmark.

To assess the yield projection uncertainty, we sample climate forcing and model parameter

uncertainties. Specifically, we sample 19 climate forcings and 19,231 accepted parameter sam-

ples. As a reference, we use the linear shifted climate projection from the delta method and the

best estimates of parameters to represent the scenario without considering either uncertainty.
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For each 30-year interval, we calculate the average yield anomaly distribution while sampling

different uncertainties.

To quantify the importance of the two uncertainty sources, we employ a cumulative uncer-

tainty approach [15]. We use the standard deviation of the yield anomaly distribution from

each of the 30-year windows to represent the uncertainties. The cumulative uncertainty

approach decomposes the total uncertainty into individual uncertainty sources by calculating

the uncertainty at different stages. Again, this method can certainly be refined [26], but it can

provide some useful initial insights [15]. A stage is defined as a choice of considering certain

uncertainty sources. For each stage, we first calculate the conditional cumulative uncertainty

by fixing the factor(s) after this stage and varying the factor(s) up to this stage. For example,

our first stage begins with varying model parameters while fixing the climate forcing. Under

each choice of climate forcing, we calculate the standard deviation from the yield anomaly

distribution considering parameter uncertainty. Then the marginal cumulative uncertainty of

this stage is the mean of conditional cumulative uncertainty when choosing different factors

after this stage. In our case, it is the mean of the standard deviations when choosing different

climate forcings. The marginal cumulative uncertainty represents the cumulative uncertainty

up to this stage. In this study, we list all three stages with their marginal cumulative uncer-

tainty. The three stages are: (i) a stage considering only parameter uncertainty (ii) a stage con-

sidering only climate projection uncertainty and (iii) a stage considering both uncertainties.

4. Results

We estimate the best yield hindcasts and projections based on the selected model with the least

cross-validation error shown in Eq (5) (the green and blue lines in Fig 2). Compared with the

full model in Eq (4), the best model does not include maximum temperature (Tmax) terms and

the quadratic extreme degree days (EDD) term.

Similar to previous studies, increasing growing degree days (GDD) increases maize yield

while increasing extreme degree days (EDD) decreases maize yield. While the best model and

the full model have similar hindcast skills, some of the parameter estimates are different, espe-

cially linear EDD term and linear Tmax term (Table 1). This suggests that these two models

may have different yield projections under extreme high temperatures.

Yield projections change considerably when moving from climate projections derived from

the delta method to the more refined downscaling method (Fig 3). One reason for this is that

the delta method underestimates the extreme high temperatures (S4 Fig). In this example, the

delta method underestimates the projected temperature mean by about 0.7˚C. This effect is

amplified for EDD, because EDD represents the net effect of the extreme temperatures, which

is the tail area of mean temperature distribution (S5 Fig). The increasing extreme high EDD

can lead to potentially sharp decreases in yield projections.

The distributions of the accepted pre-calibration parameter samples are much wider than

the distributions based on the linear regression results from the best model (S6 Fig). Recall

that our approach accepts parameter samples as long as the hindcasts pass the defined plausible

band. Many best parameter estimates are not located at the highest density of the accepted

pre-calibration samples (S1 and S2 Figs, Table 1).

As expected, adding climate forcing uncertainty to model parameter uncertainty widens

the yield projection uncertainty range (Fig 2). The upper bound of the uncertainty range does

not considerably increase until around 2060, but the lower bound decreases from about -40

bushel/acre in the near future down to about -150 bushel/acre in the far future. One hypothesis

to potentially explain the observed patterns of an increasing upper bound of the uncertainty

range in the far future is that some sampled structures are more sensitive to the positive effects
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of climate change. In this case, the yield projections will be high under a warm but not extreme

climate forcing which has high GDD and low EDD. The results in Fig 2 are consistent with

this hypothesis: although many model samples have similar hindcast skill passing the green

plausible band, their predictive skill will diverge greatly, especially under an unexperienced

more extreme future climate.

The best estimates of yield projections from different climate projections miss important

information about the possible low yield extremes (blue lines in Fig 2). In the near future,

some lines project positive yield anomalies that exceed the upper limit of the 95% uncertainty

range. In the far future, though the yield projection uncertainty will have a high upper bound,

the best estimates from each climate projection are all negative values. However, in both the

Fig 2. Annual mean yield hindcasts and projections under different methodological choices. The black dots

represent the area-weighted average annual yield observations. The green line is the best estimate of yield hindcast

based on the model with the least cross-validation error. The deep blue lines are best estimates of this model for 18

different climate projections. Adding the effects of considered parameter uncertainty allows a pre-calibration to cover

95% of the observed yield data (light green area). The total effects of the considered uncertainties (climate forcings and

parameters) expand the projection with a much wider 95% uncertainty range (light blue area).

https://doi.org/10.1371/journal.pone.0259180.g002

Table 1. List of model estimates and parameter sampling range.

Terms (units) Best model best estimate Full model best estimate Full model standard error Sampling range

Intercept -193 -222 21.0 -432, -12.0

GDD (degree day) 0.315 0.355 1.60e-2 0.195, 0.515

GDD2 (square degree day) -1.16e-4 -1.18e-4 5.01e-6 -6.79e-4, -1.68e-4

EDD (degree day) -0.172 -0.272 6.80e-3 -0.612, 6.80e-2

EDD2 (square degree day) 0 3.48e-4 2.04e-5 -6.72e-4, 1.37e-3

Tmax (˚C) 0 0.809 2.38 -23.0, 24.6

Tmax2 (square ˚C) 0 -6.05e-2 5.04e-2 -0.565, 0.444

Tmin (˚C) -21.7 -21.8 1.39 -35.7, -7.9

Tmin2 (square ˚C) 1.42 1.35 5.92e-2 0.76, 1.94

Pr (mm) 9.36e-2 8.73e-2 4.91e-3 3.82e-2, 0.136

Pr2 (square mm) -8.22e-5 -7.92e-5 3.52e-6 -1.14e-4, -4.4e-5

VPD (hPa) 0.681 0.693 6.35e-2 5.80e-2, 1.33

VPD2 (square hPa) -2.75e-3 -2.75e-3 3.00e-4 -5.75e-3, 2.5e-4

https://doi.org/10.1371/journal.pone.0259180.t001
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Fig 3. Marginal distributions of 30-year mean yield projections for different considerations of uncertainties. a: 2020–2049 b:

2070–2099 The point labels the point estimate without considering any uncertainty (the best estimate in a linear shifted climate

projection); the three solid lines (red, green and blue) are the distributions when considering only parameter uncertainty, only

climate forcing uncertainty and both uncertainty sources respectively. The distribution medians are labeled as vertical black lines on

the box-whisker plots.

https://doi.org/10.1371/journal.pone.0259180.g003
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near future and far future, these best estimates are much higher than the lower bound of the

95% uncertainty range. This suggests that considering both uncertainty sources will lead to

more extremely low yield projections.

Considering model parameter uncertainty widens the probability density function of the

yield projections (red lines in Fig 3). Similarly, considering climate forcing uncertainties pro-

duces roughly similar distributions (green lines in Fig 3). Considering both uncertainty

sources extends the lower tails even further and results in yield distributions with negative

skewness (blue lines in Fig 3).

Model parameter uncertainty explains more of the variance in yield projections than cli-

mate forcing uncertainty (Fig 4). The importance of the parameter uncertainty increases in the

far future. In the near future, the stage with only climate forcing uncertainty explains around

66% of total variance, while the stage with only parameter uncertainty explains around 83% of

total variance. In the far future, the stage with only climate forcing uncertainty explains around

53% of total variance while the stage with only parameter uncertainty explains around 95% of

total variance.

5. Discussion

We expand on a well-studied approach to project changes in maize yields to analyze the effects

and the relative importance of model parameters and climate uncertainties [4]. The pre-

calibration approach provides a conceptually easy approach to analyze the effects of parameter

uncertainty. However, it is computationally very demanding. In our case with 13 parameters,

the acceptance rate is about one in a million using the current sampling range. The heat map

suggests that the prior range is still not wide enough because samples can still be accepted near

the boundaries (S1 and S2 Figs). Another potential concern is that some accepted samples

project rather extreme yield anomalies in the far future. It is possible for a model to pass the

Fig 4. Decomposition of the uncertainty in 30-year mean yield distributions. The uncertainties are measured in

yield anomaly standard deviations. Two panels are for two periods. a: 2020–2049 b: 2070–2099. The percentages are

the proportion of the uncertainty cumulatived up to each stage.

https://doi.org/10.1371/journal.pone.0259180.g004
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pre-calibration test but project extreme yields under an extreme climate beyond historical cli-

mate (S7 Fig). This points to potential problems with the statistical model approach.

We use a cumulative uncertainty decomposition method to quantify the relative impor-

tance of each uncertainty source. However, the decomposition result depends on the measure

of uncertainty and the order of uncertainty sources to add. The common approach starts with

one source and adds another at each stage. Then the contribution of a particular source is the

difference of cumulative uncertainties between two successive stages with and without this

source. In the results for 2020–2049, if we choose to start with climate forcing uncertainty and

then add parameter uncertainty, we would conclude that climate forcing uncertainty explains

66% of total uncertainty and the addition of parameter uncertainty explains 100%-66% = 34%

of total uncertainty. If we start with parameter uncertainty and then add climate forcing uncer-

tainty, we would conclude that parameter uncertainty explains 83% of total uncertainty while

the addition of climate forcing uncertainty explains 100%-83% = 17% of total uncertainty (Fig

4). The results will also be different if we use another measure of uncertainty such as the range

of the distribution. We simply list the uncertainty explained by each stage. More refined vari-

ance-based uncertainty decomposition methods are available to quantify the relative impor-

tance of each uncertainty source [27]. Sobol’s method considers all the uncertainty sources

simultaneously and calculates the variance explained by each individual source as well as each

interaction between multiple sources.

6. Caveats and limitations

We chose our analysis framework for its conceptual simplicity. The simplicity comes, of

course, requires several simplifying assumptions that lead to caveats. Here we mention four

examples of these caveats. First, we only adopt a simple statistical model with linear and qua-

dratic terms and neglect key aspects of structural model uncertainty. Second, we only consider

a high forcing scenario for climate projection (RCP8.5). Including more forcing scenarios will

likely expand the uncertainty in climate forcing. Third, we simply treat the 24 states as a whole

and produce mean projections for the entire region. We further assume that the statistical rela-

tionship and growing area in each county will hold the same in future. In reality, the adapta-

tion of crops and technology development might change the weather-yield relationship greatly

[11]. Last but not least, we adopt a very simple statistical approach. For example, we use a very

simple acceptance criterion that does not consider the spatial correlation of yield residuals (S8

Fig). The yield anomalies usually have strong spatio-temporal patterns thus models that can

capture and simulate these patterns might be considered more realistic.

7. Conclusion

Crop yields are sensitive to climate change. Many studies use statistical models to simulate the

weather-yield relationship and estimate the yield projection under climate change. However,

previous studies have often been silent on the effects and relative importance of the deep

uncertainty surrounding model parameters and climate forcings. We identify important

uncertainties in model parameters and climate forcings surrounding yield projections. We

incorporate these two uncertainty sources using a statistical approach and apply a simple eval-

uation method to rank their relative importance. We find that considering these uncertainty

sources leads to a yield projection with a wider range, larger variance, and a longer tail of low

yield outcomes. By comparing the marginal cumulative uncertainty when considering differ-

ent uncertainty sources, we conclude that model parameter uncertainty explains more uncer-

tainty than sampled climate forcing uncertainty. Our study can help to inform climate impact

assessments and the design of strategies to improve these assessments.
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Supporting information

S1 Fig. Heat maps of accepted linear parameter samples based on the full model from the

pre-calibration analysis. The black dot is the best estimate based on the full model (Eq 4). The

colors illustrate the probability density of the parameters with red area denoting higher and

blue area denoting lower probability densities.

(TIF)

S2 Fig. Heat map of accepted GDD and EDD parameter samples. This figure is a zoomed-in

panel of S1 Fig. The black dot is the best estimate based on the full model. The best estimate

does not necessarily locate at the highest density region of the accepted pre-calibration samples.

(TIF)

S3 Fig. Convergence of the pre-calibration sampling approach. Shown are the far future

yield projection (the blue PDF in Fig 3b) mean and standard deviation change as a function of

accepted pre-calibration sample sizes. The solid line represents the mean, and the dashed line

represents the standard deviation. Both lines stabilize after around 5,000 samples.

(TIF)

S4 Fig. Comparison of temperature distribution in far future under linear shifted climate

and downscaled climate projection. Here we pick the MIROC5 model projection from

MACAv2-METDATA (the red histograms) [18, 20]. The linear shifted climate underestimates

the high temperatures and overestimates the low temperatures. On the box-whisker plots, the

vertical black lines are the histogram temperature medians (50% percentile), two ends of the

box are 25% percentile and 75% percentile temperatures, and the black points are the outliers

outside 1.5 times of the interquartile range (the width of the box).

(TIF)

S5 Fig. Comparison of extreme degree day (EDD) distribution in far future under linear

shifted climate and downscaled climate projection. The box-whisker plots are the same as

Fig 1 except that they are for EDD instead of temperature.

(TIF)

S6 Fig. Marginal distributions of each parameter. The black lines are the parameter distribu-

tions based on the linear regression result for the best model with the least cross-validation

errors. This model does not include the quadratic EDD term and Tmax terms so instead there

is a black dashed line at zero in these panels. The red lines are the parameter distributions

from the accepted pre-calibration samples. The range of x-axis in each panel is the wide prior

range of each parameter.

(TIF)

S7 Fig. The full yield anomaly projections uncertainty range. This plot is the same as Fig 2

but with the full yield projections uncertainty range instead of 95% uncertainty range.

(TIF)

S8 Fig. County level yield residual of the model hindcast. The yield residuals have strong spa-

tial patterns varying each year. We plot the residual map in 1983 with the most observation

data. In future studies, we plan to use spatial models to better account for these spatial patterns.

(TIF)

S9 Fig. The predictive skill of a model using only 32 years data. We add eight more years

observational data in an update (1979, 1980, 2013–2018). We use these data to test the predic-

tive skill of the old model using 32 years data. The estimated hindcasts given by the old model
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(blue circles) are close to the hindcasts of the updated model (red line) and the observations

(black dots).

(TIF)
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