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METHODOLOGY ARTICLE Open Access

Measuring and modeling energy and
power consumption in living microbial cells
with a synthetic ATP reporter
Yijie Deng1, Douglas Raymond Beahm1, Steven Ionov1 and Rahul Sarpeshkar1,2*

Abstract

Background: Adenosine triphosphate (ATP) is the main energy carrier in living organisms, critical for metabolism
and essential physiological processes. In humans, abnormal regulation of energy levels (ATP concentration) and
power consumption (ATP consumption flux) in cells is associated with numerous diseases from cancer, to viral
infection and immune dysfunction, while in microbes it influences their responses to drugs and other stresses. The
measurement and modeling of ATP dynamics in cells is therefore a critical component in understanding
fundamental physiology and its role in pathology. Despite the importance of ATP, our current understanding of
energy dynamics and homeostasis in living cells has been limited by the lack of easy-to-use ATP sensors and the
lack of models that enable accurate estimates of energy and power consumption related to these ATP dynamics.
Here we describe a dynamic model and an ATP reporter that tracks ATP in E. coli over different growth phases.

Results: The reporter is made by fusing an ATP-sensing rrnB P1 promoter with a fast-folding and fast-degrading
GFP. Good correlations between reporter GFP and cellular ATP were obtained in E. coli growing in both minimal
and rich media and in various strains. The ATP reporter can reliably monitor bacterial ATP dynamics in response to
nutrient availability. Fitting the dynamics of experimental data corresponding to cell growth, glucose, acetate,
dissolved oxygen, and ATP yielded a mathematical and circuit model. This model can accurately predict cellular
energy and power consumption under various conditions. We found that cellular power consumption varies
significantly from approximately 0.8 and 0.2 million ATP/s for a tested strain during lag and stationary phases to 6.4
million ATP/s during exponential phase, indicating ~ 8–30-fold changes of metabolic rates among different growth
phases. Bacteria turn over their cellular ATP pool a few times per second during the exponential phase and slow
this rate by ~ 2–5-fold in lag and stationary phases.

Conclusion: Our rrnB P1-GFP reporter and kinetic circuit model provide a fast and simple way to monitor and
predict energy and power consumption dynamics in bacterial cells, which can impact fundamental scientific studies
and applied medical treatments in the future.

Keywords: ATP biosensor, ATP dynamics, Metabolism, Cellular power consumption, Cell energetics, Bacterial
kinetics, Kinetic circuit models
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Background
Adenosine triphosphate (ATP) is the key energy source
for all living organisms, essential to fundamental processes
in all cells from metabolism to DNA replication and pro-
tein synthesis [1]. In humans, abnormal cellular ATP
levels and power consumption (ATP consumption rate),
as can be determined by measuring and modeling ATP,
are related to many diseases, such as cancer, aging, obes-
ity, diabetes, neuronal disorders, viral infections, and im-
mune dysfunctions [1–6]. In bacteria, ATP dynamics are
directly related to bacterial metabolic activity, physiology,
and behaviors under varying conditions and stresses [7–
9]. For example, low ATP levels contribute to bacterial re-
sistance/persistence in response to antibiotic treatments
[9–12]. Despite ATP’s importance, our current under-
standing of ATP dynamics and homeostasis in cells has
been limited by the lack of readily available and easy-to-
use continuous ATP biosensors as well as by the shortage
of accurate dynamic models to determine ATP fluxes.
The quantitative and continuous measurement of cellu-

lar ATP has proven challenging. Conventional methods,
such as luciferase assays, require efficient lysis of cells and
thus preclude real-time and continuous intracellular ATP
measurements [13]. To this end, several genetically
encoded ATP biosensors have been developed, such as
the fluorescence resonance energy transfer FRET-based
ATeam biosensor [14], the bioluminescence resonance
energy transfer BRET-based BTeam biosensor [13], and
the new ATeam3.10 biosensor [15]. These ratio-metric
biosensors measure ATP, irrespective of their expression
levels in the cell, and function well in slow-growing mam-
malian cell lines. To monitor cellular ATP in fast-growing
bacteria, Yaginuma et al. developed a QUEEN ATP sensor
but wider applications of this sensor in bacteria have not
been reported, possibly due to its relatively dim signal and
sensitivity to temperature [16]. Furthermore, these biosen-
sors require expensive fluorescence microscopes and
time-consuming procedures for sample preparation and
image analysis. These limitations make it challenging to
continuously monitor intracellular ATP, e.g., in synthetic
biological applications in the body that require fast, cheap,
and continuous sensing of ATP in living microbial or
other cells. Monitoring such ATP dynamics can predict
nutrients, cellular stresses, disease states, or efficacy of
drug treatments [2–7, 9, 11] and might be used to modu-
late or actuate therapeutic molecular release in response
to cellular energetics.
Given that protein synthesis is the major energy-

consuming process in the cell, ribosome synthesis must
be tightly controlled by ATP/GTP availability in order to
maintain ATP homeostasis [17–20]. The activity of a
ribosomal RNA (rRNA) promoter, rrnB P1, has been
shown to depend on cellular ATP level in E. coli [17,
18]. Upon binding, an RNA polymerase holoenzyme

(RNAP) and the rrnB P1 promoter form a very short-
lived open complex; this unstable open complex requires
an unusually high concentration of ATP (Kd in the mM
range) to initiate the transcription of rRNA [17, 18, 21,
22]. The sensitivity of the rrnB P1 promoter to ATP is
attributed to its specific features, including non-
consensus -35 hexamers, non-optimal spacing between
-35 and -10 hexamers, and a GC- rich discriminator [23,
24]. The requirement of high ATP concentration for
transcription initiation is the rate-limiting step and al-
lows for the regulation of rRNA production by changing
ATP levels as long as they are not saturating [23, 24].
Therefore, the activity of the rrnB P1 promoter was pro-
posed as a sensitive ATP indicator in E. coli [10, 17, 18].
However, systematic and quantitative analyses of rrnB
P1-based ATP reporters that enable dynamic energy and
power consumption measurements have thus far been
missing. The combinatorial use of such ATP reporter
and dynamic models could enable efficient determin-
ation of cellular energetics across various growth phases.
In this work, we designed and screened a series of syn-

thetic ATP reporters in E. coli. The ATP reporters were
made by fusing the ATP-sensing rrnB P1 promoter with the
gene of a fast-folding GFP (GFP-mut2) that folds within mi-
nutes [25]. An SsrA protease degradation tag [26, 27] fused
to the C-terminus of the GFP also enabled its rapid degrad-
ation. Thus, the GFP produced from the rrnB P1 promoter
in response to cellular ATP enabled relatively fast tracking of
ATP in E. coli. We tested the performance of the reporter in
minimal and rich media. Even though the activity of the rrnB
P1 promoter is also affected by high levels of guanosine tetra-
phosphate (ppGpp) under starvation conditions [18, 20], we
found that our ATP reporter can faithfully track cellular
ATP levels under different experimental conditions regard-
less of potential ppGpp presence. After verifying the per-
formance of the rrnB P1-based ATP reporter in various
media and E. coli strains, we utilized it to study how bacterial
ATP dynamics change in response to varying nutrients, in-
cluding glucose and phosphate. To demonstrate the accuracy
of the ATP reporter in power consumption measurements
during bacterial growth, we developed a kinetic model and
an electrical circuit model for bacterial growth in minimal
medium. Our ATP reporter measurements and model en-
able us to quantitatively estimate intracellular ATP power
consumption (ATP flux) in living cells, which is hard to esti-
mate by luciferase-based or other ATP sensors. We show
that our work can help quantify striking changes in ATP dy-
namics and power consumption across bacterial growth
phases.

Results
Comparison of different rrnB P1-GFP reporter constructs
Our reporter consists of an rrnB P1 promoter fused to a
fast-folding and fast-degrading GFP that is composed of
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GFP-mut2 [25] and an SsrA-tag. We made four versions
of our ATP reporter including two on a low-copy plas-
mid (LC) and two on a high copy plasmid (HC) with
varying strengths of ribosomal binding sequences (RBS).
We evaluated the response of the reporters during
growth in the EZ-rich medium and the MOPS minimal
medium. Once bacteria are seeded in a fresh medium,
abundant nutrients allow cells to accumulate ATP,
which reaches a constant level or a steady state during
the exponential phase [28–30]; ATP then falls in station-
ary phase when nutrients become depleted. Therefore, a
good ATP reporter is expected to have GFP dynamics
similar to cellular ATP dynamics and display bell-shaped
or non-monotonic characteristics that are well correlated
with nutrient availability and growth phase.
We compared GFP signals of four versions of

the ATP reporter and one control construct without
an ATP-sensitive promoter (Additional file 1: Figure
S1). The high-copy-plasmid ATP reporter with a rela-
tively low RBS strength, denoted HC-M, displayed the
expected bell-shaped dynamics in both minimal and
rich media (Fig. 1). It had low fluorescence signals
during lag and stationary phases and a plateau during
the exponential phase. Another ATP reporter (HC-E)

displayed similar characteristics but did not correlate
well with ATP in a further test (Additional file 2: Fig-
ure S2). Therefore, we used the HC-M ATP reporter
for all further studies in this work.

Correlation of the rrnB P1-GFP reporter measurements
with ATP levels in E. coli
We next evaluated the ATP-tracking performance of the
HC-M reporter in E. coli grown in the minimal medium
and the rich medium. The cellular GFP signals during
growth at different time points were measured by flow cy-
tometry; ATP in each culture sample was measured using
a commercial luciferase assay and converted to cellular
concentration as described in the “Methods” section. We
found that the HC-M reporter tracked cellular ATP faith-
fully over the lag, exponential, and stationary growth
phases in both the minimal medium and rich medium
(Fig. 2a,b). Both GFP and ATP levels rose quickly in cells
after seeding in the fresh medium and then remained at a
steady state during the exponential phase, followed by a
rapid drop of both signals to a basal level in the stationary
phase (Fig. 2a–d). Good linear correlations were observed
between cellular ATP and GFP values for both the min-
imal medium (R2 = 0.9271) and the rich medium (R2 =

Fig. 1 Fluorescence and growth characteristics of HC-M ATP reporter in rich and minimal media. a, b Normalized cellular GFP dynamics [% (GFP/
OD)] (a) and growth (b) of E. coli carrying the HC-M ATP reporter grown in the rich medium. c, d Normalized cellular GFP dynamics [% (GFP/OD)]
(c) and growth (d) of E. coli carrying the HC-M ATP reporter grown in minimal medium. The E. coli NEB 10-beta strain with the HC-M ATP reporter
was grown in EZ rich medium with 5 mM glucose or MOPS minimal medium with 10 mM glucose. Bacteria were grown in black 96-well plates
with shaking. GFP (ex485/em528) and OD600 were measured with a microplate reader (Molecular Devices, Inc.). The cellular GFP signals, GFP/OD,
were normalized by their own peak GFP/OD values (100%). Each data point is the mean value of at least three independent experiments. The
standard deviations were small (< 15% of the mean) and not shown
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0.9303) (Fig. 2e, f). Our results validate that the HC-M
ATP reporter is able to track cellular ATP faithfully across
different growth phases.
Flow cytometry analysis shows that bacterial popula-

tion was uniform across growth phases in both the rich
and minimal media, except that a slight heterogeneity
was noticed during the transition time between the log
and stationary phases (Additional files 3, 4: Figures S3,
S4), which might be due to the stochastic, heteroge-
neous, and asynchronous nature of bacterial population
during growth [31–33]. However, this temporal hetero-
geneity was minimal and does not affect the

performance of the HC-M reporter to measure cellular
ATP, given that the mean GFP levels of the population
still correlate well with the cellular ATP levels (Fig. 2).
Overall, we found that the HC-M correlates closely with
the changes of cellular ATP and is a reliable tool to esti-
mate cellular ATP over bacterial growth phases.
Our ATP reporter also works in different E. coli

strains. Besides the BW25113 strain we tested above
(Fig. 2), three other strains including JM109(DE3), NEB-
10beta, and BL21(DE3) showed very similar cellular GFP
dynamics (Fig. 3) even though they have significantly
different genetic backgrounds. These results indicate

Fig. 2 Correlation between the rrnB P1-GFP reporter and ATP. a, b Dynamics of the GFP reporter and cellular ATP levels in E. coli in minimal (a) and
EZ-rich medium (b). Cellular GFP fluorescence for each sample (arbitrary fluorescence unit, a.u.) was measured by flow cytometry. Cellular ATP levels
were determined by a standard luciferase assay and converted to cellular concentration in mM. Growth of bacteria is shown in minimal medium (c)
and in rich medium (d). Bacterial cell counts were estimated by flow cytometry corrected with counting beads. e, f Linear correlations between cellular
ATP concentration and cellular GFP levels in minimal (e) and rich medium (f). All experiments used the same BW25113 strain for consistency. All data
points are mean values of at least three independent biological replicates with one standard deviation (SD). The SD for growth and the GFP signal
were relatively small (< 15%) and are not shown
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that the reporter is robust and can track ATP in a broad
range of E. coli strains. For example, we also verified that
the reporter GFP signals correlate well with cellular ATP
in JM109(DE3) strain grown in rich medium
(Additional file 5: Figure S5a,c) and in BL21(DE3) strain
grown in minimal medium (Additional file 5: Figure S5b,
d). As in any accurate sensing scheme, for the best quan-
titative accuracy, calibration curves for a given strain in
typical culture conditions will need to be established to
compensate for strain-to-strain and media variations.

Monitoring ATP dynamics in bacteria grown with
different limiting nutrients
Energy dynamics in bacteria are essential to their meta-
bolic activities and phenotypes under different condi-
tions, including their persistence to stresses [7, 8, 10, 34,
35]. Thus, our ATP reporter could be useful in studying
ATP dynamics in response to stresses such as limiting
nutrients or drug treatments. For example, we employed
our reporter to monitor bacterial ATP dynamics in re-
sponse to glucose. Glucose is the sole energy source in
the minimal medium and thus applying more of the
limiting-nutrient, glucose (0 to 10 mM), to bacteria in
this medium can sustain a longer exponential phase and
result in a longer period of steady-state ATP levels.
When glucose is no longer limiting (e.g., changing it
from 10 to 15 mM in Fig. 4a, b), there is little effect by
glucose on ATP dynamics. Figure 4c shows that the total
GFP of the bacterial population accumulates with
growth and then decays after all the glucose in the
medium has been consumed. Overall, Fig. 4a–c show
that cellular ATP dynamics show a good correlation
with bacterial growth, glucose consumption, and glucose
availability. In another example, our reporter also reli-
ably tracks bacterial ATP dynamics in response to phos-
phate availability (Fig. 4d–f). Measuring ATP dynamics

in response to nutrient availability and stresses can pro-
vide deeper insight into the underlying bacterial metab-
olism, which is difficult to obtain by just monitoring
growth curves.

Kinetic model development for the measurement of ATP
dynamics
We next sought to explore whether our ATP reporter can
quantitatively estimate ATP dynamics and power con-
sumption in bacteria. We developed a kinetic model and
employed it with our ATP reporter to study growth kinet-
ics and estimate power consumption during bacterial
growth. Although cellular ATP can be directly estimated
by our ATP reporter under similar conditions using the
pre-established calibration curves (e.g., Fig. 2), determin-
ing energy fluxes or power consumption requires kinetic
models with differential equations and the classic Monod
equation [36], described in the “Methods” section in
depth. The workflow is described in Fig. 5: The model in-
cludes glucose consumption, bacterial growth, acetate
production corresponding to overflow metabolism and its
subsequent consumption, oxygen dynamics, total popula-
tion ATP dynamics, and individual cellular ATP dynam-
ics. The differential equations can be conveniently
represented and visualized as electric circuits as well
(Additional file 6: Figure S6), as reported in our previous
publications [37–43]. Our circuit models were simulated
in the Cadence Virtuoso Analog Design Environment (Ca-
dence Design Systems, Inc.). Cellular ATP dynamics can
be determined by conversion from population-scale meta-
bolic rates to single-cell values using cell counts and esti-
mated cell volumes. Through these methods, ATP fluxes
(global power consumption) and cellular power consump-
tion (ATP/cell/s) during bacterial growth can be quanti-
fied. Our model was validated by experimental data fitting
(Fig. 6), known physical constants for energy metabolism

Fig. 3 Robustness of the rrnB P1 ATP reporter in different E. coli strains. a Dynamics of cellular GFP (GFP/OD) of four E. coli strains (NEB 10-beta,
BW25113, JM109DE3, and BL21DE3) with HC-M ATP reporter in rich medium with 6mM glucose. b Corresponding bacterial growth among the four
strains in the same medium. Bacterial strains were grown in black 96-well plates and GFP (ex485/em528) and OD600 were measured by a microplate
reader. Cellular GFP (GFP/OD) signals of each strain were normalized to their respective peak GFP/OD values (100%) for comparison among different
strains. Each data point represents the mean of at least three independent replicates with a standard deviation < 13% of the mean
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(e.g., in Fig. 5), and by sweep-sensitivity analyses, archi-
tected by varying initial glucose levels and growth rates
(Additional file 7: Figure S7).
Bacteria were grown in batch cultures in minimal

medium for easy analysis and modeling. Glucose was
used to produce biomass and acetate and for aerobic
respiration. Our model describes characteristic bacterial
growth, glucose consumption, acetate production and
consumption, and dissolved oxygen dynamics (Fig. 6).
As Fig. 6 shows, once inoculated into the fresh medium,
bacteria enter exponential phase quickly. Bacterial
growth significantly slows when glucose is depleted but
continues for a little while by consuming previously se-
creted acetate until acetate is also depleted (Fig. 6a–c).
Aerobically growing E. coli generally produce acetate
despite the presence of oxygen, a phenomenon known
as the overflow metabolism [44, 45]. Dissolved oxygen

(DO) levels remain relatively constant at the beginning
of growth, in agreement with glucose dynamics (Fig. 6b,
d). Oxygen consumption then increases dramatically on
a population level during the exponential phase, result-
ing in a rapid drop in DO until glucose is depleted. DO
then rises quickly to a level that supports slower acetate
metabolism and slower growth. At the end of the experi-
ment, when growth stops, DO levels return to steady-
state lag values (Fig. 6a, d).
We then used our kinetic model to study ATP dynam-

ics, which are determined by summing ATP production
fluxes and subtracting ATP consumption fluxes (Fig. 5
and Figure S6), described in Eqs. 7–15. Population ATP
levels, as expected, follow growth contours closely, peak-
ing at the end of exponential phase and decreasing to a
basal level during the stationary phase (Fig. 6e). Cellular
ATP dynamics predicted by the model track luciferase

Fig. 4 Cellular GFP (ATP) dynamics in response to rate-limiting nutrients using our ATP-dependent reporter. a–c Cellular GFP dynamics (a), bacterial
growth (b), and total-population-level GFP dynamics (c), in response to different amounts of glucose (0–15mM) in minimal medium. As in Fig. 2, the
cellular GFP serves as a good proxy for cellular ATP and helps us monitor it in real time. d–f Cellular GFP dynamics (d), bacterial growth (e), and total-
population-level GFP dynamics (f) in response to different amounts of phosphate (0.05–1.5mM) in rich medium. Each data point represents the mean
of four independent biological replicates with standard deviation < 15% of the mean. Bacteria were grown in black 96-well plates. GFP (ex485/em528)
and OD600 were measured by a microplate reader. Cellular GFP is defined as the total GFP divided by OD
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measurements: ATP rises quickly and remains at the
steady state during the exponential phase, followed by a
fall upon glucose exhaustion (Fig. 6f).
The robustness of our model was further validated

by two sensitivity analyses (Additional file 7: Figure
S7): We varied inputs corresponding to initial glucose
concentration and to the maximum specific growth
rate, both of which are known to influence ATP dy-
namics, while keeping all other parameters constant.
As expected, increasing glucose causes higher bacter-
ial growth and an exponential phase of increased dur-
ation; peak population ATP also increases as more
glucose is added (Additional file 7: Figure S7a-c).
Most importantly, in strong agreement with our mea-
sured biological data from Fig. 4, the steady-state cel-
lular ATP in the exponential phase is invariant with
initial glucose concentration (Additional file 7: Figure
S7c). Similarly, our model accurately predicts that
glucose is depleted faster as growth rate increases,
with different growth rates corresponding to different
slopes in the growth curves (Additional file 7: Figure
S7d-f). The cellular ATP in the exponential phase is
also constant at different growth rates (Additional file
7: Figure S7e), in accord with previous reports that E.
coli contain similar amounts of ATP at different
steady-state growth rates [46, 47]. To match these
previous reports, ATP homeostasis in our model

requires only a slight increase of a single parameter,
the growth-associated energy consumption coefficient,
g, in Eq. 14. It is likely that ATP homeostasis in ac-
tual biological cells is more complex and bacteria at a
higher growth rate might consume ATP faster, corre-
sponding to a greater g. In sum, our relatively coarse-
grained model still accounts for important input-
output characteristics accurately.
The results of Fig. 6 and our sensitivity analyses

suggest that our model can accurately capture the
dynamics of biomass, glucose, acetate, oxygen, and
ATP. It is thus useful for extracting ATP fluxes
(power consumption) in E. coli, as we now discuss.

Determining energy dynamics and power consumption
by kinetic modeling
After validating our kinetic model with measured bio-
logical data in Fig. 6 and extracting model parameters
(shown in Additional file 8: Table S1), we used the
model to determine ATP production (based on glucose
input) and power consumption (based on ATP con-
sumption fluxes). Equations 7–15 (in the “Methods” sec-
tion) capture the mathematics behind our model while
Fig. 7a–d show some important results based on the
model. The results show a total ATP production rate of
approximately 6.4 million ATP/cell/s in exponential
phase. Aerobic respiration contributes to over 72% of

Fig. 5 Workflow of kinetic model development. a Black arrows correspond to glucose fluxes converting glucose to biomass, carbon dioxide and water
(respiration), or to the byproduct acetate, the excretion flux. Similarly, blue arrows correspond to acetate fluxes converting acetate to biomass or to
carbon dioxide and water. The stoichiometry is based on general biochemical processes for glucose and acetate metabolism. Acetate utilization only
occurs after glucose is depleted. The mathematical terms on each arrow describe the flux, or consumption rate, for that path in (M/s). Given the glucose
or acetate consumption rate for each pathway, the total ATP production rate can then be calculated via stoichiometry (mole product per mole
substrate consumed). Biomass production is based on the carbon balance between the substrate consumed and cellular carbon produced (more
details are provided in the “Methods” section). b All ATP production fluxes are gathered and converted to the cellular ATP pool. This pool is
simultaneously drained for bacterial growth and for cell maintenance via the mathematical flux rate terms (M/s) as indicated in the figure
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the total ATP production during exponential growth,
first with glucose metabolism, and then with acetate me-
tabolism (Fig. 7a). Acetate production also yields a con-
siderable amount of ATP production when glucose is
available. Notably, our model shows that ATP produc-
tion rates correlate closely with oxygen consumption
rates (Additional file 9: Figure S8), consistent with the
idea that aerobic respiration is the major energy source.
During the exponential phase, the ATP yield per O2 is
estimated to be 5.74.
While aerobic respiration is the major power source,

cellular growth consumes the most ATP during active
growth. In our model, as shown in Fig. 5, ATP is con-
sumed for bacterial growth as well as for cellular mainten-
ance, e.g., for repairing cell membranes and damaged
proteins and other cost-of-living functions [48–50]. Dur-
ing a short lag phase, the maintenance energy consump-
tion accounts for a relatively large portion of ATP cost for
bacteria, while during the exponential phase, growth ac-
counts for the major ATP consumption (~ 85%) (Fig. 7b).

ATP consumption occurs simultaneously with ATP
production with a near-perfect balance of the two fluxes,
implying near-perfect ATP homeostasis and invariance
of ATP’s steady-state concentration. Our model pre-
dicted that ATP production rate nearly equals its con-
sumption rate so as to maintain the ATP homeostasis in
cells (Fig. 7a, b), a result that is both experimentally ob-
served and also critical in bacteria due to the high ATP
turnover rate [8, 51, 52]. During the lag phase (0–60
min), the production and consumption rates of ATP
both increase from 0.4 to 4.0 million ATP/cell/s. During
the exponential phase, both rates increase rapidly to a
steady-state value of 6.4 million ATP/cell/s, which is
consistent with a previous report that growing E. coli
consumes ATP at a rate between 1 and 10 million ATP/
cell/s [51]. ATP fluxes fall to less than 0.5 million ATP/
cell/s in the stationary phase.
Our model also correctly predicts that the cellular

ATP consumption rate is independent of the initial glu-
cose concentration, as shown in Fig. 7c: Even if the

Fig. 6 Experimental data and model simulation for batch-culture kinetics. The BW25113 strain with the ATP reporter was grown in minimal
medium. Black circles represent measured experimental data (means of three independent replicates) and red lines represent model simulation
results. Biomass (a) was estimated by multiplying the mass of a single cell with cell counts determined via flow cytometry. Glucose (b), acetate
(c), and dissolved oxygen (d) were measured as described in the “Methods” section. ATP was measured by a standard luciferase assay. Population
ATP (e) is indicated by the amount of ATP per L of culture. Cellular ATP (f) is calculated from the population ATP, cell counts, and the volume of
a single cell. E is the average absolute error of the model in the units of the corresponding y-axis and indicates the model’s goodness of fit for
each data fitting. The small E values indicate good fits of our model
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initial glucose concentration increases, the cellular ATP
consumption rate remains at a homeostatically similar
value in the exponential phase (steady-state ATP in Fig.
7c). However, since higher initial glucose concentration
enables glucose depletion and consequent bacterial entry
into stationary phase to occur later, it does lead to a lon-
ger exponential phase in Fig. 7c. In contrast, given that
bacterial growth dominates power consumption, the cel-
lular ATP consumption rate increases as growth rate in-
creases in Fig. 7d. Here, an increased rate of glucose
depletion with a higher growth rate leads to a shorter
exponential phase. In another test, we changed the initial
concentration of cellular ATP and found that it has min-
imal effect on the overall ATP dynamics and consump-
tion rates (Additional file 10: Figure S9). Small dips in
ATP dynamics were noticed, which are due to the tran-
sient imbalances in fluxes in the beginning of the lag
phase, but by the time homeostatic equilibrium is
reached at the beginning of the exponential phase, they
do not affect the overall ATP dynamics and

consumption rates. More complex models of ATP
homeostasis with more details of phase and cell state
can likely provide further improvements over our
relatively simple model. Nevertheless, as Figs. 6, 7, and
Figure S9 (Additional file 10) show, many aspects of
measured biological data are fitted and captured.
Our model also shows that bacterial cells are incred-

ibly energy-efficient. Given the consumption rate of
6.38 million ATP/s/cell and the free energy of 54 kJ/
mole released from ATP under physiological conditions
in E. coli [53, 54], the power consumption for exponen-
tial growth is computed to be 0.57 pW or 5.7 × 10−13 J/s
(Table 1), consistent with the mean value of 0.49 pW
reported previously in a prokaryotic cell [51]. Cellular
ATP consumption rates during the lag phase average to
about 0.82 million ATP/cell/s (Fig. 7b) and during the
stationary phase to about 0.23 million ATP/cell/s,
approximately 7.8-fold and 28-fold lower power
consumptions than in the exponential phase (Table 1,
Fig. 7).

Fig. 7 Determination of ATP fluxes by kinetic models that are derived by fitting measured experimental data. a Cellular ATP production fluxes
from glucose aerobic respiration (Glu Resp), acetate production (Act Prod), and Act respiration (Act Resp). b ATP or power consumption fluxes for
growth and cell maintenance (Maint.). The thickness of each colored zone indicates the contribution of each ATP flux and all colored zones sum
up to the total ATP flux. The modeling used the same data and parameters from Fig. 6. c Model prediction of ATP consumption rates as initial
glucose increases. d Model prediction of ATP consumption rates as growth rate increases. Initial glucose concentration is kept the same when
varying the growth rate and vice versa
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Given a cellular ATP concentration averaged at
around 3.5 mM, we calculated the turnover time for
ATP to be 0.33 s during the exponential phase. As ex-
pected, the ATP turnover rate is significantly slower in
the lag phase (0.64 s) and stationary phase (1.5 s) than in
the exponential phase (Table 1). The slower ATP turn-
over rate indicates a slowing of metabolism in bacteria
adapting to a new growth condition during the lag phase
or lacking nutrients during the stationary phase.

Determination of ATP power consumption with our ATP
reporter and kinetic model
As long as a calibration curve for ATP is pre-established
under similar culture conditions, our ATP reporter and
kinetic model enable us to determine cellular ATP levels
and dynamic ATP consumption fluxes in living cells
without the need for cell lysing, tedious ATP extraction,
and costly luciferase assay procedures. We summarize
how these determinations are made in Fig. 8. First, we
measure GFP signals and convert them to cellular ATP
concentrations using a pre-established calibration curve
(e.g., Fig. 2) from similar experimental conditions. Then,
our kinetic model is populated with parameters that are
either known to be accurate for similar culture condi-
tions from past experiments or derived by fitting the
new experiment’s bacterial growth curve (growth rate,
initial glucose concentration, initial cell population, and
lag time). Finally, the GFP-reporter-derived ATP mea-
surements and growth-curve parameters are then input
to our kinetic model to calculate ATP consumption
fluxes and thus cellular power consumption.
The accuracy of using our reporter to estimate ATP

dynamic data were demonstrated by comparing those
data with equivalent data obtained via a luciferase assay
(Table 1). The closeness of those two datasets shows
that the ATP dynamics and power consumption can be
reliably predicted by the model and our ATP reporter
without using a tedious and costly luciferase assay. As
another example, using the methodology of Fig. 8 and a
calibration curve for the BL21(DE3) strain (Additional
file 5: Figure S5), we determined ATP dynamics and
power consumption for this strain using just our re-
porter under the same condition (Additional file 11:

Table S2). The model parameters for the BL21 strain
were derived from those for the BW25113 strain (Fig. 6;
Table 1) and needed only slight adjustments to account
for strain-to-strain variations (Additional file 12: Table
S3). In general, we found this strain grew faster than
BW25113 strain, which contributed to higher ATP
power consumption rates and faster ATP turnover dur-
ing growth as estimated by our kinetic model using ATP
input from our reporter.

Discussion
In this study, we developed and validated an rrnB P1
promoter that can be used as an ATP reporter, and a
kinetic model to measure ATP dynamics and ATP
power consumption fluxes in E. coli. Our ATP reporter
faithfully tracks cellular ATP dynamics in both the min-
imal and rich media across different growth phases and
in different strains (Figs. 1, 2, 3, and 4). Although our re-
sults show that the HC-M ATP reporter works across
different strains and conditions (Figs. 2 and 3, Additional
file 5: Figure S5), we note that absolute accuracy requires
that our ATP reporter be calibrated for different strains
and conditions. In order to determine the dynamics and
power consumption fluxes of ATP in a bacterial cell, we
developed a dynamic model that accurately predicts bac-
terial growth, glucose and acetate metabolism, dissolved
oxygen dynamics, and ATP dynamics (Fig. 5, the math-
ematical model in the “Methods” section, Additional file
6: Figure S6). Our results show that as long as the initial
conditions (e.g., the amount of glucose and inoculum)
are set and a maximum growth rate μmax and lag time
are determined from the experiment, ATP dynamics and
fluxes can be accurately predicted directly from mea-
surements and associated modeling without need for a
luciferase assay or other methods for ATP measurement
(Figs. 5, 6, 7, and 8). Even though experimental condi-
tions can affect some constants and parameters, such
constants can be pre-determined by additional experi-
ments and our kinetic model is quite robust to various
changes in experimental conditions (Fig. 6, Additional
file 7: Figure S7).
High levels of the pheromone ppGpp can inhibit the ac-

tivity of the rrnB P1 promoter and thus the GFP dynamics

Table 1 Calculated ATP dynamic values in E. coli BW25113 grown in minimal medium

Lag phase Exponential phase Stationary phase

Luc Reporter Luc Reporter Luc Reporter

Averaged ATP (mM) 0.86 ± 0.16 0.72 ± 0.12 3.50 ± 0.45 3.32 ± 0.28 0.58 ± 0.08 0.68 ± 0.07

ATP consumption rate (million ATP/cell/s) 0.82 ± 0.07 0.77 ± 0.11 6.38 ± 0.06 6.38 ± 0.06 0.23 ± 0.06 0.23 ± 0.06

Power consumption (pW)a 0.073 ± 0.006 0.069 ± 0.01 0.57 ± 0.01 0.57 ± 0.005 0.021 ± 0.005 0.021 ± 0.005

ATP turnover time (s) 0.64 ± 0.12 0.56 ± 0.09 0.33 ± 0.04 0.31 ± 0.03 1.5 ± 0.21 1.8 ± 0.18
a: power consumption was estimated from 54 kJ/mole ATP [53, 54]. All values were estimated from three independent biological experiments evaluated by the
kinetic model. Luc indicates the calculated ATP data based on the luciferase assay while Reporter indicates ATP data based on the measurements from our
GFP reporter
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during starvation [18, 55]. As such, we did notice that
relative GFP levels are a little lower than ATP levels dur-
ing the stationary phase (Fig. 2, Additional file 5: Figure
S5), when nutrients are low. However, by correlating GFP
and ATP dynamics, we showed that such inhibition did
not affect the operation of our ATP sensor significantly
(Fig. 2). Our findings are in line with previous reports that
rrnB P1 in strains without spoT and relA genes (no
ppGpp) can also indicate cellular ATP levels [10, 56]. Fur-
thermore, ATP and ppGpp in bacterial cells are anti-
correlated such that they can cooperatively control the
rrnB P1 promoter activity during different growth phases:

at the start of the culture, cells have sufficient nutrients
and thus ppGpp levels are very low while ATP accumu-
lates rapidly. Consequently, ATP dominates the regulation
of the activity of rrnB P1 during lag and exponential
phases when nutrients are relatively abundant. In the sta-
tionary phase, as bacteria are experiencing nutrient short-
age, cellular ATP levels drop but ppGpp accumulates to a
higher level, which makes the promoter activity drop even
further than may be expected by purely ATP-driven dy-
namics [56]. For these reasons, it is even possible that
ppGpp might actually help ATP tracking in the nutrient-
limited minimal medium: For strains short of ppGpp such

Fig. 8 Using our ATP reporter and kinetic model to estimate cellular power consumption. GFP signals are measured from the reporter and converted to
cellular ATP concentrations using a calibration curve pre-established under similar culture conditions. Bacterial growth is also measured, and parameters and
initial conditions from this growth curve are used to determine the parameters of the kinetic model. ATP dynamics and cellular power consumption can then
be reliably estimated without extra ATP measurements using the luciferase assay or other methods
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as JM109(DE3), while we found a good correlation be-
tween GFP and ATP in rich medium (Additional file 5:
Figure S5a,c), we did not find it in minimal medium, sug-
gesting a potential role of ppGpp in this medium. How-
ever, given the similar GFP dynamics among four strains
with likely different ppGpp backgrounds (Fig. 3), the effect
of ppGpp on ATP tracking by our ATP sensor appears to
be negligible in rich medium. For strains without ppGpp
defect, our ATP reporter is found to be robust in both rich
and minimal media, such as strains of BW25113 (Fig. 2)
and BL21(DE3) (Additional file 5: Figure S5b,d).
Like almost all other transcriptional and translational

biosensors, the expression of our ATP reporter could also
be influenced by many factors other than ATP. Growth
conditions, pH, and metabolites could all affect GFP dy-
namics. For example, low pH out of the physiological
range might reduce the fluorescence of GFP [57]. Metabo-
lites including ppGpp could affect the activity of rrnB P1
and the fluorescence of GFP. Despite the many factors
that potentially impact GFP dynamics, the overall correla-
tions between GFP and ATP of our biosensor are good in
both the rich and minimal media over different growth
phases and strains (Figs. 2 and 3). The calibration curves
allow us to rapidly estimate ATP consumption rates and
turnover times in bacteria without losing accuracy as com-
pared to values obtained by luciferase assays and those in
previous studies (Table 1). In addition, GFP dynamics
could be influenced by plasmid copy number, strength of
ribosome binding site (RBS) (Additional file 1: Figure S1),
GFP degradation rate, energy source, and cellular nutri-
tional status. In practice, many of these factors are tunable
for optimization; for example, RBS strength can be altered
by using the RBS calculator [58]; GFP degradation rate
can also be engineered by using SsrA tags with different
time constants [59]. Just as we have shown in this study,
optimization may be needed to get good correlation be-
tween rrnB P1-GFP and ATP dynamics in strains or spe-
cies considerably different from ours, but the
methodology needed to obtain good correlation can likely
benefit from our study and methods.
Notably, bacteria change their ATP pool very rap-

idly during growth, typically within 1 s. We found
that each E. coli cell consumed ATP at the rate of
around 6.4 million ATP/s during exponential growth
under the experimental conditions tested and that
consumption slowed approximately by 8–28-fold
during lag and stationary phases, respectively (Fig. 7,
Table 1). Assuming each cell has ~ 3.5 mM ATP
during exponential growth (Fig. 6), the cellular ATP
pool is turned over in ~ 0.3 s. Our measurements are
consistent with previous reports that a growing E.
coli cell turns over its entire ATP pool within 1 s
depending on growth conditions [51]. Because of the
high turnover rate, ATP production rate and

consumption rate are balanced as predicted by our
model (Fig. 7), which is important for maintaining
ATP homeostasis in the cell [8, 51]. In terms of
power consumption, it is amazing to note that each
bacterial cell is extremely efficient in energy usage
during growth. Our model predicts that an E. coli
cell consumes only 0.57 pW during exponential
growth, consistent with values reported previously
[39, 41, 51]. Such power consumption is orders of
magnitude more energy-efficient than today’s most
advanced electronic devices in that cells can quickly
adjust a protein/metabolite to a desired level in re-
sponse to environmental disruptions, which for com-
parable speed and precision in electronic circuits
performing similar signal processing would need at
least a mW of power [39, 41].
Determining ATP dynamics is essential for studying

molecular mechanisms of persistence, virulence, and gene
regulation in bacteria under different conditions and
stresses [7, 8, 10, 34, 35]. For example, ATP dynamics can
provide valuable insights into bacterial metabolism and
bacterial persistence to antibiotic drugs [10, 60–62]. Due
to the multitude of variables affecting growth, using
growth rate as a single indicator is insufficient to evaluate
antibiotic efficacy towards pathogens especially when such
pathogens are within hosts. Rather, it is the metabolic
state of bacteria that largely influences their susceptibility
to antibiotics [60–62]. Therefore, cellular ATP level as an
indicator of bacterial metabolism can be and has been
used to predict bacterial persistence or susceptibility to
drugs [10, 60–62]. For example, above a certain threshold
concentration, cellular ATP levels in the bacteria correlate
negatively with bacterial survival rate from antibiotic treat-
ment [11]. The combined use of our rrnB P1 ATP
reporter and dynamic model facilitates the rapid deter-
mination of cellular ATP level and ATP power consump-
tion fluxes in bacteria, which together give insight into
bacterial metabolism and drug response. Moreover, ATP
power consumption flux measurements may aid experi-
ments in altering bacterial metabolism, which have been
proposed as a novel strategy to enhance antibiotic treat-
ments [60–62]. As we have shown here, ATP dynamic pa-
rameters such as the power consumption rate and
turnover time might be better indicators of metabolic state
than the absolute ATP concentration, which is homeosta-
tically regulated by bacteria, and does not change as much.
The easy combinatorial use of our ATP reporter and kin-
etic model may thus offer a useful tool for many funda-
mental microbiological studies as well as for synthetic
biological applications.

Conclusions
In this work, we designed a synthetic rrnB P1-GFP re-
porter and validated its use to measure ATP in E. coli.
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Regardless of many factors that might affect
fluorescence-reporter dynamics that are common to
almost all biosensors, good correlations were found be-
tween GFP and ATP under many experimentally tested
conditions. We found that our ATP reporter can reliably
monitor cellular ATP dynamics in response to nutrient
availability. We developed a dynamic model that accur-
ately predicted the dynamics of growth, glucose con-
sumption, acetate production and consumption, oxygen
consumption, and ATP production and consumption in
living microbial cells. Using GFP signal as a proxy for
ATP, our rrnB P1-GFP reporter and dynamic model to-
gether provide a fast and simple way to predict ATP
power consumption fluxes in bacteria. We quantitatively
demonstrated that, during exponential growth, bacteria
turn over their ATP pool within a second, much faster
than during lag and stationary phases and that the power
consumption of bacteria during exponential growth was
at least 8-fold greater than in other growth phases. We
envisage that our ATP reporter and dynamic model may
prove directly useful in studies of bacterial metabolism
and shed insight into cellular power consumption-
related effects that are known to be important in several
diseases.

Methods
Strains, media, and growth conditions
The E. coli NEB 10-beta strain (New England BioLabs,
Inc.) was used to construct all plasmids and for the quick
screen of ATP reporters. We also tested the JM109 (DE3)
strain that is deficient in ppGpp production due to the
mutated relA gene, the BW25113 that is the parental
strain of the Keio knockout collection and has wild-type
genes for ppGpp production [63] and the BL21(DE3)
strain also with wild-type ppGpp production genes.
The MOPS minimal medium (TEKnova Inc., cat#M2106)

and MOPS EZ rich defined medium (TEKnova Inc.,
cat#M2105) were used for all ATP experiments and kinetic
studies. Glucose was supplemented as the carbon/energy
source at different concentrations noted by experiments. Un-
less otherwise noted, glucose in all our experiments (less than
15mM for minimal medium or 10mM for the rich medium)
is the rate-limiting factor for bacterial growth. Minimal
medium also received 0.2mM of leucine to promote growth.
Carbenicillin at 50 μg/ml and/or kanamycin at 50 μg/ml were
supplemented before experiments. The final pH values of the
cultures in all experiments were kept above pH7.3 to
minimize the potential pH effect on GFP fluorescence.
For ATP calibration and kinetic studies, a fresh single

colony was inoculated in the minimal medium for 24 h
or the rich medium for 16 h at 37 °C with shaking. The
seed culture was then diluted 60–100 fold in 200ml of
the pre-warmed fresh medium in a 500-ml flask. The
culture was incubated at 37 °C with shaking at 200 rpm.

Samples were taken at different time points and immedi-
ately subjected to flow cytometry for GFP measurements
and ATP extraction. When needed, a pre-calibrated
Clark oxygen meter (Seven2Go DO meter, Mettler To-
ledo Inc., cat#30207959) was inserted into the culture
and secured at the opening of the flask. This probe
remained in the culture during the whole experiment
and allowed for the continuous monitoring of dissolved
oxygen. The supernatants of cultures were stored at −
20 °C until they were assayed for glucose and acetate as
described elsewhere in this paper.
Experiments were also conducted in clear-bottom

black 96-well plates (Corning Inc., cat#3603). Seed
cultures were prepared as described above and diluted
in either the fresh rich medium or minimal medium.
Each well received 110 μl of diluted seed culture. The
plate was then incubated in the SpectraMax Paradigm
microplate reader (Molecular Devices, Inc.) at 37 °C
with shaking. Bacterial growth (OD600) and GFP (ex
485/em 528) were recorded every 10 min. The cellular
GFP signal was calculated as GFP/OD. Bacterial
strains without any plasmids were also grown and the
autofluorescence was measured and subtracted from
the GFP signals.

Construction of rrnB P1 ATP reporters and control
A fast-folding GFP (GFP-mut2) [25] was transcription-
ally fused with an rrnB P1 promoter and an SsrA prote-
ase tag (LAA) for rapid degradation [26, 27]. The
ribosome binding site (RBS) sequence was designed by
the RBS calculator [58] to adjust the GFP expression
rate. All reporters designed and used in this study are
shown in Table 2. The high-fidelity Q5 DNA polymerase
(NEB Inc.) was used to run all PCR reactions. The DNA
fragments of the rrnB P1 promoter, RBS, GFP-mut2,
LAA degradation tag, and backbone overlapping region
were synthesized as one gBlock by IDT (Integrated DNA
Technologies, Inc.) and assembled into either high-copy
or low-copy plasmids using NEBuilder® HiFi DNA

Table 2 ATP reporter constructs designed and used in this
study

Name Plasmid copy number RBS strength design

LC-F Low copy 16,000, medium strength

LC-G Low copy 50,000, high strength

HC-M High copy 7000, low strength

HC-E High copy 16,000, medium strength

HC-con High copy 16,000, medium strength

The RBS strength is indicated as the translation initiation rate (arbitrary unit)
designed by the RBS calculator and is arbitrarily defined as low, medium, and
high strength in this study. All reporters were made with the rrnB P1 promoter
except the control plasmid HC-con that used the strong constitutive
promoter T7A1
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Assembly kit (NEB, Inc.). Two low-copy-plasmid re-
porters (LC-F and LC-G) with medium and high RBS
strength were made; the backbone of pSC101 Ori with a
kanamycin resistance gene was PCR amplified from the
plasmid pRD123 [40], and the primer set used was
HLCN-bk-F (5′- TAACCCGGGGGATCCCATGGTA-3′)
and HLCN-bk-R (5′-AGGTGGCACTTTTCGGGGAA-
3′). Two high-copy-plasmid reporters (HC-E and HC-
M) with medium and low RBS strength were also made
by fusing the same gBlock with the backbone from an
HCN plasmid JF72 containing ampicillin resistance and
the ColE1 Ori [64]. The high-copy plasmid backbone
was PCR amplified using the same primer sets (HLCN-
bk-F and HLCN-bk-R) as used for the low-copy plasmid.
The assembled products were transformed into the NEB
10-beta strain (NEB, Inc., cat# C3019H) and selected for
kanamycin- or ampicillin-resistant colonies on LB plates,
for low-copy and high-copy plasmids, respectively. A
strong constitutive promoter T7A1 [65, 66] was used to
replace the rrnB P1 promoter from HC-E to make the
plasmid HC-con as a control. One DNA fragment was
PCR amplified from HC-E, using two primers, rrnL-R
(5′-AGTCAATACTCTTTTTGATAAGACGTCAGGTG
GCACTTTTCGGGGAA-3′) and rrnL-F (5′-TTAT
CAAAAAGAGTATTGACTTAAAGTCTAACCTATAG
GATACTTACAGCCAGAATTCACCGATATCCGAAC
G-3′). The primer set has overlapping sequences (bolded
above) and a T7A1 promoter sequence. The DNA se-
quences of all three plasmids were confirmed by Sanger
sequencing. The plasmids used in this work are shown
in (Additional file 13: Figure S10) and the DNA se-
quences of promoters, RBS, GFP-mut2, and the degrad-
ation tag were shown in (Additional file 14).

Flow cytometry
The GFP signal was measured by a CytoFLEX S Flow
Cytometer (Beckman Coulter, Inc.) or a microplate
reader (Molecular Devices, Inc.). For flow cytometry,
bacterial samples were diluted into phosphate-buffered
saline (PBS) and immediately subjected to flow cytome-
try. Cells were gated by forward scatter (FSC) and side
scatter (SSC), and at least 20,000 events were collected
for each sample. Green fluorescence was collected using
the FITC channel. The mean fluorescence intensity
(MFI) of each cell was calculated and used to make
GFP/cell dynamic curves. The autofluorescence of bac-
terial cells without any plasmids was also collected and
subtracted for each sample. All flow cytometry data were
analyzed by FlowJo v10 (TreeStar Inc., Ashland, OR). To
estimate the cell count density (cells/L), the AccuCheck
counting beads (Molecular Probes Inc., cat# PCB100)
with a known density (beads/L) were run with bacterial
samples and the absolute cell count density was calcu-
lated. Biomass measurements are products of cell count

density and the cell dry mass (405 fg/cell) for bacteria
grown in the minimal medium [67].

ATP extraction and luciferase assay
Bacteria samples taken at different time points were
immediately subjected to ATP extraction by ice-cold
perchloric acid that simultaneously lyses cells, stops
metabolism, and stabilizes ATP [68, 69]. The ATP ex-
tracts were stored at − 20 °C for no more than 5 days
before they were analyzed. Before the luciferase assay,
the samples were neutralized by an ice-cold buffer
containing 0.72M KOH and 0.16 M KHCO3, and the
supernatants were diluted three-fold in 100 mM Tris
buffer (pH 7.8). ATP samples were quantified by lucif-
erase assay using an ATP Bioluminescence Assay Kit
(Roche Inc., cat# 11699695001), with blank media
subjected the same preparation above as the control.
Cellular ATP concentrations were calculated from cell
count density and cell volume using the formula:

ATPcell ¼ ATPpop
Nc�V cell

, where Nc is the cell count density

determined by flow cytometry and Vcell is the cell
volume (assuming 1 fL/cell and 1.4 fL/cell for bacteria
grown in minimal and rich media, respectively) [70].

Dissolved oxygen measurement
Dissolved oxygen (DO) was measured by the
Seven2Go DO meter as mentioned above. To deter-
mine the volumetric mass transfer coefficient (kLa),
we used fresh blank medium under the same condi-
tions used for kinetic studies. The oxygen transfer
rate (OTR) from the gas phase to the liquid phase
follows a simple equation [71] and can be described
by dDO

dt ¼ kLa�ðDO#−DOÞ , where DO is the dissolved
oxygen concentration in the medium and DO# is the
saturated DO. To create a low-oxygen medium,
around 1.5 ml of 100 mM sodium sulfite solution was
added to 200 ml of the blank medium at room
temperature, followed by sitting in the incubator at
37 °C for at least 1 h to reach temperature and DO
equilibrium. This ensured that most oxygen was re-
moved from the medium while no excess sodium sul-
fite remained that could affect the kLa measurement.
Dissolved oxygen data was collected and used to de-
termine kLa by running a simulation in the kinetic
circuit model described below without oxygen
consumption.

Glucose and acetate assays
Glucose levels in culture supernatants at different time
points were determined by a 3,4-dinitrosalicylic acid
(DNS) method in 96-well microplates [72, 73]. Acetate
in the supernatants was assayed by an Acetate Colori-
metric Assay Kit (BioVision Inc., cat# K658100)
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according to instructions from the manufacturer. Blank
minimal and rich media were included in all assays as
blank controls.

Kinetic model development
Bacteria were grown in the minimal medium with glu-
cose as the sole carbon source and hence the rate-
limiting substrate. The kinetic model was developed
based on the schematic workflow (Fig. 5) that depicts
carbon fluxes and ATP fluxes for bacterial growth. Bac-
terial growth kinetics are described by the classic Monod
equation, which results in the following relationships:

dX
dt

¼ μX ¼
μsX ¼ μ max;s

S
KS þ S

X; S > 0

μAX ¼ μ max;A
A

KA þ A
X; S ¼ 0

8
>><

>>:

ð1Þ

where S is glucose concentration (M), A is acetate con-
centration (M), μS and μA are the specific growth rates
(1/s) for growth on glucose and acetate, respectively, X
is the biomass concentration (g/L), and t is the time (s).
X is determined as the product of cell mass [67] and cell
counts/L. The specific growth rates are determined by
Monod equations where μmax,S and μmax,A are the ex-
perimentally measured maximal specific growth rates on
glucose and acetate respectively, and KS and KA are the
Monod saturation constants for glucose and acetate, re-
spectively. Bacterial growth starts after a brief lag time
that is determined by specific experiments.
Acetate is produced and secreted when E. coli cells

aerobically grow on excessive glucose. This behavior
is called overflow metabolism or energy spilling, a
well-known phenomenon that is caused by surplus
glucose uptake in fast-growing bacteria in the pres-
ence of oxygen [44, 45, 74, 75]. The secreted acetate
is then utilized by the bacteria after glucose is nearly
totally consumed, undergoing a process known as the
“acetate switch” [76]. Therefore, in our model bacter-
ial growth (μA) on acetate is turned on only after glu-
cose is exhausted, i.e., when S = 0. In practice in our
circuit simulation, growth on acetate is turned on
when S is nearly depleted to zero (S < Stran, with
Stran = 0.1 mM) (Additional file 8: Table S1), which is
biologically relevant, and which ensures a relatively
smooth transition between glucose metabolism and
acetate utilization, seen by others [76] and in fitting
our measured biological data. Since this period is ra-
ther short and does not have any significant effects
on our overall model dynamics or results, it has been
omitted from the equations for simplicity and clarity.
Acetate was reported to inhibit bacterial growth at
high concentrations [45, 77]; but, under our experi-
mental conditions, its concentration was so low that

this inhibitory effect is negligible and ignored in our
model.
Oxygen is supplied through agitation and shaking and is

consumed by aerobic respiration of glucose, conversion of
glucose to acetate, and aerobic respiration of acetate dur-
ing growth. The oxygen supply parameter (kLa) was pre-
determined by experiments described above. Our model
assumes that oxygen consumed for aerobic respiration
and acetate production is proportional to bacterial growth.
There are two stages of growth using glucose and acetate,
respectively. When glucose is available, the bacteria con-
sumes oxygen for aerobic respiration and for acetate pro-
duction using glucose (Fig. 5a); when glucose is exhausted,
the bacteria consume oxygen for aerobic respiration using
secreted acetate. The stoichiometry of acetate production
follows the biochemical pathways of central carbon me-
tabolism and acetate metabolism (Fig. 5a) and the overall
biochemical reaction is shown below:

C6H12O6 glucoseð Þ þ 2 O2→2 CH3COOH acetateð Þ
þ 2 CO2 þ 2 H2Oþ 14 ATP

Therefore, the dynamics of dissolved oxygen are de-
scribed by the following equations:

dDO
dt

¼ kLa DO#−DO
� �

−OCR ð2Þ

OCR ¼ kocc;S μSX þ kA;pro μSX; S > 0

kocc;A μAX; S ¼ 0

(

ð3Þ

where DO is the dissolved oxygen in the medium in molar
concentration (M) and DO# is the saturated dissolved oxy-
gen concentration (M), kLa is the experimentally deter-
mined volumetric oxygen transfer coefficient (1/s), and
OCR is oxygen consumption rate (M/s). OCR has two
main phases dependent on glucose availability in Eq. (3)
where kocc,S and kocc,A are oxygen consumption coefficients
(mol/g cells) for growth on glucose and acetate, respect-
ively, and kA,pro is the oxygen consumption rate coefficient
(mol/g cells) for acetate production. Since DO can be
measured continuously and the oxygen supply rate is pre-
determined by experiments under the same conditions,
oxygen consumption rates for glucose and acetate metab-
olism can be determined.
Glucose is used for biomass synthesis, aerobic respir-

ation, and acetate production and thus has three fluxes
to describe its dynamics (Fig. 5). The glucose consump-
tion rate for biomass synthesis can be determined from
the mass balance of carbon between glucose and
biomass:
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dSbs
dt

¼ −
α
72

μSX ð4Þ

where Sbs (M) is the glucose that goes to biosynthetic
flux and α is the proportion of carbon in biomass. Based
on the stoichiometry from the elemental composition of
E. coli cells (CH1.61N0.27O0.41S0.006P0.019) [78], we calcu-
lated α = 0.485. Because each carbon has a molar mass
of 12 g and glucose has six carbons, biosynthesis of each
gram of biomass consumes α

72 moles of glucose.
Our model assumes that acetate production rate is

proportional to growth rate [79–81], so the acetate pro-
duction rate is defined as kA,proμSX, where kA,pro is the
acetate production rate constant (mole/g cells). Accord-
ing to the stoichiometric relationships in the acetate pro-
duction pathway (Fig. 5a), each mole of acetate
produced consumes 1/2 mol of glucose. For aerobic res-
piration of glucose, one mole of oxygen consumes 1/6
mol of glucose. Together with Eq. 4, the total glucose
consumption rate is described as:

dS
dt

¼ −
α
72

μSX−
1
6
kocc;S μSX−

1
2
kA;pro μSX; S > 0

0; S ¼ 0

8
<

:
ð5Þ

The dynamics of acetate include its production from
glucose, and its consumption for biomass synthesis and
aerobic respiration (Fig. 5a). When glucose is available,
acetate production is defined as kA,proμSX in Eq. 5. From
the mass balance of carbon between acetate and biomass,
synthesis of each gram of biomass consumes α

24 moles of
acetate. One mole of oxygen consumes 1/2mol of acetate
for aerobic respiration. Bringing together the acetate pro-
duction, biomass synthesis, and aerobic respiration, we
have the equation below:

dA
dt

¼
kA;pro μSX; S > 0

−
α
24

μAX−kocc;A μAX; S ¼ 0

8
<

:
ð6Þ

where α is the same as defined in Eq. (4), kA,pro is the
acetate production rate constant and kocc,A is the oxygen
consumption coefficient (mole/g cells) for acetate, as de-
scribed in Eq. (3).
The above Eqs. 1–6 describe all mass fluxes including

biomass, oxygen, glucose, and acetate (Fig. 5a). Those pa-
rameters can be measured in experiments and thus the
fluxes can be resolved by solving the above ordinary differ-
ential equations using a software like MATLAB. However,
we took advantage of electrical circuits, which can exactly
match, simulate, and visualize differential equations, as
evident in our previous publications [37–42, 82]. The cir-
cuits can be easily designed and simulated using the clas-
sic electrical engineering software, Cadence Virtuoso
(Cadence Design Systems, Inc.). The circuits that match

and visualize all equations in this work are shown in the
supplementary materials (Additional file 6: Figure S6).

ATP dynamics model
After validating the above model by fitting it to experi-
mental data, we then developed equations for ATP dy-
namics from the model above. To determine ATP
dynamics, ATP concentrations and fluxes on both the
cellular and population levels must be considered and
unified. The conversion between the two levels is:

ATPpop ¼ X
ρcell

ATPcell ð7aÞ

IATP;pop ¼ X
ρcell

IATP;cell ð7bÞ

where ρcell is the cell density (g/L) that is estimated
from division of cell mass (mcell) [67] by cell volume
(Vcell) [70], ATPpop and ATPcell are the population ATP
concentration (moles/L culture) and the cellular ATP
concentration (moles/L cell volume), respectively,
and IATP,pop and IATP,cell are a population ATP flux
(moles/s/L culture) and a cellular ATP flux (moles/s/L
cell volume).
The overall ATP accumulation in the cell is defined by

the equation below:

dATPcell

dt
¼ ρcell

X
IATP;pro;pop
� �

−IATP;con;cell ð8Þ

where IATP,pro,pop is the ATP production rate at popula-
tion level, and IATP,con,cell is the ATP consumption rate
at the cellular level. IATP,pro,pop is the sum of all ATP
production rates (moles/s/L culture) from fluxes of glu-
cose aerobic respiration (Iresp), acetate production
(IA,pro), and acetate respiration (IA,resp) when glucose is
depleted (Fig. 5a), and thus is described by the following:

IATP;pro;pop ¼
Iresp þ IA;pro; S > 0

IA;resp; S ¼ 0

(

ð9Þ

These fluxes for glucose and acetate are defined in
Eqs. 5 and 6. Now, we need to convert them to ATP
production rates by using stoichiometric ATP yields.
The ATP production rate from glucose respiration is the
product of a stoichiometric constant and the rate of glu-
cose consumption for aerobic respiration:

Iresp ¼ 16
3
kocc;S μSX ð10Þ

where 16
3 is the stoichiometric constant, representing the

32 ATP molecules yielded from 6 oxygen molecules con-
sumed when one glucose molecule is used [83] with a P/
O ratio of 2.67. Due to the imperfect efficiency of ATP
generation system such as proton leakage [83, 84], we
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used the conversion numbers for oxidative phosphoryl-
ation: NADH = 2.5 ATP and FADH = 1.5 ATP. The glu-
cose consumption rate, kocc,SμSX, for respiration is
defined above in Eqs. 5 and 6.
During aerobic acetate production, consumption of

one glucose molecule generates 2 acetate molecules and
14 ATP and consumes 2 di-oxygen molecules (Fig. 5a).
This is because glycolysis yields 2 ATP, 2 NADH, and 2
pyruvate which are then converted to acetyl-CoA and
produce two more NADH. Two acetyl-CoA then pro-
duce 2 ATP. This pathway yields 4 ATP from substrate
level phosphorylation [45] and 4 NADH, equivalent to
10 more ATP from oxidative phosphorylation. There-
fore, for every 2 acetate produced, we have 14 ATP gen-
erated and 1 glucose consumed:

IA;pro ¼ 7kA;pro μSX ð11Þ
The last flux of ATP production is from aerobic acet-

ate respiration when glucose has been depleted and bac-
teria are growing on acetate. Acetate consumption rate
is proportional to bacterial growth. Acetate is mainly uti-
lized through the action of phosphate acetyl-transferase
(Pta) and acetate kinase (AckA) in the Pta-AckA path-
way or through the acetyl-CoA synthase (ACS) pathway
to produce acetyl-CoA, consuming 1 ATP [85]. The
acetyl-CoA then enters the tricarboxylic acid (TCA)
cycle, yielding 3 NADH, 1 FADH and 1 GTP, together
equivalent to 10 ATP. Therefore, the net ATP yield from
acetate respiration is 9 ATP per acetate consumed, re-
quiring 2 oxygen molecules. Based on the oxygen con-
sumption rate for acetate respiration, kocc,AμAX, we have
the corresponding ATP production flux as below:

IA;resp ¼ 9
2
kocc;A μAX ð12Þ

Therefore, the total ATP production rate defined in
Eq. 9 is the sum of the Eqs. 10–12. Together, we have:

IATP;pro;pop ¼
16
3
kocc;S μSX þ 7kA;pro μSX; S > 0

9
2
kocc;A μAX; S ¼ 0

8
><

>:
ð13Þ

Once this population flux is converted to a cellular
flux, a delay time constant (τdelay) is applied to each
of the three terms in order to achieve a smooth tran-
sition between the exponential phase and the station-
ary phase (Additional file 8: Table S1). Such a time
constant accounts for the time for gene turn-on/turn-
off and associated protein-enzyme changes that may
occur during a growth phase transition. These
changes occur smoothly and not abruptly in real cells
as well as in our measured biological data. A global
single parameter value of 20 min for such first-order-
time-constant dynamics (corresponding to typical

cellular dynamics for protein rise and fall times in
cells) was found to fit our data well.
We next resolved the ATP consumption rate,

IATP,con,cell. First, we made a model for cellular ATP con-
sumption rate. The total cellular energy budget includes
maintenance energy consumption and growth energy
consumption [48–50]. The maintenance ATP consump-
tion is often assumed to be a constant for easy imple-
mentation [86], but this is far from what may occur in
real biological processes [49]. For simplicity, we used a
maintenance energy consumption that is just propor-
tional to cellular ATP levels. We found that it gave us
the best fits and most accurate results for ATP dynam-
ics, as also being verified by sensitivity analyses in the
Results section. The assumption of first-order mainten-
ance ATP consumption enables more robust ATP
homeostasis such that ATP is used more when it is plen-
tiful and is conserved when it is scarce. Such ATP
homeostasis for cellular maintenance [48, 87] is espe-
cially important in the stationary phase when cells are
not active and ATP is quite scarce. It is worth noting
that, under such conditions, higher levels of ATP will
cause more thermodynamic reactions in cells to be irre-
versible or to proceed more quickly, thus increasing con-
sumption, naturally. Overall, the cellular energy
consumption rate (mol ATP/s/L cells) is then described
by:

IATP;con;cell ¼ m ATPcell þ g μsm ð14Þ

where m is the maintenance energy consumption rate
coefficient (1/s), g is the growth-associated energy
consumption coefficient (mol/L cell volume), and μsm
is a version of μ = μS + μA that has both growth rate
terms smoothed by time constants to allow for a
steady transition from ATP consumption during
growth using glucose to ATP consumption during
growth using acetate. m and g are fitted to measured
biological data.
Now, we can plug Eqs. 13 and 14 into Eq. 8 and sim-

plify to obtain a model for cellular ATP dynamics:

dATPcell

dt
¼

ρcellð
16
3
kocc;S μS þ 7kA;pro μSÞ−ðmATPcell þ g μsmÞ; S > 0

ρcellð
9
2
kocc;AμAÞ−ðmATPcell þ g μsmÞ; S ¼ 0

8
><

>:

ð15Þ

Also, note that the cellular ATP consumption rate is re-
solved in Eq. 14. The power consumption per cell (ATPs/
cell/s) can thus be calculated using the kinetic model. All
parameters used in the model to create Fig. 6 are shown
in Additional file 8: Table S1.
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Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-021-01023-2.

Additional file 1: Figure S1. Quick screen for different ATP reporter
constructs. (a) Normalized cellular GFP dynamics (%GFP/OD) of different ATP
reporter constructs in rich medium. (b) Growth of the E. coli 10-beta strain carry-
ing different reporter plasmids in rich medium. Bacteria were grown in EZ rich
medium with 5mM glucose in black 96-well plates with shaking. GFP (ex485/
em528) and OD600 were measured with a microplate reader (Molecular De-
vices, Inc.) in real time. The cellular GFP signals, GFP/OD, were normalized by
their own peak values (100%). Each data point is the mean value of at least
three independent experiments with standard deviation less than 15% of its
mean. All reporter constructs except HC-con incorporated the ATP-dependent
rrnB P1 promoter; the HC-con version was made with a sequence identical to
HC-E except that a T7A1 promoter replaced the rrnB P1 promoter thus enabling
it to serve as a control.

Additional file 2: Figure S2. GFP-ATP correlation analysis of the HC-E
reporter in bacteria during growth. (a) GFP and ATP dynamics over the
growth phases. NEB10beta strain with the HC-E reporter was grown in
rich medium. ATP was measured by luciferase assay and cellular fluores-
cence was measured by flow cytometry. Data points are mean values of
three independent replicates with one standard deviation (SD). The SD
for GFP signal were relatively small (< 15%) and are thus not shown in
the figure. (b) Linear correlation between GFP and ATP.

Additional file 3: Figure S3. Flow cytometry analysis of bacterial
population with HC-M reporter growing in the EZ rich medium. Density
plot and histogram plot of GFP populations at the lag phase (a,b), expo-
nential phase (c,d), transition between exponential and stationary phases
(e,f), and stationary phase (g,h). BW25113 strain with HC-M ATP reporter
was analyzed. Cellular GFP was measured by FITC-A channel.

Additional file 4: Figure S4. Flow cytometry analysis of bacterial
population with HC-M reporter growing in the minimal medium. Density
plot and histogram plot of GFP populations in the lag phase (a,b), expo-
nential phase (c,d), transition between exponential and stationary phases
(e,f), and stationary phase (g,h). The BW25113 strain with HC-M ATP re-
porter was analyzed. Cellular GFP was measured by FITC-A channel.

Additional file 5: Figure S5. GFP-ATP correlation analysis of the HC-M
reporter in two other strains. (a,b) GFP and ATP dynamics over the
growth phases in the JM109DE3 strain in the rich medium (a) and in
BL21DE3 strain in the minimal medium (b). ATP was measured by lucifer-
ase assay and cellular fluorescence was measured by flow cytometry.
Data points are mean values of three independent replicates with one
standard deviation (SD). The SD for the GFP signal was relatively small (<
15%) and is thus not shown in the figure. (c,d) Linear correlations be-
tween GFP and ATP in the JM109DE3 strain in the rich medium (c) and
in BL21DE3 strain in the minimal medium (d).

Additional file 6: Figure S6. Electrical circuit model that visualizes and
describes all differential equations in this study. The whole circuit
includes bacterial growth (X), oxygen supply and consumption (DO),
glucose dynamics (S), acetate production and consumption (A), and ATP
production and consumption (ATP). ATPpop is the amount of ATP in 1 L
of culture while ATPcell is the ATP concentration within the cell. The
concentration of a substance is represented by the corresponding
voltage. The consumption or production rate (flux) of a substance is
represented by the corresponding current. A wire labeled with the same
name as another wire means they are the same voltage (concentration)
in the circuit. Initial concentrations are indicated by i.c. This circuit model
also allows for the easy setting of timing mechanisms such as lag time,
the level of glucose at which growth on acetate begins, and time
constants to account for the smooth, non-instantaneous nature of
switching between metabolic states. The capacitors (C), representing vol-
ume, are always normalized to 1 F to match the differential equations
used to describe the time dynamics of concentrations. More detailed ex-
planation is in the reference [43].

Additional file 7: Figure S7. Sensitivity analysis of the kinetic model by
varying initial glucose and growth rate. Dynamics of bacterial growth (a),
population ATP (b), and cellular ATP (c) at varying initial glucose

concentration. Dynamics of bacterial growth (d), glucose consumption
(e), and cellular ATP (f) at varying growth rates. The analysis was
performed by varying the initial glucose concentration or growth rate
while keeping other parameters identical to those obtained from
experiments under the same conditions as those in Fig. 6. Increasing the
specific growth rate from 0.4 to 0.7 (1/h) needs the slight adjustment of
g from 54.5 to 60.7 (M) for the growth rate sweep.

Additional file 8: Table S1. Model parameters for E. coli strain
BW25113 grown in minimal medium.The values of KS, tlag and kLa are
supported by the references [88–90], respectively.

Additional file 9: Figure S8. Comparison of cellular oxygen
consumption rate and ATP production rate. Both oxygen flux and ATP
production flux were determined from our kinetic model using the
experimental data used in Fig. 6.

Additional file 10: Figure S9. Model response to varying initial cellular
ATP concentrations. All model parameters except the initial cellular ATP
fluxes from acetate production and aerobic respiration of glucose were
held constant while initial cellular ATP concentration was varied. The
initial ATP fluxes change linearly with the initial ATP concentration
because we assumed that a cell with a higher initial ATP concentration is
in a healthier metabolic state and will initially be producing ATP at a
higher rate.

Additional file 11: Table S2. Calculated ATP values in E. coli BL21(DE3)
grown in the minimal medium. a: Power consumption was estimated
from 54 kJ/mole ATP [53, 54]. Note: all values are estimated from one
biological experiment with three samples measured at each time point.
In this experiment, ATP concentration was measured by the HC-M re-
porter and ATP consumption rates were calculated by the kinetic model.

Additional file 12: Table S3. Model parameters of the model for E. coli
strain BL21(DE3) grown in minimal medium. These parameters are used
in the simulation that calculates the dynamic ATP values in Additional file
11: Table S2. These parameters are same to those used for the BW25113
strain with only slight changes for a few parameters to account for strain-
to-strain variations.

Additional file 13: Figure S10. Plasmids constructed and tested in this
work. (a) High-copy-plasmid, low RBS reporter HC-M. (b) High-copy-
plasmid, medium RBS reporter HC-E. (c) High-copy-plasmid control re-
porter HC-con with T7A1 constitutive promoter. (d) Low-copy-plasmid,
medium RBS reporter LC-F. (e) Low-copy-plasmid, high RBS reporter LC-
G. High-copy plasmids have a ColE1 origin of replication while the low-
copy plasmids have a PSC101 origin of replication.

Additional file 14. The inserted DNA sequences of the plasmids used in
this study.

Additional file 15. Experimental data for Figs. 1, 2, 3, 4, 6, and Figures
S1, and S5.

Additional file 16. Experimental data and parameters used for Table 1,
Table S2, and model analyses.

Additional file 17. Cadence files for the kinetic model circuit. The .zip
file contains the Cadence library of components (schematics and
symbols) and cellview simulation states needed to perform the kinetic
model simulations presented in this paper.
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