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RESEARCH Open Access

Pan-cancer evaluation of gene expression
and somatic alteration data for cancer
prognosis prediction
Xingyu Zheng1, Christopher I. Amos1,2* and H. Robert Frost1*

Abstract

Background: Over the past decades, approaches for diagnosing and treating cancer have seen significant
improvement. However, the variability of patient and tumor characteristics has limited progress on methods for
prognosis prediction. The development of high-throughput omics technologies now provides multiple approaches
for characterizing tumors. Although a large number of published studies have focused on integration of multi-
omics data and use of pathway-level models for cancer prognosis prediction, there still exists a gap of knowledge
regarding the prognostic landscape across multi-omics data for multiple cancer types using both gene-level and
pathway-level predictors.

Methods: In this study, we systematically evaluated three often available types of omics data (gene expression,
copy number variation and somatic point mutation) covering both DNA-level and RNA-level features. We evaluated
the landscape of predictive performance of these three omics modalities for 33 cancer types in the TCGA using a
Lasso or Group Lasso-penalized Cox model and either gene or pathway level predictors.

Results: We constructed the prognostic landscape using three types of omics data for 33 cancer types on both the
gene and pathway levels. Based on this landscape, we found that predictive performance is cancer type dependent
and we also highlighted the cancer types and omics modalities that support the most accurate prognostic models.
In general, models estimated on gene expression data provide the best predictive performance on either gene or
pathway level and adding copy number variation or somatic point mutation data to gene expression data does not
improve predictive performance, with some exceptional cohorts including low grade glioma and thyroid cancer. In
general, pathway-level models have better interpretative performance, higher stability and smaller model size across
multiple cancer types and omics data types relative to gene-level models.

Conclusions: Based on this landscape and comprehensively comparison, models estimated on gene expression
data provide the best predictive performance on either gene or pathway level. Pathway-level models have better
interpretative performance, higher stability and smaller model size relative to gene-level models.

Keywords: Cancer prognosis prediction, Multi-omics data, Pathway analysis, L1 penalized regression model
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Background
Over the past decades, considerable progress has been
achieved in diagnosing and treating cancer, with the
overall cancer death rates between 1999 and 2015 de-
creasing by 1.8% per year for men and 1.4% per year for
women [1]. However, the variability of patient and
tumor characteristics has limited progress on methods
for prognosis prediction, despite significant efforts by
members of the cancer research community [2, 3]. Sev-
eral prognostic models for cancer patients using clinical
and pathological variables have been developed and
widely used in clinical oncology practice [4–6]. With the
development of microarrays to detect molecular profiles
of patients, some multi-gene assays have been designed
and successfully applied in clinical care, such as the as-
says for prediction of breast cancer recurrence [7, 8].
The development of high-throughput technologies now
enables the integration of large-scale molecular profiling
data for developing cancer prognostic tools, e.g., RNA
profiling through arrays or sequencing enables the meas-
urement of gene-level expression [9], DNA sequencing
enables the calling of somatic mutations [10] and appli-
cation of SNP arrays enable the detection of copy num-
ber variation [11]. Many gene-level prognostic models
based on gene expression data have been published [12–
15], copy number variation has provided insights for
cancer prognosis prediction [16, 17], and somatic muta-
tions are often reliably associated with cancer prognosis
[18–21]. Given the high level of stochastic variation
found in the measures of individual genes, various stud-
ies have focused on developing pathway-level models for
cancer prognosis prediction [22–25]. A limitation of
some single-omics prognostic models is that a single
type of genomic measurement may be insufficient to
characterize fully the features that lead to cancer
progression.
Over the past decade, several large repositories, such

as The Cancer Genome Atlas (TCGA) [26] and The
International Cancer Genome Consortium (ICGC) [27],
have been developed to collect comprehensive multi-
omics data on a large group of cancer patients spanning
the most common types of human cancer. In TCGA,
tumor and normal samples from over 6000 patients have
been profiled, covering 37 types of genomic and clinical
data for 33 cancer types. Studies based on the analysis of
TCGA data range from the comprehensive analysis of
specific cancers to more comprehensive landscapes
across the most common cancer types. The development
of these repositories offers extraordinary opportunities
to integrate multi-omics data and researchers have noted
that accurate modeling of cancer biology requires multi-
dimensional genomic measurements [28–31]. Several re-
cent studies have focused on integration of multi-omics
data, especially for survival analysis. For example, studies

such as [32–35] have integrated copy number variation
and gene expression, and [36–39] have integrated som-
atic mutation and gene expression. Although a large
number of studies have explored the integration of
multi-omics data for cancer prognosis prediction [25, 28,
29, 34, 36–40], there still exists a gap of knowledge re-
garding the prognostic landscape across multi-omics
data for multiple cancer types and both gene-level and
pathway-level models. In this study, we systematically
evaluate three types of omics data (gene expression, copy
number variation and somatic point mutation) covering
both DNA-level and RNA-level features. We construct
the landscape of predictive performance using these
three types of omics data for 33 cancer types on both
the gene and pathway levels. Based on this landscape, we
highlight the cancer types and omics modalities that
support the most accurate prognostic models.

Methods
Data sources
TCGA data were accessed via the UCSC Xena data hub
[41]. In all, 33 cohorts listed in Supplementary Table X1
were retained for analysis, which included 30 different
cancer types and 3 combinations of cancer subtypes; 4
cancer cohorts were excluded because of an insufficient
number of samples (Bile Duct Cancer cohort, Formalin
Fixed Paraffin-Embedded Pilot Phase II cohort, Large B-
cell Lymphoma cohort and Uterine Carcinosarcoma co-
hort). We downloaded and analyzed gene expression
(GE) RNA-seq data, gene-level copy number variation
(CNV) data, gene-level non-silent somatic point muta-
tion (SPM) data and survival data for these 33 cancer
type cohorts. We focused on the overall survival (OS)
end point as the prognostic outcome. Overall survival
(OS) is the gold standard primary end point since OS is
universally recognized as being unambiguous, unbiased
and clinical relevant [42].
For the pathway definitions, we adopted the Hallmark

pathway collection from the Molecular Signatures Data-
base (MSigDB) version 6.2 [43]. The Hallmark pathways
were generated by a hybrid approach combining compu-
tation with manual expert curation and can reduce re-
dundancy and produce more robust enrichment analysis
results. The Hallmark pathway collection of MSigDB
consists of 50 gene sets derived by aggregating and clus-
tering all other MSigDB gene sets, followed by assign-
ment of well-defined biological states or processes and
refinement of genes relevant to the corresponding bio-
logical theme [44].

Prognostic models
In this study, we used penalized Cox proportional haz-
ards models with either gene-level or pathway-level pre-
dictors as the prognostic models. Our workflow for both
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the gene-level and pathway-level models is illustrated in
Fig. 1.
As shown in Fig. 1, we first conducted filtering on the

gene list. To make a fair comparison between gene-level

and pathway-level models, we restricted the genes to in-
clude only the genes that are present in the Hallmark
pathway collection. In addition to this filtering, we also
evaluated the prognostic accuracy of models after further

Fig. 1 Workflow of gene-level and pathway-level models. Gene-level data matrix of GE/SPM/CNV is input into the workflow. Genes are pre-
filtered either by intersecting with the pathway collection (shown as ‘Path’) or further filtering the genes by intersecting with COSMIC genes
(shown as ‘COSMIC’) or significant genes (p-value less than 0.05) in univariable Cox models (shown as ‘Cox’). Then, for the pathway-level models,
gene set enrichment is conducted to transform the gene-level matrix into a pathway-level matrix. For GE and CNV data, GSVA is applied and for
SPM, odds ratio is applied to conduct gene set enrichment. While for the gene-level models, this step is skipped. With the filtered gene-level data
matrix or the transformed pathway-level data matrix as the predictor matrix, we conducted nested cross validation to test the predictive
performance of gene-level and pathway-level models. A 5-fold cross validation separates the data into training and test sets. In the training set, a
Lasso (least absolute shrinkage and selection operator) or L1-penalized Cox model is fit with the shrinkage parameter chosen by a nested 10-fold
cross validation. With the selected predictors and coefficient estimates, the estimated model is applied to the test set and three metrics are
adopted to measure the prediction: i) the predictive performance is measured by the concordance index, ii) the model robustness is measured
by Fleiss Kappa, iii) the model parsimony is measured by average model size
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filtering the genes by either intersecting with COSMIC
(The Catalogue Of Somatic Mutations In Cancer) genes
[45] or significant genes (p-value less than 0.05) in uni-
variable Cox models. To avoid an overfitting bias when
filtering according to univariable Cox models, the
models were estimated on the training set.
After the filtering step, for the pathway-level model,

we conducted single sample gene set enrichment to cal-
culate the sample-level pathway scores and transform
the sample-by-gene data matrix into a sample-by-
pathway data matrix. For the GE data, we adopted the
GSVA (Gene set variation analysis) method [46]. GSVA
is an unsupervised and sample-wise gene set enrichment
method designed for gene expression data, which calcu-
lates a score indicating pathway activity for each sample
and pathway. GSVA generates probability density esti-
mates for each gene, which protects it against systematic
gene-specific biases and brings distinct profiles to a
common scale. Considering the rationale of GSVA and
the similar structure of GE and TCGA level 3 CNV data
(both are gene-level continuous data), we directly ap-
plied GSVA to the CNV data. Since the SPM data is bin-
ary, we computed sample-level pathway scores using a
log-odds ratio method. Specifically, for each pathway
and sample, we created a two-by-two table counting the
number of genes according to the presence of somatic
point mutations and pathway membership. To avoid the
0 count in the two-by-two table, we added 0.5 to each of
the cells (known as Haldane-Anscombe correction [47,
48]). Haldane-Anscombe correction is a common prac-
tice, which also removes some bias from the estimator.
Using this table, an odds ratio is calculated to indicate
the association between pathway membership and muta-
tion status and the log of this odds ratio is used as the
sample-level pathway score.
Then, with the filtered gene-level data matrix or the

transformed pathway-level data matrix as the predictor
matrix, we conducted cross validation to test and com-
pare the predictive performance of gene-level and
pathway-level models. Specifically, we conducted 5-fold
cross validation of a Lasso-penalized [49] Cox model
with the shrinkage parameter chosen by a nested 10-fold
cross validation. The Lasso-penalized Cox model was
implemented using the functions ‘cv.glmnet()’ and
‘glmnet()’ in the R package ‘glmnet’ [50] with default
parameter values.

Integrative models
In this study, we also evaluated the integration of multi-
omics data for cancer prognosis prediction. For the inte-
grated analysis, we evaluated two integration methods.
In the first method, we combined the data matrices for
each omics modality into a single predictor matrix and
then performed cross validation as detailed above. The

predictor standardization was implemented by default in
glmnet to bring different types of variables to the same
scale. In the second method, we explored the use of
Group Lasso [51] to integrate multi-omics data. Group
Lasso is an extension of Lasso for data with a group
structure. The principle of Group Lasso is that the vari-
ables in the same group should be either all included or
all discarded. In this study, for each gene or pathway, we
have scores for GE, CNV and SPM separately. Each gene
or pathway can function as a group in the Group Lasso
with its GE, CNV and SPM variables as group members,
which indicate three dimensions of each gene or path-
way and may capture a similar biological association
with cancer prognosis. After model estimation using a
Group Lasso penalty using the function ‘cv.grpsurv()’ in
the R package ‘grpreg’ [52], all the GE, CNV and SPM
variables in the remaining non-zero groups were in-
cluded into the prognostic models.

Model evaluation metrics
The concordance index (CI), or c-index, is one of the
most widely used metrics for survival models and can be
interpreted as the measurement of concordance between
the predicted and true survival outcomes with a value of
1 indicating perfect prediction and a value of 0.5 indicat-
ing random prediction [53]. In our study, we used the
average concordance index across cross validation repli-
cations to quantify the predictive performance of each
model. Inter-rater reliability represents the ability of a
model to assign the same score to the same variable for
different repeated raters [54]. The Fleiss kappa statistic
is widely used to test inter-rater reliability and can be
interpreted as the measurement of agreement among
different replications with a value of 1 indicating perfect
agreement and a value equal to or less than 0 indicating
no agreement. In our study, we used the Fleiss kappa
statistic [55] to evaluate the repeatability and inter-rater
reliability among replications. Specifically, each trained
model is a rater that is assigning each variable (gene or
pathway) to either being included or excluded in the
model. Finally, we used the average number of predic-
tors retained in the trained models to measure model
parsimony.

Results
Figure 2 displays the results for both gene-level and
pathway-level prognostic models estimated on GE, SPM
and CNV data from 33 TCGA cancer types. Rows a and
b show that models estimated on GE data most often
provide the best predictive performance using either
gene-level or pathway-level predictors. The comparison
of pathway-level and gene-level GE models in row c
shows that these models have similar predictive power.
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For CNV and SPM data, the gene-level models perform
slightly better than the pathway-level models.
Row c in Fig. 2 shows the predictive power of single-

omics data on both the gene and pathway level. Focusing
on cohorts with concordance index values larger than
0.7, which indicates good model performance and is
widely used as a standard in the literature [56, 57], GE-
based models can predict well for LGG, GBMLGG,
KIRP, ACC, MESO on both levels, CESC on the pathway
level and UVM on the gene level; SPM-based models

can predict well for LGG and ACC on the gene level
and THCA on the pathway level; CNV-based models
can predict well for LGG and UVM on the pathway level
and KIRP on the gene level.
Based on the results shown in Fig. 2, survival models

estimated using GE data most often have the best pre-
dictive performance among all single omics models.
Given this, we next investigated whether the integration
of SPM or CNV data with GE data could improve per-
formance over models based on just GE data. Figure 3

Fig. 2 The comparative results for both gene-level and pathway-level prognostic models estimated using GE, SPM and CNV data from multiple
cancer types. ‘PLv’ represents ‘pathway-level’ and ‘GLv’ represents ‘gene-level’. The dots represent the values of the concordance index and the
bars represent the standard error
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displays the comparative results of GE data alone versus
integration of GE with SPM or CNV data on both the
gene and pathway levels. These results show that, in
general, adding CNV or SPM data to GE data does not
improve predictive performance. This is consistent with
findings from Zhao et al. [28]. Adding CNV data to GE
data neither increases nor decreases the prediction rela-
tive to GE data alone, on both the gene and pathway
levels. A similar result is obtained by adding SPM data
to GE data on the gene level. The additional SPM data
to GE data on the pathway level increases predictive
power for cohorts such as THCA but decreases perform-
ance for cohorts such as CESC. It is worth noting that,
for THCA cohort, the integration of pathway-level SPM
and GE data does not perform better than the SPM-only
model. Therefore, for THCA cohort, the SPM-only
models are optimal. We then investigated the prognostic
predictors used in the THCA pathway-level SPM model
and found that the MSigDB Hallmark Glycolysis and
Spermatogenesis pathways were included as predictors
in more than 95% of the estimated models. The bio-
logical association of these two pathways to thyroid can-
cer has been detailed by other researchers. The thyroid
gland, previously assumed to not have an impact on

spermatogenesis and male fertility, is now recognized to
have an important role in male reproductive functions
[58, 59]. A considerable amount of data shows that thy-
roid hormone influences steroidogenesis as well as
spermatogenesis [60]. And it is reported that glycolysis-
related proteins, such as LDHA, are associated with in-
vasiveness and prognosis of thyroid cancer [61].
In addition to predictive performance, other features

such as model robustness and parsimony are also im-
portant metrics for the evaluation cancer prognosis pre-
diction models. We utilized the concordance index (CI)
to evaluate prediction, Fleiss Kappa statistics to evaluate
model robustness and average model size to evaluate
parsimony. Figure 4 includes heatmaps that illustrate the
pattern of these three metrics across all cohorts and
models.
The CI heatmap in Fig. 4 shows that the predictive

performance is cancer dependent. This result is con-
cordant with findings reported in Jardillier et al. [62].
For the cohorts located in the left area of the CI heat-
map, all evaluated models have poor prognostic power.
These models are also associated with lower Kappa
values and smaller model sizes as shown in the other
two heatmaps, indicating that these models tend to

Fig. 3 Comparative results of adding SPM or CNV data to GE data. ‘PLv’ represents ‘pathway-level’ and ‘GLv’ represents ‘gene-level’. The dots
represent the values of the concordance index and the bars represent the standard error

Zheng et al. BMC Cancer         (2021) 21:1053 Page 6 of 11



select a small set of random predictors thus the prediction
is poor and the models are unstable. For the cohorts lo-
cated in the right portion of the CI heatmap, the evaluated
models had relatively good predictive performance. For
these cohorts, the Kappa heatmap indicates that the
pathway-level models have higher Kappa values, which in-
dicates better robustness across multiple cross validation
splits and replications. As shown in the average model size
heatmap, the pathway-level models for these cohorts are
also more parsimonious. Overall, these results demon-
strate that the pathway-level models have the advantages
of better interpretation, higher stability and smaller model
size across multiple cancer types and omics data types.
In addition to the models above, we also investigated

two different approaches for filtering genes before model
estimation. The first filtering approach we evaluated
retained only those genes with a significant p-value in a
univariable Cox model fit on the training set during
cross validation. Supplementary Figure S1 displays the
predictive performance achieved by this filtering ap-
proach relative to models estimated without gene filter-
ing. As shown in this figure, filtering genes with a
univariable Cox model failed to improve predictive per-
formance for gene-level models but did improve per-
formance for pathway-level GE and CNV models. For
pathway-level model estimated using SPM data, how-
ever, filtering resulted in a model without any pathway-
level predictors at the optimal Lasso penalization thresh-
old (the relative performance for this model is therefore
not included in Supplementary Figure S1). The failure of
the filtered SPM pathway-level model to retain predic-
tors after Lasso penalization may be due to the fact that
the SPM data itself is sparse and binary and that, after
filtering, too few genes are retained to accurately esti-
mate single sample pathway scores. In this case, it is
likely that the pathway-level variables contain insuffi-
cient information to predict cancer prognosis. Surpris-
ingly, filtering genes based on the results from

univariable Cox models did not improve predictive per-
formance for either gene-level or pathway-level multi-
omic models. Supplementary Figure S2 row a displays
the comparative results of gene filtering for these inte-
gration models. The second type of filtering we investi-
gated was limited to the SPM-based models and it
filtered the genes according to the COSMIC database.
Specifically, we removed any genes without a known
cancer association according to COSMIC. As shown in
Supplementary Figure S2 row b, COSMIC-based filtering
failed to improve predictive performance for either the
gene-level or pathway-level models.
In addition to gene filtering, we also investigated the

use of a Group Lasso penalty for multi-omics models
and the incorporation of clinical stage as a predictor. As
illustrated in Supplementary Figure S2 row c the use of
a Group Lasso penalty did not improve the predictive
performance for the multi-omics models. Supplementary
Figure S3 illustrates the impact of adding clinical stage
to the models. Surprisingly, adjusting for clinical stage
failed to improve the predictive performance for expres-
sion data and only weakly improved predictive accuracy
for selected CNV or SPM prognostic models. This find-
ing suggests that gene expression levels and clinical sta-
ging are correlated, so that little is gained by adding
stage information to models for expression data. Other
factors that may be driving this result include: i) insuffi-
cient samples for many TCGA cohorts to achieve good
results via stage-based stratification and five-fold cross
validation, and ii) the fact that some cancer types in
TCGA represent stage-specific subtypes, such as the
LGG and GBM cohorts.

Discussion
In this study, we construct the prognostic landscape
using three types of omics data for 33 cancer types on
both the gene and pathway levels. Based on this land-
scape, we found that predictive performance is cancer
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type dependent and that, relative to gene-level models,
pathway-level models have better interpretative perform-
ance, higher stability and smaller model size across mul-
tiple cancer types and omics data types. We also
highlight the cancer types and omics modalities that
support the most accurate prognostic models. Beyond
this landscape, we evaluated the impact of other model-
ing parameters including gene filtering, integrative
methods and adjustment of clinical stage. In general,
models estimated on GE data provide the best predictive
performance on either gene or pathway level and adding
CNV or SPM data to GE data does not improve predict-
ive performance. Although adding CNV or SPM data
into the GE models did not on average improve the pre-
dictive power significantly on the pathway level, as
shown in the Supplementary Figure S4, the pathway
level variables of CNV and SPM still contributed to risk
prediction for some models. In the pathway-level inte-
grative model of GE and CNV, the average proportion of
CNV variables across all cohorts is 0.49 and for ESCA
and UCEC, the proportions are even larger than 0.70. In
the pathway-level integrative model of GE and SPM, the
average proportion of SPM variables across all cohorts is
0.42 and for ESCA, GBM, PRAD and LUSC, the propor-
tions are even larger than 0.70. Compared with the aver-
age proportions of 0.18 and 0.25 respectively in the
gene-level integrative models, this finding implies that
pathway-level models may exploit more information
from CNV and SPM data than gene-level models.
Among the cohorts with concordance index values

above 0.7, LGG, ACC and THCA are noteworthy. The
LGG cohort performs better than all other cohorts with
strong predictive power, robustness across replications
and relatively parsimonious models. For the LGG cohort,
all 6 models have high concordance index values above
0.7. As shown in the CI heatmap in Fig. 4, the LGG co-
hort performed remarkably well for all models with the
gene-level CNV model having the worst predictive per-
formance (CI is 0.72) and gene-level SPM having the
best predictive performance (CI is 0.83). This implies
that effective prognostic performance for this cohort can
be achieved without gene expression data. Specifically,
the LGG SPM models have equivalent performance as
the LGG GE models on both the pathway-level and
gene-level. Equivalent predictive performance results
have also been reported in Zheng et al. [63]. While the
gene-level LGG CNV model is slightly worse than the
GE and SPM models, the pathway-level LGG CNV
model works as well as the GE and SPM models. For the
ACC cohort, only the GE and SPM-based models work
well using gene-level predictors. For models estimated
using pathway-level predictors, only those based on GE
data work well for the ACC cohort. Gene expression
data is therefore not required to generate effective

predictive models for ACC. For the THCA cohort, it is
surprising that among all 6 models, only the pathway-
level SPM model can predict well. This result may be
due to the fact that thyroid cancer has a very low death
rate (0.03 in the TCGA data), which makes estimation of
survival models challenging.
The underlying factors leading to the heterogenous

predictive performance for different cohorts are un-
known. These cohorts, located in the left portion in the
CI heatmap in Fig. 4, have variable death rates, ranging
from 0.02 to 0.75, and variable sample sizes, ranging
from 80 to 500. For these cohorts, these three omics
data types could not predict prognosis and other charac-
teristics beyond the scope of this study may dominate
prognosis, such as clinical variables specific to each can-
cer type, more accurate characteristics of each sample
and even more accurate measurement of each tumor cell
with the high-speed development of single-cell sequen-
cing technology.
Although our study was conducted with the Hallmark

pathway collection and OS end point as justified in the
Data sources section, our method can be extended to
other pathway collections in the MSigDB database and
other end points including Disease-Specific Survival
(DSS), Disease-Free Interval (DFI) and Progression-Free
Interval (PFI) in UCSC Xena datahub. We have con-
ducted the basic analysis of an alternative survival out-
come, disease free interval (DFI). We explored GE, CNV
and SPM data for DFI prediction on both the gene and
pathway level. Supplementary Figure S5 shows the pre-
dictive power of single-omics data on both the gene and
pathway level. The conclusion is consistent with the pre-
diction of overall survival, that predictive performance is
cancer type dependent and in general GE data provides
the best predictive performance on either gene or path-
way level relative to CNV and SPM data. One limitation
of our study is that the analysis results were generated
on only TCGA data and the conclusions have not been
validated in non-TCGA datasets. The reason why we fo-
cused on TCGA in this study is that TCGA is the largest
and richest collection of multi-omics and clinical data
on a large group of cancer patients spanning the most
common types of human cancer. It is difficult to find a
large-scale database besides TCGA to conduct a com-
prehensive validation for this pan-cancer and multi-
omics study. Some validation for specific cohorts and
specific omics data types could be conducted through an
analysis of curated datasets from individual research
studies. Considering that the goal of this study is to
comprehensively compare multi-omics data and pathway
predictors relative to gene predictors for cancer progno-
sis prediction, this specific validation is beyond the scope
of this study. Although the validation on other datasets
besides TCGA is beyond the scope of our study, it is an
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important consideration and something we hope to ex-
plore in future work. One limitation of our study is that
not all genes are included in our analysis because our
analysis restricted the genes to include only the genes
that are present in the Hallmark pathway collection to
make a fair comparison between gene-level and
pathway-level models. The models may fail to explore
some genes that have a true association with patient sur-
vival. Subsequently, the definition of pathways in existing
databases could also affect the performance. When gene
level predictors are the only focus of interest, this re-
striction could be released to retain the full performance
of prediction. Another limitation of our study is that we
only fully explored three types of omics data (GE, CNV,
SPM) and there are many omics data, which are not ex-
plored in our study, such as methylation data, miRNA
data and proteomics data. For example, there are studies
reporting the more stable prognostic power of methyla-
tion data relative to GE data on the univariable gene
level [64]. We have conducted the basic analysis of using
methylation data to predict the overall survival on both
the gene and pathway level. Supplementary Figure S6
displays the comparison of concordance index values
using single omics data on both the pathway and gene
level. It shows that in general the methylation data pro-
vides similar predictive performance with gene expres-
sion data, better than CNV and SPM data. This is
biological meaningful since methylation could regulate
gene expression. Figure S7 displays the comparison of
Fleiss Kappa values using single omics data on both the
pathway and gene level. It is consistent with Fig. 4 that
the pathway-level models have higher Kappa values than
gene-level models, which indicates better robustness
across multiple cross validation splits and replications.
The methylation data is slightly less stable than gene ex-
pression data in our multivariable model on both the
pathway and gene level. The detailed exploration on
methylation data is beyond the scope of this study and
may be explored in the future work.

Conclusion
Based on this study, we found that predictive perform-
ance is cancer type dependent and, for the cohorts in-
cluding GBM, LAML, PCPG, ESCA, PRAD, READ,
TGCT, COAD and OV, all evaluated models have poor
prognostic power. This finding implies that for these
cancer types, more cancer specific clinical information
should be used for model estimation in addition to
multi-omics data to achieve significant predictive per-
formance. For all other cohorts, we demonstrated that
the pathway-level models have the advantages of better
interpretation, higher stability and smaller model size,
and in general GE data provides the best predictive per-
formance on either gene or pathway level relative to

CNV and SPM data. We also highlighted omics modal-
ities that support the most accurate prognostic models.
Beyond this, we showed that based on our results, the
LGG, ACC and THCA cohorts are noteworthy. For the
LGG cohort, all models have good predictive power with
the SPM- having the best predictive performance (CI is
0.83). This implies that effective prognostic performance
for this cohort can be achieved without gene expression
data. For the THCA cohort, it is surprising that among
all models, only the pathway-level SPM model can pre-
dict well.
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