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ABSTRACT 

Recent research suggests that individual productivity may not be normally 

distributed and is best modeled by a power law, a form of a heavy-tailed distribution 

where extreme cases on the right side of the distribution affect the mean and skew the 

probability distribution. These extreme cases, commonly referred to as “star performers” 

or “productivity stars,” provide a disproportionately positive impact on organizations. 

Yet, the field of industrial-organizational psychology has failed to uncover effective 

techniques to identify them during selection accurately. Limiting factors in the 

identification of star performers are the traditional methods (e.g., Pearson correlation, 

ordinary least squares regression) used to establish criterion-related validity and inform 

selection battery design (i.e., determine which assessments should be retained and how 

those assessments should be weighted). Pearson correlation and ordinary least squares 

regression do not perform well (i.e., do not provide accurate estimates) when data are 

highly skewed and contain outliers. Thus, the purpose of this dissertation was to 

investigate whether an alternative method, specifically the quantile regression model 

(QRM), outperforms traditional approaches during criterion-related validation and 

selection battery design. Across three unique samples, results suggest that although the 

QRM provides a much more detailed understanding of predictor-criterion relationships, 

the practical usefulness of the QRM in selection assessment battery design is similar to 

the OLS regression. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

Arguably, the most crucial role of researchers and practitioners within the field of 

industrial-organizational (I-O) psychology is to understand, assess, predict, and improve 

the performance of individual employees. There is a long-standing assumption within the 

field that suggests job performance is best modeled by a normal distribution (Hull, 1928; 

Tiffin, 1947). Historically, when performance data do not follow a normal distribution, 

the sampled data are deemed to be biased, contain error, or are unrepresentative of the 

underlying population (Murphy, 2008). As such, “problem” cases within the sample (i.e., 

outliers) are either transformed or removed to satisfy the assumption of normality 

(Aguinis, Gottfredson, & Joo, 2013). However, recent research (e.g., Aguinis, Ji, & Joo, 

2018; Aguinis & O’Boyle, 2014; Call, Nyberg, & Thatcher, 2015; Crawford, Aguinis, 

Lichtenstein, Davidsson, & McKelvey, 2015; Joo, Aguinis, & Bradley, 2017; O’Boyle & 

Aguinis, 2012) challenges the assumption of normality of individual performance. 

These researchers suggest that outputs from a small group of employees (i.e., star 

performers) are “inconsistent with what would be expected using a normal distribution” 

(Aguinis & O’Boyle, 2014, p. 316), and the prevalence of star performers (i.e., those 

more than three standard deviations above the mean) far exceeds what would be 

predicted under a normal distribution (O’Boyle & Aguinis, 2012).
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As a result, it has been proposed that the distribution of individual employee 

performance may be best modeled by a power-law distribution (Joo et al., 2017; O’Boyle 

& Aguinis, 2012). Power-law distributions are a form of heavy-tailed distributions (i.e., 

highly skewed and leptokurtic), which in this context, suggests that a small number of 

employees at the positive tail of the distribution (i.e., star performers) account for a much 

greater proportion of production than the large group of average performers suggested by 

a normal distribution (Aguinis, O’Boyle, Gonzalez-Mulé, & Joo, 2016; O’Boyle & 

Aguinis, 2012). 

Some scholars have continued to argue that job performance is normally 

distributed (e.g., Beck, Beatty, & Sackett, 2014); however, a recent aggregation of 

arguments from economists, sociologists, and management scholars revealed that market 

(e.g., technological advances, organizational structure shifts, knowledge-based work), 

social (e.g., advent of mass communication, ease of collaboration), and individual (e.g., 

motivation, opportunity) forces provide unique opportunities for star performers to 

emerge in the modern workplace (Aguinis & O’Boyle, 2014; Call et al., 2015). Despite 

these drastic changes to the nature of work, our theoretical and methodological 

approaches to understanding extreme levels of employee productivity still lag. For 

example, over 75 articles within leading management, sociology, and economic journals 

have investigated star performers, but the literature has yet to uncover effective 

techniques to accurately identify them (Call et al., 2015; Terviö, 2009). This is 

problematic as star performers have a considerable impact on organizational outcomes, 

such as firm sustainability and survival (Bedeian & Armenakis, 1998; Boudreau & 

Ramstad, 2007), innovative performance (Grigoriou & Rothaermel, 2014; Kehoe & 
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Tzabbar, 2015; Tzabbar & Kehoe, 2014; Zucker & Darby, 1996), as well as coworker 

performance (Oettl, 2012) and career advancement (Malhotra & Singh, 2016). A 

potential solution is to improve the accuracy of decisions made during the selection 

process. Traditional methods, such as the Pearson correlation and ordinary least squares 

(OLS) regression, used to estimate future job performance, do not facilitate the 

identification of star performers as they provide accurate estimates only under a normal 

distribution (Aguinis et al., 2013; Kim, Kim, & Ergun, 2015; Stevens, 1984). As such, 

these methods should not be used when data are unlikely to meet these requirements 

(O’Boyle & Aguinis, 2012). Thus, the purpose of this research study is to examine an 

alternative statistical method (i.e., quantile regression) that may: 1) handle data with 

unstable means and infinite variance(s), with the hopes of reducing error in the prediction 

of job performance (Li, 2015; O’Boyle & Aguinis, 2012); and 2) avoid the removal 

and/or downward weighting of star performers to maintain a sample that generalizes to 

the population from which it was drawn (Aguinis et al., 2013; Becker, Robertson, & 

Vandenberg, 2019). To achieve this objective, I first address the operationalization of job 

performance (i.e., behavior versus results). Second, I provide an overview of the 

assumption that job performance is normally distributed and the recent research 

challenging this assumption. Third, I summarize the current set of practices for selection 

test validation and the prediction of job performance. Fourth, I provide a critique of 

current methods for test validation, emphasizing their limitations, and propose a remedy. 

Finally, I rigorously test the newly proposed validation procedure to provide evidence 

that quantile regression provides theoretical and practical advantages over traditional 

statistical techniques (i.e., OLS regression). 



4 

 

 

Operationalization of Job Performance 

 

There have been many proposed definitions of job performance, one of which 

defines the construct as “scalable actions, behavior, and outcomes that employees engage 

in or bring about that are linked with and contribute to organizational goals” 

(Viswesvaran & Ones, 2000, p. 216). As may be seen within this definition, there are two 

ways job performance may be operationalized: behavior- or results-based (Austin & 

Villanova, 1992). Most research efforts involving job performance rely on supervisor 

ratings of job-relevant behaviors, whereas others have utilized objective measures of the 

outcomes of employee behavior, such as sales revenue (Aguinis, 2013). According to 

Aguinis (2013), neither approach should be considered universally applicable. For 

example, behavior-based approaches are most appropriate when the link between 

behavior and results is not apparent, outcomes occur in the distant future, or poor results 

are due to causes beyond the performer’s control. Conversely, a results-based approach is 

most appropriate when workers are skilled in the needed behaviors, behaviors and results 

are clearly related, and when the nature of job performance is equifinal. Considering this, 

it appears that both behavior- and results-based operationalizations have value depending 

on the context, but organizations and the nature of work have changed immensely since 

the turn of the century (Burke & Ng, 2006). Twenty-first-century work has become more 

knowledge- and service-based, complex, and autonomous (Cascio & Aguinis, 2008), and 

organizations are faced with the conundrum of having too much objective data on their 

employees, customers, and other entities (Berry & Linoff, 2004). Previous research has 

leveraged Aguinis’s (2013) recommendations and argued that a results-based approach is 
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more appropriate for work typical of the 21st century (Aguinis & O’Boyle, 2014; Aguinis 

et al., 2016; O’Boyle & Aguinis, 2012).  

In the present work, I also adopt a results-based approach to ensure the results are 

applicable and generalizable to the future of work as the labor market continues to 

become increasingly dominated by highly complex occupations, such as those found in 

sales, service, technology, research, and white-collar sectors (Aguinis & O’Boyle, 2014; 

Barley, Bechky, & Milliken, 2017). Additionally, following the lead of Aguinis et al. 

(2016), I use the terms “productivity” and “productivity stars” instead of “performance” 

and “star performers” moving forward when referencing a results-based approach as that 

is not how job performance is commonly defined in the literature (Beck et al., 2014). 

With this perspective in mind, the next section provides an overview of the normality (or 

lack thereof) of individual productivity as well as research-based evidence exemplifying 

why we should expect to see heavy-tailed productivity distributions moving forward 

across most samples and contexts. 

 

The Distribution of Individual Productivity 

 

The normal distribution was originally developed by de Moivre in 1738 as an 

approximation for the binomial distribution. Interestingly, many natural phenomena have 

been found to (approximately) follow a normal distribution, such as intelligence (Galton, 

1889), height (Yule, 1912), body temperature (Shoemaker, 1996), and blood pressure 

(Orme et al., 1999), which has led to a tendency for scientists to assume normal 
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distributions. This may seem like a precarious assumption, but it is often a sound 

approximation because of the central limit theorem1.  

In a recent review of the literature, O’Boyle and Aguinis (2012) cite early work 

within the performance management literature as the catalyst for the belief that job 

performance also follows a normal distribution. For example, in his development of a 

performance appraisal tool for Metropolitan Life Insurance Company, Ferguson (1947) 

suggested that performance ratings should be distributed similarly to that predicted by a 

normal distribution. Additionally, several researchers and practitioners went beyond 

assuming and deliberately forced normal distributions regardless of the actual observed 

performance or productivity of employees (e.g., Canter, 1953; Schmidt & Johnson, 1973; 

Schultz & Siegel, 1961). Building on these seminal articles, researchers began publishing 

work on the causes of non-normal performance distributions, suggesting that variations 

from normality were the result of biases (e.g., leniency and severity bias), untrained 

raters, or statistical artifacts (e.g., range restriction), and are in need of an alteration to 

achieve normality (e.g., removal of outliers, data transformations) (Motowidlo & 

Borman, 1977; Reilly & Smither, 1985; Schneier, 1977a, 1977b). In other words, 

practitioners and academics designed practices (e.g., forcing normal distributions of 

performance appraisal ratings) and used statistical analyses (e.g., data transformations) to 

create a normal distribution of performance data regardless of the characteristics of the 

underlying population distribution. 

                                                 
1
 The central limit theorem states the following: given a population with a finite mean and non-zero 

variance, the sampling distribution of the mean approaches a normal distribution if you have a reasonably 

large sample (Urdan, 2017). 
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Despite the prevailing assumption that job performance is normally distributed 

within the I-O literature, researchers have sought to evaluate whether this assumption is 

rooted in data. Early research on the normality of job performance commonly uncovered 

normal distributions, seemingly affirming the assumption within the I-O literature 

(Aguinis, 2013; Chambers, 2016). However, Aguinis and O’Boyle (2014) later argued 

that these findings were a function of the pervasive use of supervisory ratings as criteria 

(i.e., behavior-based approach), rater training practices (e.g., supervisors being instructed 

to place raters on a normal distribution), data preparation techniques (e.g., removal of 

outliers, data transformations), and/or reliance on studies leveraging samples from low-

complexity jobs (e.g., manufacturing; Schmidt & Hunter, 1983). Further, Aguinis and 

O’Boyle (2012) proposed that in roles with “increased job complexity, reduced 

situational constraints, and flexible hierarchies, the distribution of individual performance 

will be better modeled by a power law” (p. 319). When reviewing the extant literature for 

studies that contain samples aligning with Aguinis & O’Boyle’s proposition, there is a 

preponderance of evidence supporting the presence of heavy-tailed distributions, like a 

power law (e.g., Aguinis et al., 2016, 2018; Crawford et al., 2015; Grant, 2013; Grant & 

Sumanth, 2009; Hunter, Schmidt, & Judiesch, 1990; O’Boyle & Aguinis, 2012; 

Ryazanova, McNamara, & Aguinis, 2017; Toliver & Constable, 1998). More specifically, 

these studies have produced and replicated the non-normality of individual productivity 

across dozens of academic disciplines, roles within the movie and TV industries, authors, 

musicians, professional and amateur athletes (e.g., baseball, basketball, football, tennis), 

elected officials in several countries (e.g., Australia, Canada, Ireland, Estonia, United 

States), military positions, entrepreneurs, dentists, physicians, attorneys, sales 
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professionals, bank tellers, call center employees, and higher-complexity blue-collar jobs 

(e.g., pelt pullers, electrical fixture assemblers, wirers) (Joo et al., 2017). 

In sum, there is considerable support for the presence of heavy-tailed productivity 

distributions for several professions and organizational settings that reflect the 

knowledge-based and complex nature of the current labor market and economy. Given 

these findings, it appears that the presence of non-normal distributions may likely be the 

new norm when researchers leverage a results-based approach to performance (i.e., 

productivity) and samples contain occupations with higher productivity ceilings (e.g., 

monopolistic productivity, job autonomy, job complexity) (Aguinis et al., 2016). When 

considering the implications of non-normal productivity distributions, researchers have 

argued that many theories and current organizational practices (e.g., employee selection, 

performance management, training, compensation) may need to be revisited (Aguinis et 

al., 2016; O’Boyle & Aguinis, 2012). One of which, the current set of best practices for 

predicting individual productivity based on assessment results, is unquestionably 

challenged by a shifting distribution as the statistical techniques commonly used do not 

provide accurate estimates when distributions deviate from normality (Aguinis et al., 

2013). In the subsequent sections, I discuss the current set of best practices recommended 

to validate and predict individual productivity and highlight their deficiencies when 

heavy-tailed productivity distributions are present. 

 

Selection Test Validation 

 

Personnel selection may be defined as the “process of collecting and evaluating 

information about an individual to extend an offer of employment” (Gatewood & Field, 

2001, p. 3). Pre-employment testing for personnel selection purposes has become 
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ubiquitous across organizations in the 21st century. Currently, organizations spend 

billions of dollars on employee selection processes each year and over 60% of 

organizations use assessments to help identify candidates that have the appropriate 

knowledge, skills, and abilities (KSAs) to perform well in the role and distinguish 

between qualified and unqualified candidates (Guion, 2011). According to the Standards 

for Educational and Psychological Testing (hereafter referred to as the Standards), 

selection assessments ought to be based upon an understanding of the objectives for a 

test’s use, job requirements, and test validity (American Educational Research 

Association [AERA], American Psychological Association, & National Council on 

Measurement in Education, 2014). The last component, validity, is the most important 

consideration when developing and evaluating selection assessments (Society for 

Industrial and Organizational Psychology [SIOP], 2018). Validity is “the degree to which 

evidence and theory support the interpretations of test scores for proposed uses of tests” 

(AERA et al., 2014, p. 11). In other words, the validity of a selection assessment or 

method is based upon the accumulation of evidence that supports and defends the various 

inferences demanded of a test (Lawshe, 1985; SIOP, 2018). 

There are three primary sources of evidence that contribute to the understanding 

of the inferences that may be drawn from a selection assessment: construct validity, 

criterion-related validity, and content validity (AERA et al., 2014; Binning & Barrett, 

1989). The Standards argue that the primary inference in personnel selection is that a 

score on the selection assessment predicts future work outcomes regardless of the 

strategy employed. To expand, even when the validation strategy does not include an 

empirical link (e.g., correlation) between the selection assessment and future work 
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behavior or outcome, such as in a content validation study, there is still an inferred link 

between the scores from the predictor (i.e., assessment) and the criterion (i.e., work 

behavior or outcome). While the Standards and other guidelines (e.g., Equal Employment 

Opportunity Commission [EEOC], Civil Service Commission, Department of Labor, & 

Department of Justice, 1978; SIOP, 2018) argue that validity is a unitary concept where 

different sources of evidence (e.g., content relevance, construct meaning, criterion 

relatedness) contribute to understanding, this study solely focuses on criterion-related 

validity evidence. As such, the remainder of this discussion will focus there. 

Criterion-related validity dates to Binet’s work on intelligence testing (Binet, 

1903; Binet & Simon, 1908) and is the earliest form of validity discussed within the 

literature (Anastasi, 1986; Sireci, 2009). Evidence for criterion-related validity is 

commonly established by demonstrating an empirical relationship between scores on a 

selection assessment (i.e., predictor) and some criteria, such as work-relevant behavior or 

outcomes (AERA et al., 2014; EEOC et al., 1978; SIOP, 2018). To conduct a criterion-

related validation study, one must first determine whether it is feasible. According to the 

Principles, there are three key factors to determining feasibility: availability of 

appropriate criterion measures, a representative research sample, and adequate statistical 

power. Most importantly, criteria must be relevant (i.e., accurately reflects an employees’ 

standing on an outcome critical to job success) and the sample must not only be 

(reasonably) representative of the current workforce and broader candidate pool, but also 

large enough to meet the desired level of statistical power (SIOP, 2018). If a criterion-

related validation study is feasible, then the researcher must determine a design. The 

Uniform Guidelines, Principles, and Standards all reference two potential designs: 
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predictive or concurrent. Operationally, predictive and concurrent designs differ based on 

the presence or absence of a time lapse between data collection of the predictor and 

criterion. More specifically, in a predictive design, there is a time interval present (e.g., 

approximately six months to ensure performance levels of new hires have stabilized) and 

data are commonly collected on candidates, whereas in a concurrent design, predictor and 

criterion data are commonly collected at the same time (or in close proximity) and 

incumbents make up the sample. Regardless of the design employed, the data analyses 

required to examine the empirical relationship between the predictor and criterion are 

identical (assuming the same predictors and criterion are used). The Uniform Guidelines 

state that a “criterion-related validity study should consist of empirical data 

demonstrating that the selection procedure is predictive of or significantly correlated with 

important elements of job performance” (Section 1607.5 B). Further, the Principles 

recommend that the analysis should provide three pieces of information: (1) effect size; 

(2) statistical significance of the predictor-criterion relationship; and (3) confidence 

intervals or standard errors for the respective relationships. As such, academics and 

practitioners commonly rely on the Pearson correlation and OLS regression as these 

models align with legal requirements and are easy to calculate and interpret (i.e., make 

judgments about the strength of the relationship between the predictor and criterion) 

(Aguinis, Pierce, Bosco, & Muslin, 2009; Li, 2015; Pulakos, 2005; van Zyl & de Bruin, 

2018). To illustrate, the I-O literature has widely adopted “rules of thumb” to denote low, 

moderate, and high levels of criterion-related validity which are based upon the Pearson 

correlation coefficient, where low levels of validity are .20 or less and high validities are 

.40 or more (Pulakos, 2005). While the Pearson correlation and OLS regression, have 
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attractive properties and are widely used, they are not without limitations (Aguinis et al., 

2013; Hao & Naiman, 2007; Koenker & Bassett, 1978; Li, 2015). In the following 

section, I discuss these limitations with an emphasis on the challenges and shortcomings 

as they pertain to predicting individual productivity in the presence of heavy-tailed 

distributions. 

 

Limitations of Traditional Approaches 

 

The statistical methods (i.e., Pearson correlation, OLS regression) commonly 

employed to conduct criterion-related validation analyses possess two key limitations that 

inhibit our ability to accurately predict individual productivity and identify productivity 

stars. Namely, Pearson correlation and OLS regression are sensitive to outliers (Aguinis 

et al., 2013; Kruschke, Aguinis, & Joo, 2012) and offer limited usefulness at non-central 

locations on the distribution (i.e., where productivity stars are located) (Hao & Naiman, 

2007; Li, 2015; van Zyl & de Bruin, 2018). 

Influence of Outliers 

 

As reviewed previously, individual productivity has been shown to follow a 

power law, a form of heavy-tailed distribution, where extreme cases (i.e., productivity 

stars) affect the mean and skew the probability distribution (Aguinis et al., 2016, 2018; 

Aguinis & O’Boyle, 2014; O’Boyle & Aguinis, 2012). Due to their heavier tails, power-

law distributions predict that extreme cases are far more common than under a normal 

curve, so outliers (e.g., values more than three standard deviations from the mean) should 

be retained and studied (rather than deleted) when the underlying distribution is assumed 

to be a power law (Aguinis et al., 2013). Unfortunately, the recommended statistical 

methods used to conduct criterion-related validation analyses (i.e., Pearson correlation 
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and OLS regression) are sensitive to outliers (Aguinis & Edwards, 2013; Cohen, Cohen, 

West, & Aiken, 2003; Hunter & Schmidt, 2004), and researchers have concluded that 

even as few as one to two extreme cases may substantially affect results (e.g., drastically 

change parameters, increase errors in estimation) (Kim et al., 2015; Stevens, 1984). 

Simply put, Pearson correlation and OLS regression are not robust enough to tolerate 

extreme cases that characterize power-law distributions and produce accurate estimates 

(O’Boyle & Aguinis, 2012). 

Given these limitations, researchers frequently use ill-advised data cleaning and 

preparation practices, such as the removal of outliers and nonlinear data transformations 

(NLTs), to ensure predictor and criterion data are more normal, and therefore, more 

suitable for the statistical analyses used in criterion-related validation studies (Aguinis et 

al., 2013; Becker et al., 2019). Research has shown these approaches may have a 

dramatic impact on results and the subsequent conclusions drawn from the analyses, such 

as increasing the likelihood of rejecting null hypotheses, changing parameter estimates, 

and linearizing relationships (i.e., changing nonlinear relationships into linear ones) (Box 

& Cox, 1964; Cortina, 2002; Emerson, 1983; Hollenbeck, DeRue, & Mannor, 2006; 

Tukey, 1957; Yeo & Johnson, 2000). When considering individual productivity, 

researchers have argued that these practices are especially problematic for the internal 

and external validity of criterion-related results (Aguinis et al., 2013; Becker et al., 2019; 

O’Boyle & Aguinis, 2012). For example, Becker and colleagues (2019) state that 

“findings using NLTs may not generalize to other samples or situations. This potential 

lack of external validity occurs because NLTs may create distributions that do not exist in 

the real world” (p. 832). Likewise, O’Boyle and Aguinis (2012) argued that “dropping 
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influential cases excludes the top performers responsible for the majority of the output 

and doing so creates a sample distribution that does not mirror the underlying population 

distribution” (p. 110). In short, these practices only exacerbate the issues with accurately 

predicting individual productivity and identifying stars during selection by reducing 

external validity. As such, a more optimal approach for conducting criterion-related 

validity analyses would be to use an analytic technique that is robust against the influence 

of outliers or violations of normality, eliminating the need for NLTs and removal of 

extreme cases, and provides accurate estimates when the criterion’s underlying 

distribution is a power law. 

Usefulness at the Extremes 

 

Traditional approaches used to investigate the relationship between selection 

assessments and individual productivity, such as Pearson correlation, OLS regression, 

and other methods of conditional means modeling, produce a single summary statistic 

(i.e., effect size) to describe the full distributional impact of the predictor(s) on the 

criterion. More specifically, OLS regression, which is based upon the conditional mean 

framework, examines the average degree to which a predictor relates to the criterion 

(Petscher, Logan, & Zhou, 2013), and assumes that the relationship between predictor 

and criterion is uniform across the entire distribution (Aguinis, Petersen, & Pierce, 1999). 

When OLS regression’s assumptions are met (e.g., normally distributed residuals, 

homoscedasticity) this notion is sound, and the estimated parameters are unbiased 

(Greene, 2008). However, when these assumptions are violated, research has shown that 

the magnitude of the relationship tends to vary across the distribution (Li, 2015). 
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Individual productivity data are likely to violate an OLS regression’s assumptions 

due to the underlying distribution commonly being heavy tailed (Aguinis & Edwards, 

2013; Cohen et al., 2003). Consequently, criterion-related validation results leveraging 

OLS regression and other conditional mean-based methods are unlikely to generalize to 

non-central locations of individual productivity. Given the disproportionate value that 

productivity stars add to organizations (Aoyama, Yoshikawa, Iyetomi, & Fujiwara, 2010; 

Crain & Tollison, 2002; O’Boyle & Aguinis, 2012), one may argue that when researchers 

and practitioners examine the relationship between selection assessments and individual 

productivity, they should certainly try to determine what is happening in the heavy tail. 

Despite the potential value in being able to understand the nuanced relationship between 

selection assessments and individual productivity where productivity stars are located, 

the methods we historically employ simply do not allow for it and constrain our ability to 

make accurate selection decisions and identify stars (Li, 2015). That said, a more ideal 

approach for conducting criterion-related validity analyses would be to use an analytic 

technique that is not based upon the conditional mean framework. 

 

The Case for Quantile Regression 

 

In this section, I provide an overview of the quantile regression model (QRM) and 

offer justification for its use during criterion-related validation studies. Notably, I discuss 

why the QRM overcomes the limitations described previously and propose a process that 

utilizes QRM during criterion-related validation studies to inform selection assessment 

battery design and improve our ability to predict individual productivity and identify 

stars. 
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Overview of QRM 

 

While the QRM is not a new concept (Koenker & Bassett, 1978), it has been 

rarely used in psychological research, let alone in the mainstream journals associated 

with I-O psychology (Li, 2015; van Zyl & de Bruin, 2018). As such, it is easiest to 

explain the QRM by comparing it with the more familiar OLS regression. The QRM may 

be viewed as a semiparametric extension of an OLS regression to estimate rates of 

change across the entire distribution of the criterion. Further, the QRM serves as a viable 

alternative when assumptions for OLS regression are not met (e.g., linearity, 

homoscedasticity, normality) (Koenker & Bassett, 1978)2. OLS regression models the 

relationship between one or more predictors and the conditional mean of the criterion, 

meaning it examines the average degree to which the independent variable predicts the 

dependent variable (Petscher, Logan, & Zhou, 2013). Conversely, the QRM models the 

relationship between one or more predictors and specific quantiles (i.e., percentiles) of 

the criterion. In other words, OLS regression uses the conditional mean to define central 

tendencies, whereas the QRM is based on the conditional quantile, which allows the 

QRM to find parameters (e.g., intercepts, β coefficients) for each quantile (e.g., 0.5th 

quantile or the median) and provide a nuanced investigation of the relationship between 

predictor and criterion (Koenker & Bassett, 1978).  

Equation 1-1 displays the formula used to represent the OLS regression model, 

where p is the number of predictors and n is the total number of data points. However, to 

determine the best fitting regression line and compute parameters, the OLS regression 

                                                 
2
 The QRM is semiparametric, so while it does not assume any distribution of the error term, it does share 

some assumptions with an OLS regression, such as independence of observations and that the dependent 

variable is continuous (Koenker, 2005).  
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assumes a normal distribution and minimizes the summed squares of the residuals (i.e., 

mean squared error, MSE) (Equation 1-2). Given this assumption, OLS regression does 

not perform well (e.g., parameters are drastically influenced, increased errors in 

prediction), when data are highly skewed and contain outliers which has been reported 

extensively in the literature (e.g., Cohen et al., 2003; Kim et al., 2015; Li, 2015; Stevens, 

1984). 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 𝑖 = 1, … , 𝑛                      EQ. 1-1 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝))

2
𝑛
𝑖=1               EQ. 1-2 

The QRM equation (Equation 1-3) takes a similar form and structure to the OLS 

regression, where 𝑄𝜏(𝑦𝑖) is the conditional quantile of τ, which may be any point on the 

distribution of the criterion (e.g., 0.5th quantile or the median). Since the QRM may find 

parameters for each quantile across the distribution, the β coefficient is a function of the 

specific quantile instead of being constant like in an OLS regression. For example, if the 

strength of the relationship between the predictor and criterion is not perfectly uniform 

across the distribution, Equation 3 would have different β coefficients per quantile, τ. 

Despite this difference, QRM parameters (e.g., β coefficients) are interpreted exactly like 

those from OLS regression (Buchinsky, 1998).  

𝑄𝜏(𝑦𝑖) = 𝛽0(𝜏) + 𝛽1(𝜏)𝑥𝑖1 + ⋯ + 𝛽𝑝(𝜏)𝑥𝑖𝑝 𝑖 = 1, … , 𝑛        EQ. 1-3 

𝑀𝐴𝐷 =
1

𝑛
∑ 𝜌𝜏 (𝑦𝑖 − (𝛽0(𝜏) + 𝛽1(𝜏)𝑥𝑖1 + ⋯ + 𝛽𝑝(𝜏)𝑥𝑖𝑝))𝑛

𝑖=1       EQ. 1-4 

To estimate the parameters of each quantile, the QRM minimizes the sum of 

absolute residuals (i.e., median absolute deviation, MAD) and does not make a 

distributional assumption to the error term. The formula to calculate the MAD for the 

QRM is shown in Equation 1-4. Rho (ρ) represents the non-parametric weighting that 
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QRM applies to residuals that protects the QRM against outliers and skewed data. The 

formula for calculating ρ at a single data point, u, is depicted in Equation 1-5. 

 

𝜌𝜏(𝑢) = 𝜏(𝑢, 0)  + (1 − 𝜏)𝑚𝑎 𝑥(−𝑢, 0)                           EQ. 1-5 

 

At a specific quantile, τ, the QRM assigns a weight of τ for positive residuals (i.e., 

data points that fall above the regression line), and a weight of 1 - τ for negative residuals 

(i.e., data points that fall below the regression line). For instance, if you are calculating 

parameter estimates at τ = .25 (i.e., 0.25th quantile or the 25th percentile), 75% of the 

errors should be positive and the remaining 25% should be negative. To find the smallest 

median absolute residuals and ensure that condition is true, weights must be added. In our 

example, the negative residuals would be weighted by a factor of .75, whereas the 

positive residuals would have a weight of .25. This process of weighting data ensures 

parameters for each quantile are estimated using data from the whole sample (Koenker, 

2005).  

To recap, the QRM offers distinct advantages over OLS regression and other 

conditional mean approaches commonly used to estimate criterion-related validity. 

Notably, the QRM does not make assumptions about the distribution of error terms, and it 

may provide parameter estimates for each quantile across the entire distribution. In total, 

these characteristics ensure that the QRM parameter estimates are robust to outliers and 

highly skewed data (Li, 2015). Further, the QRM supports the internal and external 

validity of results as heavy-tailed criteria do not need to be altered (e.g., removal of 

outliers, NLTs) to satisfy assumptions. This also allows extreme cases, such as 

productivity stars, to be studied explicitly as they may remain present in the dataset and 

parameters may be calculated for the heavy tail (i.e., where stars are located; 0.9th 



19 

 

 

quantile and above). As such, researchers have concluded that the QRM is “an extremely 

powerful tool for understanding the nuanced relationships between dependent variables 

with heavy-tailed distributions and their predictors” (Li, 2015, p. 72). Given the presence 

of heavy-tailed productivity distributions reported in the I-O psychology literature, this 

study posits that similar benefits will be realized when investigating the relationship 

between selection assessments and individual productivity.  

Hypothesis 1: The QRM will produce a more detailed conceptualization of the 

predictive validity between selection assessments and individual productivity. 

Next, I present a previously unreported process that leverages the QRM during 

criterion-related validation studies to inform selection assessment battery design and 

improve our ability to make accurate selection decisions and identify stars. 

Leveraging the QRM to Improve Selection Decisions 

 

Results from criterion-related validation studies not only provide empirical 

evidence to support an assessment’s job-relatedness (AERA et al., 2014; EEOC et al., 

1978; SIOP, 2018) but also inform selection battery design, such as determining which 

assessments should be retained (i.e., used to make selection decisions) and how those 

assessments should be weighted to optimally identify candidates that are most likely to 

succeed on the job (Cascio & Aguinis, 2004). In operational selection settings, 

assessments that exhibit significant relationships or add incremental validity are retained 

and combined to build a final composite (Cascio & Aguinis, 2004; Guion, 2011). 

Although several methods are used in practice (e.g., unit weighting, regression weighting, 

multiple cut-offs), regression-weighted composites (i.e., weighting each predictor based 

on its relationship with individual productivity) are viewed as most effective because they 
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are more likely to ensure the incremental validity of additional predictors is realized 

(Sackett, Dahlke, Shewach, & Kuncel, 2017). However, given the inherent limitations 

with OLS regression described previously (e.g., sensitivity to outliers, lack of usefulness 

at extremes), researchers and practitioners are likely making critical decisions on 

selection batteries and developing composites without an accurate or complete 

understanding of predictor-criterion relationships. Research efforts on regression-

weighted composites support this claim as results indicate they are influenced by the 

presence of outliers which impact robustness under cross-validation (Schmidt, 1971; 

Wainer, 1976). Therefore, I propose that the QRM may be used during criterion-

validation studies to overcome limitations with current approaches and facilitate a more 

intelligent design of selection batteries, ultimately improving our ability to make accurate 

selection decisions and identify productivity stars.  

To illustrate the use of the QRM during criterion-related validation and selection 

battery design, consider Figure 1-1 below. Beta estimates are indicated on the y-axis, and 

the conditional quantiles of the criterion are plotted on the x-axis (i.e., 0.2, 0.4, 0.6, 0.8). 

The solid and dotted red horizontal lines reflect the OLS regression coefficient and the 

95% confidence interval for the predictor. The black dots and broken lines represent the 

estimated regression coefficients for the quantile indicated on the x-axis. Lastly, the 

shaded grey background represents the 95% confidence interval for the estimated 

quantile regression coefficients.  
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Figure 1-1 

 

Sample OLS Regression and Quantile Regression Plots 

 

 
 

 

Immediately, one observes that the OLS regression estimates do not appear 

representative of the relationship between predictors B, C, and D and the criterion across 

the entire distribution of the criterion. Simply put, these relationships are heterogeneous 

(i.e., the strength of the relationship varies across the distribution), whereas the 

relationship between predictor A and the criterion is homogenous (i.e., the strength of the 

relationship is uniform across the distribution). The OLS regression results suggest that 

predictors B and C are non-significant predictors of the criterion (i.e., 95% confidence 

interval for the OLS regression includes zero). However, the QRM shows that both B and 

C are useful predictors for some, but not all, quantiles of the criterion. More specifically, 
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predictor B has a significant relationship with the criterion between the .4th and .8th 

quantiles, whereas predictor C is significantly related to the criterion up to the .3th 

quantile but not beyond. Finally, while the OLS regression uncovered a significant, 

positive relationship between predictor D and the criterion (i.e., 95% confidence interval 

does not include zero), this relationship is also heterogeneous as the OLS regression 

overestimates the strength of the relationship at lower levels of the criterion and 

underestimates it at the higher levels, which is demonstrated by the quantile-specific 

estimates falling below the OLS regression confidence interval until the 0.3th quantile 

and above it after the 0.8th quantile.  

Here, the QRM uncovered important differences in the relationships between 

predictors B, C, and D and the criterion that may be used to make better decisions 

regarding these predictors’ inclusion and weight in the final battery. Considering the 

sample results presented in Figure 1-1, a traditional approach would lead researchers to 

include predictors A and D, with each being weighted by their respective β coefficients 

from the OLS regression to compute the final composite. In contrast, the QRM’s granular 

investigation of the predictor-criterion relationships suggests that each predictor may add 

value. However, the value of some predictors is limited to a subset of quantiles (e.g., 

predictor C is predictive up to the .3th quantile).  

To establish a predictive model and forecast future outcomes (e.g., individual 

productivity) using the QRM results, one must approximate a global estimate (i.e., a 

single summary statistic of the predictor-criterion relationship), like an OLS regression, 

by combining the quantile-based information (i.e., local estimates) (Judge, Hill, Griffiths, 

Lutkepohl, & Lee, 1988). Although this concept is new to the I-O psychology literature, 
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other academic disciplines that commonly encounter heavy-tailed criteria (e.g., 

economics, finance) have developed procedures to predict future outcomes based on the 

QRM for decades (Gastwirth, 1966; Judge et al., 1988; Tukey, 1977). Results from 

studies examining the forecasting capabilities of the QRM have been shown to 

outperform OLS regression consistently (i.e., predict future outcomes more accurately) 

(Furno, 2011; Lima & Meng, 2017; Meligkotsidou, Panopoulou, Vrontos, & Vrontos, 

2021; Sayegh, Munir, & Habeebullah, 2014). One such procedure, developed by Lima 

and Meng (2017), is particularly attractive for determining which assessments should be 

retained and how those assessments should be weighted.  

Lima and Meng’s approach, the post-LASSO quantile combination (PLQC), 

identifies weak and partially weak predictors by applying the L1-penalized (LASSO) 

quantile regression (Belloni & Chernozhukov, 2011). First, predictors that are significant 

at the various quantile functions are selected. Next, quantile regressions with only the 

selected predictors are estimated, resulting in the post-penalized quantiles, which are then 

combined to obtain the final composite. To expand, if an assessment helps predict all 

quantiles, such as predictors A and D from Figure 1-1, then it is deemed to be strong. If a 

given assessment predicts some, but not all, quantiles, such as predictors B and C from 

Figure 1-1, it is labeled as partially weak, whereas an assessment that does not predict 

any quantiles is fully weak. The LASSO quantile regression identifies and sorts 

predictors, or in our example, assessments, according to this classification scheme. After 

the predictors are sorted, a prediction equation is created (i.e., composite) by averaging 

the quantile results. Fully weak predictors are removed from the model (i.e., weights are 

set to zero) and the coefficients of partially weak predictors are adjusted to reflect their 
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relative contribution compared to strong predictors. By accounting for partially weak 

predictors, the PLQC has improved prediction accuracy over OLS regression and other 

models (Lima & Meng, 2017). Further, LASSO quantile regression has been shown to 

outperform other penalized regression approaches when sample sizes are smaller, such as 

those commonly used during criterion-related validation studies (Tibshirani, 1996). In 

fact, LASSO quantile regressions have been found to produce robust estimates in samples 

as small as 10 – 20, and only require that the number of predictor variables that may be 

selected by the method is smaller or equal to the total sample size (Ismail, 2015; Kirpich 

et al., 2018). Given the likelihood that many selection assessments are partially weak 

predictors of individual productivity (i.e., due to the presence of heavy-tailed criterion 

and small-to-moderate linear relationships with individual productivity) and criterion-

related validation studies often leverage smaller sample sizes for complex computational 

techniques, the PLQC procedure provides accurate global estimates for the QRM needed 

to improve the prediction of individual productivity. Thus, I hypothesize that selection 

batteries designed using the QRM and PLQC procedure will result in greater practical 

benefits over and above OLS regression.  

Hypothesis 2: QRM-informed selection batteries will result in a higher 

proportion of productivity stars being identified.  

Hypotheses 3: QRM-informed selection batteries will result in more accurate 

selection decisions. 
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CHAPTER 2 
 

 

METHOD 
 

 

This study used archival data3 from criterion-related validation studies conducted 

at three organizations (i.e., a global professional services company, a multinational 

business directory and advertising firm, and a national quick-service restaurant). The 

roles included in this study (i.e., account executive, account manager, franchisee owner) 

are somewhat representative of the 21st-century workplace as each is highly complex, 

autonomous, as well as knowledge- and service-based. Moreover, given previous 

findings reported in the literature (e.g., Aguinis et al., 2016; O’Boyle & Aguinis, 2012), 

these samples should allow productivity stars to emerge, thus providing an appropriate 

arena to test the hypotheses proposed in this study. 

 

Sample 1 

 

Sample 1 contains data from a concurrent validation study of account executives 

at a global professional services company. Incumbents were identified and invited to 

participate based upon a stratified random sample that accounted for location, tenure, and 

other demographics (i.e., age, race/ethnicity, and gender) to ensure a robust, 

representative sample. 

                                                 
3
 For each sample all personally identifying information was removed (i.e., deidentified), and participants 

were assigned a random participant code prior to the primary researcher obtaining the data.  
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Altogether, 209 account executives were included in the study and have both 

assessment and productivity data. Individual productivity was operationalized as the 

average percentage of sales goal attainment across the incumbent’s tenure in the account 

executive role. This measure of individual productivity was chosen as it controls for 

short-term variability in sales and other extraneous factors (e.g., market, location) that 

influence an account executive’s sales expectations (i.e., goals). Demographic data (i.e., 

age, race/ethnicity, gender) were made available from the host organization for this study. 

 

Sample 2 

 

The second sample contains data from a concurrent validation study for account 

managers at a multinational business directory and advertising firm. Incumbents were 

randomly sampled across four locations in the United States (i.e., two locations in the 

Northeast, one in the Midwest, and one in the South), totaling 90 account managers with 

paired data (i.e., personality assessment and individual productivity data). Account 

managers maintain, cultivate, and expand current customer relationships, so renewal and 

upsell totals were combined to measure individual productivity. Since the study 

participants operate in different regions, sales metrics were adjusted to control for 

location to mitigate the impact of extraneous market factors (e.g., market share, 

population density) on individual productivity. To do this, Z-scores were computed for 

each incumbent using the mean and standard deviation of individual productivity at their 

location. Z-scores were then converted to T-scores for easier interpretation. Note, 

demographic data (e.g., age, race/ethnicity, gender) were not available from the host 

organization for this study. 
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Sample 3 

 

The final sample contains data from a concurrent validation study for franchisee 

owners at a national quick-service restaurant chain. A stratified random sample was 

drawn to ensure incumbents included in the study were representative of the broader 

population on several key variables, such as tenure, location, and restaurant type (e.g., 

free-standing, mall, airport). In total, 281 incumbents completed the personality 

assessment and have paired productivity data. Due to the sufficient sample size, Sample 3 

was randomly split into separate training and testing datasets. The training set was used 

to develop the models, and the testing set was used to see how well the models perform 

when applied to new data. When using a hold-out method for cross-validation, 80% of 

data is commonly used for training and the remaining 20% for testing (Lever, 

Krzywinski, & Altman, 2016). As such, the training set contained 225 cases, leaving 56 

cases for the testing set. Individual productivity was measured using total sales for the 

franchise location over the past calendar year (i.e., past 12 months) prior to conducting 

the validation study. Given restaurants operate in different markets, total sales figures 

were adjusted to control for menu pricing, location, and other extraneous variables that 

influence sales figures (e.g., restaurant type). To do this, total sales were first divided by 

the deviation from average menu pricing for that franchise location. For example, if a 

location’s average menu pricing was 30% higher than the average menu pricing across all 

locations, then total sales were divided by 1.30. Next, Z-scores were computed using the 

mean and standard deviation of total sales for the franchise’s location and restaurant type. 

Z-scores were then converted to T-scores for easier interpretation. Note, demographic 
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data (e.g., age, race/ethnicity, gender) were not available from the host organization for 

this study.  

 

Measures 

 

Personality 

 

Across each sample, study participants completed the same personality 

assessment, which scholars have recognized as an outstanding example of I-O 

psychology in the workplace (e.g., International Personnel Assessment Council’s 2015 

Innovations in Assessment Award, SIOP’s 2016 M. Scott Myers Award for Applied 

Research in the Workplace). The assessment measures 15 unique aspects of personality, 

10 of which are directly related to the Big Five model and five additional aspects 

reflecting traits relevant for the workplace, leadership, and high-potential performance 

not directly related to the Big Five. The personality measure consists of 100-items and 

employs a pairwise multidimensional forced-choice (MFC) format, which requires 

participants to choose between two statements representing different personality aspects 

that are matched based on social desirability (e.g., “I am always on time for 

appointments” or “I make friends easily”). This response format has been shown to 

reduce participant response distortion and impression management (i.e., faking), while 

also being less cognitively loaded than MFC items using a greater number of statements 

(Christiansen, Burns, & Montgomery, 2005; Vasilopoulos, et al., 2006). To avoid issues 

with ipsativity and to return normative trait scores, the assessment uses the General 

Graded Unfolding Model (GGUM) to estimate personality statement parameters and 

multi-unidimensional pairwise preference (MUPP) IRT model to adaptively administer 

and score pairwise MFC items (Roberts, Donoghue, & Laughlin, 2000; Stark, 2002). 
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Research has shown this approach generates reliable and valid personality scores and 

allows for secure administration of MFC items in high-volume, unproctored settings 

(Chernyshenko et al., 2009; Drasgow, Stark, Chernyshenko, Nye, & Hulin, 2012; Martin 

& Theys, 2019). 

Individual Productivity 

 

Individual productivity is operationalized using a results-based approach for each 

sample included in this study. Given the inherent differences in roles and organizational 

context, individual productivity is defined and operationalized using different metrics for 

each sample; however, all relate to sales outcomes. Steps were taken to remove the 

influence of extraneous factors and confounding variables (e.g., location, market, pricing) 

that may contaminate sales outcomes and ensure each objective metric was representative 

of individual productivity. 

 

Data Analytic Approach 

 

Descriptive Statistics 

 

Descriptive statistics, the mean, standard deviation, skewness, and kurtosis were 

calculated and examined for all variables across the three samples. Additionally, Pearson 

correlations were calculated to examine the relationship between variables in each 

sample. 

Assessing the Presence of a Power-Law Distribution 

 

To understand the distribution of individual productivity across the samples 

included in this study, I assessed for the presence of a power-law distribution. In the 

examination of power-law data, several methods have been developed (e.g., Adler, 

Feldman, & Taqqu, 1998; Arnold, 1983; Clauset, Shalizi, & Newman, 2009; Resnick, 
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2006). However, many methods for analyzing power-law data, such as least-squares 

fitting, may produce substantially inaccurate estimates of parameters for power-law 

distributions. Even in cases where such methods return accurate answers, they are still 

unsatisfactory because they give no indication of whether the data obey a power law at all 

(Clauset et al., 2009). As a result, Clauset and colleagues developed a framework to 

assess the presence of power-law distributions that marries maximum-likelihood 

estimation (MLE) with the Kolmogorov-Smirnov (K-S) goodness-of-fit statistic.  

The first step in the procedure is to estimate the scaling exponent (α), which 

provides information about how quickly the distribution’s right tail “falls” (i.e., rate of 

decay). Lower values (i.e., those closer to 1) indicate the distribution’s right tail is 

heavier. For example, a distribution with α = 2 has a heavier tail than a distribution with α 

= 4 (Aguinis et al., 2018). To estimate the scaling exponent, the Hill estimator is used 

(Hill, 1975). This process uses MLE based on running a semiparametric Monte Carlo 

bootstrap calculation 1,000 times. This process estimates α and provides information 

regarding the rate of decay, ultimately indicating the weight or “heaviness” of the 

distribution’s tail.  

After the size of the scaling exponent, α, is calculated, the next step in Clauset and 

colleagues’ procedure is to assess the likelihood each distribution follows a power law, 

which is done via the K-S statistic. The K-S statistic is a nonparametric goodness-of-fit 

index that may be used in accordance with its p-value to assess the probability that the 

sampled simulated distributions follow a power law. Lower K-S statistic values and 

higher p-values suggest a better fit to a power-law distribution because the null 
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hypothesis suggests there are no differences between the observed and underlying power-

law distribution (Clauset et al., 2009).  

Hypothesis Testing 

 

Hypothesis 1 was evaluated using output from two separate analyses. First, by 

directly comparing OLS regression and QRM results using plots like Figure 1-1. 

Specifically, when the 95% confidence interval from the OLS regression (i.e., dotted red 

lines) and the QRM estimates (i.e., black dots and broken lines) do not overlap, this 

suggests that the OLS regression is over- or underestimating the predictor-criterion 

relationship at that quantile on the criterion distribution (van Zyl & de Bruin, 2018). 

Second, by observing differences in quantile-level results from the LASSO quantile 

regressions used in the PLQC procedure. In other words, when results vary across 

quantiles, this suggests the predictor-criterion relationships are heterogeneous or non-

uniform. Support for Hypothesis 1 will be shown if predictor-criterion relationships do 

not exhibit uniform relationships across the distribution and discrepancies between the 

OLS regression and QRM estimates are observed. 

To evaluate the practical benefits of the QRM, I assessed the increase in selection 

decision accuracy following a procedure established by Bing and colleagues (2007)4. The 

general procedure is as follows: 1) Composite scores on the assessment battery, �̂�, were 

calculated separately based on results from the OLS regression and QRM approaches; 2) 

cases were rank-ordered and selected based on �̂� for both models; and 3) average 

                                                 
4
 This procedure has also been used by other researchers aimed at evaluating utility and practical benefits 

associated with alternative approaches in the selection space (e.g., Carter et al., 2014). 
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observed individual productivity, Y, of the selected cases was compared across the 

models. This procedure is outlined in greater detail below.  

Two models were developed per sample to calculate the composite scores on the 

assessment battery, �̂�. The first model reflects a traditional, local validation effort 

leveraging an OLS regression. For the OLS regression model, I used regression 

weighting to generate a composite (i.e., overall selection battery score). The second 

model used the newly proposed procedure for the QRM described previously. �̂� was 

calculated for each case in the sample and saved for later use. Next, cases were rank-

ordered and selected based on �̂� for both models using a top-down selection procedure. 

For each study, I used selection ratios of .1, .3, .5, and .7. These conditions result in 

several realistic selection scenarios that are commonly observed in practice (Roth et al., 

2014; Schmitt, Rogers, Chan, Sheppard, & Jennings, 1997).  

Hypothesis 2 was tested by calculating the percentage of stars identified within 

each cohort. For this study, a productivity star was defined as any case that is at least 1.5 

standard deviations above the mean on individual productivity. Support for Hypothesis 2 

will be shown if the QRM-based model identifies a higher percentage of stars per cohort. 

Lastly, Hypothesis 3 was tested by calculating the mean of Y for each cohort. To the 

extent that a model results in more accurate selection decisions, the mean of Y (i.e., the 

observed level of individual productivity) should be higher. As such, support for 

Hypothesis 3 will be shown if the QRM-based model results in a larger mean than the 

OLS regression-based model. 

Even though it may appear logical to conduct a statistical test of the mean 

differences between cohorts (i.e., independent samples t-test), it is not warranted. For 
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example, an independent samples t-test and two-sample z-test assumes that each sample 

is an independent random sample (Boneau, 1960). This assumption would be violated in 

this study because the models will be derived and used to select a pool of cases from the 

same sample. It is highly likely that at least some of the same cases will be identified as 

having the highest expected productivity (�̂�) across the two models. In this instance, the 

same case(s) would appear in both groups, violating the assumption of independence. 

Given this, Bing and colleagues’ (2007) procedure serves as a viable and established 

alternative to assess the increase in selection decision accuracy. 
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CHAPTER 3 
 

 

RESULTS 

 

 

Sample 1 

Descriptive Statistics 

 

Demographics of sample participants, descriptive statistics (e.g., mean, standard 

deviation, skewness, kurtosis) and Pearson correlations between study variables may be 

found in the Appendix in Tables A-1, A-2, and A-3 for Sample 1. 

Assessing the Presence of a Power-Law Distribution 

 

Figure 3-1 contains a histogram of individual productivity and Table 3-1 

summarizes the power-law distribution fit based on Clauset and colleagues’ (2009) 

procedure for Sample 1. While individual productivity (i.e., average percentage of sales 

goal attainment across the incumbent’s tenure) was found to be non-normally distributed 

(i.e., skewness = 1.49, kurtosis = 3.18), the power-law distribution was found to be a poor 

fit for the data as α, the scaling parameter, was quite large (α = 11.91), suggesting a 

lighter tail, and the associated p-value from the goodness-of-fit test was less than .10 (i.e., 

recommended cutoff) (Aguinis et al., 2018; Clauset et al., 2009). Specifically, p = .00 

indicates there is a “near-zero” probability that the data really follow a power law 

(Clauset et al., 2009). Despite this, individual productivity still appears to be skewed and 

leptokurtic. 
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Figure 3-1 

 

Histogram of Individual Productivity for Sample 1 

 

 
 

 

Table 3-1 

 

Sample 1 Power-Law Distribution Fit and the Corresponding P-Value 

 

 K-S Xmin α p 

Productivity .09 54.64 11.91 .00 

Note: N = 209 

 

 

Hypothesis Testing 

 

To test Hypothesis 1, I compared OLS regression and QRM results using the plots 

found in Figure 3-2. Results suggest that the OLS regression estimate was not 

representative of the relationship between Conceptual (INT), Mastery (MST), Drive 
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(IND), and Awareness (AWR) and individual productivity. For example, the OLS 

regression underestimates the relationship between Conceptual and individual 

productivity starting at the .8th quantile as the 95% confidence interval from the OLS 

regression (i.e., dotted red lines) and the QRM estimates (i.e., black dots and broken 

lines) do not overlap. Moreover, the results from the LASSO quantile regressions 

presented in Table 3-2 highlight additional discrepancies regarding the predictive validity 

of the predictors (i.e., personality traits) with individual productivity. Specifically, 

Conceptual (INT), Mastery (MST), Ambition (ACH), Composure (CMP), Awareness 

(AWR), Liveliness (ENT), and Assertiveness (ASR) significantly predict individual 

productivity at some quantiles but were not found to be significant predictors by the OLS 

regression. For example, Composure was not found to significantly predict individual 

productivity based on the OLS regression results (t = .51, p = .61); however, the LASSO 

quantile regression results suggest that Composure has a significant, negative relationship 

at extreme levels (i.e., .9th quantile) of individual productivity (t = -2.34, p = .02). Given 

that 8 out of 15 predictors (53.33%) have heterogeneous relationships with individual 

productivity, this provides support for Hypothesis 1 in Sample 1. 
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Figure 3-2 

 

Sample 1 OLS Regression and Quantile Regression Plots 
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Table 3-2 

 

Sample 1 t Statistics for OLS Regression and LASSO Quantile Regression Results 

 

  LASSO Quantile Regression 

Predictor OLS .1th .3th .5th .7th .9th 

COP .17 .00 .25 .96 .26 .00 

SEN .24 .00 .10 -1.34 .00 .00 

HUM -.20 -.22 -.37 -.53 -1.31 .00 

INT .13 -.97 -1.07 .34 1.46 4.85** 

OPC .35 -.16 1.20 1.10 1.57 .00 

MST -1.15 .00 -.40 -1.72 -2.74** -5.30** 

MTC .53 .00 .74 .36 1.07 .45 

IND -.59 -.76 -1.02 -.64 .00 .71 

ACH .60 -.23 .46 .42 .00 2.07* 

CMP .51 .00 1.65 .18 .84 -2.34* 

POS -1.21 -1.47 -1.70 -1.61 -1.58 -1.45 

AWR -1.94 .00 -3.20** -2.09* -.97 -4.00** 

ENT -.93 -.98 .00 .00 -1.60 -2.67** 

ASR 1.17 -.85 1.25 2.75** 1.97 .45 

POW 1.01 1.04 .87 .32 2.77** .00 

Note: N = 209. *p <.05. **p < .01 

 

 

To test Hypotheses 2 and 3, two models were developed: (1) a regression-

weighted model based on OLS regression results; and (2) a QRM-based model using the 

PLQC procedure. Table 3-3 contains the selected predictors from this process and their 

assigned weights. Note, since none of the predictors significantly predicted individual 

productivity at p < .05 using the OLS regression, those with p-values below .10 were 

considered for the OLS regression model. As such, the OLS regression model only 

contains Awareness (AWR) (t = -1.94, p = .05). In contrast, the PLQC procedure 
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identified eight predictors to include in the model; however, each were determined to be 

partially weak (i.e., predict some, but not all quantiles). 

  

Table 3-3 

 

Selection Model Details for Sample 1 

 

Model AWR MST ASR ENT POW INT ACH CMP 

OLS -1.00 -- -- -- -- -- -- -- 

QRM -.24 -.24 .14 -.11 .11 .09 .06 .01 

 

Note: The weights presented in this table are a ratio of the β coefficients. The absolute 

value of these ratios sum to 1 and accurately reflects the relationship with individual 

productivity for each predictor included in the model. 

 

 

Next, I followed the procedure established by Bing and colleagues (2007) and 

calculated the percentage of stars identified as well as the mean productivity of the 

selected cohort for each selection ratio (i.e., .1, .3, .5, .7). Table 3-4 and Table 3-5 

summarize the results for Sample 1. Results show the QRM model identified a higher 

percentage of productivity stars in two out of four selection ratio scenarios (i.e., .1 and .3) 

and higher mean productivity of the selected cohort in three out of four (i.e., .1, .3, and 

.7). While the results appear to provide partial support for Hypotheses 2 and 3, it must be 

noted that the differences in mean productivity of the selected cases are quite small and 

there is considerable overlap between the 95% confidence intervals of the sampled means 

for each selection ratio, indicating marginal or negligible practical gains of the QRM in 

Sample 1.  
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Table 3-4 

 

Percentage of Stars Identified by Model Across Selection Ratios for Sample 1 

 

 Selection Ratio 

Model .1 .3 .5 .7 

OLS 15.79% 36.84% 73.68% 84.21% 

QRM 21.05% 52.63% 73.68% 84.21% 

 

Note: The number of selected cases per selection ratio varied, with 10% = 21, 30% = 63, 

50% = 105, and 70% = 146. N = 19 productivity stars were identified (i.e., any case that 

is at least 1.5 standard deviations above the mean on individual productivity). 

 

 

Table 3-5 

 

Mean Productivity of Selected Cases by Model Across Selection Ratios for Sample 1 

 

 Selection Ratio 

Model .1 .3 .5 .7 

OLS 54.93  

[47.50 – 62.35] 

52.82  

[49.72 – 55.92] 

52.77  

[50.46 – 54.94] 

51.60  

[49.85 – 53.35] 

QRM 55.38  

[49.27 – 61.49] 

53.34  

[50.32 – 56.36] 

52.48  

[50.24 – 54.72] 

52.15  

[50.40 – 53.90] 

 

Note: The number of selected cases per selection ratio varied, with 10% = 21, 30% = 63, 

50% = 105, and 70% = 146. 95% confidence interval of selected cohort’s mean 

productivity is reported in the brackets. 

 

 

Sample 2 

 

Descriptive Statistics 

 

Descriptive statistics (e.g., mean, standard deviation, skewness, kurtosis) and 

Pearson correlations between study variables may be found in the Appendix in Table B-1 

and Table B-2 for Sample 2. 

Assessing the Presence of a Power-Law Distribution 

 

Figure 3-3 contains the histogram of individual productivity and Table 3-6 

summarizes the power-law distribution fit based on Clauset and colleagues’ (2009) 



41 

 

 

procedure for Sample 2. Unlike Sample 1, the power-law distribution appeared to be a 

good fit for the data as the associated p-value from the goodness-of-fit test was greater 

than .10 (i.e., p = .43); however, high p-values should be interpreted with caution when 

the sample size is small (i.e., N < 100) as it is difficult to rule out the power-law 

distribution in these scenarios (Clauset et al., 2009). Given the larger scaling exponent 

(i.e., α = 8.67) and moderate skewness (i.e., .91), it is unlikely individual productivity 

(i.e., renewal and upsell totals) follows a power-law distribution in Sample 2. 

 

Figure 3-3 

 

Histogram of Individual Productivity for Sample 2 
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Table 3-6 

 

Sample 2 Power-Law Distribution Fit and the Corresponding p-Value 

 

 K-S Xmin α p 

Productivity .08 57.12 8.67 .43* 

 

Note: N = 90. *p > .10 

 

 

Hypothesis Testing 

 

Like Sample 1, the plots in Figure 3-4 suggest that the OLS regression estimates 

were not representative of several predictor-criterion relationships. Specifically, 

Sensitivity (SEN), Ambition (ACH), Positivity (POS), and Assertiveness (ASR) had 

QRM estimates at various quantiles (i.e., black dots and broken lines) fall outside the 

95% confidence intervals from the OLS regressions (i.e., dotted red lines). For example, 

the OLS regression underestimates the relationship between Sensitivity and individual 

productivity at lower levels of individual productivity (i.e., .4th quantile and below). 

Additionally, results in Table 3-7 from the LASSO quantile regression show that most 

predictors have heterogeneous or non-uniform relationships with individual productivity 

(e.g., estimates differed across quantiles). For example, Cooperativeness (COP), 

Sensitivity (SEN), Humility (HUM), Conceptual (INT), Mastery (MST), Structure 

(MTC), Drive (IND), Ambition (ACH), Positivity (POS), Liveliness (ENT), 

Assertiveness (ASR), and Power (POW) predict individual productivity at some quantiles 

but were not found to be statistically significant predictors by the OLS regression. 

Overall, 12 out of 15 predictors (i.e., 80.00%) have relationships with individual 

productivity that are heterogeneous or are unrepresentative of the OLS regression 

estimate. Given this, Hypothesis 1 is supported for Sample 2. 
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Figure 3-4 

 

Sample 2 OLS Regression and Quantile Regression Plots 
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Table 3-7 

 

Sample 2 t Statistics for OLS Regression and LASSO Quantile Regression Results 

 

  LASSO Quantile Regression 

Predictor OLS .1th .3th .5th .7th .9th 

COP -.77 -1.99* -.59 -1.03 -.47 .00 

SEN -1.82 .00 2.35* -1.10 -3.88** -9.17** 

HUM -.69 2.22* -1.22 -.33 -1.40 -4.14** 

INT -1.15 -3.63** -.53 -1.14 -3.12** .00 

OPC -1.21 1.78 .00 .85 .00 .66 

MST -1.91 -5.26** -1.18 .00 -1.82 -6.30** 

MTC 1.66 .56 2.03* 2.76** 1.60 .00 

IND 1.39 2.13* 3.62** 2.90** .00 8.85** 

ACH .31 3.64** 2.62* 1.66 -.11 -.40 

CMP .43 -.35 .00 .00 .00 1.91 

POS .22 -1.37 .48 .00 2.30* 2.82** 

AWR .62 .00 1.17 1.07 .00 .00 

ENT -1.77 -5.46** -5.37** -3.26** -3.90** -7.96** 

ASR 1.91 .00 1.96* .24 3.59** 4.43** 

POW -.65 .00 -1.54 -.63 -3.69** -1.17 

 

Note: N = 90. *p < .05. **p < .01 

 

 

Next, an OLS regression-weighted model and a QRM-based model using the 

PLQC procedure were developed to test Hypotheses 2 and 3. Table 3-8 contains the 

selected predictors from this process and their assigned weights. As with Sample 1, none 

of the personality traits were found to significantly predict (i.e., p < .05) individual 

productivity based on the OLS regression results. As such, those with p-values less than 

.10 were considered, leading to a model that contains Mastery (MST), Liveliness (ENT), 

Sensitivity (SEN) and Assertiveness (ASR). In contrast, the PLQC procedure selected 12 
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out of the 15 possible predictors, with Liveliness (ENT) being the sole strong predictor 

(i.e., predicts all quantiles).  

 

 

Table 3-8 

 

Selection Model Details for Sample 2 

 

Model MST ENT SEN ASR IND INT MTC ACH POW HUM POS COP 

OLS -.29 -.25 -.24 .22 -- -- -- -- -- -- -- -- 

QRM -.11 -.21 -.10 .09 .13 -.07 .07 .06 .06 -.04 .03 -.03 

 

Note: The weights presented in this table are a ratio of the standardized β coefficients. 

The absolute value of these ratios sum to 1 and accurately reflects the relationship with 

individual productivity for each predictor included in the model. 

 

 

After following the procedure developed by Bing and colleagues (2007), the 

percentage of stars identified and mean productivity of the selected cohort for each 

selection ratio (i.e., .1, .3, .5, .7) were calculated. Results presented in Table 3-9 and 

Table 3-10 provide partial support for Hypotheses 2 and 3 as the QRM-based model 

generally resulted in more desirable selection outcomes than the OLS regression model. 

Specifically, the QRM model identified a higher percentage of productivity stars in 

smaller selection ratios (i.e., .1 and .3) and higher mean productivity in all four. Like 

Sample 1, the differences in mean productivity of the selected cases are small (e.g., ~2% 

improvement on mean productivity across all selection scenarios), and there is 

considerable overlap between the 95% confidence intervals of the sampled means for 

each selection ratio. As such, the practical gains associated with the QRM appear to be 

minor in Sample 2. 
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Table 3-9 

 

Percentage of Stars Identified by Model Across Selection Ratios for Sample 2 

 

 Selection Ratio 

Model .1 .3 .5 .7 

OLS 38.46% 69.23% 100.00% 100.00% 

PLQC 46.15% 76.92% 100.00% 100.00% 

 

Note: The number of selected cases per selection ratio varied, with 10% = 9, 30% = 27, 

50% = 45, and 70% = 63. N = 13 productivity stars were identified (i.e., any case that is 

at least 1.5 standard deviations above the mean on individual productivity). 

 

 

Table 3-10 

 

Mean Productivity of Selected Cases by Model Across Selection Ratios for Sample 2 

 

 Selection Ratio 

Model .1 .3 .5 .7 

OLS 66.97  

[56.09 – 77.85] 

61.82  

[57.32 – 66.32] 

60.58  

[57.30 – 63.87] 

57.96  

[55.30 – 60.62] 

PLQC 71.06  

[63.40 – 78.72] 

62.77  

[58.02 – 67.52] 

60.64  

[57.50 – 63.78] 

58.07  

[55.39 – 60.75] 

 

Note: The number of selected cases per selection ratio varied, with 10% = 9, 30% = 27, 

50% = 45, and 70% = 63. 95% confidence interval of selected cohort’s mean productivity 

is reported in the brackets. 

 

 

Sample 3 

Descriptive Statistics 

 

Sample 3 was split into training and testing sets to understand robustness under 

cross-validation and how the models perform on new data. As such, descriptive statistics 

(e.g., mean, standard deviation, skewness, kurtosis) and Pearson correlations between 

study variables were conducted on the training set and may be found in Table C-1 and 

Table C-2 in the Appendix. 
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Assessing the Presence of a Power-Law Distribution 

 

Figure 3-5 contains the histogram of individual productivity and Table 3-11 

summarizes the power-law distribution fit for the training set in Sample 3. Following 

Clauset and colleagues’ (2009) procedure, the power-law distribution was determined to 

be a poor fit for the data. The scaling exponent, α, indicated a lighter tail (i.e., 10.06), and 

the p-value associated with the goodness-of-fit test suggests a “near-zero” probability that 

the data follow a power law, like Sample 1 (Aguinis et al., 2018; Clauset et al., 2009). 

Despite this, individual productivity (i.e., total sales for the franchise location) was still 

found to be non-normally distributed as it is positively skewed (i.e., skewness = 1.51) and 

leptokurtic (i.e., kurtosis = 1.58). 

 

Figure 3-5  

 

Histogram of Individual Productivity for Sample 3 Training Set 
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Table 3-11 

 

Power-Law Distribution Fit and the Corresponding p-Value for Sample 3 Training Set 

 

 K-S Xmin α p 

Sales Goal Attainment .07 46.99 10.06 .01 

 

Note: N = 225 

 

 

Hypothesis Testing 

 

Similar to Sample 1 and 2, I compared OLS regression and QRM results using the 

plots found in Figure 3-6 to test Hypothesis 1 for the training set in Sample 3. Seven 

predictors, Sensitivity (SEN), Conceptual (INT), Mastery (MST), Drive (IND), Ambition 

(ACH), Positivity (POS), and Awareness (AWR), exhibited relationships with individual 

productivity that were not accurately represented by the OLS regression estimate as the 

95% confidence interval from the OLS regression (i.e., dotted red lines) and the QRM 

estimates (i.e., black dots and broken lines) do not overlap. For example, the OLS 

regression overestimates the relationship between Conceptual and individual productivity 

at the .4th quantile and below. Further, when looking at the results comparing the OLS 

regression to the LASSO quantile regression in Table 3-12, Humility (HUM), Flexibility 

(OPC), Mastery (MST), Drive (IND), Ambition (ACH), Awareness (AWR), and Power 

(POW) significantly predict individual productivity at various quantiles but were not 

found to be significant predictors by the OLS regression. Additionally, Sensitivity (SEN) 

and Conceptual (INT) were found to be significant predictors of individual productivity 

by the OLS regression, but results from the LASSO quantile regression suggest these 

relationships were heterogeneous (i.e., Sensitivity and Conceptual are not significant 

predictors at lower levels of individual productivity). In total, 11 out of 15 predictors (i.e., 
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73.33%) have relationships with individual productivity that are heterogeneous or not 

representative of the OLS regression estimate, providing support for Hypothesis 1.  

 

Figure 3-6 

 

Sample 3 OLS Regression and Quantile Regression Plots 

 

 

. 
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Table 3-12 

 

Sample 3 t Statistics for OLS Regression and LASSO Quantile Regression Results 

 

  LASSO Quantile Regression 

Predictor OLS .1th .3th .5th .7th .9th 

COP .52 .00 .02 .06 1.64 .00 

SEN 1.98* -.08 -.09 .20 4.56** 9.03** 

HUM 1.30 .00 .44 .29 1.98* -1.33 

INT 3.07** .82 1.18 1.77 3.80** 5.36** 

OPC -.68 .00 -.44 -1.13 .00 -2.38* 

MST -1.32 .84 .20 -.51 -1.68 -5.84** 

MTC -.24 .34 -.12 -.47 -.42 -.07 

IND -.28 -.31 -.19 .00 .00 -1.98* 

ACH .76 .00 -.46 -.59 .23 2.11* 

CMP .44 .00 1.00 1.27 .00 .00 

POS -1.20 -.72 -.73 -.90 -1.71 .00 

AWR 1.55 -.16 .71 .97 1.71 5.67** 

ENT -.33 -.66 .10 .98 -.73 -1.02 

ASR -.48 .11 -.02 -.82 -1.85 .00 

POW .81 .82 .18 .65 1.84 2.57* 

 

Note: N = 225. *p < .05. **p < .01 

 

 

To test Hypotheses 2 and 3, I followed the procedure established by Bing and 

colleagues (2007) to demonstrate the practical superiority of the QRM. Unlike Sample 1 

and 2, I employed a hold-out sample given the sufficient sample size. As such, both 

models (i.e., OLS regression and QRM) were built using the training set (N = 225) and 

evaluated on a separate testing set (N = 56). Table 3-13 reports the selected predictors and 

their assigned weights for the OLS regression and QRM-based model. The OLS 

regression model contains two predictors: Conceptual (INT) and Sensitivity (SEN), 
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whereas the QRM-based model contains nine. Note, all nine predictors selected using the 

PLQC procedure were determined to be partially weak as they predicted some, but not all 

quantiles.  

 

Table 3-13 

 

Selection Model Details for Sample 3 

 

Model INT SEN AWR MST POW OPC IND ACH HUM 

OLS .61 .39 -- -- -- -- -- -- -- 

QRM .21 .24 .15 -.13 .10 -.07 -.04 .03 .02 

 

Note: The weights presented in this table are a ratio of the standardized β coefficients. 

The absolute value of these ratios sum to 1 and accurately reflects the relationship with 

individual productivity for each predictor included in the model. 

 

 

After generating the models on the training set, the percentage of stars identified 

and mean productivity of the selected cohort for each selection ratio (i.e., .1, .3, .5, .7) 

were calculated on the testing set following Bing and colleagues’ (2007) procedure. 

Table 3-14 and Table 3-15 summarize the results for Sample 3. In contrast to Samples 1 

and 2, the OLS regression model resulted in more desirable selection outcomes than the 

QRM-based model. Specifically, the OLS regression identified a higher percentage of 

productivity stars across each selection ratio and resulted in higher mean productivity for 

three out of four selected cohorts (i.e., .1, .3, and .5). As such, Hypotheses 2 and 3 were 

not supported in Sample 3; however, it is worth noting that the differences between the 

OLS regression and PLQC were again marginal as the OLS regression model resulted in 

an ~3% improvement on mean productivity across all selection scenarios when compared 

to the QRM-based model. 
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Table 3-14 

 

Percentage of Stars Identified by Model Across Selection Ratios for Sample 3 

 

 .1 .3 .5 .7 

OLS 16.67% 50.00% 66.67% 83.33% 

QRM 0.00% 16.67% 50.00% 66.67% 

 

Note: The number of selected cases per selection ratio varied, with 10% = 6, 30% = 17, 

50% = 28, and 70% = 39. N = 6 productivity stars were identified (i.e., any case that is at 

least 1.5 standard deviations above the mean on individual productivity) in the testing set. 

 

 

Table 3-15 

 

Mean Productivity of Selected Cases by Model Across Selection Ratios for Sample 3 

 

 .1 .3 .5 .7 

OLS 50.87 

[39.07 – 62.67] 

51.22 

[46.09 – 56.35] 

50.23  

[46.66 – 53.80] 

49.76 

[46.81 – 52.72] 

QRM 46.35 

[41.49 – 51.21] 

49.94 

[45.70 – 54.18] 

50.09 

[46.73 – 53.45] 

49.76 

[46.91 – 52.61] 

 

Note: The number of selected cases per selection ratio varied, with 10% = 6, 30% = 17, 

50% = 28, and 70% = 39. 95% confidence interval of selected cohort’s mean productivity 

is reported in the brackets. 
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CHAPTER 4 
 

 

DISCUSSION 
 

 

Given the importance of productivity stars to team performance (Oettl, 2012; 

Volmer & Sonnentag, 2011) and organizational success (Boudreau & Ramstad, 2007; 

Grigoriou & Rothaermel, 2014; Kehoe & Tzabbar, 2015; Tzabbar & Kehoe, 2014), it is 

paramount that organizations identify and retain them. Unfortunately, the literature has 

yet to uncover effective techniques to accurately identify productivity stars, meaning they 

may be overlooked during the selection process (Call et al., 2015; Terviö, 2009). A 

potential solution to this challenge is to improve the methods used to estimate future job 

performance during criterion-related validation studies given the limitations associated 

with current approaches (e.g., estimates are greatly influenced by outliers) (Aguinis & 

Edwards, 2013; Cohen et al., 2003; Hunter & Schmidt, 2004). As such, the purpose of 

this study was to investigate whether an alternative statistical method, the QRM, could 

improve selection-decision accuracy and star identification due to its robustness against 

outliers and ability to provide a more meaningful understanding of predictor-criterion 

relationships. 

Regarding Hypothesis 1, in Sample 1 (account executives at a global professional 

services company), Sample 2 (account managers at a multinational business directory and  
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advertising firm), and Sample 3 (franchisee owners at a quick-service restaurant 

chain), the QRM consistently produced a more thorough conceptualization of the 

predictive validity between study variables (i.e., personality assessment scores and 

individual productivity). For example, across all three samples, 31 out of 45 (68.89%) 

predictors exhibited heterogeneous relationships with individual productivity, meaning 

the strength of these relationships varied across the distribution of individual 

productivity.  

Regarding Hypotheses 2 and 3, the QRM-based model and OLS regression model 

resulted in similar selection outcomes across all three samples. Specifically, the PLQC 

procedure resulted in very small improvements for within-sample-results (e.g., star 

identification, cohort productivity) when compared to the OLS regression in Samples 1 

and 2. However, the OLS regression model outperformed the QRM when tested out-of-

sample (i.e., applied to new data) via the testing set in Sample 3. While these results 

provide partial support for Hypotheses 2 and 3, the use of hold-out sampling in Sample 3 

provided a more robust model validation than Samples 1 and 2, suggesting that the QRM-

based model may not add practical value above and beyond the OLS regression. 

Overall, the results from Sample 3 are surprising as the QRM has consistently 

been shown to outperform OLS regression in forecasting efforts in the external literature 

(i.e., provide more accurate estimates on new data) (Furno, 2011; Lima & Meng, 2017; 

Meligkotsidou et al., 2021; Sayegh et al., 2014). There is, however, a potential 

explanation for the lack of support for Hypotheses 2 and 3 in Sample 3. While the overall 

sample size was reasonably large for a criterion-related validation study (N = 281) in 

Sample 3, the hold-out sample (i.e., testing set) used to validate the model was quite 
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small (i.e., N = 56), potentially leading to underlying differences between the training and 

testing sets and the broader population.  

 

Implications for Theory and Practice 

 

First, this study presents new evidence about the underlying distribution of 

individual productivity in highly complex, autonomous, as well as knowledge- and 

service-based roles (i.e., Account Executive, Account Manager, Franchisee Owner). 

Across each sample, results from Clauset and colleagues’ (2009) procedure suggested 

that the power-law distribution was a poor fit for the data, despite Samples 1 and 3 being 

highly skewed and leptokurtic, and Sample 2 being moderately skewed. As such, results 

from this study provide some evidence that individual productivity may not be as “heavy-

tailed” as the extant literature suggests (e.g., Aguinis et al., 2016, 2018; Crawford et al., 

2015; Joo et al., 2017; O’Boyle & Aguinis, 2012; Ryazanova et al., 2017) when 

precautions are taken to control for extraneous factors and confounding variables (e.g., 

location, market, pricing for sales outcomes). Given the amount of interest and scholarly 

attention on the normality of individual productivity over the past decade (e.g., Aguinis et 

al., 2018; Beck et al., 2014; Joo et al., 2017; Vancouver, Xiaofei, Weindhardt, Steel, & 

Purl, 2016), these results provide additional insight into the potential causes of heavy-

tailed productivity distributions.  

Second, this study adds to our understanding of the relationship between 

personality traits and individual productivity. Results show the QRM provided a more 

thorough understanding about the relationships between personality and individual 

productivity than what could be gleaned from conditional means modeling (i.e., OLS 

regression). For example, 68.89% of the personality-individual productivity relationships 
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investigated in this study were found to be non-uninform or heterogeneous. Additionally, 

like findings from van Zyl and de Bruin (2018), who investigated the predictive 

relationship between personality traits and counterproductive work behaviors (CWBs), 

the results from this study also show that OLS regression has the tendency to 

underestimate the magnitude of these relationships at the high end of the distribution. As 

such, the field of I-O psychology, which has long debated the usefulness of personality 

assessments for selection (e.g., Morgeson et al., 2007; Ones, Dilchert, Viswesvaran, & 

Judge, 2007; Tett & Christiansen, 2007), may currently underestimate the value of 

personality assessments due to the prevalence of conditional means modeling. In other 

words, when predicting individual productivity, researchers should undoubtedly try to 

determine what is happening at extreme levels as this is where productivity stars are 

located. Unfortunately, results across all three samples in this study show this is exactly 

where the OLS regression fails as it typically underestimates the relationship strength at 

higher quantiles (e.g., .8th and above).  

Third, this study investigated and provided initial evidence regarding the 

usefulness of a new approach for criterion-related validation and selection assessment 

battery design. Though the QRM-based models led to marginal improvements during in-

sample validation and performed less effectively than the OLS regression model during 

out-of-sample testing, the results still offer meaningful insights for research and practice. 

Specifically, the QRM appears to be a viable alternative for criterion-related validation 

and assessment battery design when an OLS regression’s assumptions are violated as the 

results for star identification and selection-decision accuracy were similar across all three 

samples.  
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Limitations and Future Directions 

 

As with all research, this study is not without limitations. First, small sample sizes 

prevented more robust evaluation and comparison of current approaches used for 

criterion-related validation and selection assessment battery design and the newly 

proposed QRM-based process. In fact, larger sample sizes would have enabled an 

effective use of hold-out samples and provided more valuable insight into the QRM’s 

ability to improve robustness under cross-validation, which has been shown extensively 

in other fields (e.g., Economics) (Furno, 2011; Lima & Meng, 2017; Meligkotsidou et al., 

2021; Sayegh et al., 2014). Second, although individual productivity was moderately to 

heavily skewed in all three samples included in this study, each had lighter tails than what 

would be expected under a power-law distribution and what has been reported in the 

recent literature (e.g., Aguinis et al., 2018; Joo et al., 2017). Due to this, the samples used 

in this study may have unintentionally suppressed the potential benefits of the QRM over 

the OLS regression.  

Though this study provided a robust evaluation of the proposed QRM-based 

process for criterion-related validation and selection assessment battery design, there is 

still a need for continued research to fully understand its effectiveness. First, future 

research leveraging larger sample sizes and more robust cross-validation techniques are 

needed. Second, identifying and using samples with more influential cases (i.e., 

productivity stars) and distributions with heavier tails may provide better insight into the 

usefulness of the QRM. Third, predictor-criterion relationships were generally quite small 

as depicted by conditional mean-based methods (i.e., Pearson correlations and OLS 

regression). Due to these weak, linear relationships, the OLS regression-based models in 
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Samples 1 and 2 consisted of predictors with p-values between .05 and .10, and most of 

the predictors were deemed to be partially weak by the LASSO quantile regression across 

all three samples. As such, future research should seek to understand the practical 

benefits of the QRM-based process using samples containing stronger predictor-criterion 

relationships. Fourth, future research should investigate the effect of quantile selection 

and weighting schemes as previous research suggests these factors affect model 

performance (e.g., Lima & Meng, 2017). In this study, five quantiles of interest (i.e., .1th, 

.3th, .5th, .7th, and .9th) were included in model development and weighted equally to 

obtain a single, global estimate. Due to the importance and impact of productivity stars, 

one might consider disproportionately weighting quantile results at the high end of the 

distribution (e.g., .9th) where stars are located. Lastly, future research should investigate 

the impact of the tuning parameter, lambda (λ), which controls the strength of the penalty 

term in LASSO regression, on model development and performance. In this study, a 

default value was selected for λ according to the proposal of Belloni and Chernozhukov 

(2011). While this approach eliminated some predictors from the model by reducing their 

coefficients to zero (i.e., shrinkage), larger values for λ may identify a sparser model with 

a smaller subset of predictors (i.e., remove additional partially weak predictors), 

potentially leading to improved star identification and selection-decision accuracy.  

Beyond the QRM, additional research is needed to vet the viability of other 

statistical methods that provide robust estimates when faced with heavy-tailed 

distributions and influential cases like productivity stars. For example, O’Boyle and 

Aguinis (2012) suggest Bayesian techniques are likely applicable as researchers may test 

hypotheses without assuming normality as one may specify the distribution of the 
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criterion a priori (Kruschke et al., 2012). Moreover, given the likelihood that influential 

cases introduce nonlinearity (O’Boyle & Aguinis, 2012), additional research should 

examine the use of hierarchical polynomial regressions in selection assessment battery 

design as well as lower- and upper-bound cut-scores to mitigate the “too-much of a good 

thing” phenomenon (Carter et al., 2014; Castille, Theys, & Khan, 2016; Le et al., 2011). 

Finally, additional research is still needed to better understand the causes of 

heavy-tailed productivity distributions. To date, most of the literature has focused on 

work-related factors (e.g., autonomy, job complexity, star’s proximity to the 

organizations strategic core) and the operationalization of job performance (e.g., Beck et 

al., 2014) that enable productivity stars to emerge (e.g., Aguinis et al., 2016; Aguinis & 

O’Boyle, 2014; Vancouver et al., 2016). However, more research is needed to understand 

the effect that extraneous factors and confounding variables (e.g., location differences, 

tenure) have on the underlying distribution of individual productivity and productivity 

star emergence.  

 

Conclusions 

 

The purpose of this study was to test the newly proposed QRM-based criterion-

related validation procedure and provide evidence that the QRM provides distinct 

theoretical and practical advantages over traditional approaches when data are non-

normally distributed and influenced by the presence of productivity stars. Specifically, I 

hypothesized that the QRM would produce a more detailed conceptualization of the 

predictive validity between selection assessments and individual productivity, and that 

selection assessment batteries designed using the QRM and PLQC procedure would 

result in greater practical usefulness (i.e., star identification and selection-decision 
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accuracy) over and above OLS regression. Results showed that the QRM provided a 

much more comprehensive understanding of the predictor-criterion relationships across 

all three samples, and that the proposed QRM-based criterion-related validation 

procedure had similar outcomes to the OLS regression with respect to star identification 

and selection-decision accuracy. Given the limitations and future directions outlined 

previously, more research is needed to fully understand the utility of the QRM for 

assessment and selection purposes.  
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APPENDIX A 
 

 

SAMPLE 1 DEMOGRAPHICS, DESCRIPTIVES, AND  

 

PEARSON CORRELATIONS 
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Table A-1 

 

Participant Demographics for Sample 1 

 

Sample Characteristics N % M SD 

Gender     

Female 92 44.02% -- -- 

Male 116 55.50% -- -- 

N/A 1 .48%   

Race/Ethnicity     

American Indian or 

Alaska Native 

1 .48% -- -- 

Asian 6 2.87% -- -- 

Black or African 

American 

2 .96% -- -- 

Hispanic or Latino 3 1.44% -- -- 

Two or More Races 1 .48% -- -- 

White 183 87.56% -- -- 

N/A 13 6.22% -- -- 

Age -- -- 50.00 11.00 

Note: N = 209.  
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Table A-2 

 

Descriptive Statistics for Sample 1 

 

Variable Minimum Maximum M SD Skew Kurt 

COP -1.23 1.61 .33 .48 .32 .18 

SEN -1.58 1.76 .06 .43 -.37 1.95 

HUM -2.21 1.48 -.02 .50 -.23 2.06 

INT -1.55 1.09 -.20 .43 -.28 .89 

OPC -.80 1.26 .14 .44 .17 -.21 

MST -1.32 1.30 .13 .44 -.01 -.04 

MTC -1.35 1.42 .01 .51 -.01 -.12 

IND -1.03 1.92 .31 .42 .26 1.75 

ACH -1.04 1.57 .26 .48 .26 .13 

CMP -1.02 1.87 .19 .44 -.05 .72 

POS -.83 1.72 .25 .42 .05 .28 

AWR -.98 1.52 .09 .43 .47 .72 

ENT -1.42 2.12 .32 .47 .12 1.96 

ASR -.97 1.52 .15 .46 .23 -.25 

POW -.82 2.34 .40 .49 .80 1.89 

Productivity 38.19 97.31 51.20 10.38 1.49 3.18 

Note: N = 209.  

  

 



 

 

 

Table A-3 

 

Pearson Correlations Between Variables in Sample 1 

 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. COP --                

2. SEN .27 --               

3. HUM .05 .10 --              

4. INT -.07 .18 .09 --             

5. OPC .07 .15 .08 .37 --            

6. MST -.05 .15 .14 .45 .34 --           

7. MTC -.09 -.16 -.01 -.16 -.30 -.13 --          

8. IND -.09 .01 .10 .04 .07 .20 .14 --         

9. ACH .04 .15 -.17 .10 .17 .26 .10 .33 --        

10. CMP .11 .01 .04 .10 .21 .16 -.17 .22 .14 --       

11. POS .09 .22 .00 .08 .08 .18 -.08 .08 .05 .26 --      

12. AWR .05 .11 .05 .12 .22 .01 -.07 .03 .07 .15 .03 --     

13. ENT .25 .24 -.02 .12 .25 .12 -.27 -.08 .09 .09 .23 .06 --    

14. ASR -.01 .18 -.07 .29 .28 .24 -.20 .03 .17 -.10 .25 .06 .22 --   

15. POW .15 .13 -.09 .14 .20 .27 -.09 .13 .28 .17 .23 .04 .17 .27 --  

16. Productivity .01 -.01 -.05 -.02 -.01 -.06 .04 -.03 .05 -.02 -.08 -.13 -.07 .06 .06 -- 

Note: N = 209. All bolded correlations are significant at p < .05.  
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APPENDIX B 
 

 

SAMPLE 2 DESCRIPTIVES AND PEARSON CORRELATIONS 
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Table B-1 

 

Descriptive Statistics for Sample 2 

 

Variable Minimum Maximum M SD Skew Kurt 

COP -.98 1.34 .22 .52 -.06 -.38 

SEN -1.24 1.15 .15 .46 -.48 .19 

HUM -1.07 1.14 -.03 .49 .17 -.20 

INT -1.35 1.48 -.20 .49 .49 .99 

OPC -1.32 1.20 .12 .45 -.13 .95 

MST -.89 1.40 .16 .45 -.07 -.42 

MTC -1.00 0.69 -.03 .45 -.30 -.92 

IND -.67 1.49 .35 .36 -.02 .24 

ACH -1.10 1.31 .36 .49 -.56 .52 

CMP -1.00 1.33 .30 .49 -.34 -.17 

POS -.74 1.17 .38 .38 -.64 .47 

AWR -2.12 1.84 .09 .51 -.70 4.50 

ENT -.82 2.20 .39 .51 .94 2.47 

ASR -.88 1.93 .26 .51 .64 .82 

POW -.53 1.28 .28 .42 .46 -.52 

Productivity 39.02 84.03 55.99 10.04 .91 .69 

Note: N = 90.  



 

 

 

Table B-2 

 

Pearson Correlations Between Variables in Sample 2 

 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. COP --                

2. SEN .28 --               

3. HUM .24 .13 --              

4. INT .09 -.08 -.01 --             

5. OPC .09 -.01 -.13 .25 --            

6. MST .01 .00 .12 .15 .45 --           

7. MTC .12 -.04 .20 -.14 -.08 .09 --          

8. IND -.08 -.16 -.11 -.21 -.03 .11 .01 --         

9. ACH -.17 -.20 -.26 .29 .07 .12 -.03 .25 --        

10. CMP .03 .05 -.09 .11 .08 .17 .17 .16 .01 --       

11. POS .07 .02 .01 .11 .14 .18 .18 .10 -.09 .38 --      

12. AWR .01 -.03 -.03 -.05 -.05 -.05 -.05 -.07 .04 .17 -.04 --     

13. ENT .46 .32 .08 .09 .00 .03 .03 .20 .04 .10 .24 .01 --    

14. ASR -.01 -.06 -.15 .05 -.11 -.02 -.02 .11 .22 -.04 .00 -.08 .10 --   

15. POW -.07 -.02 -.05 .16 -.05 .24 .24 .13 .21 .00 -.01 -.16 .16 .27 --  

16. Productivity -.26 -.34 -.21 -.19 -.02 -.17 -.17 .18 .11 .05 -.06 .08 -.33 .17 -.12 -- 

Note: N = 90. All bolded correlations are significant at p < .05. 
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APPENDIX C 
 

 

SAMPLE 3 DESCRIPTIVES AND PEARSON CORRELATIONS 
 



84 

 

 

Table C-1 

 

Descriptive Statistics for Sample 3 Training Set 

 

Variable Minimum Maximum M SD Skew Kurt 

COP -1.33 1.78 .25 .52 -.10 .22 

SEN -1.48 1.37 .07 .44 -.22 .49 

HUM -.94 1.68 .26 .49 .19 .03 

INT -1.62 1.31 -.18 .46 -.17 .34 

OPC -1.63 1.75 .22 .51 -.09 .49 

MST -1.36 1.10 .12 .43 -.27 -.06 

MTC -1.51 1.56 -.11 .57 -.09 -.07 

IND -1.31 1.48 .14 .42 -.41 .48 

ACH -1.06 1.72 .32 .49 .10 .25 

CMP -1.16 1.44 .16 .48 -.05 .19 

POS -1.20 1.20 .31 .38 -.41 .46 

AWR -1.54 1.02 .04 .40 -.41 .62 

ENT -1.59 1.98 .19 .59 .04 .76 

ASR -1.18 1.71 .26 .47 .04 .64 

POW -.72 2.36 .55 .46 1.10 1.67 

Productivity 39.78 90.70 50.22 10.28 1.51 1.58 

Note: N = 225. 

 



 

 

 

Table C-2 

 

Pearson Correlations Between Variables in the Training Set for Sample 3 

 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. COP --                

2. SEN .33 --               

3. HUM .14 .11 --              

4. INT .02 .05 -.14 --             

5. OPC .17 .16 -.05 .36 --            

6. MST .14 .13 .17 .28 .25 --           

7. MTC -.09 -.06 .06 -.13 -.15 .08 --          

8. IND -.06 .04 .14 -.08 -.12 .28 .30 --         

9. ACH -.05 -.04 -.04 .09 .04 .29 .21 .29 --        

10. CMP .21 .09 .13 .03 .07 .08 .17 .10 .01 --       

11. POS .18 .21 .13 .08 .17 .12 .09 .17 .18 .21 --      

12. AWR .10 .17 .12 -.02 .03 .08 .03 .21 .14 .19 .14 --     

13. ENT .30 .38 -.04 .32 .32 .19 -.14 -.04 -.03 .04 .29 .03 --    

14. ASR -.07 -.04 -.05 .25 .09 .14 -.04 .16 .17 -.14 -.05 .05 .10 --   

15. POW .11 .01 -.02 .17 .22 .19 .03 .15 .18 .19 .19 .20 .05 .21 --  

16. Productivity .08 .16 .07 .18 .03 .00 -.04 -.02 .03 .07 -.01 .14 .06 .01 .08 -- 

Note: N = 225. All bolded correlations are significant at p < .05. 
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