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We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid
Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying
article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include
reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of
all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain
entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node
and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.

Leukemia (2022) 36:1720–1748; https://doi.org/10.1038/s41375-022-01620-2

INTRODUCTION
Evidence-based classification of disease is fundamental for the
treatment of individual patients, monitoring of global disease
incidence, and investigating all aspects of disease causation,
prevention and therapy. The World Health Organization (WHO)
classification of lymphoid tumours has provided a global reference
for the diagnosis of lymphoid neoplasms since its 3rd edition in
2001 [1] which was based on the R.E.A.L Classification developed
by the International Lymphoma Study Group (ILSG) in the early
1990s [2]. The definitions laid down in the successive WHO
classifications [3, 4] have not only been adopted for use by
pathologists, clinicians, and basic and translational research
scientists, but they have also been incorporated into the
International Classification of Diseases (ICD) codes, and thereby
serve as a global reference for epidemiological monitoring across

national and international health policy organizations. In this
article, we provide the conceptual framework and major devel-
opments in lymphoid neoplasms in the upcoming 5th edition of
the WHO Classification of Haematolymphoid Tumours (WHO-
HAEM5) scheduled to be published in 2022. An overview of
myeloid neoplasms will be published separately.
The International Agency for Research on Cancer (IARC) initiated

the process culminating in WHO-HAEM5 in 2018 by laying out the
governance rules and classification principles for the entire 5th

Edition series of the WHO classification of tumours, comprising 14
volumes, each dedicated to neoplasia of specific organ systems
and/or clinical contexts (Paediatric Tumours and Genetic Tumour
Syndromes). In 2021, expert members of the editorial board and
authors were invited to contribute to WHO-HAEM5 based on their
records of diagnostic and/or scientific expertise, regional
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representation, equity and lack of potential conflicts-of-interest.
For most chapters, a multidisciplinary author team was formed
including haematopathologists, haematologists, oncologists,
geneticists, epidemiologists and molecular biologists. Experts
from other disciplines, such as radiation oncologists and
immunologists, were also involved where appropriate. Author
teams worked “virtually”, in close collaboration, further supported
by regular online meetings with the editorial team despite (and
possibly in part thanks to) the challenges encountered during the
COVID-19 pandemic. In addition, major issues arising during the
development of the classification were discussed, resolved and
harmonized across entities, both within WHO-HAEM5 and across
other WHO volumes that cover some of the same entities in
different clinical and/or organ-specific contexts. This was accom-
plished via regular meetings among expert groups and further
dedicated conferences, including a clinical forum with all clinicians
involved in the WHO-HAEM5. Public consultation was sought on
an initial classification draft. Final decisions were taken based on
principles of evidence-based medicine.
The resulting WHO-HAEM5 is a systematic evolution of the prior

classifications. To allow for continuity in daily practice and
ongoing clinical trials, a relatively conservative approach was
taken in making changes to nomenclature. The WHO-HAEM5, like
all 5th Edition WHO tumour volumes, applies a hierarchical system
for classification. That is, it organises diseases in order of
increasing levels of specification: category (e.g., mature B-cell),
family/class (e.g., large B-cell lymphomas), entity/type (e.g., diffuse
large B-cell lymphoma, not otherwise specified) and subtype (e.g.,
diffuse large B cell lymphoma, not otherwise specified, germinal
center B-cell-like). Entities and subtypes have been formulated
such that the implementation of the WHO-HAEM5 classification
system is possible globally, in all settings. The WHO-HAEM5
recognizes the increasing importance of genetic and other
molecular data in the evaluation of lymphoid neoplasia; however,
consideration has also been given to the fact that the required
diagnostic resources are not universally available. Thus, to
facilitate a pragmatic approach to diagnosis while also encoura-
ging the adoption of molecular testing where required, “essential“
and “desirable“ diagnostic criteria for each entity are defined in a
hierarchical way. “Essential criteria” are minimal criteria to allow
the diagnosis of an entity as universally as possible, although
molecular criteria are inevitably included for some entities.
“Desirable criteria” are those that aid in confirmation and
refinement of the diagnosis, and usually require the application
of advanced techniques. In circumstances where resources are not
available to reach a definitive diagnosis of an entity (or when
suboptimal quality or quantity of material is limiting), a diagnostic
label based on the family name of that entity can be applied.
Provisional entities were not created in WHO-HAEM5 as these,

by definition, lack sufficient evidence. Novel potential subtypes
have been restrictively proposed for some entities, such as in
Burkitt lymphoma, where besides the three traditional epidemio-
logic variants, the distinction of EBV-positive and EBV-negative
Burkitt lymphoma subtypes is recommended.
The order of classification follows the traditional major

subgrouping according to cell lineage, with precursor cell
neoplasms followed by mature malignancies. Within a family,
the entities are generally arranged in an order commencing with
more indolent and progressing to increasingly aggressive ones.
For the first time, in an effort to prevent the over-diagnosis of
lymphoma and to improve the recognition of clinicopathologically
distinct entities, non-neoplastic conditions mimicking lymphoma
or representing an important differential diagnosis, have been
included in WHO-HAEM5. Similarly, in light of the increasing
clinical importance of germline tumour predisposition syndromes,
which are frequently associated with lymphoid neoplasms, such as
ataxia telangiectasia, dedicated chapters have been introduced. In
addition, the rapid development in the understanding of

lymphoid proliferations associated with inborn errors of immunity
(primary immunodeficiencies) and acquired immune disorders
justified significant updates, and these have been included in
WHO-HAEM5.
The following sections represent an overview of the most

significant changes made in WHO-HAEM5 compared with WHO-
HAEM4R (Tables 1–3).

B-CELL LYMPHOID PROLIFERATIONS AND LYMPHOMAS
New addition to WHO-HAEM5: Tumour-like lesions with B-cell
predominance
For the first time, the WHO ‘Blue Book’ on haematolymphoid
tumours introduces tumour-like lesions, including five entities in a
distinct class of tumour-like lesions with B-cell predominance.
Castleman disease is not a single disease but rather three
clinicopathologically distinct entities: unicentric Castleman dis-
ease, idiopathic multicentric Castleman disease, and KSHV/HHV8-
associated multicentric Castleman disease. The diagnostic algo-
rithm for the classification of Castleman disease requires an
integrated approach, including histological, haematological,
immunological, and clinical parameters [5–9]. Also included in
this section is IgG4-related disease; IgG4-related lymphadeno-
pathy has features that can overlap with Castleman disease. The
fifth chapter covers other non-neoplastic B-cell predominant
lymphoid proliferations involving lymph nodes and/or extranodal
sites that can mimic lymphomas, including progressive transfor-
mation of germinal centers, infectious mononucleosis, florid
reactive lymphoid hyperplasia/lymphoma-like lesion of the female
genital tract, and systemic lupus erythematosus.

B-lymphoblastic leukaemias/lymphomas (B-ALL): New
genetically defined entities and subtypes
Following the principles of ‘essential’ and ‘desirable’ diagnostic
criteria outlined above, B-lymphoblastic leukaemia/lymphoma (B-
ALL) can be diagnosed at the family/class level on morphology
and immunophenotype alone as B-ALL, not further classified
(NFC). Most entities can be classified based on broadly-available
cytogenetic testing, although molecular genetic subtyping is
required for some entities based on the current state-of-the-art.
B-ALL NOS, is to be reserved for cases that cannot be classified
even after comprehensive testing. The majority of precursor B-cell
neoplasms are classified in WHO-HAEM5 according to ploidy
changes, such as hyperdiploidy and hypodiploidy, as well as
chromosomal rearrangements or the presence of other genetic
drivers [10]. In most cases, well-known drivers underlie B-ALL
pathogenesis: iAMP21, BCR::ABL1 fusion, KMT2A rearrangements,
ETV6::RUNX1 fusion, TCF3::PBX1 fusion or IGH::IL3 fusion. The
classification based on these groups remains largely unchanged
from WHO-HAEM4R; however, the nomenclature focuses on the
molecular events rather than cytogenetic alterations, to allow for
the application of differing techniques for their detection (Table 1).
Other minor updates reflect the incorporation of additional
genetic findings and refinements in the definitions of entities
based on shared gene expression features. The rare B-ALL with
TCF3::HLF fusion has been added to WHO-HAEM5; it is distinct
from B-ALL with TCF3::PBX1 fusion and is characterized by
a particularly aggressive behaviour [11, 12]. B-ALL with BCR::
ABL1-like features is now an entity (previously a provisional entity),
by definition sharing gene expression and phenotypic features of
B-ALL with BCR::ABL1 fusion; it is prevalent across all age groups
[13, 14] and shows significant benefit from targeted therapies
[15–17]. Similarly, advances in diagnostic methodologies have
allowed identification of a new entity, B-ALL with ETV6::RUNX1-like
features, the description of which follows the section on B-ALL
with ETV6::RUNX1 fusion [18].
Recent gene expression and sequencing studies have identified

a number of novel genetic drivers that appear to confer distinct
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Table 1. WHO Classification of Haematolymphoid Tumours, 5th edition: B-cell lymphoid proliferations and lymphomas.

WHO Classification, 5th edition WHO Classification, revised 4th edition

Tumour-like lesions with B-cell predominance

Reactive B-cell-rich lymphoid proliferations that can mimic
lymphoma

Not previously included

IgG4-related disease Not previously included

Unicentric Castleman disease Not previously included

Idiopathic multicentric Castleman disease Not previously included

KSHV/HHV8-associated multicentric Castleman disease Multicentric Castleman disease

Precursor B-cell neoplasms

B-cell lymphoblastic leukaemias/lymphomas

B-lymphoblastic leukaemia/lymphoma, NOS (Same)

B-lymphoblastic leukaemia/lymphoma with high hyperdiploidy B-lymphoblastic leukaemia/lymphoma with hyperdiploidy

B-lymphoblastic leukaemia/lymphoma with hypodiploidy (Same)

B-lymphoblastic leukaemia/lymphoma with iAMP21 (Same)

B-lymphoblastic leukaemia/lymphoma with BCR::ABL1 fusion B-lymphoblastic leukaemia/lymphoma with t(9;22)(q34;q11.2); BCR-ABL1

B-lymphoblastic leukaemia/lymphoma with BCR::ABL1-like
features

B-lymphoblastic leukaemia/lymphoma, BCR-ABL1-like

B-lymphoblastic leukaemia/lymphoma with KMT2A
rearrangement

B-lymphoblastic leukaemia/lymphoma with t(v;11q23.3); KMT2A-rearranged

B-lymphoblastic leukaemia/lymphoma with ETV6::
RUNX1 fusion

B-lymphoblastic leukaemia/lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1

B-lymphoblastic leukaemia/lymphoma with ETV6::RUNX1-like
features

Not previously included

B-lymphoblastic leukaemia/lymphoma with TCF3::PBX1 fusion B-lymphoblastic leukaemia/lymphoma with t(1;19)(q23;p13.3); TCF3-PBX1

B-lymphoblastic leukaemia/lymphoma with IGH::IL3 fusion B-lymphoblastic leukaemia/lymphoma with t(5;14)(q31.1;q32.1); IGH/IL3

B-lymphoblastic leukaemia/lymphoma with TCF3::HLF fusion Not previously included

B-lymphoblastic leukaemia/lymphoma with other defined
genetic abnormalities

(Same)

Mature B-cell neoplasms

Pre-neoplastic and neoplastic small lymphocytic
proliferations

Monoclonal B-cell lymphocytosis (Same)

Chronic lymphocytic leukaemia/small lymphocytic lymphoma (Same)

(Entity deleted) B-cell prolymphocytic leukaemia

Splenic B-cell lymphomas and leukaemias

Hairy cell leukaemia (Same)

Splenic marginal zone lymphoma (Same)

Splenic diffuse red pulp small B-cell lymphoma (Same)

Splenic B-cell lymphoma/leukaemia with prominent nucleoli Not previously included (encompassing hairy cell leukaemia variant and some
cases of B-cell prolymphocytic leukaemia)

Lymphoplasmacytic lymphoma

Lymphoplasmacytic lymphoma (Same)

Marginal zone lymphoma

Extranodal marginal zone lymphoma of mucosa-associated
lymphoid tissue

(Same)

Primary cutaneous marginal zone lymphoma Not previously included (originally included under “extranodal marginal zone
lymphoma of mucosa-associated lymphoid tissue”)

Nodal marginal zone lymphoma (Same)

Paediatric marginal zone lymphoma (Same)

Follicular lymphoma

In situ follicular B-cell neoplasm In situ follicular neoplasia

Follicular lymphoma (Same)

Paediatric-type follicular lymphoma (Same)

Duodenal-type follicular lymphoma (Same)
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Table 1. continued

WHO Classification, 5th edition WHO Classification, revised 4th edition

Cutaneous follicle centre lymphoma

Primary cutaneous follicle centre lymphoma (Same)

Mantle cell lymphoma

In situ mantle cell neoplasm In situ mantle cell neoplasia

Mantle cell lymphoma (Same)

Leukaemic non-nodal mantle cell lymphoma (Same)

Transformations of indolent B-cell lymphomas

Transformations of indolent B-cell lymphomas Not previously included

Large B-cell lymphomas

Diffuse large B-cell lymphoma, NOS (Same)

T-cell/histiocyte-rich large B-cell lymphoma (Same)

Diffuse large B-cell lymphoma/ high grade B-cell lymphoma
with MYC and BCL2 rearrangements

High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements

ALK-positive large B-cell lymphoma (Same)

Large B-cell lymphoma with IRF4 rearrangement (Same)

High-grade B-cell lymphoma with 11q aberrations Burkitt-like lymphoma with 11q aberration

Lymphomatoid granulomatosis (Same)

EBV-positive diffuse large B-cell lymphoma EBV-positive diffuse large B-cell lymphoma, NOS

Diffuse large B-cell lymphoma associated with chronic
inflammation

(Same)

Fibrin-associated large B-cell lymphoma Not previously included (Previously considered a subtype of diffuse large B-cell
lymphoma associated with chronic inflammation)

Fluid overload-associated large B-cell lymphoma Not previously included

Plasmablastic lymphoma (Same)

Primary large B-cell lymphoma of immune-privileged sites Not previously included, encompassing primary diffuse large B-cell lymphoma of
the CNS in revised 4th edition (plus primary large B-cell lymphoma of the
vitreoretina and primary large B-cell lymphoma of the testis)

Primary cutaneous diffuse large B-cell lymphoma, leg type (Same)

Intravascular large B-cell lymphoma (Same)

Primary mediastinal large B-cell lymphoma (Same)

Mediastinal grey zone lymphoma B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and
classic Hodgkin lymphoma

High-grade B-cell lymphoma, NOS (Same)

Burkitt lymphoma

Burkitt lymphoma (Same)

KSHV/HHV8-associated B-cell lymphoid proliferations and
lymphomas

Primary effusion lymphoma (Same)

KSHV/HHV8-positive diffuse large B-cell lymphoma HHV8-positive diffuse large B-cell lymphoma, NOS

KSHV/HHV8-positive germinotropic lymphoproliferative
disorder

HHV8-positive germinotropic lymphoproliferative disorder

Lymphoid proliferations and lymphomas associated with
immune deficiency and dysregulation

Hyperplasias arising in immune deficiency/dysregulation Not previously included, encompassing non-destructive post-transplant
lymphoproliferative disorders, among others

Polymorphic lymphoproliferative disorders arising in immune
deficiency/dysregulation

Not previously included, encompassing polymorphic posttransplant
lymphoproliferative disorders, other iatrogenic immunodeficiency-associated
lymphoproliferative disorders, among others

EBV-positive mucocutaneous ulcer (Same)

Lymphomas arising in immune deficiency / dysregulation Not previously included, encompassing monomorphic posttransplant
lymphoproliferative disorders, classic Hodgkin lymphoma posttransplant
lymphoproliferative disorders, lymphomas associated with HIV infection,
among others

Inborn error of immunity-associated lymphoid proliferations
and lymphomas

Lymphoproliferative diseases associated with primary immune disorders
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clinical, phenotypic and/or prognostic features. Considering
emerging, yet limited, evidence for separating them in the future
as potential novel entities, these new subtypes are subsumed
under “B-ALL with other defined genetic abnormalities”. These
include B-ALL with DUX4 [18, 19], MEF2D [20], ZNF384 [21] or
NUTM1 [22] rearrangements, with IG::MYC fusion [23, 24], and with
PAX5alt [25] or PAX5 p.P80R (NP_057953.1) [26] abnormalities.
Intriguingly, B-ALL with ZNF384 rearrangement, DUX4 rearrange-
ment or PAX5 p.P80R may show monocytic differentiation
following therapy and even at diagnosis [27, 28], broadening
concepts of the plasticity of leukemic lineages. This plasticity has
important implications for disease management, including mini-
mal residual disease (MRD) assessment [27].

Mature B-cell neoplasms
The category of mature B-cell neoplasms comprises 12 families.
The hierarchical structure is outlined in Table 1.

Pre-neoplastic and neoplastic small lymphocytic
proliferations: MBL and CLL/SLL remain; B-PLL is no longer
recognized as an entity
This family comprises two entities: Monoclonal B-cell Lymphocy-
tosis (MBL) and Chronic Lymphocytic Leukaemia/Small Lympho-
cytic Lymphoma (CLL/SLL). WHO-HAEM5 recognizes three
subtypes of monoclonal B-cell lymphocytosis (MBL):

a. Low-count MBL or clonal B-cell expansion: clonal CLL/SLL-
phenotype B-cell count below 0.5 x 109/L with no other
features diagnostic of B-lymphoproliferative disorder. The
arbitrary threshold is based on the distribution of clonal
B-cell counts in population studies compared to clinical
cohorts [29].

b. CLL/SLL-type MBL: monoclonal CLL/SLL-phenotype B-cell

count ≥0.5 x 109/L and total B-cell count less than 5 x 109/L
with no other features diagnostic of CLL/SLL [30]. The
threshold of less than 5 x 109/L is arbitrary but identifies a
group with a very low likelihood of requiring treatment
compared to individuals with B-cell counts between 5–10 x
109/L [31].

c. non-CLL/SLL-type MBL: ANY monoclonal non-CLL/SLL
phenotype B-cell expansion with no symptoms or features
diagnostic of another mature B-cell neoplasm. The majority
of cases have features consistent with a marginal zone (MZ)
origin [32].

All subtypes of MBL are clinically characterized by immune
impairment with sub-optimal response to vaccinations and
increased risk of infection [33–37]. In the diagnosis of CLL, CD5,
CD19, CD20, CD23, and surface or cytoplasmic kappa and lambda
light chains are regarded as essential markers, and CD10, CD43,
CD79b, CD81, CD200 and ROR1 as additional targets useful in the
differential diagnosis from other small B-cell lymphomas/leukae-
mias [38]. In addition to del(11q), del(13q), del(17p), and trisomy
12 assessment, TP53 mutational analysis, immunoglobulin gene
heavy chain variable (IGHV) region somatic hypermutation (SHM)
analysis and B-cell receptor stereotype subset analysis (subset #2
configuration) are all essential for full prognostic evaluation of
CLL/SLL [39–41]. Detection of karyotypic complexity and BTK,
PLCG2, and BCL2 mutation status all remain desirable additional
investigations in the context of targeted therapy. IGHV mutation
and TP53 aberration status are both included in the CLL-
international prognostic index (CLL-IPI) [42], along with age,
clinical stage and beta 2-microglobulin level. The International
Prognostic Score for early-stage CLL/SLL (IPS-E) includes IGHV
mutation status, absolute lymphocyte count >15 × 109/L, and
presence of palpable lymph nodes [43]. In the setting of

Table 1. continued

WHO Classification, 5th edition WHO Classification, revised 4th edition

Hodgkin lymphoma

Classic Hodgkin lymphoma (Same)

Nodular lymphocyte predominant Hodgkin lymphoma (Same)

Plasma cell neoplasms and other diseases with
paraproteins

Monoclonal gammopathies

Cold agglutinin disease Not previously included

IgM monoclonal gammopathy of undetermined significance (Same)

Non-IgM monoclonal gammopathy of undetermined
significance

(Same)

Monoclonal gammopathy of renal significance Not previously included

Diseases with monoclonal immunoglobulin deposition

Immunoglobulin-related (AL) amyloidosis Primary amyloidosis

Monoclonal immunoglobulin deposition disease Light chain and heavy chain deposition disease

Heavy chain diseases

Mu heavy chain disease (Same)

Gamma heavy chain disease (Same)

Alpha heavy chain disease (Same)

Plasma cell neoplasms

Plasmacytoma (Same)

Plasma cell myeloma (Same)

Plasma cell neoplasms with associated paraneoplastic
syndrome
-POEMS syndrome
-TEMPI syndrome
-AESOP syndrome

(Same) Except AESOP syndrome not previously included
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Table 2. WHO Classification of Haematolymphoid Tumours, 5th edition: T-cell and NK-cell lymphoid proliferations and lymphomas.

WHO Classification, 5th edition WHO Classification, revised 4th edition

Tumour-like lesions with T-cell predominance

Kikuchi-Fujimoto disease Not previously included

Indolent T-lymphoblastic proliferation Not previously included

Autoimmune lymphoproliferative syndrome Not previously included

Precursor T-cell neoplasms

T-lymphoblastic leukaemia/lymphoma

T-lymphoblastic leukaemia / lymphoma, NOS T-lymphoblastic leukaemia/lymphoma

Early T-precursor lymphoblastic leukaemia / lymphoma Early T-cell precursor lymphoblastic leukaemia

(Entity deleted) NK-lymphoblastic leukaemia/lymphoma

Mature T-cell and NK-cell neoplasms

Mature T-cell and NK-cell leukaemias

T-prolymphocytic leukaemia (Same)

T-large granular lymphocytic leukaemia T-cell large granular lymphocytic leukaemia

NK-large granular lymphocytic leukaemia Chronic lymphoproliferative disorder of NK cells

Adult T-cell leukaemia/lymphoma (Same)

Sezary syndrome (Same)

Aggressive NK-cell leukaemia (Same)

Primary cutaneous T-cell lymphomas

Primary cutaneous CD4-positive small or medium T-cell lymphoproliferative
disorder

(Same)

Primary cutaneous acral CD8-positive lymphoproliferative disorder Primary cutaneous acral CD8-positive T-cell lymphoma

Mycosis fungoides (Same)

Primary cutaneous CD30-positive T-cell lymphoproliferative disorder:
Lymphomatoid papulosis

(Same)

Primary cutaneous CD30-positive T-cell lymphoproliferative disorder: Primary
cutaneous anaplastic large cell lymphoma

(Same)

Subcutaneous panniculitis-like T-cell lymphoma (Same)

Primary cutaneous gamma/delta T-cell lymphoma (Same)

Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell
lymphoma

(Same)

Primary cutaneous peripheral T-cell lymphoma, NOS Not previously included

Intestinal T-cell and NK-cell lymphoid proliferations and lymphomas

Indolent T-cell lymphoma of the gastrointestinal tract Indolent T-cell lymphoproliferative disorder of the
gastrointestinal tract

Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract Not previously included

Enteropathy-associated T-cell lymphoma (Same)

Monomorphic epitheliotropic intestinal T-cell lymphoma (Same)

Intestinal T-cell lymphoma, NOS (Same)

Hepatosplenic T-cell lymphoma

Hepatosplenic T-cell lymphoma (Same)

Anaplastic large cell lymphoma

ALK-positive anaplastic large cell lymphoma Anaplastic large cell lymphoma, ALK-positive

ALK-negative anaplastic large cell lymphoma Anaplastic large cell lymphoma, ALK-negative

Breast implant-associated anaplastic large cell lymphoma (Same)

Nodal T-follicular helper (TFH) cell lymphoma

Nodal TFH cell lymphoma, angioimmunoblastic-type Angioimmunoblastic T-cell lymphoma

Nodal TFH cell lymphoma, follicular-type Follicular T-cell lymphoma

Nodal TFH cell lymphoma, NOS Nodal peripheral T-cell lymphoma with TFH phenotype

Other peripheral T-cell lymphomas

Peripheral T-cell lymphoma, not otherwise specified (Same)

EBV-positive NK/T-cell lymphomas

EBV-positive nodal T- and NK-cell lymphoma Not previously included
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transformation, use of the term “Richter transformation” is
recommended over “Richter Syndrome”.
B-prolymphocytic leukaemia (B-PLL) of WHO-HAEM4R is no

longer recognized in WHO-HAEM5 in view of its heterogeneous
nature. Cases that have been labeled as B-PLL include: (1) a variant
of mantle cell lymphoma, characterized by presence of IGH::
CCND1; (2) prolymphocytic progression of CLL/SLL, defined by
CD5-positive non-mantle B-cell neoplasm with >15% prolympho-
cytes in the peripheral blood and/or bone marrow [44–47], and (3)
other cases, now classified as “splenic B-cell lymphoma/leukaemia
with prominent nucleoli”.

Splenic B-cell lymphomas and leukaemias: The term “splenic
B-cell lymphoma/ leukaemia with prominent nucleoli”
replaces “hairy cell leukaemia variant” and “CD5-negative
B-cell prolymphocytic leukaemia”
The splenic B-cell lymphoma and leukaemia family in WHO-
HAEM5 includes hairy cell leukaemia (HCL), splenic B-cell
lymphoma/leukaemia with prominent nucleoli (SBLPN), splenic
diffuse red pulp small B-cell lymphoma (SDRPL) and splenic
marginal zone lymphoma (SMZL) (Fig. 1). In contrast to WHO-
HAEM4R, SBLPN and SDRPL are now separately classified, with a
nomenclature change in the former. Hairy cell leukaemia is a
mature B-cell neoplasm with distinctive clinicopathologic features
and BRAF p.V600E (NP_004324.2) somatic mutation in ≥95% of
cases [48]. Other splenic small B-cell lymphomas usually lack BRAF
mutations.
The new entity splenic B-cell lymphoma/leukaemia with

prominent nucleoli (SBLPN) replaces the previous term “hairy-
cell leukaemia variant“, in recognition that this proliferation is
biologically distinct from HCL, although the leukaemic cells may
partly resemble the “hairy cells” of HCL. Moreover, this entity also
absorbs all cases previously termed CD5-negative B-prolympho-
cytic leukaemia (B-PLL) per WHO-HAEM4R. Although data from the
literature cannot be directly extrapolated to the new class, it can
be stated that SBLPN is rare, comprising approximately 0.4% of

chronic lymphoid malignancies [49–53], and affects mainly elderly
patients. The neoplastic cells have prominent nucleoli and are
negative for HCL markers CD25, annexin A1, TRAP, and CD123.
SBLPN is clinically more aggressive than HCL and resistant to
cladribine as single-agent treatment. More recently improved
sensitivity to cladribine in combinations with rituximab or
bendamustine has been shown [49, 54–56].
Splenic diffuse red pulp small B-cell lymphoma (SDRPL) has

some features overlapping with HCL and SBLPN but can be
distinguished on careful evaluation of morphologic and immuno-
phenotypic characteristics. A CD200 mean fuorescence intensity
(MFI)/CD180 MFI ratio <0.5 on flow cytometry favours a diagnosis
of SDRPL over HCL, SMZL, and SBLPN [57]. These entities can be
best discriminated by pathologic examination of the spleen; in the
absence of a splenectomy specimen, bone marrow examination
shows characteristic features in SDRPL with a predominant
intrasinusoidal pattern, while SMZL and SBLPN have a more
diverse growth pattern in the bone marrow and HCL shows a
typical diffuse pattern with reticulin fibrosis [58, 59]. In absence of
a splenectomy specimen, however, the distinction is often not
possible.

Lymphoplasmacytic lymphoma: IgM matters
WHO-HAEM5 recognizes two subtypes of lymphoplasmacytic
lymphoma (LPL), the most common being the IgM-LPL/
Waldenström Macroglobulinaemia (WM) type. Non-WM type LPL
represents around 5% of LPL and includes: (1) cases with IgG or
IgA monoclonal proteins, (2) non-secretory LPL, and (3) IgM LPL
without bone marrow involvement [60–65].
There are two molecular subsets of IgM-LPL/WM type based on

the presence or absence of the MYD88 p.L265P (NP_002459.2)
mutation, which is regarded as the hallmark driver mutation in the
vast majority of LPL (>90%) [66–69]. Demonstration of the MYD88
p.L265P mutation may aid in the difficult differential diagnosis
with nodal and extranodal marginal zone lymphomas (MZL) with
plasmacytoid differentiation and plasma cell (multiple) myeloma.

Table 2. continued

Extranodal NK/T-cell lymphoma Extranodal NK/T-cell lymphoma, nasal-type

EBV-positive T- and NK-cell lymphoid proliferations and lymphomas of childhood

Severe mosquito bite allergy (Same)

Hydroa vacciniforme lymphoproliferative disorder Hydroa vacciniforme-like lymphoproliferative disorder

Systemic chronic active EBV disease Chronic active EBV infection of T- and NK-cell type,
systemic form

Systemic EBV-positive T-cell lymphoma of childhood (Same)

Table 3. WHO Classification of Haematolymphoid Tumours, 5th edition: Stroma-derived neoplasms of lymphoid tissues.

WHO Classification, 5th edition WHO Classification, revised 4th edition

Mesenchymal dendritic cell neoplasms

Follicular dendritic cell sarcoma (Same)

EBV-positive inflammatory follicular dendritic cell sarcoma Inflammatory pseudotumour-like follicular/fibroblastic dendritic cell sarcoma

Fibroblastic reticular cell tumour (Same)

Myofibroblastic tumour

Intranodal palisaded myofibroblastoma Not previously included

Spleen-specific vascular-stromal tumours

Splenic vascular-stromal tumours

Littoral cell angioma Not previously included

Splenic hamartoma Not previously included

Sclerosing angiomatoid nodular transformation of spleen Not previously included
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The two latter entities generally lack the MYD88 p.L265P mutation
with the exception of rare cases of MZL. CXCR4 mutations occur in
up to 40% of all LPLs, usually concurrent with MYD88 mutations. It
is desirable to perform CXCR4 mutational analysis for patients
considered for treatment with a BTK inhibitor, since this genetic
context is not only associated with shorter time to treatment, but
especially with resistance to ibrutinib therapy [70].

Marginal zone lymphomas: cytogenetic and mutational
profiles differ by anatomic site, and cutaneous MZL achieves
independence
Extranodal marginal zone lymphoma of mucosa-associated
lymphoid tissue (EMZL) and nodal marginal zone lymphoma
(NMZL), featured as distinct entities in WHO-HAEM4R, are retained
in WHO-HAEM5. Paediatric nodal marginal zone lymphoma
(pNMZL) is upgraded from a subtype under nodal marginal zone
lymphoma to a separate entity. Although it shows overlapping
features with paediatric-type follicular lymphoma, current pub-
lished evidence is considered insufficient to group these two
indolent paediatric diseases into one family at this time. Primary
cutaneous marginal zone lymphoma (PCMZL) has also been
designated as a separate entity in WHO-HAEM5, owing to its
distinctive clinicopathologic features.
EMZL, NMZL, and PCMZL have overlapping histologic and

immunophenotypic features: the neoplastic cells are mature small
B cells typically negative for CD5 and CD10. Plasmacytic
differentiation is common, and associated reactive lymphoid
follicles are often present. However, despite some shared features,
they have different etiologies and pathogenesis, with further
differences among EMZLs arising in different anatomic sites.
Trisomy of chromosomes 3 and 18 are common in all. Gains of
chromosomes 2p and 6p, and loss of 1p and 6q are frequent in
NMZL [71–77]; however, gain of 6p and loss of 6q are recurrently

seen only in EMZL of the ocular adnexa [78]. Translocations
involving MALT1 such as t(11;18)(q21;q21), resulting in BIRC3::
MALT1 fusion, are recurrent in gastric and pulmonary EMZL but
rare at other sites [79–83]. In contrast, no recurrent gene fusions or
rearrangements are described in PCMZL or NMZL.
The mutational profiles of EMZL and NMZL differ [76, 84–86]. In

addition, there are significant genetic differences among EMZLs
arising in different anatomic sites (Fig. 2): e.g., ocular adnexal
EMZL commonly shows TNFAIP3 mutation/deletion [87, 88];
salivary gland EMZL shows recurrently mutated GPR34 [89, 90];
most thyroid EMZL carry deleterious mutations of CD274,
TNFRSF14 and/or TET2 [91]; and PCMZL often shows FASmutations
[92]. Somatic variants of KMT2D, PTPRD, NOTCH2, KLF2, and others
are frequent in NMZL [76, 84, 85, 93] but not in EMZL. Better
definition of the underlying molecular genetic changes of these
lymphomas may potentially open the door to improved treatment
options.

Follicular lymphoma (FL): from classic grading to biological
grouping
The family of follicular lymphoma encompasses follicular lym-
phoma, in situ follicular B-cell neoplasm (ISFN), paediatric-type FL
and duodenal-type FL. There are no significant updates on the
latter three entities in WHO-HAEM5. In contrast, the entity of
follicular lymphoma has undergone significant revision. The vast
majority of FL (85%) have at least in part a follicular growth
pattern, are composed of centrocytes and centroblasts and
harbour the t(14;18)(q32;q21) translocation associated with IGH::
BCL2 fusion; these are now termed classic FL (cFL) and set apart
from two related subtypes/groups, follicular large B-cell lym-
phoma (FLBL) and FL with uncommon features (uFL).
In WHO-HAEM5, grading of FL, which is only pertinent to cFL, is

no longer mandatory. This decision was made after extensive

Fig. 1 Summary of the relationship between splenic B-cell lymphoma entities as named and defined in the revised 4th edition of the
WHO classification (WHO-HAEM4R) and in the present 5th edition (WHO-HAEM5). Some cases previously classified as B-prolymphocytic
leukaemia do represent (blastoid) mantle cell lymphoma (as was already indicated in WHO-HAEM4R) or prolymphocytic progression of
CLL. Cases classified in WHO-HAEM4R as CLL/SLL with ≥ 15% of prolymphocytes are now classified as prolymphocytic progression of CLL,
cases with <15% of prolymphocytes remain CLL/SLL in WHO-HAEM5. Remaining cases are now renamed as “splenic B-cell lymphoma/
leukaemia with prominent nucleoli” (SBLPN). This latter entity has absorbed cases formerly classified as hairy cell leukaemia variant (HCLv) and
very rare cases of splenic marginal zone lymphoma with similar morphological features. It should be noted that the distinction between the
various entities cannot always be made in the absence of a splenectomy specimen.
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discussions and evaluation of the literature centering on the
reproducibility of grading and on its questionable clinical
significance for individual patients in the era of modern therapy.
Poor reproducibility may result from various causes, including
sampling (complete lymph node excision versus core needle
biopsy), definition and recognition of centroblasts, and methods
of enumeration. Since grading of FL is based on the enumeration
of centroblasts per high-power field (HPF), one of the challenges is
the lack of a consistent definition of a HPF using a 40x microscope
objective (400x magnification), where the size of the microscopic
field has changed over the years even at the same magnification
[94]. Lack of consensus regarding the morphological spectrum of
centroblasts and using conventional methods of counting further
negatively impacts reproducibility [95]. Clinical outcomes among
patients with FL of grades 1, 2, and 3A seem not to be significantly
different. Currently, patients are treated with similar protocols
both in and outside clinical trials in many parts of the world [96–
99]. While attempts have been made to improve reproducibility
through digital applications or by using immunohistochemical
supportive data, such methods have not been compared to
patient outcome. Hence, it was deemed premature to include
them in WHO-HAEM5 [100–102]. Taken together, for histopatho-
logic as well as clinical reasons, it was felt timely to make grading
of FL to be optional in the subtyping of cFL.
Rare cases of cFL grade 3A may show a focal or extensive

diffuse growth pattern. In WHO-HAEM4R, the recommended
diagnosis in such cases was “DLBCL with follicular lymphoma”,
even though sheets of large cells are not often present. Currently,
it is uncertain whether such cases should better be classified as
cFL or DLBCL [103] and therefore, treatment decisions in
individual patients should not be based on pathology information
alone but rather be made in multidisciplinary conference settings
and await research to define more objective criteria to predict

clinical course. The subtype of FLBL largely equals WHO-HAEM4R
FL grade 3B, and renaming was done for reasons of consistency
throughout the classification.
The newly introduced subtype of uFL includes two subsets that

significantly diverge from cFL: one with “blastoid” or “large
centrocyte” variant cytological features, and the other with a
predominantly diffuse growth pattern [104, 105]. FL with
“blastoid” or “large centrocyte” cytological features more fre-
quently display variant immunophenotypic and genotypic char-
acteristics and may show inferior survival [106]. They need to be
distinguished from large B-cell lymphoma with IRF4 rearrange-
ment [107]. FL with a predominantly diffuse growth pattern
frequently occurs as a large tumour in the inguinal region and is
associated with CD23 expression, an absence of IGH::BCL2 fusion
[108], and frequent STAT6 mutations along with 1p36 deletion or
TNFRSF14 mutation [104, 109]. Separating such cases from cFL will
support research to clarify disease biology, allowing a better
definition in future classifications.

Mantle cell lymphoma: Improved risk stratification
WHO-HAEM5 groups mantle cell neoplasia into three individual
chapters. In situ mantle cell neoplasm (ISMCN) is rare and
typically an incidental finding. It represents colonization of mantle
zones of lymphoid follicles by B cells carrying an IG::CCND1 fusion
leading to cyclin D1 overexpression [110].
The IGH::CCND1 fusion associated with t(11;14)(q13;q32) is the

genetic hallmark of mantle cell lymphoma (MCL), present in
≥95% of cases (i.e., cyclin D1-positive MCL subtype) [111, 112].
Occasionally, IGK or IGL serve as the CCND1 translocation partner
[113]. In the occasional cases of MCL that strongly express cyclin
D1 protein but show no CCND1 rearrangement by FISH, genomic
studies have revealed cryptic rearrangements of IGK or IGL
enhancers with CCND1 [114–116]. In the small subset of MCL
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Fig. 2 Aetiology and recurrent genetic abnormalities in extranodal marginal zone lymphoma (EMZL) of various sites. An important
clinical application is that BIRC3::MALT1 identifies those cases of the gastric EMZL not responding to H. pylori eradication. As many of the genes
involved in EMZL have not been uniformly investigated across different sites, only the recurrent genetic changes fundamental to the
understanding of EMZL pathogenesis are presented. The height of the boxes under sites does not reflect the frequencies of these lymphomas.
trans translocation, mut mutation, del: deletion.
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negative for cyclin D1 expression and CCND1 rearrangement (i.e.,
cyclin D1-negative MCL subtype), CCND2, CCND3, or CCNE
rearrangements have been identified as alternative mechanisms
of cell cycle dysregulation [117]. In recent years, the median
overall survival of patients with MCL has dramatically increased
due to improved therapies. Hence, the identification of prognostic
subgroups has become highly relevant. Widely available and best-
established biomarkers of high-risk MCL include cytomorphology
(pleomorphic or blastoid appearance), high Ki67 proliferative
index, p53 expression and TP53 mutation [118, 119].
Non-nodal MCL (nnMCL) is characterized by involvement of

blood, bone marrow and spleen, little or no lymphadenopathy, a
mostly asymptomatic presentation, and a better clinical outcome
compared to MCL. Biologically, nnMCL differs from MCL by: (i) lack
of SOX11 expression [120, 121], low Ki67 index and frequent lack
of CD5 expression [122]; (ii) differences in the usage of IGHV gene
segments with biased usage of the IGHV1-8 gene [122] together
with a higher somatic hypermutation load [121, 123, 124]; and (iii)
fewer genetic alterations and infrequent genomic complexity
[120, 125].

High-grade transformation steps forth
For the first time, WHO-HAEM5 now includes a section with the
description of High-grade transformation of indolent B- cell
lymphomas including a summary of the incidence of known and
driver genes.

Large B-cell lymphomas: new names and new umbrellas
The family of large B-cell lymphomas comprises a wide spectrum
of tumours. Although these are generally composed of medium-
sized to large cells with round to ovoid nuclei and vesicular
chromatin, cases with intermediate-sized and blastoid cells may
also meet criteria for this family. These require delineation from
morphologically similar entities, such as the blastoid variant of
mantle cell lymphoma and lymphoblastic leukaemia/lymphoma.
Diffuse large B-cell lymphoma, not otherwise specified

(DLBCL, NOS) represents the most common entity, and is defined
by large-cell morphology as above, mature B-cell phenotype, and
lack of criteria defining specific large B-cell lymphoma entities. The

lymphomas encompassed within DLBCL, NOS are morphologically
and molecularly heterogeneous. Since most DLBCL, NOS broadly
recapitulate the differentiation and maturation mechanisms active
in germinal centers (GC), two main subtypes previously defined in
WHO-HAEM4R continue to be recognized. The germinal centre B-
cell-like (GCB) subtype has a gene expression profile (GEP) related
to a GC cell of origin (COO), and is enriched for IGH::BCL2 fusion
due to t(14;18)(q32;q21) and mutations of genes instrumental for
GC development, GC dark zone and light zone transitions and
microenvironmental interactions, such as EZH2, GNA13, MEF2B,
KMT2D, TNFRSF14, B2M and CREBBP [126]. The activated B-cell-like
(ABC) subtype derives from cells of GC exit or post GC origin, with
either germinal center-exit or early plasmablastic phenotype. It is
characterized by dependence on BCR signaling and NFκB
activities, is negative for most GC markers, and expresses IRF4/
MUM1 [127]. It is enriched for BCR pathway mutations such as in
MYD88 (mostly p.L265P), CD79B and PIM1, as well as genetic
changes that block the B-cell differentiation program such as BCL6
rearrangements and PRDM1/BLIMP1 mutation/deletion [126]. It is
recommended to continue rendering the GCB/ABC (GCB/nonGCB)
distinction although it has become apparent that the clinical
impact of COO stratification is relatively limited outside clinical
trials. Although IHC algorithms obviously do not recognize the
“unclassified” GEP category and have concordance issues with
GEP, they are widely used in routine practice. Recent data from
next generation sequencing studies have illustrated a hetero-
geneous molecular landscape of DLBCL, NOS with around 150
genetic drivers that are recurrently mutated in DLBCL, with a
mean of approximately 8% of these genes mutated per patient
[128]. Interestingly, in spite of the use of various sequencing
approaches and clustering algorithms, the genetic landscape of
DLBCL, NOS can be used for sub-classification with broad
concordance suggesting that the underlying disease biology can
be captured by mutational analysis. Some of the genetic groups
harbour a mutational profile that in part overlaps with those of FL
or MZL, suggesting either transformation from these low-grade
lymphomas or a common path in their early pathogenesis.
However, no unifying concept for proposed clusters and the
significance of their genetic drivers has been established so far,

Fig. 3 Summary of the relationship between large B-cell lymphoma (LBCL) entities as named and defined in the revised 4th edition of the
WHO classification (WHO-HAEM4R) and in the present 5th edition (WHO-HAEM5). * “Rare B-cell lymphomas” refer to those fulfilling
definitions of specific clinico-pathological entities while incidentally bearing concomitant MYC and BCL2 rearrangements. Examples are fluid-
overload-associated large B-cell lymphomas and rare follicular lymphomas. R rearrangement, G germline configuration.
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precluding the definition of a unified genetic framework of DLBCL,
NOS at the present time. Moreover, the impact of these genetic
clusters on outcome and as a basis for targeted treatment
approaches is currently unclear and awaits evidence from clinical
trials. Therefore, it was considered premature to introduce such
molecular classifications in WHO-HAEM5.
WHO-HAEM5 recognizes 17 specific entities as “large B-cell

lymphomas” other than DLBCL, NOS (Table 1 and Fig. 3). For most
of these entities, biological concepts and diagnostic strategies
have remained largely unchanged compared with WHO-HAEM4R.
However, the names of some entities have been modified for
reasons of consistency, from “diffuse large B-cell lymphoma“ to
“large B-cell lymphoma“, acknowledging the fact that a diffuse
growth pattern is either not apparent/present or cannot be
assessed in some entities (e.g., fibrin-associated large B-cell
lymphoma or fluid-overload associated large B-cell lymphoma).
The WHO-HAEM4R entity of high-grade B-cell lymphoma with

dual rearrangements of MYC and BCL2 and/or BCL6 has been
conceptually reframed and reassigned. In recognition of their
variable morphologies but homogeneous dark zone biologic
features and gene expression characteristics, the WHO-HAEM5
renames the entity diffuse large B-cell lymphoma/high-grade
B-cell lymphoma with MYC and BCL2 rearrangements (DLBCL/
HGBL-MYC/BCL2) to encompass tumours defined by the presence
of dual MYC and BCL2 rearrangements that may be composed of
large or intermediate or blastoid cells (Fig. 4). Hence, the primary
morphological categorization of the neoplasm can be maintained
after determining the genetic constitution. This group of cases
forms a homogeneous entity with an exclusive GC gene
expression profile, a close pathogenetic relationship to FL and
molecular GC-like DLBCL subsets [129–132]. In addition, gene
expression signatures associated with DLBCL/HGBL-MYC/BCL2
(MHG, DHITsig) [130, 133] significantly overlap with those of
Burkitt lymphoma (BL). In contrast, lymphoid neoplasms with dual
MYC and BCL6 rearrangements represent a more diverse spectrum
[129] with variable gene expression profiles and mutational
spectra, markedly differing from DLBCL/HGBL-MYC/BCL2. Hence,
these cases have been excluded from the DLBCL/HGBL-MYC/BCL2
entity and are now classified either as a subtype of DLBCL, NOS or
HGBL, NOS according to their cytomorphological features (Fig. 4).
High-grade B-cell lymphoma with 11q aberration (HGBL-

11q), formerly known as Burkitt-like lymphoma with
11q aberration in WHO-HAEM4R, is an aggressive MYC
rearrangement-negative mature B-cell lymphoma with a morphol-
ogy similar to Burkitt lymphoma (BL) or with an intermediate or

blastoid appearance, an immunophenotype (CD10+, BCL6+,
BCL2-), and/or gene expression profile (GEP) similar to BL, and a
characteristic chromosome 11q-gain/loss pattern. The losses in
11q24qter are more specific to this entity than the centromeric
gains but rarely might be substituted by copy-number neutral
losses of heterozygosity. More recent studies have also confirmed
that the mutational spectrum, besides the pattern of genomic
imbalances, is different from that of BL and is more similar to that
of DLBCL of GCB type. Of note, genomic alterations affecting the
ID3-TCF3 complex, one of the molecular hallmarks of BL, are only
rarely, if at all, seen in HGBL-11q [134, 135]. Cases of B-cell
lymphoma with a Burkitt-like appearance that lack MYC rearran-
gement, therefore, should be tested for the 11q gain/loss pattern
[136] (Fig. 4). It should be noted that the morphological spectrum
of HGBL-11q as defined by the specific 11q-gain/loss pattern is
more restricted than that of DLBCL/HGBL-MYC/BCL2.
Large B-cell lymphomas (LBCL) of immune-privileged sites is

a new umbrella term introduced in WHO-HAEM5 to acknowledge
common biological features of a group of aggressive B-cell
lymphomas that arise as primary tumours in the central nervous
system (CNS), the vitreoretinal compartment, and the testes of
immunocompetent patients. This new entity now combines the
previous entity of primary DLBCL of CNS with DLBCL of the
vitreoretina and testis that were previously included among
DLBCL, NOS. They arise in immune sanctuaries created by their
respective anatomical structures (e.g., the blood-brain, blood-
retinal, and blood-testicular barriers), and immune regulation
systems within their respective primary sites, and share immuno-
phenotypic and molecular features [137–139] (Table 4). Informa-
tion on this group of tumours is rapidly accruing: it appears that
some lymphomas arising at other distinct sites such as the breast
and skin share some of these features, and thus, this group of
‘immune-privileged lymphomas’ might expand in future
classifications.
Fluid overload-associated large B-cell lymphoma is a new

addition to the list of large B-cell lymphomas in WHO-HAEM5,
being distinct from primary effusion lymphoma (PEL). This entity
has been briefly alluded to in the 5th Edition of the WHO
Classification of Thoracic Tumours, under the names “PEL-like
lymphoma” or “HHV8-unrelated PEL-like lymphoma” [140].
Patients usually are adults, predominantly elderly, without under-
lying immunodeficiency, who present with exclusive involvement
of body cavities, most commonly the pleural cavity [141–143].
They frequently have an underlying condition causing fluid
overload, such as chronic heart failure, renal failure, protein-

Fig. 4 Algorithm for classification of aggressive B-cell lymphomas in WHO-HAEM5 in the light ofMYC, BCL2 and BCL6 rearrangement and
complex 11q gain/loss patterns. HGBL high grade B-cell lymphoma, R rearrangement, G germline configuration.
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losing enteropathy or liver failure/cirrhosis. The neoplastic large
cells exhibit a mature B-cell rather than plasmablastic immuno-
phenotype. KSHV/HHV8 is negative, while EBV is positive in
13–30% of cases and the genomic landscape differs essentially
from primary effusion lymphoma (PEL) [141, 142]. The prognosis
appears to be fairly favorable, yet another reason for distinction
from PEL.
Mediastinal gray zone lymphoma (MGZL) is a B-cell

lymphoma with overlapping features between primary mediast-
inal B-cell lymphoma (PMBL) and classic Hodgkin lymphoma
(CHL), especially nodular sclerosis CHL (NSCHL). This entity
replaces the term “B-cell-lymphoma, unclassifiable with features
intermediate between DLBCL and classic Hodgkin lymphoma” of
the WHO-HAEM4R, taking into account that lymphomas with
these features are specific to the mediastinum and are part of a
single biologic group with a morphologic and immunophenotypic
spectrum from CHL to PMBL, with MGZL straddling the two.
Current evidence indicates that cases with morphologic and
immunophenotypic features similar to MGZL, but occurring
outside and without involvement of the mediastinum, harbour
different gene expression profiles and DNA alterations [143].
Hence, these cases are better classified as DLBCL, NOS.
High grade B-cell lymphoma, NOS (HGBL, NOS) represents

aggressive mature B-cell lymphomas composed of medium-sized
or blastoid cells that do not fit into other well-defined entities.
NGS-based analyses of the mutational spectrum and gene
expression signatures suggest that HGBL, NOS is a heterogeneous
category, also including activated B-cell lymphomas with muta-
tions of MYD88, CD79B, or TBL1XR1. Most frequent mutations are
found in KMT2D (43%) and TP53 (30%). By GEP, most cases of
HGBL, NOS have been reported to group into the “unclassified”
cluster, and the remainder are variably classified in the other
clusters [144]. Interestingly, gene expression profiling showed that
54% of HGBL, NOS harbour the “double hit” signature (DHITsig)
characteristic of LBCL/HGBL with MYC/BCL2 despite lacking
rearrangements of these genes [144].

Burkitt lymphoma: EBV matters
The definition of Burkitt lymphoma (BL) in WHO-HAEM5 remains
largely unchanged, describing BL as an aggressive mature B-cell
neoplasm composed of medium-sized cells with a germinal center
B-cell phenotype CD10+, BCL6+, BCL2-/weak, high Ki67 index
(>95%) and an IG::MYC juxtaposition (Fig. 4). Whereas three
subtypes of BL have been historically recognized (“endemic”,
“non-endemic or sporadic”, and “immunodeficiency-associated”)
[145], more recent data suggest that EBV-positive BL and EBV-
negative BL form discrete biologic groups based on their

molecular features regardless of epidemiologic context and
geographic location and therefore supersede the epidemiological
subtyping [146–151]. EBV infection plays an essential role early in
pathogenesis causing B cells to evade apoptosis [152, 153].
Emerging evidence suggests a dual mechanism of BL pathogen-
esis: virus-driven versus mutational, depending on EBV status
[147]. EBV-positive and EBV-negative BL share evidence of coding
mutations affecting pathways such as BCR and PI3K signaling,
apoptosis, SWI/SNF complex and GPCR signaling [149, 154, 155]. In
comparison with EBV-negative BL, EBV-positive BL shows sig-
nificantly higher levels of somatic hypermutation particularly in
noncoding sequences close to the transcription start site [149],
harbours fewer driver mutations, particularly in the apoptosis
pathway [149], and shows a lower frequency of mutations in the
genes encoding the transcription factor TCF3 or its repressor ID3
[149]. To acknowledge these recent insights into BL biology, the
distinction of the two subtypes, EBV-positive BL vs. EBV-negative
BL, is recommended by WHO-HAEM5.

KSHV/HHV8-associated B-cell lymphoid proliferations and
lymphomas
WHO-HAEM5 recognizes the full spectrum of lymphoid proliferations
related to Kaposi sarcoma herpesvirus/human herpesvirus 8 (KSHV/
HHV8) infection, which in parallel with the terminology for other
herpesviruses is now indicated as KSHV/HHV8 to accommodate both
the common practices of haematopathologists and of virologists.
These lymphoid proliferations include KSHV/HHV8-associated
multicentric Castleman disease (KSHV/HHV8-MCD) [covered
under the category “Tumour-like lesions with B-cell predominance”],
germinotropic lymphoproliferative disorder (KSHV/HHV8-GLPD),
primary effusion lymphoma (PEL), extracavitary PEL (EC-PEL) and
KSHV/HHV8-positive diffuse large B-cell lymphoma (KSHV/
HHV8-DLBCL) [156, 157]. PEL/EC-PEL and KSHV/HHV8-DLBCL are
characteristically seen in HIV patients, but can be seen in other
immunodeficiency settings. KSHV/HHV8-GLPD, in contrast, is more
prevalent in elderly patients without overt immunodeficiency,
although it has also been reported in HIV-positive individuals. In
addition, KSHV/HHV8-MCD is seen in both HIV-positive and HIV-
negative patients, but the latter are overall older [158–160]. The
diagnosis of prototypical examples of the various KSHV/HHV8-
associated entities is often straightforward based on the definitions
as formulated in WHO-HAEM5. It has become clear, however, that the
morphological and clinical spectrum of KSHV/HHV8-associated
entities is broader than previously appreciated [161]. Moreover,
there are individual patients in whom clinical, histologic and viral
features (KSHV/HHV8 with or without EBV) overlap among entities.
Observations of synchronous and metachronous presentation of

Table 4. Distinctive features of primary large B-cell lymphomas of immune privileged sites.

Subtypes Primary large B-cell lymphoma of the CNS

Primary large B-cell lymphoma of the vitreoretina

Primary large B-cell lymphoma of the testis

Clinical Usually in adults over age of 60 years

Lymphoma tends to “home” to other immune privileged sites: vitreoretina tumour may occur concurrently with or follow
CNS tumour; testicular tumour tends to relapse in CNS or contralateral testis

Aggressive tumours with generally poor prognosis

Morphology Large B-cell lymphoma

Immunophenotype Activated B-cell immunophenotype: Usually CD10-, MUM1+, BCL6+

EBV negative

Mutational profile Concomitant MYD88 and CD79B mutations

Immune evasion: genetic inactivation of MHC class I and II and B2M (β 2-microglobulin) with subsequent loss of protein
expression

Showing DLBCL genomic signature C5/MCD/MYD88
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different KSHV/HHV8-associated lesions, and cases that possess
morphological and/or clinical features of more than one entity
support the notion that these equivocal cases may result from the
special biology of KSHV/HHV8, which is not adequately captured by
current disease-defining criteria [158, 161, 162]. For example,
distinction between lymph node-based extracavitary PEL and
KSHV/HHV8-positive DLBCL is difficult and may be arbitrary. WHO-
HAEM5 acknowledges the limitations of its definitions. While more
data to support biology-defined boundaries among the entities are
awaited, it is recommended that decisions on classification and
optimal therapy should be resolved in a multidisciplinary setting in
challenging cases.

Lymphoid proliferations and lymphomas associated with
immune deficiency and dysregulation: a new approach to
order patterns
WHO-HAEM5 has introduced major changes to the classification
of immunodeficiency-associated lymphoproliferative disorders
(Fig. 5). In prior classifications, these disorders were grouped

according to the disease background in which they arose and
were discussed in separate chapters: primary immunodeficiencies,
HIV infection, post-transplantation and other iatrogenic immuno-
deficiencies. This approach has been valuable for many years in
supporting clinical decision-making and as a basis for translational
and basic research. Knowledge that has resulted from this
approach supports the notion that morphological features and,
to a certain extent, the biology of many of these entities overlap
and that the spectrum of immunodeficiency settings is broader
than previously recognized. Therefore, it was considered timely to
introduce an overarching framework and a standardized nomen-
clature to cover the different settings of immune dysfunction,
according to the unifying nomenclature proposed at the Work-
shop on Immunodeficiency and Dysregulation organized by the
Society of Hematopathology and European Association for
Haematopathology in 2015 [163]. This framework aims to focus
attention on shared histologic and pathogenetic features as well
as to accommodate distinct causal associations of specific lesions
and specific clinical and/or therapeutic consequences [163, 164]

Fig. 5 Summary of the relationship between immunodeficiency-associated lymphoid proliferations and lymphomas as named and
defined in the revised 4th edition of the WHO Classification (WHO-HAEM4R) and in the present 5th edition (WHO-HAEM5). The
overarching concept applied in WHO-HAEM5 recognizes the pathological and biological similarities between proliferations presenting in
various immune deficiency settings, while acknowledging their specific features. Outside the shared entities, unique proliferations are
especially typical for various inborn errors of immunity (IEI). EBVMCU: EBV-positive mucocutaneous ulcer.

Table 5. Three-part nomenclature for lymphoid proliferations and lymphomas arising in the setting of immune deficiency/dysregulation.

Histological diagnosis Viral association Immune deficiency/dysregulation setting

◦ Hyperplasia (specify type)
◦ Polymorphic lymphoproliferative disorder
◦ Mucocutaneous ulcer
◦ Lymphoma (classify as for immunocompetent patients)

◦ EBV +/−
◦ KSHV/HHV8 +/−

◦ Inborn error of immunity (specify type)
◦ HIV infection
◦ Posttransplant (specify: solid organ/bone marrow)
◦ Autoimmune disease
◦ Iatrogenic/therapy-related (specify)
◦ Immune senescence
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The new standardized nomenclature builds on an integrated
approach to diagnosis that combines all relevant data into a
reporting system as follows (Table 5):
1) Histological diagnosis according to accepted criteria and

terminology;
2) Presence or absence of one or more oncogenic virus(es); and
3) The clinical setting/immunodeficiency background.
This nomenclature addresses existing inconsistencies in termi-

nology and diagnostic criteria for similar lesions in different
immunodeficiency settings, may improve communication among
multidisciplinary teams in guiding appropriate clinical manage-
ment as well as research studies, and facilitate incorporation of
emerging knowledge in the field. As the same pathological entity,
e.g., polymorphic lymphoproliferative disorder, does not necessa-
rily have the same pathogenesis or clinical behaviour in different
immune deficiency/dysregulation settings, this underscores the
need to include the immune deficiency/dysregulation setting as a
required part of the three-part nomenclature.
New types of immunodeficiency settings continue to be

recognized [165–167]. Poly-chemotherapy for treatment of solid
tumours and haematologic neoplasms has been largely accepted
as an underlying cause for immunodeficiency. However, it is as yet
unclear which polychemotherapy regimens confer this risk, and
how long the risk persists [168]. In addition, with increasing use of
novel immune modulatory agents, unanticipated types of immune
dysfunction are emerging, e.g., in the aftermath of CAR-T cell and/
or checkpoint inhibition therapies. Immune senescence is another
setting that is poorly understood and as yet not possible to define
or exclude; thereby use of an arbitrary age as cut-off does not
have a scientific basis [169]. All these emerging concepts call into
question the adequacy of the term “immunodeficiency”, which
does not capture the extent, depth or phenotypic variation of
immune suppression and the milieu of deregulated immune cell
subsets. Therefore, WHO-HAEM5 has adopted “immune defi-
ciency/dysregulation” (IDD) as the preferred term to encompass
this expanding disease spectrum.
Primary immunodeficiencies, associated with germline muta-

tions, have been renamed “inborn errors of immunity” (IEI) by the
International Union of Immunological Societies, a terminology
adopted by WHO-HAEM5 [170]. Patients with IEI may develop
distinctive types of lymphoid proliferations unique to the
particular IEI, as well as those described in the acquired IDD
settings. The types and frequency of these proliferations are
largely dependent on the immune dysregulation conferred by the
germline aberration underyling a respective IEI. Given the overlap
with other IDD settings, IEI-associated lymphoid proliferations and
lymphomas have been incorporated into the overarching frame-
work and nomenclature of “lymphoid proliferations and lympho-
mas associated with immune deficiency and dysregulation.”
The new approach to the classification of IDD-associated

lymphoid proliferations and lymphomas impacts other lymphoid
entities that are described in separate WHO chapters. This
especially holds true for diagnoses in which EBV plays a defining

or important role, including EBV-positive DLBCL, lymphomatoid
granulomatosis, and CHL. In WHO-HAEM5, harmonization of
diagnostic criteria among these categories has been undertaken
as much as currently feasible, while at the same time acknowl-
edging that some terminologies are arbitrary. For example, should
an elderly patient with a DLBCL harbouring EBV be diagnosed as
having EBV+ DLBCL or DLBCL, EBV+, in an IDD setting based
upon presumed immune senescence? Clarification of these
disease boundaries awaits further clinico-pathological data and
further insights into disease pathogenesis, which will allow
evidence-based refinements to the classification.

Hodgkin lymphoma: CHL clearly defined from its mimickers,
NLPHL on the way to, but not yet NLPBCL
Classic Hodgkin lymphoma (CHL) comprises a group of B-cell
neoplasms derived from germinal center B-cells, characterized by
a low number of tumour cells embedded in a reactive
microenvironment rich in immune cells. The large diagnostic
Hodgkin and Reed-Sternberg (HRS) cells characteristically show a
defective B-cell program. The defining immunophenotype of HRS
cells remains unchanged from WHO-HAEM4R, as are criteria for
nodular sclerosis (NSCHL), mixed cellularity (MCCHL), lymphocyte
rich (LRCHL), and lymphocyte depleted (LDCHL) subtypes. With
modern treatment protocols, these subtypes have lost most of
their prognostic relevance. However, there is still merit in
describing these subtypes to support epidemiological and
translational studies, since specific subtypes are associated with
different clinical features and underlying biologies [171]. While the
basic description has not changed substantially since the last
century, WHO-HAEM5 includes a comprehensive section on the
etiology and pathogenesis of CHL, in particular incorporating new
data on the crucial role of the microenvironment in modulating
the disease [172, 173]. Recent biological insights have led to the
recognition of an expanding spectrum of pitfalls, grey zones and
mimickers, among them nodal T follicular helper cell lymphomas
and lymphoproliferative disorders arising in immune deficiency/
dysregulation settings that may contain EBV-positive HRS-like cells
[163, 174, 175]. Caution should be exercised, therefore, when
considering the diagnosis of CHL in the IDD setting; the same
applies to purely extranodal CHL-like lymphoproliferations.
WHO-HAEM5 continues to list nodular lymphocyte predomi-

nant Hodgkin lymphoma (NLPHL) under the family of Hodgkin
lymphoma; the existing terminology of NLPHL (Hodgkin lym-
phoma) is maintained so as not to interfere with ongoing clinical
trials. However, NLPHL may be more accurately called “nodular
lymphocyte predominant B-cell lymphoma” since the neoplastic
cells have a functional B-cell program, and therefore this term is
now considered acceptable in preparation of future definitive
adoption of the new nomenclature. An important issue in NLPHL
is the recognition of the different growth patterns [176] over-
lapping with T-cell/histiocyte-rich large B-cell lymphoma
(THRLBCL) at the extreme end (Table 6) [177]. These patterns
occur across all age groups. Some variant patterns (patterns C, D
and E) have been associated with more aggressive clinical
behaviour in retrospective analyses [177–179] and may thus
reflect the natural development and progression of the tumour
[180, 181]. In some cases, a clear distinction between NLPHL
Pattern E and THRLBCL may not be possible since both diseases
present with advanced clinical stage. Distinction is especially
difficult on small biopsies, which may not be representative.

Plasma cell neoplasms and other diseases with paraproteins:
new conditions from AESOP to TEMPI
The section on plasma cell neoplasms in WHO-HAEM5 recognizes
new entities and incorporates structural modifications as a step
forward from WHO HAEM4R. New conditions included are
monoclonal gammopathy of renal significance (MGRS), cold
agglutinin disease (CAD), as well as TEMPI syndrome

Table 6. Immuno-morphological growth patterns of NLPHL.

Designation Description

Pattern A Classic B-cell nodular

Pattern B Serpiginous/interconnected

Pattern C Prominent extra-nodular LP cells

Pattern D T-cell-rich nodular

Pattern E Diffuse THRLBCL/DLBCL-like

Pattern F Diffuse moth-eaten, B-cell-rich

THRLBCL T-cell/histiocyte-rich large B-cell lymphoma.
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(a provisional entity in WHO-HAEM4R, characterized by telangiec-
tasias, elevated erythropoietin and erythrocytosis, monoclonal
gammopathy, perinephric fluid collection, and intrapulmonary
shunting) and AESOP syndrome (adenopathy and extensive skin
patch overlying a plasmacytoma). Sections based on types of
paraproteins and disease burden have been reorganised. CAD,
IgM and non-IgM MGUS and MGRS are grouped as monoclonal
gammopathies, and diseases with abnormal monoclonal immu-
noglobulin deposits are grouped together. The heavy chain
diseases (HCD) are now included in the plasma cell neoplasms
section.
Cold agglutinin disease (CAD) is an autoimmune haemolytic

anemia mediated by monoclonal cold agglutinins and driven by
an underlying clonal B-cell lymphoid proliferation not fulfilling
criteria for a B-cell lymphoma. The annual incidence of this rare
disease is estimated at 1–1.8 per million; its prevalence is four-fold
higher in colder countries [182–184]. Monoclonal gammopathy
of renal significance (MGRS) represents a plasma cell or B-cell
proliferation that does not meet accepted criteria for malignancy
but secretes a monoclonal immunoglobulin or immunoglobulin
fragment resulting in kidney injury [185, 186]. About 1.5% of
patients whose disease would otherwise be classified as MGUS
have MGRS [187].
The risk stratification model for IgM MGUS and non-IgM MGUS

has been updated. Presence of all 3 risk factors consisting of: (1)
an abnormal serum free light chain ratio, (2) IgA or IgM type
MGUS, and (3) serum M-protein value >1.5 g/dL is considered high
risk with approximately 50–60% risk of progression at 20 years,
whereas the risk is only 5% when none of the risk factors are
present [188]. A diagnosis of TEMPI syndrome is primarily made
on clinical and imaging investigations. The bone marrow is
unremarkable in the majority of cases; a few cases show erythroid
hyperplasia and a low-volume of light chain-restricted plasma cells
[189, 190]. Skin biopsies of patients with AESOP syndrome show
diffuse hyperplasia of dermal vessels associated with surrounding
dermal mucin, and lymph nodes can show features mimicking
Castleman disease [191, 192].
New data have emerged concerning the progression from

precursor states to plasma cell (multiple) myeloma (PCM),
involving branching evolutionary patterns, novel mutations,
biallelic hits in tumour suppressor genes, and segmental copy
number changes [193]. While 1q21 gain is often an early event,
translocations and additional amplifications of 1q21 emerge later
during pathogenesis [194]. Staging of PCM according to the
Revised International Staging System for Multiple Myeloma
proposed by the International Myeloma Working Group has been
adopted [195]. The important role of minimal/measurable residual
disease (MRD) using next-generation flow cytometry or next-
generation sequencing of immunoglobulin gene rearrangements
as well as PET/CT in assessing prognosis and risk stratification in
patients with PCM has been detailed [196, 197].

T-cell and NK-cell lymphoid proliferations and lymphomas
WHO-HAEM5 has reorganized entities that were listed as mature
T- and NK-cell neoplasms in WHO HAEM4R to include a broader
group of entities under the heading of “T-cell and NK-cell
lymphoid proliferations and lymphomas” (Table 2). Notably,
included is a family/class of tumour-like lesions with T cell
predominance. Precursor T-lymphoblastic neoplasms are also
included under this overarching category as a separate family.
The mature T-cell and NK-cell neoplasms are grouped into 9
families based on diverse concepts: cell of origin/differentiation
state, clinical scenario, disease localization, and cytomorphology.
While most T- or NK-cell neoplasms can be assigned to the
respective T- or NK-cell lineage, they are not separated as two
categories in WHO-HAEM5 because some entities comprise a
spectrum of tumours of NK, T, hybrid or indeterminate phenotype,
such as in extranodal NK/T-cell lymphoma, EBV+ nodal T- and NK-

cell lymphoma, chronic active EBV disease and severe mosquito
bite allergy. In other instances, distinction between T- and NK-cell
origin may be unclear or difficult to determine.

Tumour-like lesions with T-cell predominance: a new class of
tumour-like lesions
The new family of tumour-like lesions with T-cell predominance
in WHO-HAEM5 includes three distinct entities: indolent
T-lymphoblastic proliferation (ITLP), Kikuchi-Fujimoto disease
(KFD), and autoimmune lymphoproliferative syndrome (ALPS).
These expansions of T cells can potentially be mistaken for
lymphoma. Indolent T-lymphoblastic proliferation (ITLP) may
occur by itself or in association with benign and neoplastic
follicular dendritic cell proliferations and other malignancies. It
shows clusters or confluent sheets of lymphoid cells which can
range in appearance from small lymphocytes to slightly larger
cells with more open chromatin (morphologically consistent with
thymocytes as seen in the normal thymus), which may be
mistaken for T-lymphoblastic leukaemia/lymphoma due to TdT
expression [198–205]. However, ITLP may distort, but typically
does not obliterate the architecture of the involved tissues, the
TdT+ cells are not as atypical as those encountered in
lymphoblastic leukaemia/lymphoma, and ITLP does not show
monoclonal TCR gene rearrangement. Kikuchi-Fujimoto disease
(KFD) commonly shows large aggregates and sheets of T
immunoblasts and histiocytes, accompanied by prominent
apoptosis in lymph nodes, mimicking peripheral T-cell lymphoma
NOS. Clues to the correct diagnosis include the typical clinical
scenario of cervical lymphadenopathy in a young woman, the
circumscribed and non-expansile nature of the nodal infiltrate,
presence of a significant component of plasmacytoid dendritic
cells (CD123+) and presence of many histiocytes that express
myeloperoxidase. Autoimmune lymphoproliferative syndrome
(ALPS), which is associated with autoimmunity and germline or
somatic pathogenetic changes in genes involved in FAS-mediated
apoptosis [206], has nodal or extranodal infiltrates of CD4-, CD8-
T cells, which may appear as atypical medium-sized cells with clear
cytoplasm that may mimic lymphoma. The clinical setting (young
patient age) and lack of destructive infiltrate may provide clues to
its benign nature [207].

Precursor T-cell neoplasms: uncertainties about NK-
lymphoblastic leukaemia/lymphoma
T-lymphoblastic leukaemia/lymphoma (T-ALL) are precursor
T-cell neoplasms, comprising T-lymphoblastic leukaemia/lym-
phoma NOS and early T-precursor lymphoblastic leukaemia/
lymphoma, as in WHO-HAEM4R. The latter shows a gene
expression signature corresponding to that of earlier stages of
normal precursor T cells as compared with the former entity, and
shows a unique immunophenotype that includes expression of
stem cell and/or myeloid markers. Despite significant advances in
our understanding of the genetic background of T-ALL [208], there
is as yet not sufficient evidence to establish genetically defined
types of T-ALL with clinical relevance.
NK-lymphoblastic leukaemia/lymphoma, considered a provisional

entity in WHO-HAEM4R, is not separately listed in WHO-HAEM5
because of lack of clear-cut and reliable diagnostic criteria, lack of
published information on expression on NK-cell-associated antigens
such as CD94 and CD161, and marked morphologic and immuno-
phenotypic overlap with other entities, such as blastic plasmacytoid
dendritic cell neoplasm, CD56+ T-ALL, CD56+ acute myeloid
leukaemia and CD56+ acute undifferentiated leukaemia [209].

Mature T-cell and NK-cell leukaemias: a family is growing
The family of mature T-cell and NK-cell leukaemias encom-
passes neoplastic T- and NK-cell proliferations that primarily
present as leukaemic disease, including T-prolymphocytic leukae-
mia (T-PLL), T-large granular lymphocytic leukaemia (T-LGLL),
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NK-large granular lymphocytic leukaemia (NK-LGLL), adult T-cell
leukaemia/lymphoma (ATLL), Sezary syndrome (SS) and aggres-
sive NK-cell leukaemia (ANKL). Enhanced molecular understanding
is considered sufficiently mature to permit incorporation of such
features in the diagnostic criteria or prognostic markers of these
diseases, where relevant.
T-prolymphocytic leukaemia (T-PLL) is a rare form of mature

T-cell leukaemia with a heterogeneous clinical course. Recent efforts
to standardize diagnosis, staging and treatment response [210] have
led to unified diagnostic criteria, which include T lymphocytosis (>5
x 109/L) with appropriate phenotype, T-cell monoclonality and the
presence of genetic aberrations including structural variants with
breakpoints affecting the TCL1A or MTCP1 locus or expression of
TCL1. There is emerging evidence of clinical and phenotypic
significance of specific mutations in T-large granular lymphocytic
leukaemia (T-LGLL). STAT3 mutation, found preferentially in CD8+
T-LGLL and gamma/delta T-LGLL, is associated with neutropenia and
poorer overall survival [211–214]. STAT5B mutation is over-
represented in the rare CD4+ T-LGLLs (present in up to 30% of
cases); it is associated with a poor prognosis in CD8+ T-LGLL, but
has no prognostic impact in CD4+ T-LGLL and gamma/delta T-LGLL
[214]. “Chronic lymphoproliferative disorder of NK cells” in WHO-
HAEM4R has been renamed NK-large granular lymphocytic
leukaemia (NK-LGLL), given recent evidence that this is a
monoclonal or oligoclonal expansion of NK cells that has many
similarities with T-LGLL. Genetic analyses of adult T-cell leukaemia/
lymphoma (ATLL) have revealed novel events that highlight the
importance of immune evasion including CTLA4::CD28 and ICOS::
CD28 fusions, REL C-terminal truncations [215, 216], recurrent
alterations in HLA-A and HLA-B and structural variations disrupting
the 3′-untranslated region of CD274 (PD-L1) [217]. Furthermore, the
frequency and pattern of somatic alterations appear to be correlated
with clinical behavior. Specifically, aggressive subtypes show more
genetic alterations, whereas STAT3 mutations are more common in
indolent subtypes. Based on clinical and serological features,
prognostic indices of ATLL have been better defined, and a
prognostically meaningful genetic classification has recently been
proposed [218]. Sezary syndrome (SS), while closely related to
mycosis fungoides but a distinct entity, is included in this section to
highlight its primary site of clinical presentation and consideration in
the differential diagnosis of mature T-cell leukaemias. Comprehen-
sive analyses of genomic signatures [219] highlight the contribution
of cellular aging and UV exposure observed in SS. Genome-wide
sequencing studies have provided novel insights into pathogenetic
events in aggressive NK-cell leukaemia (ANKL). They implicate
mutations in genes of the JAK/STAT and RAS/MAPK pathways,
epigenetic modifiers (TET2, CREBBP, KMT2D), and immune
checkpoint molecules CD274 (PD-L1)/PDCD1LG2 (PD-L2) [220–223]
in disease pathogenesis.

Primary cutaneous T-cell lymphoid proliferations and
lymphomas (CTCL): rare subtypes become entities
Primary cutaneous T-cell lymphoid proliferations and lymphomas
(CTCL) comprise a dedicated family within the mature T/NK-cell
neoplasms chapter in WHO-HAEM5, and include nine entities.
In WHO-HAEM4R, primary cutaneous gamma/delta T-cell

lymphoma, CD8-positive aggressive epidermotropic cytotoxic
T-cell lymphoma, acral CD8-positive T-cell lymphoproliferative
disorder and CD4-positive small or medium T-cell lymphoproli-
ferative disorder were grouped together under the term
‘cutaneous peripheral T-cell lymphoma, rare subtypes’, but are
now each listed as separate entities in WHO-HAEM5 acknowl-
edging their specific clinicopathological and genetic character-
istics. The variants of mycosis fungoides from WHO-HAEM4R
remain in place as subtypes; however, within the folliculotropic
category, clinical early versus advanced stage patterns are
described, and should be distinguished, to acknowledge differing
clinical outcomes. There still remain rare cases that do not fit into

the other known CTCL entities, and that are grouped into the
newly coined entity “primary cutaneous peripheral T-cell lym-
phoma, NOS”, awaiting further studies to clarify their nature [224].
As there is morphologic and immunophenotypic overlap

among the various forms of primary CTCL, correlation with clinical
history, signs and symptoms is a key element of the diagnostic
work-up. Thus, dermatological examination and clinical photo-
graphic documentation are indispensable in reaching the correct
diagnosis [224, 225].

Intestinal T-cell and NK-cell lymphoid proliferations and
lymphomas: indolent NK-cell lymphoproliferative disorder as
the new kid in town
In WHO-HAEM5, the main changes in the classification of intestinal
T-cell and NK-cell lymphomas include: new nomenclature for
indolent T-cell lymphoproliferative disorder of the gastrointestinal
tract, now designated “indolent T-cell lymphoma of the gastro-
intestinal (GI) tract”, and addition of a new entity, “indolent NK-cell
lymphoproliferative disorder of the GI tract” (iNKLPD) (Table 7). For
indolent T-cell lymphoma of the gastrointetinal (GI) tract, the
change from the conservative designation of “lymphoproliferative
disorder” to “lymphoma” is justified by the significant morbidity
related to the tumour and the ability of the disease to disseminate,
while the qualifier “indolent” remains to indicate its protracted
clinical course [226–230]. There are interesting correlations
between T-cell subsets and genetic changes in this neoplasm:
alterations in JAK-STAT pathway genes and mutations in
epigenetic modifier genes (e.g., TET2, KMT2D) preferentially occur
in CD4+, CD4+/CD8+, and CD4-/CD8- subsets, with CD4+ cases
sometimes displaying STAT3::JAK2 fusions. In contrast, some CD8+
cases have been shown to harbor structural alterations involving
the IL2 gene [227, 230]. Indolent NK-cell lymphoproliferative
disorder of the GI tract (iNKLPD), (Fig. 6) formerly known as
lymphomatoid gastropathy or NK-cell enteropathy and previously
thought to be a reactive process, is included as an entity because
of recent findings supporting its neoplastic nature. Somatic
mutations in various genes have been identified, including
recurrent JAK3 mutations (K563_C565del; NP_000206). Moreover,
immunophenotypic features support a role for JAK3-STAT5
pathway activation in pathogenesis [231]. Nonetheless, the
disease has a benign clinical outcome: individual lesions usually
spontaneously regress in a few months, although lesions may
persist or new lesions may develop over a period of years.
Progression to aggressive disease is not reported, justifying its
designation as “lymphoproliferative disorder” [231–233]. An
interesting observation is that this tumour may not be entirely
confined to the GI tract, with rare cases reported to involve
gallbladder, adjacent lymph nodes and the vagina [234–236]. It is
most important not to misinterpret iNKLPD as extranodal NK/T-cell
lymphoma, the immunophenotype of which can be largely
identical with the exception of crucial differential EBV association.
While the infiltrate of atypical medium-sized lymphoid cells is
worrisome, the small size and superficial nature of the lesions,
expansile rather than highly destructive growth and presence of
paranuclear brightly eosinophilic granules may provide a clue to
the diagnosis, which can be further confirmed by the lack of EBV.

Hepatosplenic T-cell lymphoma: not confined to the young
Various new findings regarding hepatosplenic T-cell lymphoma
(HSTCL) since WHO-HAEM4R have led to refinements in WHO-
HAEM5. Recent studies have shown that HSTCL is not necessarily a
disease of the young; only 49% of patients were younger than 60
years of age in a recent study [237]. Of note, dyspoiesis of bone
marrow elements mimicking myelodysplastic syndrome is not
uncommon in marrow smears of HSTCL patients, although this
does not have any clinical impact [238]. While most cases express
TCRγδ (~75%) followed by TCRαβ (~25%), a small subset of cases,
about 5%, are TCR-silent [239].
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Anaplastic large cell lymphoma: more genetic data in an
otherwise well-defined entity
WHO-HAEM5 recognizes 3 entities within the family of anaplastic
large cell lymphomas (ALCL), which are mature T-cell lympho-
mas characterized by pleomorphic tumour cells with uniform
strong expression of CD30 and often defective expression of
T-lineage markers. Primary cutaneous ALCL is grouped under
primary cutaneous T-cell lymphoid proliferations and lymphomas
acknowledging its clinico-pathological relation to these disorders
and highly favorable outcome in contrast to systemic ALK- ALCL
[240, 241]. ALK positive anaplastic large cell lymphoma (ALK+
ALCL) has been separated from ALK-negative ALCL (ALK- ALCL)
since WHO-HAEM4 based on its distinct pathogenesis [242, 243]
and clinical course. ALK- ALCL was acknowledged as a hetero-
geneous entity. Recent genomic analyses have led to recognition
of several genetic contexts with prognostic implications, although
there are currently insufficient data to determine if these are best
regarded as prognostic markers or molecular subtypes. ALK-
negative ALCL bearing TP63 rearrangements [244], loss of TP53
[244–246] and/or overexpression of IL-2Rα [247] are associated
with poor outcomes. Although initial reports suggested DUSP22
rearrangement to be associated with a favorable 5-year overall
survival comparable to ALK+ ALCL [248], more recent studies
have not confirmed this association [249]. Some specific molecular
alterations in ALK- ALCL have been shown to correlate with
morphologic features. ALCLs with DUSP22 rearrangement are
characterized by neoplastic cells with a “doughnut cell” appear-
ance [250] and sheet-like growth pattern with less pleomorphic
cells; LEF1 expression may serve as a surrogate marker for this
molecular alteration [251]. A subset of cases with Hodgkin-like
morphology shows aberrant ERBB4 protein expression [252], while
more anaplastic cells are seen in cases with JAK2 rearrangement
[253]. Breast implant-associated ALCL (BIA-ALCL) is an entity
distinct from other ALK- ALCL; notably it is a usually non-invasive
neoplasm arising in association with textured-surface breast
implants and is associated with an excellent outcome [254].
Invasion of adjacent structures, however, worsens the prognosis.
Recent studies highlight the importance of TH2 allergic inflam-
matory response, a role for immune-evasion via amplification of
9p24.1 and overexpression of PD-L1 in over 50% of the cases and
constitutive JAK-STAT activation by somatic mutations of STAT3,
STAT5B, JAK1 and JAK2 and loss-of function mutations of SOCS1
and SOCS3 [255–261].

Nodal T-follicular helper cell lymphomas: New nomenclature
to unite family members
This family includes three entities of nodal T-cell lymphomas that
bear the phenotype and gene expression signatures of T-follicular

helper (TFH) cells [262, 263]. While the conceptual basis for the
recognition of these entities is consistent with that proposed in
WHO-HAEM4R, a common family terminology of nodal T-follicular
helper cell lymphomas (nTFHLs) is introduced in WHO-HAEM5,
with previously recognized diseases now regarded as entities
within this family. Accordingly, diseases previously referred to as
“angioimmunoblastic T-cell lymphoma”, “follicular T-cell lym-
phoma” and “peripheral T cell lymphoma with TFH phenotype”
are renamed nTFHL angioimmunoblastic-type (nTFHL-AI), nTFHL
follicular-type (nTFHL-F) and nTFHL not otherwise specified
(nTFHL-NOS), respectively. This is to recognize their significant
clinical and immunophenotypic overlap and plasticity [264, 265],
as well as similar TFH gene expression signature and mutation
profiles. Research in the coming years may provide data to further
define the boundaries in biology between these entities or rather
refute such differences. The current classification provides a
platform for such studies.
Nodal T-follicular helper cell lymphoma, angioimmunoblastic-

type (nTFHL-AI) is the prototype with well-defined clinical,

Fig. 6 Indolent NK-cell lymphoproliferative disorder of the
gastrointestinal tract involving the stomach. The gastric mucosa
shows expansion of the lamina propria by an atypical lymphoid
infiltrate. The tumour cells are medium-sized, often with pale-
staining cytoplasm.

Fig. 7 Nodal TFH-cell lymphoma (nTFHL). A Nodal TFH-cell
lymphoma, angioimmunoblastic-type (nTFHL-AI). The normal archi-
tecture of the lymph node is effaced. There is a diffuse infiltrate of
medium-sized, slightly atypical lymphocytes, sometimes with clear
cytoplasm. One of the hallmarks of the disease is the proliferation of
arborizing post-capillary vessels consistent with high endothelial
venules. B Nodal TFH-cell lymphoma, follicular-type (nTFHL-F). In
this example, progressive transformation of germinal centre-like
nTFHL-F, clusters of atypical lymphoid cells with pale cytoplasm are
embedded in a background of small lymphocytes of mantle zone
type. The inset shows strong expression of PD1 in the tumour cells.
C Nodal TFH-cell lymphoma, not otherwise specified. This tumour is
composed of a sheet-like proliferation of medium-sized to large
neoplastic cells.
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morphologic (Fig. 7), immunophenotypic and characteristic muta-
tional profiles. Genetically, nTFHL-AI is characterized by a stepwise
acquisition of somatic changes with TET2 and DNMT3A mutations
occurring early in haematopoietic stem cells, while RHOA and IDH2
mutations are also present in the neoplastic TFH cell population. In
contrast, nTFHL-F and nTFHL-NOS (Fig. 7) represent less well-
studied nodal lymphomas, which also express TFH markers such as
PD1, ICOS, CXCL13, CD10, and BCL6 [266–277] and show mutation
profiles similar to those of nTFHL-AI [265, 266, 278–280].
Although the individual entities are defined predominantly by

histopathological features, there is considerable morphologic
overlap and inter-observer variability. nTFHL-NOS is the recom-
mended term for CD4+ lymphomas with TFH phenotype but that
do not meet criteria for nTFHL-AI or nTFHL-F. The generic term
nTFHL rather than nTFHL-NOS is recommended when interpreting
core biopsies to prevent misclassification due to inadequate
sampling. The TFH phenotype is defined as the presence of at
least two TFH markers in addition to CD4. Further studies are
required to determine if this definition is sufficiently robust in
differentiating nTFHL-NOS from PTCL, NOS, as most cases of the
former often express the less specific TFH markers such as PD1
and ICOS. In essence, the diagnosis may be challenging with many
pitfalls. An integrated approach is recommended, at the very
minimum requiring correlation of clinical, morphologic and
immunophenotypic features, with input from genomics for
clonality and mutational profiles in difficult cases.

Other peripheral T-cell and NK-cell lymphomas: nodal EBV+ T-
and NK-cell lymphoma counterpart of extranodal NK/T-cell
lymphoma
In WHO-HAEM5, peripheral T-cell lymphoma NOS (PTCL-NOS)
remains a heterogeneous category and a diagnosis of exclusion,
with a differential diagnosis that in particular includes nodal
T-follicular helper cell lymphomas, among others. Two possible
biological variants of PTCL-NOS, PTCL-TBX21 and PTCL-GATA3,
have been characterized by the transcriptional program of T-
helper-1 and T-helper-2 cells, respectively [281]. While PTCL-
GATA3 has a uniform molecular genetic profile, PTCL-TBX21 is
heterogeneous and may include a subgroup with a cytotoxic gene
expression program and aggressive behavior [281, 282]. The
current status of knowledge on the genetic landscape, clinico-
pathological context and prognostic implications of these possible
biological variants of PTCL-NOS are deemed, however, insufficient
to justify a formal status as “subtype” [283]. Extranodal NK/T-cell
lymphoma (ENKTL) will have the qualifier “nasal-type” dropped
from its name in WHO-HAEM5 in accordance with the recognized
presentation of this disease at various extranodal sites. The
introduction of L-asparaginase-based chemotherapy in combina-
tion with radiotherapy has led to markedly improved outcomes
for this lymphoma [284]. Immune checkpoint inhibitor therapy has
recently shown great promise for relapsed or refractory disease
[285–287], in keeping with the finding that immune evasion is a
critical pathway for ENKTL cell survival [288, 289]. Intravascular
NK/T-cell lymphoma was considered a form of ENKTL in WHO-
HAEM4R [290–295]. This highly aggressive lymphoma is often, but
not invariably, EBV positive, does not present with mass lesions
and shows a predilection for skin and central nervous system.
Since its nosological nature is still unclear, it is now described
under aggressive NK-cell leukaemia rather than extranodal NK/T-
cell lymphomas, pending further studies to determine where it
fits best.
Nodal EBV-positive T and NK-cell lymphoma, which occurs

mostly in East Asians [296–300], is now recognized as a distinct
entity in WHO-HAEM5; previously it was subsumed as a subtype
under the entity of PTCL-NOS. Patients typically present with
lymphadenopathy with or without extranodal involvement,
advanced-stage disease and B symptoms; they have a dismal
prognosis. Morphologically, this lymphoma often resembles

diffuse large B-cell lymphoma, lacking the coagulative necrosis
and angioinvasion characteristic of ENKTL (Fig. 8). It more often
shows a cytotoxic T-cell than NK-cell immunophenotype; EBV is
positive, by definition. The genetic landscape differs from that of
ENKTL, with the most commonly mutated gene being TET2 [300].

EBV-positive T- and NK-cell lymphoid proliferations and
lymphomas of childhood: revised terminology
EBV-associated lymphoid proliferations and lymphomas of child-
hood are uncommon T- and NK-cell disorders with a predilection
for Asian and native American ethnic groups [301–305]; occur-
rence in adults is also reported [306]. This family includes chronic
active EBV disease (CAEBVD) and systemic EBV-positive T-cell
lymphoma of childhood. CAEBVD is characterized by a broad
clinical spectrum varying from localized and/or indolent forms
(severe mosquito bite allergy and hydroa vacciniforme
lymphoproliferative disorder [HVLPD] classic form), to systemic
disease with fever, hepatosplenomegaly, and lymphadenopathy,
with or without cutaneous manifestations (HVLPD systemic form
and systemic CAEBVD).
This classification introduces several changes in terminology to

reflect the morphologic overlap among different entities, such as
HVLPD systemic form and systemic CAEBVD, and the need for
clinicopathologic correlation in diagnosis. “Hydroa vacciniforme-
like lymphoproliferative disorder” in WHO-HAEM4R has been
renamed HVLPD, with identification of a classic and a systemic
form. Systemic HVLPD shows persistent systemic symptoms of
CAEBVD or extracutaneous disease, and should be distinguished
from systemic CAEBVD without HVLPD, which is characteried by
an even more aggressive clinical course [307–310]. Moreover, the
usually fatal outcome in the absence of haematopoietic stem cell
transplantation has led to replacement of the former terminology
“chronic active EBV infection, systemic form” with “systemic
chronic active EBV disease” [308, 309].

Stroma-derived neoplasms of lymphoid tissues: some tumour
types are unique to lymph node or spleen
A new category of stroma-derived neoplasms of lymphoid tissues is
introduced in WHO-HAEM5 (Table 3). Mesenchymal tumours specific
to lymph node (including intranodal palisaded myofibroblastoma)
and spleen (including littoral cell angioma, splenic hamartoma
and sclerosing angiomatoid nodular transformation) are covered,
while various soft tissue tumours not specific to lymph node or
spleen (such as haemangioma, lymphangiomyoma, Kaposi sarcoma
and angiosarcoma) are covered in the WHO Classification of Soft
Tissue and Bone Tumours (5th edition, 2020). Furthermore, follicular
dendritic cell and fibroblastic reticular cell neoplasms have been
moved from the “histiocytic and dendritic cell neoplasms” category

Fig. 8 Nodal EBV-positive T- and NK-cell lymphoma. This
lymphoma shows a diffuse infiltrate of relatively monotonous,
medium-sized to large cells, sometimes reminiscent of centroblasts.
Inset: in-situ hybridization for EBERs identifies EBV infection in
virtually all tumour cells.
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to this new category, because follicular dendritic cells are not derived
from haematopoietic stem cells but rather are of mesenchymal origin
[311–313]. Given its distinctive clinicopathologic features, EBV-
positive inflammatory follicular dendritic cell sarcoma is deli-
neated as an entity separate from follicular dendritic cell sarcoma
[314], together with a nomenclature change from “inflammatory
pseudotumour-like follicular/fibroblastic dendritic cell sarcoma”, a
change first introduced in the WHO Classification of Digestive Tract
Tumours (5th edition, 2019) [315].

Genetic predisposition syndromes: increasing importance of
germline genetics
To acknowledge the growing number of known germline
predispositions associated with haematologic neoplasms, lym-
phoid neoplasms occurring in the context of clinical syndromes
should be separately recognized, similar to classification in other
organ systems. To this end, WHO-HAEM5 introduces new chapters
on genetic predisposition. With regard to lymphoid neoplasms,
Ataxia telangiectasia (AT) and Nijmegen-Breakage syndrome are
particularly relevant. These are linked to germline mutations in
ATM and NBN, respectively. The detection of such underlying
syndromes associated with germline predisposition is clinically
important not only with regards to treatment planning (e.g.,
increased toxicities) but also surveillance of carriers and counsel-
ling of relatives. In this regard, leukaemias and lymphomas should
be diagnosed using conventional criteria but should be desig-
nated as “AT-related” or “NBS-related”. Besides the separate
chapter on genetic predisposition syndromes, aspects of germline
predisposition including recommendations for germline testing
have been systematically incorporated in individual chapters.

Epilogue
The dramatic increase in information regarding lymphoid tumours
and their molecular complexity suggests that Fyodor Dostoyevs-
ky’s famous words [316], “Reality is infinitely diverse (…and) Reality
resists classification” hold true for lymphoma classifications.
We are aware that any classification is arbitrary and subject to

further evolution as new evidence arises. Moreover, since the
development and differentiation of lymphocytes represent a
continuous spectrum rather than a sequence of distinct steps, we
acknowledge that any classification system breaks up a disease
continuum into groups using arbitrary (and yet evidence-based)
borders. Furthermore, our daily work demands the naming, and
hence, the diagnosis, of discrete entities to allow for treatment
decisions and for patient management. Therefore, following the
principles of Linnaeus, classification also provides the basis for
preserving knowledge and providing a template for future work.
We are grateful to - and stand on the shoulders of - countless

individuals and research teams, who have contributed signifi-
cantly to establish the foundations of the current lymphoma
classification. We thank the numerous authors and contributors
whose input and thoughts have created the herein outlined
‘snapshot-in-time’ of the classification. We are confident that the
present proposal, albeit by definition imperfect, will provide a
robust framework for future generations of scientists to continue
our efforts, to further disentangle the universe of lymphoma
biology, for the benefit of patient care.
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