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1 Introduction

We study the effect of family size on a child’s education when parents have birth order preferences and/or

face human capital cost differentials across children. The so-called “quantity-quality trade-off” (Becker

and Lewis, 1973) has been widely studied in the literature. However, despite the long-standing interest,

theories of this trade-off have not typically integrated birth order effects in their analyses. The earliest

empirical tests of the quantity-quality trade-off assume equal human capital investments for all children

and leave no room for birth order, either as a mediating factor, or as an independent determinant of

parental investments; see, e.g., Rosenzweig and Wolpin (1980).1

Black et al. (2005) used large administrative data to document sizeable (negative) birth order effects

in educational attainment. They also showed that controlling for birth order weakens an otherwise strong

empirical relationship between family size and educational attainment.2 Thus, they argue that birth order

effects, unless appropriately controlled for, confound the effect of family size on parental investments.

Estimating family size and birth order effects is challenging because family size reflects parents’ fertility

choices, and the size of a family and its birth order configuration are deterministically related. To

circumvent the dual endogeneity problem, Black et al. (2005) develop a twin-based instrumental variable

strategy seeking to identify the (average) family size effect from children born prior to the exogenous

change to family size induced by a twin birth.

Rosenzweig and Zhang (2009) pointed out that resource reallocation across children within a house-

hold, in response to a twin birth, may bias towards zero the estimated average family size effect that is

obtained from Black et al. (2005). Such endogenous resource reallocations may arise from differences in

endowments between twins and non-twins if parents favor higher endowment offspring. Indeed, using rich

data from China, Rosenzweig and Zhang (2009) document that twins and non-twins differ markedly in

birth weight, and show that endowment differences lead parents to shift resources from twins to (older)

non-twin siblings. Failure to control for endowment differences results in statistically and economically

significant downward bias in the estimated average family size effect.3

1The literature on family size and education is too large to provide a detailed account here. Becker and Lewis (1973)
paved the way for economic studies of parental investments in human capital. Their theoretical framework, under the
assumption that parents treat all children equally, predicts that an increase in family size reduces a child’s education. This
prediction has been applied and/or tested by numerous studies. Some of the empirical studies that examine the relationship
between education and family size include Barro and Becker (1989), Behrman et al. (1989), Hanushek (1992), Parish and
Willis (1993), Schultz (1997), Ahn et al. (1998), Glick et al. (2007), Li et al. (2008), Qian (2009), Angrist et al. (2010),
Millet and Wang (2011), Juhn et al. (2013) and Oliveira (2016). From a theoretical perspective, , Becker et al. (1990),
Becker and Tomes (1976), Doepke (2004), and Galor and Weil (2000) study family size and education in models of economic
growth, also under the assumption of no birth order predispositions.

2Many previous studies of birth order effects lack large representative data and this has undermined their results; see,
e.g, Booth and Kee (2009), Behrman and Taubman (1986), Hanushek (1992), Hauser and Sewell (1985), and Iacovou (2008).
These previous studies provide a wide range of estimates for the effect of birth order, mostly imprecisely estimated. They are
unable to control for family size indicators, indicators for children’s cohorts or for parental cohorts. An exception is Iacovou
(2008) but the sample is small and the estimates are subject to considerable attrition bias. Oliveira (2019) documents
gender-differences in the effect of birth order on educational attainment. There is also a large birth order literature in
psychology (for a review see Eckstein et al. (2010)).

3Rosenzweig and Zhang (2009) examine a dataset from China with birth weight information not commonly available,
measures of parental expectations about schooling attainment and health, and child-specific parental time and expenditures.
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With few exceptions, recent empirical work on the influence of family size on investments in children’s

human capital have advanced largely without guidance from economic theory. To address this theory-to-

evidence gap, we propose and implement new tests of the quantity-quality trade-off when parents have

birth order predispositions. Our analytical framework embeds the birth order predispositions considered

by Behrman et al. (1982) and Behrman and Taubman (1986) in models with exogenous family size, into

a model of parental choices for family size and human capital investments, as formulated by Becker and

Lewis (1973) and Barro and Becker (1989). General parental preferences and investment costs drive the

association between human capital and birth order, the birth order effect. Differences in investment costs

may stem from multiple sources, including endowment heterogeneity. Our framework yields canonical

models as special cases, and delivers sharp testable predictions concerning how parental investments

respond to an exogenous change in family size in the presence of birth order effects. Moreover, we

generalize the insight of Rosenzweig and Zhang (2009) regarding within-family resource allocation and

provide an alternative estimation strategy that does not require detailed data on child endowments.

The model’s first prediction assesses how the distribution of education within the household changes

with family size. In our theory, an exogenous increase in family size shifts downwards the children’s

educational profile in the household so that children of the same birth order, but in larger families,

have lower education. In other words, the educational profile of smaller families should lie above the

educational profile of larger families. We refer to the difference in human capital profiles between families

of different sizes as the family size effect. Our model predicts a negative family size effect.

The second prediction examines the difference in average educational attainment between otherwise

identical families of different sizes. Changes in this dimension represent changes in the education of

the average child in the family and are consistent with unrestricted birth order effects. In our theory,

as family size increases, the education of the average child changes due to lower parental resources per

child but also due to within household substitution of resources across birth orders, as pointed out in

Rosenzweig and Zhang (2009). We provide general conditions under which an exogenous increase in

family size reduces parental human capital investments in the average child. We refer to differences in

human capital between average children in families of different sizes as the composite family size effect

because it depends on both the family size effect and on (average) birth order effects. Our model provides

conditions for a negative composite family size effect.

The predictions of negative family size and composite family size effects enable tests of a generalized

quantity-quality trade-off which account for birth order effects arising through parental birth order pre-

dispositions, endowments, or human capital cost differentials across children. Existing empirical work

on the relationship between family size and a child’s human capital has focused on testing for negative

In their data, it is also possible to exploit family size restrictions to expand the set of comparisons across families, i.e.,
comparisons between first-born twins in areas with strict enforcement of the “one child policy” and two-children families in
areas without strict enforcement.
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family size effects; see, e.g., Black et al. (2005), Angrist et al. (2010), and Mogstad and Wiswall (2012b).

Absent birth order effects, our predictions collapse to those of Rosenzweig and Wolpin (1980), and a

negative family size effect indeed implies a Becker and Lewis (1973) quantity-quality trade-off. In the

presence of birth order effects, however, a negative family size effect is necessary but not sufficient for the

existence of a generalized quantity-quality trade-off. The composite family size effect must also be taken

into account.

We develop a two-step empirical strategy that identifies birth order, family size and composite family

size effects. In the first step we estimate birth order effects using within-family variation in educational

attainment which controls for potential omitted variable biases emerging from family-specific heterogene-

ity. In the second step we estimate the family size effect by regressing average educational attainment

within a family (net of average birth order effects) onto family size, using twin births as an instrumental

variable for family size. The second step utilizes only between-family variation in educational attainment

and is therefore unaffected by any endogenous within-family resource reallocations in response to, say,

the birth of a low-endowment sibling. Having estimated birth order and family size effects, we can easily

recover the composite family size effect.

While our empirical strategy identifies the effects of birth order, we are unable to separately identify

the role of child endowments, parental preferences, and human capital costs in determining birth order

effects.4 Note, however, that we do not need to identify the underlying mechanisms leading to birth order

effects to recover family size effects or to test for the presence of a generalized quantity-quality trade-off.

We carry out our empirical analyses using a population-wide comprehensive administrative panel

dataset from Denmark. Danish data strongly agrees with the theoretical implications of the model. In

terms of birth order, we find that birth order has a strong negative effect on a child’s education, consistent

with existing empirical studies (Black et al., 2005). Controlling for family fixed effects and with a linear

birth order effect, an additional birth order reduces years of schooling by little less than 0.18 of a year.

Findings are larger in magnitude when we allow for nonlinear birth order effects.

We further find that children with the same birth order, but in larger families, have lower education;

that is, we estimate negative family size effects. We also find that family size has a strong negative

effect on the average education in the household. That is, we find negative composite family size effects.

Quantitatively, an additional child reduces the average number of years of schooling in the household

by about a tenth of a year. In more flexible specifications, we find evidence that both the family size

effect and the composite family size effect increase (in absolute value) with the size of the family. Taken

together, our empirical analysis supports the existence of a generalized trade-off between the quantity

4Empirical evidence on the channels through which birth order effects arise is relatively scarce. We have already noted
that Rosenzweig and Zhang (2009) use an unusually rich dataset from China to highlight the role of endowments in parental
resource allocation. Results in Pavan (2015) suggests that differential parental investments across siblings can account for
more than 50 percent of the gap in cognitive skills among siblings. Price (2008) provides evidence of birth order differences
in the amount of quality time that children spend with their parents, and Hotz and Patano (2015) show strategic parenting
might explain birth order differences in school performance.
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and the quality of children, even when children in the family are not treated equally. Formal statistical

tests of the model predictions confirm this.

2 Theory

The purpose of this section is to derive testable predictions about how parental investments in human

capital respond to changes in family size under birth order predispositions. We consider a model of

fertility choice in which human capital investments vary with the order in which children are born. For

analytical convenience, we treat family size as a continuous variable and assume that parents make all

decisions in a single stage of choice. Children are born sequentially but within this single stage. The

analysis is carried out at the family level.

Preferences. Parents derive utility from their own consumption, the household’s family size, and the

human capital of their children. Let i represent the order in which children are born, their birth order,

and let N denote completed family size. Birth order and family size are jointly realized as i ∈ [0, N ]. A

child’s human capital is a function of her birth order h(i). Parental preferences are gender-neutral and

there is no child mortality.

Let u(h(i), i) represent the parental sub-utility from having a child of birth order i with human capital

h(i). We assume that u(h, i) is increasing and concave in h but leave the dependence on i unrestricted.

We assume that parents aggregate their children’s sub-utilities to obtain a utility index U . We focus on

a CES aggregator

U({h(i)}, N) ≡

(∫ N

0

u(h(i), i)ρdi

)α/ρ
, (1)

where ρ measures the degree of substitutability between the sub-utilities at different birth orders. The

parameter α is used to ensure concavity in U({h(i)}, N). Appendix A lists the technical assumptions we

impose on α and ρ. The utility index U({h(i)}, N) represents the total utility associated with N children

whose human capital, as a function of their birth order, is assigned according to the function h(i). The

utility index U({h(i)}, N) is increasing in a child’s human capital. U({h(i)}, N) is also increasing in family

size, i.e., UN ({h(i)}, N) > 0. While total utility increases with parental investments Uh({h(i)}, N) > 0,

the marginal utility of human capital investments is decreasing in family size, i.e., UhN ({h(i)}, N) < 0;

see (A5). The partial derivatives relevant for comparative statics are available in Appendix A.

We represent the parental utility associated with a parental consumption of X, a family size of N ,

and a utility index U by

U(X,N,U({h(i)}, N)),

where U({h(i)}, N) is given by (1). Family size N has a direct effect on the parental utility as well as an
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indirect effect in the total utility U({h(i)}, N).

Our setting is general and can nest previous models in the literature as special cases. On one hand,

Behrman and Taubman (1986) is an early study of the influence of birth order on intrahousehold invest-

ments; see also Behrman et al. (1982). Family size, however, is not a choice variable in these papers. They

define earnings y(i) as a function of a child’s endowment e(i), their human capital h(i), and their birth or-

der i, i.e., y(i) = f(h(i), e(i), i). In the parental sub-utility function u(h(i), i) ≡ u(f(h(i), e(i), i), i), child

endowments, intellectual ability, and pure parental preferences (i.e., primogeniture) would produce birth

order effects in schooling. Behrman and Taubman (1986) and Behrman et al. (1982) also proposed a CES

aggregator. The CES specification allows for substitutability between the children’s utilities. Behrman

et al. (1982) and Behrman and Taubman (1986) associate the parameter ρ in expression (1) with parental

aversion to inequality. When ρ = 1, parents have no aversion to inequality and simply value the total

sum of their children’s utilities in U({h(i)}, N). When ρ→ −∞, parents are unwilling to accept unequal

utilities across children as the aggregator (1) becomes U({h(i)}, N) = [mini∈[0,N ]{u(h(i), i)}]α.

On the other hand, Becker and Lewis (1973) and Rosenzweig and Wolpin (1980) characterized the

effect of family size on human capital investment for parents with preferences of the form U(X,N,H),

which assume that all children receive the same human capital, i.e., h(i) = H for all i ∈ [0, N ]. If all

children are treated equally, the aggregator (1) becomes U({h(i)}, N) = Nα/ρu(H)α so one has parental

preferences of the form U(X,N,H). Barro and Becker (1989) propose a dynastic and altruistic model of

fertility choice in which human capital is also equal among all children and preferences are of the form

U(X,N,H) = v(X) +NaV (H). In Becker and Lewis (1973), Rosenzweig and Wolpin (1980), and Barro

and Becker (1989), there are no birth order effects since all children are treated symmetrically. To nest the

previous frameworks, simply restrict human capital to be equal among all children, i.e., h(i) = H for all i,

assume that ρ = α = 1, and let U(X,N,U({h(i)}, N)) = v(X) +U({h(i)}, N) with u(H, i) = aV (H)ia−1

and a > 0 in (1). These assumptions yield U(X,N,H) = v(X) +NaV (H), which is the functional form

used by Barro and Becker (1989). For further remarks about the connection of our model to the literature

see Appendix A.

Costs. Let C(X,C({h(i)}, N)) denote the total cost of attaining a parental consumption X, a family

of size N , and human capital investments h(i) for i ∈ [0, N ]. We consider a CES aggregator for human

capital costs, as in

C({h(i)}, N) ≡

(∫ N

0

c(h(i), i)φdi

)1/φ

, (2)

where c(h(i), i) is a cost function for human capital investments h(i) at order i, and φ is a measure of

substitutability between the cost of providing human capital to children of different birth orders. We

assume that c(h, i) is increasing and sufficiently convex in h but leave the dependence on i unrestricted.

The marginal cost of changes in family size is given by CN ({h(i)}, N) > 0. As shown in Appendix A,
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the marginal cost of human capital investments is increasing in family size, i.e., ChN ({h(i)}, N) > 0; see

(A5).

Under a linear cost for parental consumption at a price PX , the total cost function becomes

C(X,C({h(i)}, N)) = PXX + C({h(i)}, N).

This expression also nests existing formulations in the literature. For example, if marginal and average

human capital costs are equal, i.e., c(h, i)/h = ch(h, i), costs are linearly aggregated,

C({h(i)}, N) =

∫ N

0

π(i)h(i)di, (3)

with π(i) ≡ (c(h, i)/C({h(i)}, N))φ−1ch(h, i) representing birth-order-specific prices of human capital, as

in Behrman and Taubman (1986).5 As another example, assume that φ = 1, so that costs are perfect

substitutes. Let c(h(i), i) have a fixed component PN , and a linear and constant price for h(i) given by

Π + PH/N , as in c(h(i), i) = PN + [PH/N + Π]h(i). Then, the cost aggregator (2) becomes

C(H,N) = PNN + PHH + ΠHN , (4)

where H ≡ N−1

∫ N

0

h(i)di represents the human capital of the average child in the household or average

human capital. Becker and Lewis (1973) and Rosenzweig and Wolpin (1980) assumed the functional form

(4) to study quantity-quality interactions between family size N and human capital investments H when

investments are equal across birth orders, i.e., h(i) = H. Canonical formulations of parental investments

costs in models of the intrahousehold allocation of resources and the quantity-quality trade-off are also

nested in (2).

Parental choices. Parents maximize U(X,N,U({h(i)}, N)) subject to C(X,C({h(i)}, N)) = Y , where

Y is the parents’ total income or wealth, which we maintain as fixed throughout.

Appendix A lists sufficient conditions to ensure that U(X,N,U) and C(X,C) satisfy standard concavity-

convexity properties. We also maintain conventional assumptions for the cross-partial terms of the

parental utility. We assume that X and N , and X and U , are complements and that N and U are

substitutes in the sense that UXN (X,N,U) > 0, UXU (X,N,U) > 0, and UNU (X,N,U) < 0 (see Milgrom

and Shannon, 1994). The complementarity assumptions are fairly standard. They are sufficient to ensure,

for instance, that N and {h(i)} are normal goods, i.e., that their maximizing values are increasing in

parental wealth. The substitution assumption between N and U is sufficient to ensure that the parental

problem is concave in N . Assuming UNU (X,N,U) < 0 is also important for the qualitative predictions

5In contrast to Behrman and Taubman (1986), however, prices π(i) are endogenous since, through C({h(i)}, N), they
depend on the human capital of all children as well as on family size.
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of the model. For instance, Jones and Schoonbroodt (2010) clarified the role of UNU (X,N,U) in the

Barro-Becker framework and defended UNU (X,N,U) < 0 in a formulation that assumes no heterogeneity

among children, uses a linear aggregator in (1), and a parental utility that values the average utility of

children, i.e., U/N .6 Although not necessary, UNU (X,N,U) < 0 is sufficient in our model to ensure a

trade-off between the quantity and quality of children.

Let X∗ denote optimal parental consumption. Parental choices for (N, {h(i)}), our focus in this paper,

are represented by a family size N∗ ∈ [0, N+], where N+ is a biological upper bound of fertility, and by

a bounded human capital profile h∗(i) ∈ C1 with support [0, N∗]. Family size and human capital satisfy

UN (X∗, N∗, U∗) + UU (X∗, N∗, U∗)UN ({h∗(i)}, N∗) =
UX(X∗, N∗, U∗)

PX
CN ({h∗(i)}, N∗), (5)

UU (X∗, N∗, U∗)Uh({h∗(i)}, N∗) =
UX(X∗, N∗, U∗)

PX
Ch({h∗(i)}, N∗), for all i ∈ [0, N∗]. (6)

The first-order conditions (5) and (6) are intuitive. In (5), an additional child increases parental utility

directly by UN (X∗, N∗, U∗) but also indirectly by adding UN ({h∗(i)}, N∗) to the aggregated utilities of

the existing children. Increasing N , however, requires additional spending and this increases total costs

by CN ({h∗(i)}, N∗). In (6), the utility gains from human capital investments at birth order i must, at

the margin, equal their cost. As we noted before, the explicit derivatives of the aggregator functions

U({h(i)}, N) and C({h(i)}, N) with respect to their arguments are presented in Appendix A.

Parental choices can be broken into two separate parts. First, taking as given the optimal human

capital investment profile, family size N∗ determines the endpoint of the function h∗(i). Second, for a

family of size N∗, the profile h∗(i) determines how human capital varies across birth orders within the

household. An advantage of this separation is that we can fix family size as a terminal condition for a

differential equation that describes how human capital varies within the household from the first-order

condition (6) alone. In particular, let h∗(i|N∗) be the optimal human capital investment of a child of

birth order i ∈ [0, N∗] in a family of size N∗.

Proposition 1 (Birth order effects) A child’s optimal human capital is a function of birth order, and

it varies according to

∂h∗(i|N∗)
∂i

Q 0 ⇐⇒ (ρ− 1)
ui(h, i)

u(h, i)
+
uhi(h, i)

uh(h, i)
− (φ− 1)

ci(h, i)

c(h, i)
− chi(h, i)

ch(h, i)
Q 0, (7)

6We use the total utility index U as an argument in the parental preferences U(X,N,U) instead of the average utility
U/N . Under the equal treatment assumption in Becker and Lewis (1973), Rosenzweig and Wolpin (1980), and Barro and
Becker (1989) there is no major advantage of using one or another formulation. The use of a total utility index under birth
order predispositions simplifies the comparative statics. Under U/N , we would need to bound the second-order derivative of
U(X,N,U) with respect to its third argument. As Jones and Schoonbroodt (2010, p. 677) note, in response to an exogenous
decline in the price of education, “when family size and utility are complements in utility, it follows that both education
and family size increase, whereas when they are substitutes, education increases substantially, but family size falls.” They
also state that “there is currently no good evidence for assuming that number and well-being of children are complements.”
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for all i ∈ [0, N∗].

A child’s human capital varies with birth order. The derivative in (7) represents the slope of the

human capital profile within the household. Given the CES aggregators in (1) and (2), the slope of

h∗(i|N∗) depends on how the marginal utilities and costs Uh({h∗(i)}, N∗) and Ch({h∗(i)}, N∗) in (6)

differ by birth order. Expression (7) depends on the complementarity or substitutability between human

capital and birth order in the parental sub-utilities and costs, i.e., on uhi(h, i) and chi(h, i), but also on

how sub-utilities and total costs change directly with birth order, i.e., on ui(h, i) and ci(h, i). Since we

have not restricted any of the signs of these cross-partial and partial derivatives, Proposition 1 shows that

the model delivers human capital profiles of any general shape. As a special case, if ∂h∗(i|N∗)/∂i = δ,

the human capital profile would be linear with a constant slope δ. In another special and testable case,

if ∂h∗(i|N∗)/∂i = 0, the human capital profile is flat. This case assumes that parents treat all their

children equally and that human capital accumulation costs are independent of birth order. This special

case is the Becker and Lewis (1973) and Rosenzweig and Wolpin (1980) formulation.

Proposition 1 also shows that preference and cost differentials are confounded in (7), and that without

information on parental predispositions for birth orders and costs differentials it would not be possible, in

general, to separately identify the motivation behind birth order effects. Negative birth order effects, for

example, could result from reinforcing strategies due to a decline in the marginal value of human capital

investments as birth order increases (i.e., uhi(h, i) < 0) or to increasing differences in total valuation

of human capital (i.e., ui(h, i) > 0). In the extreme case of ρ → −∞, parents equalize utilities across

children, i.e., u(h, i) = ū for all i. If ui(h, i) > 0, parents must lower their human capital investments as

birth order increases as a compensating strategy. These principles apply unchanged to less extreme cases

and to a context where birth order effects arise due to cost differences.

While our testable predictions for the effect of family size on the human capital recognize factors

commonly identified by the literature as important reasons for expecting birth order effects, we will not

require a separate identification of the contribution of preferences, endowments, ability, and costs to birth

order.

Quantity-quality. Proposition 1 does not describe the effects of exogenous changes in family size on

a child’s human capital. The entire empirical literature analyzing the quantity-quality trade-off revolves

around identifying the effects of exogenous changes in family size. Since family size is endogenous, twin

births are commonly used as sources of exogenous variation for family size; see, e.g., Rosenzweig and

Wolpin (1980). The conceptual experiment behind this logic is based on an exogenous perturbation

argument described as follows. Choosing family size involves the possibility of multiple births. Suppose

that twins are unanticipated and undiversifiable, and denote by Z ∈ {0, z} the occurrence of a twin birth:

if there are no twin births, N∗(Z) = N∗; if there are twins, N∗(Z) = N∗+ z with z > 0 representing the
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exogenous additional children. Parents plan for their children’s human capital according to (7); parents

plan for family size according to (5) but the optimal choice is only available for families without twins.

Families with twins, need to accommodate the additional children.

The following proposition characterizes how the human capital of existing children changes with an

exogenous increase in family size. We refer to this as the family size effect.

Proposition 2 (The family size effect) Regardless of the birth order effects, the human capital profile

of smaller families dominates (i.e., it lays above) the human capital profile of larger families. That is,

h∗(i|N∗) > h∗(i|N∗ + z), for all i ∈ [0, N∗].

Proposition 2 is a consequence of interactions between human capital investments and family size in

the parental utility U(X,N,U), as well as income changes associated with the decline in available resources

due to the increase in family size. To describe some of the interactions in the parental utility, recall that

the marginal utility gains from human capital investments depend, among other things, on UU (X,N,U);

see the left-hand-side of (6). Substitution between N and U in the form of UNU (X,N,U) < 0 implies

that the presence of additional children reduces the marginal value of parental investments in human

capital across all birth orders. Since the aggregator U changes with the additional children, there is an

additional decline in parental marginal utilities (i.e., UUU (X,N,U) < 0) that also lowers the marginal

value of human capital investments at all birth orders.

To understand the income changes associated with exogenous changes in family size suppose that

parental consumption is equal for parents with and without twins. Since parental spending in children

Y − PXX is constant, C({h∗(i|N∗)}) = C({h∗(i|N∗ + z)}) in the budget constraint (2). Hence,

∫ N∗

0

[c(h∗(i|N∗), i)φ − c(h∗(i|N∗ + z), i)φ]di =

∫ N∗+z

N∗
c(h∗(i|N∗ + z), i)φdi. (8)

The left-hand side represents the difference in the cost of human capital for the existing children (i.e.,

i ∈ [0, N∗]) between smaller and larger families. The right-hand side represents the cost of the human

capital of the additional children in larger families. Since the human capital investments of the additional

children are expensive, parents in larger families must reduce investments in existing children. That is, for

the budget constraint to hold in (8), it must be the case that h∗(i|N∗) > h∗(i|N∗+ z) for all i ∈ [0, N∗].7

This result is maintained even though parental consumption changes in response to an exogenous increase

in family size. Indeed, Proposition 2 remains valid even if parents can partially (but not fully) adjust

family size in response to the occurrence of a twin birth. (For further details see Appendix A.)

7The human capital profile is a differential equation; see (7). Because of the existence and uniqueness theorem for
differential equations, one and only one integral curve passes through each terminal point (Hestenes, 1966, Appendix,
Theorem 3.1). Accordingly, h∗(i|N∗) and h∗(i|N∗ + z) should not cross (Hestenes, 1966, Appendix, Theorem 4.1). These
arguments are similar in spirit to Brock (1971)’s analysis of changes in the planning horizon in the neoclassical growth
model. Our proof uses standard comparative statics. This proposition might be proved by monotone comparative statics
methods which have generalized Brock (1971); see, e.g., Amir (1996) and Milgrom and Shannon (1994). These methods
may yield more general results than those presented here.
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Figure 1: Human capital profiles under negative birth order effects.

Figures 1 and 2 show the effect of an increase in family size. Figure 1 represents graphically Proposition

2 in the case of negative birth order effects. Figure 2 represents the case of positive birth order effects.

Both figures show that the children’s human capital profile in larger families is below the human capital

profile of smaller families, regardless of how birth order influences parental investments. We will later on

test this prediction based on empirical human capital profiles and exogenous changes in family size.

In Proposition 2, twins shift family size but leave the shape of the human capital profile unaffected

because the preference and cost differentials subsumed in (7) are independent of the presence of twins.

That is, the additional children z influence the human profile only through changes in the terminal value

N∗ + z, something that would not be true if any of the terms in (7) were a function of family size. We

can then find a solution for (7) while treating N∗ and N∗ + z as different terminal points.

Proposition 2 ranks individual-level human capital for the existing birth orders in families of size N∗

and families of size N∗ + z. Proposition 2, however, does not offer a single summary measure to test

the quantity-quality trade-off. For example, Proposition 2 does not incorporate information about the

human capital of the additional children in families of size N∗+ z. In effect, Proposition 2 is testable but

silent about how the human capital investments of the average child respond to changes in family size.

We next consider the effect of a exogenous increase in family size on the household’s average human

capital. Let H(N∗ + z) denote the (arithmetic) average human capital of families of size N∗ + z,

H(N∗ + z) ≡ 1

N∗ + z

∫ N∗+z

0

h∗(i|N∗ + z)di. (9)

The average human capital of families of size N∗ is similarly defined. Examining average human capital

11
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Figure 2: Human capital profiles under positive birth order effects.

is relevant because, by construction, H(N∗) and H(N∗ + z) are the human capitals of the average or

representative children in families of size N∗ and N∗ + z, respectively. Differences in the average human

capital across families of different sizes reflect the family size effect (Proposition 2) and the birth order

effects, and is referred to as the composite family size effect.

Proposition 3 (The composite family size effect) If either human capital is a weakly decreasing

function of birth order, or an increasing but bounded function of birth order (with bounds specified in

Appendix A); then, the human capital of the average child in smaller families is larger than the human

capital of the average child in larger families. That is, H(N∗) > H(N∗ + z).

An exogenous increase in family size influences average human capital through changes in the human

capital of existing children, i.e., those with birth orders i ∈ [0, N∗] (see Proposition 2). In addition to

these children, the average human capital H(N∗+z) counts the additional children, i.e., those with birth

orders i ∈ (N∗, N∗ + z]. Thus, the sign and magnitude of birth order effects influence average human

capital. If birth order effects are negative, the human capital of the additional children would be lower

than the human capital of the existing children. The additional children, in other words, contribute

negatively to the family’s average, resulting in a negative composite family size effect. If birth order

effects are positive, the additional children receive more human capital than the existing children and

this might raise the family’s average human capital. If the positive birth order effects are bounded, the

contribution of the additional children will be unable to counter the decline associated with Proposition

2, and the composite family size effect will be negative.

Figures 1 and 2 illustrate Proposition 3. In both figures, points (a) and (b) represent H(N∗) and

H(N∗ + z) respectively, so their difference is associated with how the average child fares as family size

12



increases, the composite family size effect. In both figures, the human capital of the average child is lower

in larger families, although the difference is smaller under positive birth order effects than under negative

birth order effects.

Figures 1 and 2 also illustrate alternative comparisons that could be implemented in the data. Point

(c) represents the human capital of a child in larger families but whose birth order coincides with the

birth order of the average child in smaller families. In other words, the difference between points (a) and

(c) measures human capital differences when family size increases but birth order is held constant. This

is the parameter typically estimated in the recent empirical literature on the quantity-quality trade-off in

the presence of birth order effects; see, e.g., Black et al. (2005), Angrist et al. (2010), and Mogstad and

Wiswall (2012b). Under negative birth order effects, as in Figure 1, this is a downward biased estimate

of the composite family size effect in Proposition 3. With positive birth order effects, as in Figure 2, the

bias is positive.

Similar versions of Proposition 3 can be obtained for additional notions of average children. For

example, if the human capital profile h∗(i|N∗) is monotone, the median child in smaller families is the

one whose birth order is at the midpoint between 0 and N∗, i.e., iN = N∗/2. Median human capital

is the value of the human capital function for the median child. Therefore, the median human capital

in smaller families is Hmed(N∗) = h(iN |N∗). The median child in larger families has a birth order

iN+z = (N∗ + z)/2 and the median human capital of larger families is Hmed(N∗ + z) = h(iN+z|N∗ + z).

Their difference, h(iN |N∗)− h(iN+z|N∗ + z), can be written as

Hmed(N∗)−Hmed(N∗ + z) = [h(iN |N∗)− h(iN |N∗ + z)] + [h(iN |N∗ + z)− h(iN+z|N∗ + z)]. (10)

Quantifying the composite family size effect compares Hmed(N∗) and Hmed(N∗+ z), represented graph-

ically by points (a) and (b) in Figures 1 and 2, respectively. The first term in (10) holds birth order

constant but changes family size, as in Proposition 2. This term compares points (a) and (c). The second

term in (10) holds family size constant but changes the birth order of the median child from N∗/2 to

(N∗ + z)/2, as in a comparison between points (c) and (b). This term depends on the sign of the birth

order effects. If birth order effects are negative, h(iN |N∗ + z) > h(iN+z|N∗ + z) reinforcing Proposition

2. If birth order effects are positive, h(iN |N∗+ z) < h(iN+z|N∗+ z) countering Proposition 2. If positive

birth order effects are bounded, as in Proposition 3, the human capital of the median child in smaller

families would also be larger than the human capital of the median child in larger families. We discuss

more general ways of averaging human capital than (9) in Appendix A.

The human capital profiles in Figures 1 and 2 arise due to differential investments across birth orders,

consistent with the discussion in Rosenzweig and Zhang (2009). They note, for example, that “the

difference between the quality of first-birth children in families with and without twins at the second birth

does not represent the trade-off between average child quality and the number of children”(Rosenzweig
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and Zhang, 2009, p. 1155). In our setting, this comparison corresponds to that between points (a) and

(c) in the figures, and as noted above, this is not an exhaustive test of the generalized quantity-quality

trade-off. Such a test should also consider the composite family size effect. Of course, Rosenzweig and

Zhang (2009) focused on differences in birth endowments, which are particularly salient for twinning; see

their Figures 1 and 2. Our framework shows that biased estimates of the quantity-quality trade-off are

not exclusively associated with differences in birth endowments. Biased estimates are generally the result

of birth order effects, regardless of their source.

Our model is deliberately parsimonious. We focused on limited choices for parents whose only con-

straint is given by their available wealth. We used a continuous fertility choice and particular utility and

cost aggregators. In Appendix A, we demonstrate the robustness of the basic theoretical predictions. To

stress the advantages of our approach, note that our analytical findings do not assume that children are

treated equally and that we do not need to identify the motivation behind birth order effects. Therefore,

the quantity-quality trade-off studied here allows for a general analysis of birth order effects, which, as we

shall see in the next section, are empirically relevant. Note also, on an empirical level, that our testable

predictions are based on quantities that are easily obtainable in the data.

3 Empirical Analysis

Our empirical analysis focuses on quantifying the impact of birth order and family size on human capital

investments, as well as testing the predictions of Propositions 2 and 3. To facilitate the exposition of the

econometric model, the remainder of the paper treats birth order i as a discrete variable. We also use

subindices differently from our previous notation. We index birth order specific objects by subscript i,

and family specific objects by the subscript j. For example, hij is the human capital of a child with birth

order i in family j, measured as years of education in the empirical analysis.

Recall that parental choices of Nj and hij satisfy (5) and (6), respectively. The following regression

equation matches our theoretical human capital profile across birth orders:

hij = α+ ι′iδ + ι′Nj
β + ξj + εij , (11)

for i = 1, ..., Nj . In (11), hij is an unrestricted function of birth order i and family size Nj : ιi is a vector

whose i-th entry equals 1 and all other entries equal 0. The dimension of ιi is N+, δ = (δ1, ..., δN+) is a

vector of birth order coefficients, and β = (β1, ..., βN+) is a vector of family size coefficients. Individual

human capital hij is also a function of household-level characteristics such as parental spending, parental

preferences, and human capital costs. This dependence is implicit in the vector of family fixed effects ξj .

14



Finally, (11) contains an idiosyncratic error term εij that satisfies8

E[εij |i,Nj , ξj ] = 0. (12)

Existing empirical studies of birth order and family size effects are based on reduced-form regressions of

the form of (11). If ι′iδ = δi and ι′Nj
β = βNj , we obtain an empirical model with linear birth order and

family size profiles: hij = α+ δi+ βNj + ξj + εij .

Equation (11) implies the following expression for the average human capital in a family of size Nj ,

denoted Hj ,

Hj = α+ ι′Nj
(β + δ̄) + ξj + ε̄j , (13)

where δ̄ ≡ (δ̄1, ..., δ̄N+) is the vector of the average birth order effects in families of size 1, ..., N+, and

ε̄j is the within-family average of the idiosyncratic error term in (12). If ι′iδ = δi and ι′Nj
β = βN , we

obtain: Hj = α+ (β + δ/2)Nj + ξj + ε̄j .

The parameterization of the empirical model implies that δi − δi−1 represent the birth order effect

comparing children of parity i − 1 and i, and βN − βN−1 and βN + δ̄N − (βN−1 + δ̄N−1) represent the

family size and composite family size effects comparing families of size N − 1 and N , respectively. If

ι′iδ = δi and ι′Nj
β = βNj , the birth order effect is δ, the family size effect is β, and the composite family

size effect is β + δ/2. Our model predicts that the family size effect and the composite family size effect

are negative at all family sizes. Testing the theory thus requires estimates of δ and β.

3.1 A Two-Step Empirical Strategy

Estimation of the regression coefficients δ and β from (11) is complicated by a dual endogeneity problem.

As noted above, human capital hij and family size Nj reflect optimal behavior on the part of parents,

i.e., both depend on expenditures, preferences and costs. Hence, Nj is endogenous in relation to ξj . Since

family size determines a family’s birth order configuration, and vice versa, the endogeneity of family size

Nj spills over to birth order i.

We propose a simple two-step estimation procedure to overcome this complication. In the first step,

we estimate δ from (11) using the within-family estimator. The within-family transformation sweeps out

all time-invariant family characteristics that impact parental choices. Hence, while the first step delivers

a consistent estimate of δ using within-family variation in educational outcomes, it cannot be used to

estimate the impact of family size on education because family size does not vary within a household.

In the second step, we estimate β from between-family variation in average years of education net of

the variation that stems from differences in average birth order across families, H̃j = Hj − ι′N δ̄. This

8In the empirical analysis we augment (11) with a set of exogenous individual and family specific observable controls.
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object can be obtained as the fixed effects from the first step regressions. By (13),

H̃j = ι′Nj
β + ξj + εj . (14)

Birth orders do not appear directly in this equation and family size Nj is endogenous in relation to the

family fixed effect ξj . We follow previous literature and overcome the endogeneity problem by using twin

births as an instrumental variable for family size when estimating β by regressing H̃j onto family size

according to (14). This yields a consistent estimate of the coefficient vector β. Since δ is known from

the within-family regression analysis, it is straightforward to recover the composite parameter β+ δ̄. We

have thus identified and estimated the parameters of interest and we can proceed to test the predictions

in Propositions 2 and 3.9

Instrumental variables. Our empirical analysis includes various specifications of the family size pro-

file. In the simple case where the family size profile is linear, i.e., ι′Nj
β = βNj , only a single instrumental

variable is required for identification. In the general case of a nonlinear family size profile, (13) contains

a vector of endogenous variables ιN . We have excluded families with N = 1 and treated N = 2 as the

reference case. Hence, ιN contains N+ − 2 endogenous variables.

Let z̃kj take the value of 1 if family j experienced a twin birth in the k-th birth order and z̃kj = 0

otherwise. For the empirical specifications with linear family size profiles, we present estimates of β using

both twin birth at the last birth, i.e. using zj = z̃
Nj−1
j to instrument Nj , and twin birth at any birth

parity, i.e. using zj = I(z̃kj = 1) for some k = 1, 2, ..., Nj − 1, where I(·) is the indicator function.

Using twin birth as an instrumental variable when the family size profile is nonlinear is slightly more

involved. Since z̃kj = 0 when information on twin birth at parity k is missing due to truncation at N∗j , z̃kj

is correlated with the family fixed effect ξj . This invalidates its use as an instrumental variable. Angrist

et al. (2010), Mogstad and Wiswall (2012b), and Mogstad and Wiswall (2012a), however, have shown

that one can construct a set of valid instruments in the following way:

zkj =
(
z̃kj − E[z̃kj |Nj ≥ k]

)
I(Nj ≥ k), (15)

for k = 3, 4, ..., N+− 1. The vector zkj constitutes our instrumental variables for family size in (13) when

the family size profile is nonlinear.10

9We obtain the variance-covariance matrix of the two-step estimator by block-bootstrapping at the family-level using
100 repetitions.

10In practice, we estimate E[z̃kj |wj , Nj ≥ k], where wj denotes a vector of family-level controls. The empirical specification
also includes interactions of the variables in wj within the relevant subsamples defined by Nj ≥ k.
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4 Data

Our analysis data is extracted from IDA (Integreret Database for Arbejdsmarkedsforskning), a compre-

hensive Danish administrative panel dataset for the period 1980-2006 with annual observations on all

individuals aged 15-74 and residing in Denmark with a social security number. IDA contains detailed

individual-level information on socioeconomic characteristics, including date of birth, gender and educa-

tional attainment. The data is constructed and collected for administrative purposes and contains very

few measurement errors. Moreover, the data is population-wide with a long period of observation. We

can link children and parents, and thus identify siblings; families are defined as sets of children born to

the same mother.

We select all individuals in IDA in 2006 with non-missing mother ID and father ID; that is, all outcome

measurements are taken in 2006. This is the children-data. We then locate the parents in IDA and merge

parental characteristics onto the children-data. We retain only the children where we are able to locate

both parents in the IDA. From this data we can compute family size and assign birth orders to children.

Finally, we impose a standard set of selection criteria, the most important of which are as follows: First,

we only retain children aged 25 or above in 2006 to ensure that our outcome measurements represent

completed education. Second, we exclude families with children aged 0-14 in 2006. This ensures that

our family size measure represents completed fertility. Third, we exclude families in which at least one

member (a child or one of the parents) has missing education data, families where the mother was below

17 or above 49 when giving birth, and families containing siblings with different fathers. Fourth, as birth

order is not defined for multiple births (i.e. for twins, triplets etc.) we remove individuals that are part of

multiple births instances, retaining only an indicator for a multiple birth occurrence in the family and the

birth parity at which the multiple birth occurred. We note that family size and birth order are recorded

before the individual level selection criteria are imposed, to ensure our family size measure represents

completed fertility. These restrictions reduce our sample size from 2,361,083 individuals in 1,220,477

families to 1,438,994 individuals in 756,776 families.

Effectively, our analysis data contains all individuals in Denmark aged 25-74 in 2006, with non-missing

mother and father IDs, whose parents were both alive, aged 15-74 and present in the IDA-files at some

point during 1980-2006, and who satisfy the additional restrictions described just above. Further details

on the construction and selection of our analysis data can be found in online supplementary material.

Descriptive statistics. Table 1 presents descriptive statistics for the analysis data, excluding single

child families. The average individual is 38.3 years old and has 12.8 years of education. Forty eight

percent are females and, on average, their mothers and fathers have completed 10.2 and 10.9 years of

schooling, respectively. Conditional on having at least one sibling, an individual has on average 1.7

siblings.
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Table 1: Descriptive statistics. Analysis data

Standard
Mean deviation Minimum Maximum

Age in 2006 38.3 7.6 25 67
Female 0.48 0.5 0 1
Education 12.8 2.8 7 20
Mother’s education 10.2 3.5 7 20
Father’s education 10.9 3.5 7 20
Mother’s age in 2006 64.6 8.2
Father’s age in 2006 67.5 8.7
Number of siblings 1.7 0.9 1 10
Twins in family 0.01 0.11 0 1

Note: Descriptive statistics are from our analysis data consisting of 1,438,994
individuals in 756,776 families. Single children are excluded from the data, and
the reported statistics are based on 1,278,510 individuals in 596,292 families. To
ensure anonymity, we cannot report minimum and maximum values for mother’s
and father’s age in 2006.

Table 2: Number of children in the family

Number of children Frequency Percentage

1 160,484 21.2
2 380,259 50.3
3 163,426 21.6
4 40,785 5.4
5 8,705 1.2
6+ 3,157 0.3

Note: Descriptive statistics are obtained using 756,776
families including single child families.

Table 2 presents the distribution of family size, including single child families: 50.3 percent of families

have two children and less than one-third of the families have more than two children. The average

number of children in the family is 2.5. Table 3 presents the average education by family size and birth

order. This table shows a clear negative association between an individual’s education and family size,

as well as between an individual’s education and her birth order. Similar patterns are documented for

the mother’s and father’s education.

5 Main Findings

OLS findings. We start by estimating the impact of family size on a child’s education from (11) by

OLS. This naive procedure ignores any endogeneity issues. The first column of Table 4 reports findings

from a linear specification of family size on child’s education, controlling for the age and sex of the child.
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As expected, the coefficient on family size is negative and implies that an additional child decreases

schooling by a little more than a quarter of a year. Because family-specific characteristics might impact

the choice of completed family size and educational choices, column (4) adds unrestricted indicators

for the mother’s and father’s education, and a 5-year interval set of indicator variables for mother’s and

father’s age. Adding demographic controls reduces the magnitude of the relationship by about 36 percent

but the coefficient remains statistically significant.

In order to account for birth order effects, column (5) adds a linear control for birth order. Consistent

with previous findings reported in the literature, the coefficient on family size is considerably reduced to

−0.038, but remains significant. Allowing for a more flexible estimation by including indicator variables

for birth order in column (6) does not change the findings markedly. The impact of family size is −0.063,

smaller but comparable to the coefficient (−0.013) reported in Black et al. (2005) using Norwegian data.11

Birth order coefficients, whether included linearly or nonlinearly, are negative, large and highly sig-

nificant. They suggest, for example, that a third child in a family has, on average, 0.657 fewer years of

education than the first child (column (6) in Table 4). The negative impact of birth order could reflect

family-specific unobservable factors. In columns (7) and (8) of Table 4, we report findings from estimat-

ing birth order coefficients while controlling for family fixed effects. The family indicators capture any

time-invariant characteristics, including completed family size. Once we control for family fixed effects,

the linear birth order coefficient is reduced by about a half to −0.179. Similar changes in magnitude

occur when we estimate the regression including a nonlinear birth order profile (column (8)). The birth

order effects are similar in magnitude to the results reported elsewhere in the literature.12

Two-step estimation findings. We now present the estimates from our two-step strategy described

earlier. The first step uses within-family variation to estimate birth order coefficients δ, as reported in

columns (7) and (8) of Table 4. In the second step, we use between-family variation to estimate the

impact of family size on the average education in the family netting out the effect of average birth order,

as in (14). The second step identifies family size coefficients β. With estimates of δ and β, we can

compute birth order effects, family size effects, and composite family size effects. The latter two objects

allow us to test Propositions 2 and 3, which restrict family size and composite family size effects to be

negative.

The results from our two main specifications are reported in Tables 5 and 6. Table 5 contains results

for the case of linear birth order and family size profiles. Table 6 contains results for the case of nonlinear

birth order and linear family size profiles. We further present a specification with nonlinear birth order

and nonlinear family size profiles in Table B.1 in Appendix B.

11Estimating the effect of family size using the instrumental variable strategy in Black et al. (2005) produces comparable
estimates.

12Our theory based empirical analysis abstracts from the potential impact of spacing/timing of children. Extending our
analysis to a dynamic framework is beyond the scope of this papers and we leave it as future research.
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Table 6: Two-step estimation with linear family size and nonlinear birth order profiles

(1) (2) (3) (4)

Step 1:
OLS w/ Step 2: Step 2: Step 2:

family FE OLS 2SLS 2SLS

Family-level Family-level Family-level

Child’s years average years average years average years

Dependent variable: of education of education1 of education1 of education1

Twin birth Twin birth

Instrumental variable: at last birth at any parity

Second child −0.274
(0.007)

∗∗∗

Third child −0.423
(0.014)

∗∗∗

Fourth child −0.488
(0.021)

∗∗∗

Fifth child −0.437
(0.034)

∗∗∗

Sixth child or later −0.437
(0.052)

∗∗∗

Family size −0.095
(0.005)

∗∗∗ −0.040
(0.027)

−0.049
(0.019)

∗∗∗

Composite family size 2 −0.137
(0.004)

∗∗∗ −0.137
(0.004)

∗∗∗ −0.137
(0.004)

∗∗∗

Composite family size 3 −0.327
(0.006)

∗∗∗ −0.273
(0.029)

∗∗∗ −0.281
(0.020)

∗∗∗

Composite family size 4 −0.485
(0.009)

∗∗∗ −0.376
(0.057)

∗∗∗ −0.394
(0.040)

∗∗∗

Composite family size 5 −0.608
(0.013)

∗∗∗ −0.445
(0.084)

∗∗∗ −0.471
(0.058)

∗∗∗

Composite family size 6 −0.721
(0.017)

∗∗∗ −0.503
(0.113)

∗∗∗ −0.538
(0.078)

∗∗∗

First stage:

Min. eigenvalue stat.2 15, 825.5 28, 156.6

Observations 1,278,510 596,292 596,292 596,292

Note: *** indicates statistical significance at the 1 percent level. Standard errors for all regressions
are computed by block-bootstrapping at the family level (100 repetitions) and are given in brackets.
The family fixed effect regression in column (1) includes controls for age and sex. Demographic
controls in the regression in columns (2), (3), and (4) include indicators for mother’s education,
mother’s age, father’s education, and father’s age. Single child families are excluded from the analysis
data.
1The family-level average education in columns (2)-(4) nets out the effects of age, sex as well as the
average birth order effect, see (14).
2See Stock and Yogo (2002) for critical values. We clearly reject the null hypothesis of weak
instruments.

23



To ease the exposition, column (1) of Table 5 reports the effect of birth order on educational attainment

from the first step in the estimation procedure, the same estimates that can be found in column (7) of

Table 4. Column (2) of Table 5 reports OLS estimates of the family size effect, β, and the composite

family size effect implied by the estimated birth order and family size effects; β + δ/2 in the linear case

(the second step). The results indicate that, holding birth order constant, an additional child in the

family reduces years of education by about 0.163 years. Adding family-level demographic controls in the

second-step regression in column (3) reduces the magnitude of the effect to −0.081, but it remains highly

significant. The estimates of the composite family size effect are large, negative, and highly significant.

For instance, the estimate in column (3) indicates that an increase of one child reduces the average years

of schooling in the family by about 0.170 of a year.

Columns (4) and (5) of Table 5 report the coefficients on family size, with and without demographic

controls, using twins at last birth as the instrument. In columns (6) and (7) we report the results of

analogous specifications using twins at any parity as the instrument.13 We note that the Minimum

Eigenvalue Statistic indicates that our instruments are strong. The results indicate that, regardless of

the instrument we use and the inclusion of demographic controls, increasing the family size by one child

decreases the family’s average education by about one tenth of a year. Although the estimates of β in

these specifications are negative, they are smaller in magnitude, and are with one exception, statistically

insignificant.

Table 6 reports estimates of a specification commonly used in the literature where the birth order

profile in the first step is unrestricted and therefore possibly nonlinear. Family size impacts educational

attainment linearly through a single slope coefficient β in the second step regression. Again, to ease the

exposition, column (1) reports the estimated birth order effects. The IV results in columns (3) and (4)

indicate that an increase of one child decreases years of schooling by 0.040 and 0.049 years, respectively,

although only the latter estimate is significant at the 1 percent level. The estimates of the composite

family size effects are also negative and monotonically increasing (in absolute value) with family size.

The estimates reported in Table 6 provide strong support for Propositions 2 and 3.

Table B.1 in Appendix B reports estimates of a fully flexible specification with unrestricted nonlinear

birth order and family size effects. Specifically, the empirical model includes separate indicators for

families with 3, 4, 5 and 6 or more children, using families with 2 children as the omitted category.

Because the second stage includes four endogenous family size effects, we follow the methodology proposed

by Angrist et al. (2010) and Mogstad and Wiswall (2012a) in constructing appropriate instrumental

variables.14 The IV results are reported in column (3) of Table B.1. We note again that the Minimum

13Using twins at last birth ensures that desired family size is, on average, the same for families with singletons and for
families with a twin birth. It also ensures that the family size changes without also changing the birth order of subsequent
children. However, we also report results from using twins at any party because the incidence of twins at last birth could
endogenously impact subsequent fertility.

14We estimate the family size profile nonparametrically, although we restrict the estimated family size effects to be
constant for families with N ≥ 6. Given that the effect of N = 1 and N = 2 are normalized to zero, we need four
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Eigenvalue Statistic indicates that our instruments are strong. Qualitatively, the results reported in Table

B.1 are in line with those obtained in Table 6. First, the elements in the vector of family size coefficients,

β, are negative, although not always statistically significant. For instance, a family with four children has

about 0.134 fewer years of schooling compared to a family with two children, with the effect significant at

the 10 percent level. Importantly, the composite family size effects are all negative, large, and statistically

significant at the 1 percent level. Overall, the results support the predictions of Propositions 2 and 3 and

the presence of a generalized quality-quantity trade-off as hypothesized by our model.

Finally, we investigate the impact of allowing birth order effects to vary by family size in the first step

on the family size coefficients estimated in the second step. While these specifications do not meet the

sufficient conditions for Proposition 2, they are at the very least of descriptive interest. Table 7 presents

the estimates from a parsimonious specification with a linear birth order effect, a linear interaction with

family size, and a linear family size effect. As can be seen in column (1), the birth order profile becomes

flatter as family size increases. Specifically, the birth order effect is smaller by 0.061 years of education

for each additional child. As a result, the estimated coefficients on family size, β, in columns (3) and (4)

increase in magnitude and imply that an increase of one child lowers years of schooling by about one tenth

of a year. These effects are significantly larger that the ones reported in Table 5. The composite family

size effects remain negative, large, and statistically significant. We report the results of family-specific

non-linear birth order effects and a linear family size effect in Table B.4 in Appendix B, while in Table

B.5 we include unrestricted family-size specific birth order profiles and unrestricted family size profiles.

Both sets of the results support the presence of a generalized quality-quantity trade-off.

Empirical Content of Theoretical Predictions. Proposition 2 states that, ceteris paribus, the

human capital profiles in smaller families is always above those of larger families. In our terminology: the

family size effect is negative. Proposition 3 states that, ceteris paribus, the average human capital is larger

in smaller families. In our terminology: the composite family size effect is negative. We formally test the

validity of these restrictions using the estimated empirical models, reiterating that the existing literature

studying the roles of family size and birth order in human capital formation has focused primarily on

the prediction from Proposition 2, the negative family size effect. This prediction carries over from the

canonical framework of Becker and Lewis (1973), where birth order effects are absent. The additional

restrictions imposed by Proposition 3, the negative composite family size effect, arise from our generalized

theoretical framework where parents may have birth order predispositions that influence human capital

investments in their children, and are not identified, nor tested, elsewhere in the literature.15 Testing the

instrumental variables. See the description in Section 3, or consult Angrist et al. (2010), Mogstad and Wiswall (2012a), or
Mogstad and Wiswall (2012b) for details.

15An expection is Guo et al. (2017) who show that estimating the family size effect controlling for birth order indicators
provides an estimate of the family size effect on the first child, and not on the average child in the family. They also show
that using twinning at low parities as instrumental variables identifies the effect of family size on low-parity children and
not on the average child in the family.
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Table 7: Two-step estimation with linear family size and family size-specific birth order profiles

(1) (2) (3) (4)

Step 1:
OLS w/ Step 2: Step 2: Step 2:

family FE OLS 2SLS 2SLS

Family-level Family-level Family-level

Child’s years average years average years average years

Dependent variable: of education of education1 of education1 of education1

Twin birth Twin birth

Instrumental variable: in last birth at any parity

Birth order −0.435
(0.011)

∗∗∗

Birth order × family size 0.061
(0.002)

∗∗∗

Family size −0.180
(0.007)

∗∗∗ −0.123
(0.028)

∗∗∗ −0.124
(0.019)

∗∗∗

Composite family size 2 −0.157
(0.004)

∗∗∗ −0.157
(0.004)

∗∗∗ −0.157
(0.004)

∗∗∗

Composite family size 3 −0.372
(0.007)

∗∗∗ −0.314
(0.029)

∗∗∗ −0.315
(0.020)

∗∗∗

Composite family size 4 −0.526
(0.009)

∗∗∗ −0.411
(0.057)

∗∗∗ −0.413
(0.040)

∗∗∗

Composite family size 5 −0.619
(0.012)

∗∗∗ −0.447
(0.085)

∗∗∗ −0.450
(0.059)

∗∗∗

Composite family size 6 −0.651
(0.016)

∗∗∗ −0.422
(0.112)

∗∗∗ −0.427
(0.079)

∗∗∗

First stage:

Min. eigenvalue stat.2 15, 825.5 28, 156.6

Observations 1,278,510 596,292 596,292 596,292

Note: *** indicates statistical significance at the 1 percent level. Standard errors for all regressions are
computed by block-bootstrapping at the family level (100 repetitions) and are given in brackets. The
family fixed effect regression in column (1) includes controls for age and sex. Demographic controls
in the regression in columns (2), (3), and (4) include indicators for mother’s education, mother’s age,
father’s education, and father’s age. Single child families are excluded from the analysis data.
1The family-level average education in columns (2)-(4) nets out the effects of age, sex as well as the
average birth order effect, see (14).
2See Stock and Yogo (2002) for critical values. We clearly reject the null hypothesis of weak instruments.
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generalized quantity-quality trade-off thus requires a joint test of the restrictions in Propositions 2 and

3.

For ease of exposition we focus on the specification with linear birth order profiles and linear family

size profiles. In this specification, β is the family size effect and δ is the birth order effect. The composite

family size effect is β+δ/2. Let θ = (β, δ)′. Propositions 2 and 3 impose two restrictions on θ, represented

by the following hypothesis structure:

H0 : Rθ ≤ 0 against H1 : Rθ � 0, (16)

where

R =

 1 0

1 1/2

 .

Our empirical models provide estimates of θ, and the hypothesis structure (16) lends itself naturally to

a Wald-type test procedure. Note that H0 in (16) is a composite hypothesis that is consistent with many

parameter configurations. Univariate composite hypotheses are appropriately handled using conventional

one-sided z-tests. However, our theory explicitly delivers a multivariate composite hypothesis, rendering

inference difficult because the asymptotic distribution of the Wald test statistic is a complicated mixture

of χ2-distributions. We overcome this difficulty by applying a relatively simple test procedure developed

in Kodde and Palm (1986).16

Let θ̂ be the unrestricted estimate of θ, define ϑ = Rθ, and consider the unrestricted estimate of this

transformed parameter vector ϑ̂ = Rθ̂ along with a consistent estimate of its variance-covariance matrix

Σ̂. Let Θ0 be the admissible parameter space under the null.17 The Kodde and Palm test statistic D is

the Σ̂-metric distance between ϑ̂ and the closest parameter vector admissible under the null, denoted ϑ̃.

That is, ϑ̃ = arg minϑ∈Θ0
(ϑ̂− ϑ)′Σ̂−1(ϑ̂− ϑ) and D = (ϑ̂− ϑ̃)′Σ̂−1(ϑ̂− ϑ̃). Clearly, if ϑ̂ ∈ Θ0, i.e., if

the unrestricted parameter estimates θ̂ satisfy the restrictions from Propositions 2 and 3 encoded in R,

then D = 0. If ϑ̂ /∈ Θ0, then D > 0. The null is rejected for “large” values of D. In our case, failure

to reject the null constitutes evidence in favor of our generalized quantity-quality trade-off. Kodde and

Palm (1986) show that, asymptotically, D is a mixture of χ2-variates and tabulate critical values of D

for tests of different sizes.

Panel A in Table 8 reports D for tests of the joint validity of Propositions 2 and 3 for the empirical

specification with linear birth order and family size profiles, including demographic controls in the second

step.18 With linear birth order and linear family size profiles, the point estimates of ϑ = (β, β + δ/2)′

are all admissible under the null. Hence, the Kodde-Palm test statistics are always 0, we always fail to

16A multiple-testing strategy where a multivariate hypothesis is treated as a sequence of univariate hypotheses results in
well-known size problems.

17When testng H0 in (16), Θ0 = R− × R−.
18The parameter estimates of this specification are reported in Table 5.
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reject the restrictions, and the tests invariably come out in favor of our model.

As D = 0 for all the tests in panel A of Table 8, it is tempting to consider “reverse hypotheses” to

force a strictly positive Kodde-Palm test statistic. Note, however, that a reversal of the null and the

alternative in (16), as in H0 : Rθ � 0 against H1 : Rθ ≤ 0, leaves the admissible parameter vector under

the null unrestricted. If we are willing to ignore size distortions from a multiple-testing procedure, we can

test each of the restrictions of the two propositions individually using standard univariate one-sided z-

tests. Thus, we can consider “direct” as well as “reverse” hypotheses. We designate as direct hypotheses

structures those that impose a “less than or equal to” restriction.19 For the direct hypotheses, failure

to reject the null is evidence in favor of our model, while for reverse hypotheses, rejection of the null

is interpreted as favorable evidence. Panel B in Table 8 reports z-statistics and P -values for individual

one-sided tests of Propositions 2 and 3. We report only P -values for the direct hypotheses, but if the

P -value for the direct hypotheses is, say, p, the P -value for the reverse hypotheses is 1 − p, and the

conclusion from tests of both direct and reverse hypotheses structures can be gauged from the table.

Consider first the univariate tests of Proposition 3. We note that both direct and reverse tests provide

strong evidence in favor of the validity of Proposition 3 across the three estimated empirical models

reported in Table 8. We cannot reject the direct nulls, and always reject the reverse nulls. Turning

attention to the tests of Proposition 2, test based on the OLS estimates in column (1) provide strong

evidence in favor of Proposition 2. We fail to reject the direct null, and consequently, reject the reverse

null for all conventional significance levels. For the instrumental variable regression that uses twin birth

in the last birth in column (2), the univariate z-tests provide somewhat mixed evidence on the validity of

Proposition 2. On the one hand, with a P -value of 0.792, we fail to reject the direct null, thus validating

the proposition. On the other hand, with the P -value for the reverse null at 0.208, we also fail to reject

the reverse null at the usual levels.20 For the instrumental variable regression using twin birth at any

parity in column (3), the individual univariate tests come out in favor of our model. We fail to reject the

direct null with a P -value of 0.901, and thus (admittedly, just) reject the reverse null at a 10% significance

level.

In Tables B.2 and B.3 in Appendix B, we report multivariate Kodde-Palm tests and univariate one-

sided z-tests for the empirical specifications with nonlinear birth order and family size profiles. We note

that, for these richer empirical specifications, there are instances where the Kodde-Palm test statistic D is

strictly positive, but even in those cases, the test comes out in favor of the restrictions in Propositions 2 and

3. We also note that Propositions 2 and 3 impose a greater number of restrictions on the parameter vector

in the nonlinear specifications, which exacerbates the size distortions in the multiple-testing procedure

19For example, considering only the single restriction imposed by Propositions 2, the direct hypothesis structure is
H0 : β0 ≤ 0 against H1 : β > 0, and the reverse hypothesis structure is H0 : β0 ≥ 0 against H1 : β < 0.

20That the direct and reverse tests yield different conclusions regarding Proposition 2 for this set of estimates is not
surprising as the point estimate of β in Table 5 is insignificant at conventional levels.
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Table 8: Testing Propositions 2 and 3 with linear birth order and family size profiles

(1) (2) (3)

Step 2: Step 2: Step 2:
OLS 2SLS 2SLS

Family-level Family-level Family-level

average years average years average years

Dependent variable: of education1 of education1 of education1

Twin birth Twin birth

Instrumental variable: in last birth at any parity

Panel A: Kodde-Palm tests
(joint inequality restrictions from Propositions 2 and 3)

Kodde-Palm test statistic D1 0.000 0.000 0.000

Conclusion Fail to reject H0 Fail to reject H0 Fail to reject H0

Panel B: One-sided z-tests
(individual inequality restrictions from Propositions 2 and 3)

Proposition 22

z-statistic −16.921 −0.814 −1.290
P -value 0.000 0.208 0.099

Proposition 33

z-statistic −44.790 −3.984 −5.858
P -value 0.000 0.000 0.000

Note: The step 1 estimator of the birth order profile is always a family fixed effect regression that includes
controls for age and sex. Demographic controls in the step 2 regression include indicators for mother’s
education, mother’s age, father’s education, and father’s age. The parameter estimates of β and δ are
reported in Table 5.
1The hypothesis structure is H0 : β ≤ 0 and β + δ/2 < 0 against H1 : β < 0 or β + δ/2 > 0. Failure
to reject the null constitutes evidence in favor of our model. For critical values for the Kodde-Palm test
statistic, see Kodde and Palm (1986, Table 1).
2The direct hypothesis structure is H0 : β ≤ 0 against H1 : β > 0. Failure to reject the null constitutes
evidence in favor of our model. The reported P -value refer to this direct null. If the reported P -value for
the direct null is p, the P -value for the reverse null is 1− p.
3The direct hypothesis structure is H0 : β + δ/2 ≤ 0 against H1 : β + δ/2 > 0. Failure to reject the null
constitutes evidence in favor of our model. The reported P -value refer to this direct null. If the reported
P -value for the direct null is p, the P -value for the reverse null is 1− p.
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involving direct and reverse hypotheses.21 Such distortions notwithstanding, as can be seen from Tables

B.2 and B.3, the tests are generally favorable to Propositions 2 and 3. This is particularly true for the

empirical specification with nonlinear birth order profiles and linear family size profiles. Overall, the

battery of tests conducted on various estimated model specifications provide formal empirical support

for our general theory for the analysis of the “quality-quantity trade-off” in the presence of birth order

predispositions.

6 Conclusions

This paper developed a framework to study the relationship between family size and children’s education

when parents allocate resources differentially according to a child’s birth order. We derived a testable

generalized quantity-quality trade-off and develop an estimation strategy that recognizes that the within-

family resource allocation can vary with birth order, and that family size and birth order cannot be varied

independently. We tested our model’s predictions using a population-wide comprehensive panel data set

from Denmark. Danish data confirm our theory’s predictions. Particularly, the human capital profile of

smaller families lies above the profile or larger families and an increase in family size reduces the average

education in the family, or the education of the average child.

Understanding the causal relationship between family size and children’s education is central to many

areas in economics. Theoretical studies in population economics have extensively relied on a quantity-

quality trade-off but in a context in which children are treated symmetrically (see, e.g., footnote 1). We

have shown that the notion of a trade-off between family size and parental investments in education

survives the introduction of birth order predispositions if such trade-off is applied to the average child in

the household. The relationship between family size and education also figures prominently in economic

policy circles in both developing and developed countries. For example, family planning and educational

policies have been a central part of development agendas across the developing world. Likewise, the

significant decline in fertility rates in a number of developed countries has prompted policies designed to

promote larger families. Identifying the effect of family size in the presence of birth order effects helps

assessing the costs, benefits, and distributional impacts associated with such policies.

21With nonlinear birth order profiles and linear family size profiles there are 5 testable restrictions. With nonlinear birth
order and family size profiles there are 8 testable restrictions.
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Appendix

A Omitted derivations and remarks

This Appendix collects derivations and proofs that are not directly obtainable from the text. We also

present some remarks and supplemental results. For notational convenience, we will suppress indices

when such suppression does not lead to confusion. For example, we write the aggregators U({h(i)}, N)

and C({h(i)}, N) simply as U({h}) and C({h}).

Preliminaries. We first establish some properties for the aggregator functions U({h}) and C({h}).

These properties are not explicit in the first-order conditions (5) and (6) but are needed to prove Propo-

sitions 1 and 2.

Consider N first. Then, UN ({h}) = (α/ρ) (U({h}))(α−ρ)/α
u(h(N), N)ρ > 0, if α and ρ are of the

same sign, which we assume from now on. Also, CN ({h}) = (1/φ) (C({h}))1−φ
C(h(N), N)φ > 0 if φ > 0,

which we also assume. Second derivatives can be written as

UNN ({h})
UN ({h})

=

(
α− ρ
α

)
u(h(N), N)ρ

U({h})
+ ρ

uh(h(N), N)hi(N) + ui(h(N), N)

u(h(N), N)
, and (A1)

CNN ({h})
CN ({h}

= (1− φ)
c(h(N), N)φ

C({h})
+ φ

ch(h(N), N)hi(N) + ci(h(N), N)

c(h(N), N)
. (A2)

The first terms in (A1) and (A2) are related to the symmetric case in which ui = ci = hi = 0. In a

symmetric case, u(h, i) = û and U({h}) = Nα/ρûα is strictly concave in N if α < ρ, which we now assume.

Likewise, if c(h, i) = ĉ then C({h}) = N1/φĉ, which is convex in N if φ ≤ 1. We assume that 0 < φ ≤ 1. It

is not possible to sign the second derivatives unambiguously as hi(N), ui(h(N), N), and ci(h(N), N) are

of unrestricted signs. The ambiguity in the sign of (A1) and (A2) arises in a nonsymmetric assignment and

depends on the value of the human capital at i = N . Sufficient conditions to ensure concavity-convexity

can be given in terms of ui(h, i) and ci(h, i).

Consider next human capital h. Notice that Uh({h}) = αU({h})(α−ρ)/αu(h, i)ρ−1uh(h, i) > 0, and

that Ch({h}) = (C({h}))1−φ
c(h, i)φ−1ch(h, i) > 0. Their second derivatives can be written as

Uhh({h})
Uh({h})

=

(
α− ρ
α

)
u(h, i)ρ

U({h})
uh(h, i)

u(h, i)
+ (ρ− 1)

uh(h, i)

u(h, i)
+
uhh(h, i)

uh(h, i)
, and (A3)

Chh({h})
Ch({h})

= (1− φ)
c(h, i)φ

C({h})
ch(h, i)

c(h, i)
+ (φ− 1)

ch(h, i)

c(h, i)
+
chh(h, i)

ch(h, i)
. (A4)

It is possible to see from (A3) that Uhh({h}) < 0. In (A4), Chh({h}) > 0 for 0 < φ ≤ 1 if c(h, i) is

sufficiently convex, i.e., chh(h, i)h/ch(h, i) ≥ (1− φ)ch(h, i)h/c(h, i) > 0, which we now assume.

In terms of cross-partial derivatives, the previous restrictions on α, ρ, and φ yield

UhN ({h})
Uh({h})

=

(
α− ρ
α

)
u(h(N), N)ρ

U({h})
< 0, and

ChN ({h})
Ch({h})

= (1− φ)
c(h(N), N)φ

C({h})
> 0. (A5)
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For birth order,

Uhi({h})
Uh({h})

= (ρ− 1)
ui(h, i)

u(h, i)
+
uhi(h, i)

uh(h, i)
, and

Chi({h})
Ch({h})

= (φ− 1)
ci(h, i)

c(h, i)
+
chi(h, i)

ch(h, i)
. (A6)

The signs of the expressions in (A6) are unrestricted.

Parental choices. To characterize parental choices for N∗ and h∗, let the objective function of the

parental problem be

ū(N, {h}) ≡ U ((Y − C({h})/PX , N, U({h})) .

Its first-order conditions ūN (N∗, {h∗}) = 0 and ūh(N∗, {h∗}) = 0 coincide with (5) and (6). To ensure

that ū is concave, and that the optimal choices are interior, we need to assume that U ∈ C2 is strictly

increasing, strictly concave, and satisfy Inada conditions.22

In particular, ūNN = UXX(CN/PX)2−2UXN (CN/PX)−2UXU (CNUN/PX)−UX(CNN/PX)+UNN +

2UNUUN + UUU (UN )2 + UUUNN . The terms UXX , UNN , and UUU are all negative. The terms UXN
and UXU are positive by assumption. Assuming that UNU < 0 is sufficient for ūNN < 0 provided

that UNN is negative in (A1). If UNN > 0, one needs to assume that U is sufficiently concave in

U so that UUUUN/UU + UNN/UN < 0. No extra assumptions are needed for ūhh = UXX(Ch/PX)2 −

2UXU (ChUh/PX)−UX(Chh/PX)+UUU (Uh)2+UUUhh < 0, whose sign follows from previous assumptions.

Proof of Proposition 1. The derivation of (7) is an application of the Implicit Function Theorem

for concave and differentiable objective functions with interior solutions, which states that the function

h∗(i|N∗) is increasing (resp. decreasing) in i ∈ [0, N∗] iff ūhi > (<)0 whenever ūh = 0. From (6), ūhi =

−UX(Chi/PX) + UUUhi, which can be written as −Chi/Ch + Uhi/Uh, with the cross-partial derivatives

listed in (A6).

Proof of Proposition 2. For any value of z, including z = 0, optimal choices h∗(i|N∗+z) satisfy (6)

or ūh(N∗+z, {h∗}) = 0. Since parents cannot respond to exogenous changes in family size, (5) is irrelevant

and we can treat N∗ + z as a parameter in (6). As an application of the Implicit Function Theorem,

h∗(i|N∗ + z) would be a decreasing function of z at each birth order i iff (ūhz =)ūhN < 0. In particular,

ūhN = UXXCNCh(1/PX)2 − UXN (Ch/PX) − UXU (UNCh/PX) − UX(ChN/PX) − UUX(UhCN/PX) +

UUNUh + UUUUhUN + UUUhN , which is negative provided the complementarity assumptions UXN > 0

and UXU > 0, the substitution assumption UNU < 0, and the cross-partial derivatives ChN > 0 and

UhN < 0 obtained in (A5).

22Concavity conditions for ū are standard (i.e., ūNN < 0, ūhh < 0, and ūNN ūhh − ū2Nh > 0). From a variational point
of view, the parental problem can be seen as an isoperimetric problem; see Hestenes (1966). Its second-order condition is
standard in variational problems with optimal endpoints; see Vincent and Brusch (1970, Theorem 3.1).

A2



Some remarks. (i) The cross-partial derivative ūhN is not informative about the channels by which

family size lowers human capital. The term ūhN can be written as −ūhY CN +UUNUh−UXN (Ch/PX)−

UX(ChN/PX)−UUX(UhCN/PX) +UUUUhUN +UUUhN . Assume that UXN = UXU = 0, as in the Barro-

Becker formulation, and take α = ρ = φ = 1 for expositional purposes. Focus on −ūhY CN + UUNUh +

UUUUhUN . The first term is associated with the response of human capital to changes in parental income.

Since human capital is a normal good, ūhY > 0, this term arises because the cost of children increases

CN > 0 leaving less resources for parental investments.23 The second term UUNUh is negative when U

and N are substitutes. There, the marginal value of human capital investments declines as N increases.

The last term arises due to the influence of N in the marginal utility UU due to its effects in U .

(ii) The assumptions needed for Proposition 2 apply to the special cases studied by Becker and Lewis

(1973) and Rosenzweig and Wolpin (1980). Let the aggregator in (1) be U(N,H) with UNH(N,H) < 0

and the cost C(H,N) as in (4). The cross-partial derivative between H and N (or z) for ū(N,H) ≡

U ((Y − C(N,H))/PX , N, U(N,H)) is ūHN = UXX(PN + ΠH)(PH + ΠN)/P 2
X −UXN (PH + ΠN)/PX −

UXUUN (PH + ΠN)/PX −UX(Π/PX)−UUXUH(PN + ΠH)/PX +UUNUH +UUUUNUH +UUUNH , which

depends on the same preference terms as in Proposition 2. To invalidate Proposition 2, human capital

should be inferior, ūhY < 0, family size and the aggregate utility of children should be complements

UUN > 0, and parental consumption should be a substitute with family size and the children’s utilities,

as in UXN < 0 and UXU < 0.

(iii) Parents cannot adjust their fertility choices in response to additional children. If parents could

perfectly insure against twinning, thenN∗(Z) = N∗ if Z = 0 andN∗(Z) = N∗−z if Z = z. Family size for

parents with twins would be the same as for parents without twins. Consider an intermediate case in which

parents can partially adjust to the presence of twins. As before, the first-order condition for h∗(i|N∗+ z)

is ūh(N∗ + z, {h∗}) = 0. Totally differentiating this expression yields ūhN (dN∗ + dz) + ūhhdh
∗ = 0.

In Proposition 2, dN∗ = 0 and h∗z(i|N∗ + z) = −(ūNh/ūhh) < 0, as there is no margin of adjustment.

Assume instead that parents with twins adjust their fertility choice as if they had no additional children.

That is, suppose that N∗ changes while maintaining ūN (N∗, {h∗}) = 0, which the first-order condition

for parents without twins. This means that parents can partly ‘undo’ the increase in family size. Since

ūNNdN
∗+ūNhdh

∗ = 0, simple substitutions yield h∗z(i|N∗+z) = −(ūhN/ūhh)(ūhhūNN/(ū
2
Nh−ūhhūNN )),

which is of the same sign as ūhN although quantitatively smaller than in the case of no adjustment.

(iv) Proposition 2 examines the response to an exogenous change in family size. By symmetry, one

could obtain the same qualitative trade-off by studying the fertility response to an exogenous decline

in human capital. Consider the first-order condition (5) for parents who experience an exogenous (and

uniform, for simplicity) decrease in human capital by z′. Since ūN (N∗, {h∗}−z′) = 0, ūNNdN
∗ = ūNhdz

′,

23Income effects in N and {h} depend on ūNY = −UXXCN (1/PX)2 + UNX/PX + UUXUN/PX , and ūhY =
−UXXCh(1/PX)2 + UUXUh/PX . Complementarity in (X,N) and (X,U) is sufficient to ensure that both income effects
are positive.
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such that these parents would increase family size.

Proof of Proposition 3. Differentiating H(N∗ + z) in (9) yields

Hz(N
∗ + z) =

1

N∗ + z

[
h∗(N∗ + z|N∗ + z) +

∫ N∗+z

0

h∗z(i|N∗ + z)di−H(N∗ + z)

]
. (A7)

Since h∗z(i|N∗ + z) < 0, the only ambiguity in (A7) is h∗(N∗ + z|N∗ + z).

If h∗(i|N∗) is decreasing in i, then H(N∗ + z) > h∗(N∗ + z|N∗ + z) and Hz(N
∗ + z) < 0. This case

corresponds to the case of negative birth orders. Consider next positive birth order effects. We can write

h∗(N∗ + z|N∗ + z) = h∗(0|N∗ + z) +

∫ N∗+z

0

h∗i (i|N∗ + z)di, (A8)

with h∗(0|N∗ + z) ≤ H(N∗ + z). A sufficient condition for a negative sign in (A7) is h∗z(i|N∗ + z) +

h∗i (i|N∗ + z) ≤ 0, or ūhN + ūhi ≤ 0. Reorganizing terms from ūhN and ūhi shows that strengthening the

degree of complementarity UXN > 0 and substitutability UUN < 0 such that

UUN
UU
− UXN
UX

− Chi
Ch

+
Uhi
Uh
≤ 0, (A9)

ensures that ūhN + ūhi ≤ 0. It is also possible to bound the positive birth order effects by strengthening

the concavity of the parental utility function, as in

UUU
UU

UN +
UXX
UX

CN
PX
− Chi
Ch

+
Uhi
Uh
≤ 0. (A10)

Under either of the previous bounds, Hz(N
∗ + z) < 0 for positive birth order effects.

Some remarks. (i) The relevant term to sign Hz(N
∗+z) under positive birth order effects in (A7) and

(A8) is h∗z(i|N∗ + z) + h∗i (i|N∗ + z). These expressions arise because family size and birth order cannot

vary independently. They also serve to sign the differences between median children under positive birth

order effects in the text; see (10). If the bounds in (A9) or (A10) hold, median human capital will be

ranked as average human capital.

(ii) A generalized average human capital of order p is given by

H(N∗ + z; p) =

(
1

N∗ + z

∫ N∗+z

0

h(i|N∗ + z)p

)1/p

,

with the harmonic (p = −1) and geometric (p = 0) average as special cases. The arithmetic average used

in (9) and Proposition 3 assumes p = 1. In the absence of birth order effects, all averages are equal. The

function H(N∗+z; p) is positive and decreasing in p. For instance, H(N∗+z; p = +∞) ≡ maxi h
∗(i|N∗+

z) = h∗(N∗ + z|N∗ + z). Therefore, H(N∗; +∞)−H(N∗ + z; +∞) = h∗(N∗|N∗)− h∗(N∗ + z|N∗ + z),

which can be written as [h∗(N∗|N∗)− h∗(N∗|N∗+ z)] + [h∗(N∗|N∗+ z)− h∗(N∗+ z|N∗+ z)]. The first
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term is positive (Proposition 2) but the second term is negative. Negative values of p give more weight

to the lowest human capital in the household. For instance, H(N∗ + z; p = −∞) ≡ mini h
∗(i|N∗ + z) =

h∗(0|N∗ + z) under positive birth order effects. By Proposition 2, H(N∗;−∞) − H(N∗ + z;−∞) =

h∗(0|N∗)− h∗(0|N∗ + z) > 0, even under positive birth order effects.

(ii) We considered continuous fertility choices. Under discrete family size, the relevant derivative for

N is ūN (N, {h}) ≡ ū(N + 1, {h})− ū(N, {h}), and the first-order condition for N∗ is ūN (N∗ − 1, {h}) ≥

0 > ūN (N∗, {h}). If ū(N, {h}) is strictly concave, either the optimal family size is unique or there are

two neighboring numbers that are optimal and leave parents indifferent between them. If twins change

family size, the response would induce a trade-off between quantity and quality.

(iii) Our testable predictions assume that parental wealth is unchanged in response to exogenous

changes in family size. The budget constraint can be generalized without affecting the main conclusions

of the analysis. Suppose that parents incur in a time cost ω ≤ 1/N+ proportional to each child. The

generalized budget constraint is PXX + C({h(i)}) = Y (1−ωN), where time worked is (1−ωN) ∈ (0, 1).

An exogenous increase in family size reduces parental resources even more compared to our baseline case.

In the baseline case, the marginal cost of an additional child is CN ({h(i)}) whereas now the marginal

cost is CN ({h(i)}) + ωY . Time costs can vary by birth order, but they would simply act as additions to

the marginal cost Ch({h(i)}).

B Additional empirical results

This appendix provide additional empirical results references in the main text. Table B.1 contains

the estimated coefficients from a flexible empirical specification with nonlinear birth order profiles and

nonlinear family size profiles. Table B.2 contains the tests of Propositions 2 and 3 for a specification

with nonlinear birth order profiles and linear family size profiles, and Table B.3 contains the tests for

the empirical specification with nonlinear birth order profiles and nonlinear family size profiles. Finally,

Table B.4 presents estimated parameters for the empirical specification with nonlinear and family-size

dependent birth order profiles and linear family size profiles, and Table B.5 presents the estimates for

the specification with nonlinear and family-size dependent birth order profiles and nonlinear family size

profiles. In addition, results for three types of families (families with only boys, families with only girls,

and mixed gender families) are available upon request from the authors.
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Table B.1: Two-step estimation with nonlinear family size and birth order profiles

(1) (2) (3)

Step 1:
OLS w/ family Step 2: Step 2:

fixed effects OLS 2SLS

Family-level Family-level
Child’s years average years average years

Dependent variable: of education of education1 of education1

Second child −0.274
(0.007)

∗∗∗

Third child −0.423
(0.014)

∗∗∗

Fourth child −0.488
(0.021)

∗∗∗

Fifth child −0.437
(0.034)

∗∗∗

Sixth child or later −0.437
(0.052)

∗∗∗

Family size 3 −0.015
(0.007)

∗∗ −0.027
(0.049)

Family size 4 −0.155
(0.013)

∗∗∗ −0.134
(0.073)

∗

Family size 5 −0.468
(0.023)

∗∗∗ −0.084
(0.121)

Family size 6+ −0.778
(0.038)

∗∗∗ −0.284
(0.264)

Composite family size 2 −0.137
(0.004)

∗∗∗ −0.137
(0.004)

∗∗∗

Composite family size 3 −0.248
(0.008)

∗∗∗ −0.259
(0.050)

∗∗∗

Composite family size 4 −0.452
(0.012)

∗∗∗ −0.430
(0.076)

∗∗∗

Composite family size 5 −0.793
(0.018)

∗∗∗ −0.409
(0.123)

∗∗∗

Composite family size 6 −1.121
(0.033)

∗∗∗ −0.627
(0.265)

∗∗

First stage:

Minimum eigenvalue statistic2 2, 657.7

Observations 1,278,510 596,292 596,292

Note: *** indicates statistical significance at the 1 percent level. ** indicates statistical significance
at the 5 percent level. * indicates statistical significance at the 10 percent level. Standard errors
for all regressions are computed by block-bootstrapping at the family level (100 repetitions) and
are given in brackets. The family fixed effect regression in column (1) includes controls for age and
sex. Demographic controls in the regression in columns (2) and (3) include indicators for mother’s
education, mother’s age, father’s education, and father’s age. Single child families are excluded
from the analysis data.
Single child families are excluded from the analysis data.
1The family-level average education in columns (2)-(3) nets out the effects of age, sex as well as
the average birth order effect, see (14).
2See Stock and Yogo (2002) for critical values. We clearly reject the null hypothesis of weak
instruments.
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Table B.2: Testing Propositions 2 and 3 with nonlinear birth order profiles and linear family size profiles

(1) (2) (3)

Step 2: Step 2: Step 2:
OLS 2SLS 2SLS

Family-level Family-level Family-level

average years average years average years

Dependent variable: of education1 of education1 of education1

Twin birth Twin birth

Instrumental variable: in last birth at any parity

Panel A: Kodde-Palm tests
(joint inequality restrictions from Propositions 2 and 3)

Kodde-Palm test statistic D1 0.000 0.000 0.000

Conclusion Fail to reject H0 Fail to reject H0 Fail to reject H0

Panel B: One-sided z-tests
(individual inequality restrictions from Propositions 2 and 3)

Proposition 22

t-statistic −19.239 −1.464 −2.597
P -value 1.000 0.928 0.995

Proposition 33

t-statistic, 3- versus 2-child families −45.038 −4.806 −7.436
P -value 1.000 1.000 1.000

t-statistic, 4- versus 3-child families −32.814 −3.652 −5.625
P -value 1.000 0.998 1.000

t-statistic, 5- versus 4-child families −20.024 −2.492 −4.025
P -value 1.000 0.994 1.000

t-statistic, 6- versus 5-child families −14.839 −2.021 −3.242
P -value 1.000 0.978 1.000

Note: The step 1 estimator of the birth order profile is always a family fixed effect regression that includes
controls for age and sex. Demographic controls in the step 2 regressiona include indicators for mother’s education,
mother’s age, father’s education, and father’s age. The parameter estimates of β and δ are reported in Table 6.
1The hypothesis structure is H0 : β ≤ 0 and β + δ̄N − δ̄N−1 ≤ 0 for all N ∈ {3, 4, 5, 6} against
H1 : β > 0 or β + δ̄N − δ̄N−1 > 0 for some N ∈ {3, 4, 5, 6}. Failure to reject the null constitutes evi-
dence in favor of our model. For critical values for the Kodde-Palm test statistic, see Kodde and Palm (1986,
Table 1).
2The direct hypothesis structure is H0 : β ≤ 0 against H1 : β > 0. Failure to reject the null constitutes evidence
in favor of our model. The reported P -value refer to this direct null. If the reported P -value for the direct null is
p, the P -value for the reverse null is 1− p.
3The direct hypothesis structure comparing N - and (N − 1)-child families is H0 : β + δ̄N − δ̄N−1 ≤ 0 against
H1 : β + δ̄N − δ̄N−1 > 0 where N ∈ {3, 4, 5, 6}. Failure to reject the null constitutes evidence in favor of our
model. The reported P -value refer to this direct null. If the reported P -value for the direct null is p, the P -value
for the reverse null is 1− p.
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Table B.3: Testing Propositions 2 and 3 with nonlinear birth order profiles and family size profiles

(1) (2)

Step 2: Step 2:
OLS 2SLS

Family-level Family-level

average years average years

Dependent variable: of education1 of education1

Panel A: Kodde-Palm tests
(joint inequality restrictions from Propositions 2 and 3)

Kodde-Palm statistic D1 0.000 0.215

Conclusion Fail to reject H0 Fail to reject H0

Panel B: One-sided z-tests
(individual inequality restrictions from Propositions 2 and 3)

Proposition 22

t-statistic, 3- versus 2-child families −2.253 −0.547
P -value 0.988 0.618

t-statistic, 4- versus 3-child families −11.950 −1.473
P -value 1.000 0.930

t-statistic, 5- versus 4-child families −14.749 0.464
P -value 1.000 0.321

t-statistic, 6- versus 5-child families −7.857 −0.784
P -value 1.000 0.783

Proposition 33

t-statistic, 3- versus 2-child families −17.802 −2.454
P -value 1.000 0.993

t-statistic, 4- versus 3-child families −18.183 −2.334
P -value 1.000 0.990

t-statistic, 5- versus 4-child families −18.320 0.201
P -value 1.000 0.420

t-statistic, 6- versus 5-child families −8.883 −0.854
P -value 1.000 0.803

Note: The step 1 estimator of the birth order profile is always a family fixed effect
regression that includes controls for age and sex. Demographic controls in the step 2
regression include indicators for mother’s education, mother’s age, father’s education, and
father’s age. The parameter estimates of β and δ are reported in Table B.1.
1The hypothesis structure is H0 : βN − βN−1 ≤ 0 and βN + δ̄N − (βN−1 + δ̄N−1) ≤ 0
for all N ∈ {3, 4, 5, 6} against H1 : βN − βN−1 > 0 or βN + δ̄N − (βN−1 + δ̄N−1) > 0 for
some N ∈ {3, 4, 5, 6}. Failure to reject the null constitutes evidence in favor of our model.
For critical values for the Kodde-Palm test statistic, see Kodde and Palm (1986, Table 1).
2The direct hypothesis structure comparing N - and (N − 1)-child families is
H0 : βN − βN−1 ≤ 0 against H1 : βN − βN−1 > 0 where N ∈ {3, 4, 5, 6}. Fail-
ure to reject the null constitutes evidence in favor of our model. The reported P -value
refer to this direct null. If the reported P -value for the direct null is p, the P -value for
the reverse null is 1− p.
3The direct hypothesis structure comparing N - and (N − 1)-child families is
H0 : β + δ̄N − δ̄N−1 ≤ 0 against H1 : β + δ̄N − δ̄N−1 > 0 where N ∈ {3, 4, 5, 6}. Failure
to reject the null constitutes evidence in favor of our model. The reported P -value refer
to this direct null. If the reported P -value for the direct null is p, the P -value for the
reverse null is 1− p.
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Table B.4: Two-step estimation with linear family size and nonlinear family size-specific birth order
profiles

(1) (2) (3) (4)

Step 1:
OLS w/ Step 2: Step 2: Step 2:

family FE OLS 2SLS 2SLS

Family-level Family-level Family-level

Child’s years average years average years average years

Dependent variable: of education of education1 of education1 of education1

Twin birth Twin birth

Instrumental variable: in last birth at any parity

Second in 2 child family −0.346
(0.009)

∗∗∗

Second in 3 child family −0.249
(0.010)

∗∗∗

Third in 3 child family −0.491
(0.017)

∗∗∗

Second in 4 child family −0.180
(0.020)

∗∗∗

Third in 4 child family −0.330
(0.022)

∗∗∗

Fourth in 4 child family −0.509
(0.025)

∗∗∗

Second in 5 child family −0.112
(0.039)

∗∗∗

Third in 5 child family −0.245
(0.044)

∗∗∗

Fourth in 5 child family −0.318
(0.046)

∗∗∗

Fifth in 5 child family −0.394
(0.045)

∗∗∗

Second in 6+ child family −0.073
(0.068)

Third in 6+ child family −0.140
(0.068)

∗∗

Fourth in 6+ child family −0.277
(0.072)

∗∗∗

Fifth in 6+ child family 0.242
(0.074)

∗∗∗

6th or later in 6+ child family −0.325
(0.066)

∗∗∗

Family size −0.132
(0.006)

∗∗∗ −0.068
(0.028)

∗∗ −0.074
(0.019)

∗∗∗

Composite family size 2 −0.173
(0.004)

∗∗∗ −0.173
(0.004)

∗∗∗ −0.173
(0.004)

∗∗∗

Composite family size 3 −0.379
(0.008)

∗∗∗ −0.315
(0.030)

∗∗∗ −0.320
(0.021)

∗∗∗

Composite family size 4 −0.520
(0.013)

∗∗∗ −0.391
(0.058)

∗∗∗ −0.402
(0.040)

∗∗∗

Composite family size 5 −0.611
(0.027)

∗∗∗ −0.419
(0.090)

∗∗∗ −0.434
(0.067)

∗∗∗

Composite family size 6 −0.706
(0.045)

∗∗∗ −0.449
(0.113)

∗∗∗ −0.470
(0.083)

∗∗∗

First stage:

Min. eigenvalue stat.2 15, 825.5 28, 156.6

Observations 1,278,510 596,292 596,292 596,292

Note: For explanatory table notes, consult tables in the main text.
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Table B.5: Two-step estimation with nonlinear family size and family size-specific birth order profiles

(1) (2) (3)

Step 1:
OLS w/ family Step 2: Step 2:

fixed effects OLS 2SLS

Family-level Family-level
Child’s years average years average years

Dependent variable: of education of education of education

Second in 2 child family −0.346
(0.009)

∗∗∗

Second in 3 child family −0.249
(0.010)

∗∗∗

Third in 3 child family −0.491
(0.017)

∗∗∗

Second in 4 child family −0.180
(0.020)

∗∗∗

Third in 4 child family −0.330
(0.022)

∗∗∗

Fourth in 4 child family −0.509
(0.025)

∗∗∗

Second in 5 child family −0.112
(0.039)

∗∗∗

Third in 5 child family −0.245
(0.044)

∗∗∗

Fourth in 5 child family −0.318
(0.046)

∗∗∗

Fifth in 5 child family −0.394
(0.045)

∗∗∗

Second in 6+ child family −0.073
(0.068)

Third in 6+ child family −0.140
(0.068)

∗∗

Fourth in 6+ child family −0.277
(0.072)

∗∗∗

Fifth in 6+ child family 0.242
(0.074)

∗∗∗

6th or later in 6+ child family −0.325
(0.066)

∗∗∗

Family size 3 −0.038
(0.009)

∗∗∗ −0.034
(0.049)

Family size 4 −0.233
(0.018)

∗∗∗ −0.175
(0.074)

∗∗

Family size 5 −0.617
(0.037)

∗∗∗ −0.181
(0.124)

Family size 6+ −0.986
(0.063)

∗∗∗ −0.432
(0.278)

Composite family size 2 −0.173
(0.004)

∗∗∗ −0.173
(0.004)

∗∗∗

Composite family size 3 −0.284
(0.008)

∗∗∗ −0.280
0.050

∗∗∗

Composite family size 4 −0.488
(0.012)

∗∗∗ −0.430
0.077

∗∗∗

Composite family size 5 −0.830
(0.019)

∗∗∗ −0.395
0.124

∗∗∗

Composite family size 6 −1.162
(0.033)

∗∗∗ −0.608
0.264

∗∗

First stage:

Minimum eigenvalue statistic 2, 657.7

Observations 1,278,510 596,292 596,292

Note: For explanatory table notes, consult tables in the main text.
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