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Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune condition, characterised by joint pain,

damage and disability, which can be addressed in a high proportion of patients by timely use

of targeted biologic treatments. However, the patients, non-responsive to the treatments

often suffer from refractoriness of the disease, leading to poor quality of life. Additionally, the

biologic treatments are expensive. We obtained plasma samples from N = 144 participants

with RA, who were about to commence anti-tumour necrosis factor (anti-TNF) therapy.

These samples were sent to Olink Proteomics, Uppsala, Sweden, where proximity exten-

sion assays of 4 panels, containing 92 proteins each, were performed. A total of n = 89 sam-

ples of patients passed the quality control. The preliminary analysis of plasma protein

expression values suggested that the RA population could be divided into two distinct

molecular sub-groups (endotypes). However, these broad groups did not predict response

to anti-TNF treatment, but were significantly different in terms of gender and their disease

activity. We then labelled these patients as responders (n = 60) and non-responders (n =

29) based on the change in disease activity score (DAS) after 6 months of anti-TNF treat-

ment and applied machine learning (ML) with a rigorous 5-fold nested cross-validation

scheme to filter 17 proteins that were significantly associated with the treatment response.

We have developed a ML based classifier ATRPred (anti-TNF treatment response predic-

tor), which can predict anti-TNF treatment response in RA patients with 81% accuracy, 75%

sensitivity and 86% specificity. ATRPred may aid clinicians to direct anti-TNF therapy to

patients most likely to receive benefit, thus save cost as well as prevent non-responsive

patients from refractory consequences. ATRPred is implemented in R.

Author summary

Rheumatoid arthritis (RA) is a chronic disease, characterised by joint pain, damage and

disability. It is known to affect at least 1% of European population. It can be addressed in
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a high proportion of patients by timely use of targeted biologic treatments. But, biologic

treatments continue to rank among the highest grossing drugs. Adalimumab (a biologic

drug) for example, alone generated 20 billion US dollars of revenue worldwide in 2018.

Additionally, European countries with limited resources, place volume controls on reim-

bursed medicines. A cheaper prognostic test for biologic response can help clinicians pre-

scribe treatments to those who will receive benefit and also rationalise expensive

treatments. In this study we have proposed an informative plasma protein signature, con-

sisting of 17 proteins, and have developed a ML based classifier ATRPred (Anti-TNF

Response Predictor), which can predict anti-TNF treatment response in RA patients with

81% accuracy. With this work we have tried to help clinicians to optimise treatment selec-

tion, reduce spend on biologics in unresponsive patients and overall improve quality of

life for non-responsive RA patients. Our study has also identified endotypes or molecular

sub-classes of RA using plasma protein profiles. These endotypes did not show difference

in the responsiveness towards the anti-TNF, however they may be helpful in understand-

ing of the disease and response to other treatments, going forward.

This is a PLOS Computational Biology Software paper.

Introduction

Rheumatoid Arthritis (RA) is a chronic autoimmune condition characterised by relapsing

joint pain, inflammation, and damage along with systemic effects and elevated morbidity.

Without effective treatment, RA patients suffer greater risk of disability [1]. Initially, RA

patients are treated with non-steroidal anti-inflammatory drugs and conventional disease

modifying anti-rheumatic drugs (DMARDs). Patients, refractory to conventional DMARDs,

are subsequently prescribed biologic DMARDs [2], among which anti-tumour necrosis factor

(anti-TNF) therapies are common, which includes adalimumab, etanercept, infliximab, certo-

lizumab or golimumab–a monoclonal anti-TNF antibody. However, not all patients respond

well to anti-TNF therapy. Approximately 10–30% do not respond initially and 23–46% lose

the responsiveness over time [3]. A recent article suggests that at least 6% of RA patients on

biologics, suffer from a refractory condition of the disease [4]. This suggests the existence of

molecular sub-classes within the broad disease class. These molecular sub-classes are known as

endotypes. Unlike, phenotype which involves only observable characteristics, an endotype has

direct relation with disease process as it involves inflammatory parameters and specific biolog-

ical mechanisms. A recent paper from McInnes et al [5] advocates the need for clinically mean-

ingful RA endotypes to stratify patients for the therapeutics.

Clinicians generally decide to prescribe anti-TNF therapy based on their disease severity,

progression, and other comorbidities. Recent research suggests that the clinicians often switch

between different treatments empirically because of a lack of suitable predictive tests [6]. A

major downside of this approach is that for patients who remain unresponsive to attempted

biologic treatments, inadequate suppression of ongoing disease activity elevates the risk of per-

manent joint damage and disability [7]. This argues for the need of developing a better prog-

nostic model, that can predict a patient’s responsiveness towards the anti-TNF therapy.

Furthermore, RA is known to affect at least 1% of European population [8]. A recent epide-

miological study has reviewed prevalence of RA in different countries of every continent and
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reports that the prevalence is still close to 1% in many European countries [9]. Additionally,

biologic treatments remain relatively costly and continue to rank among the highest grossing

drugs. Humira (adalimumab) for example, alone generated 20 billion US dollars of revenue

worldwide in 2018 [10]. A very recent study [11] has pointed out various hidden access barri-

ers to biologic treatment in the European Union (EU).

Thus, there is a strong clinical as well as health-economic need for a more personalised

prognostic models which can determine likelihood of response to anti-TNF therapy [12]. Sev-

eral studies using different omics profiles have attempted to predict response to anti-TNF ther-

apy [13]. Literature review shows that the researchers have identified serum proteomic

biomarkers for response to anti-TNF therapy [14] including one based on autoantibody and

cytokine profiles [15]. Biomarkers have also been found specific to infliximab drug response

[16] and etanercept drug response [17]. Further differentiated responses have been noted for

adalimumab and infliximab [18]. Also, clinical efficacy can be intensified with infliximab

using therapeutic drug monitoring approaches [19]. Several multi-omics approaches have also

been used to predict anti-TNF efficacy [20]. For example, an integrated multi-omics approach

of previously known DNA, RNA, and protein biomarkers [21], and a more recent approach

which combines transcriptomic and genomic analysis [22]. However, none of these studies

have presented a robust scoring scheme/model for drug responsiveness that can help in deci-

sion making under a clinical setting; rather they relied on only p-values.

There are a few methods that are being used by clinicians to label RA patients into respond-

ers and non-responders. We have strictly followed European League Against Rheumatism

(EULAR) response criteria, as it is known to have good construct, criterion, and discrimina-

tory validity [23]. Further, to stratify a patient’s potential response to treatment, a proteomic

profile (which is highly variable) may better reflect current disease state than transcriptomic

(variable) or genomic (constant) profiles. With the advent of new high-throughput proteomics

technology such as multiplexed proximity extension assay (PEA), it is now possible to profile a

patients’ plasma proteins with high accuracy and sensitivity [24]. This study was designed to

identify a robust protein signature which can predict a patient’s response to anti-TNF therapy

using a highly sensitive protein detection platform. This study investigates whether plausible

endotypes with clinical relevance can be detected in the plasma proteome and if further strati-

fication can predict future response to anti-TNF treatment. Machine Learning (ML) based

algorithms, which have been widely exploited for prediction and/or classification problems in

bioinformatics, were deployed to mine targeted proteome data. This could help clinicians to

optimise treatment selection, reduce spend on biologics in unresponsive patients and overall

improve quality of life for non-responsive RA patients.

Design and implementation

Ethics statement

Office for Research Ethics Committees Northern Ireland (ORECNI) (11/NI/0188), Ulster Uni-

versity Research Ethics Committee (UREC) (REC/11/0366), Belfast Health and Social Care

Trust (11098AB-SS) and Western Health and Social Care Trust (WT/11/35) approvals were

obtained for the study. All methods were performed in accordance with the relevant guidelines

and regulations. Formal written informed consent was obtained for all participants in the

study, allowing for publication of anonymised clinical data.

Patient recruitment and selection criteria

A total of one hundred and forty-four (N = 144) Rheumatoid arthritis (RA) patients who were

unresponsive to conventional DMARDs and naïve to biologic DMARDs were recruited from
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rheumatology biologic clinics at Altnagelvin Hospital, Londonderry and Musgrave Park Hos-

pital, Belfast, Northern Ireland. The study inclusion criteria were: i) RA patients fulfilling

ACR/EULAR classification criteria [25,26], ii) about to receive anti-TNFα treatment as part of

routine clinical practice, iii) fulfil the BSR 2001 criteria for anti-TNFα therapy [27], iv) had a

DAS28 score of>5.1 when assessed for treatment (before baseline), and v) reached 6 months

of follow-up. Patients who stopped anti-TNFα temporarily during first six months or discon-

tinued therapy prior to the 6 months’ follow-up for reasons other than inefficacy were

excluded.

Sample collection and collation of clinical information

The study was supported by a patient advisory group who met regularly throughout the study

to advise on study design, recruitment literature and results dissemination. Eligible patients

were invited by mailed patient information sheets, a minimum of 48 hours before a routine

care appointment. Written informed consent was obtained and blood samples were collected

prior to anti-TNFα treatment. Blood samples were then processed to plasma by centrifugation,

aliquoted and stored at -80˚C until shipped to Olink Proteomics, Uppsala, Sweden for proxim-

ity extension assay (PEA) analysis. Clinical and demographic information were collated from

medical records and clinic databases. The disease activity score across 28 joints (DAS-28)

based on erythrocyte sedimentation rate (ESR) was recorded at baseline and after six months

of anti-TNF therapy. Patients were classified as responders and non-responders at six months

as per British Society for Rheumatology (BSR) response criteria [28]. Further, a patient, whose

drug was changed from anti-TNF to a different class by clinicians were also classified as non-

responders. Out of N = 144 patients recruited 55 were either lost to follow-up or were given

other biologic DMARDs (such as Tociluzimab, Ritiuximab, etc). The recruits lost were unable

to make 6 months follow-up appointments, or complete composite data required to calculate

DAS score were not available.

Plasma protein profile

Patients’ plasma samples were analysed by multiplexed PEA [29] provided by Olink Proteo-

mics (www.olink.com). Following four Proseek Multiplex panels comprising 92 proteins each

were used for analyses: cardiovascular panels II and III, immune response panel and the

inflammatory panel. Each panel was quantified by real-time PCR using the Fluidigm BioMark

HD platform. In each panel run, 92 samples, 1 negative control and 3 positive controls were

analysed. Controls were used for determining the assay limit of detection (LoD) values as well

as allowing normalization of measurements into ddCq (ΔΔCq: double delta quantification

cycle in qPCR) values. The ddCq values are then log2-transformed to promote normal distri-

bution for subsequent analysis. Olink proteomics returned protein expression data in expo-

nential scale called normalised protein expression (NPX), such that the real expression values

are proportional to 2NPX. Each protein’s NPX values are relative quantification and hence they

cannot be compared across different proteins [30]. Therefore, to obtain comparable results for

all proteins [31] and as a pre-processing step for machine learning inputs, each of them is sepa-

rately scaled into a standard normal distribution ~N(0, 1). A total of 352 proteins passed the

initial quality control (QC) and were subsequently used for the statistical and machine learning

based analysis.

Statistical, computational and bioinformatics analyses

All statistical and computational analyses were carried out in R v3.6.1 [32]. The t-test or chi-

square test (as appropriate) to check for statistical significance of demographic and clinical
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features, and the principal component analysis (PCA) of Olink proteomics data, were per-

formed in the base R package. Quality control (QC) of protein NPX datasets involved discard-

ing protein values which were flagged with a QC warning (sample did not pass quality control

for a given protein panel). Also, NPX values were removed if below the limit of detection

(LoD) level for a given protein PEA, resulting in< 2% of missing values. Since missingness

was very small, it was imputed using k-Nearest Neighbour (k-NN) method using the RANN
package [33]. PCA result was validated with leave-one-out cross-validation (LOOCV) using

sinkr package [34]. General ML pre- and post- processing methods were derived from caret
[35] and e1071 package [36]. Further, we deployed generalised linear models (GLMs), using

the glmnet package [37], to create an intuitive mathematical formulation with a linear combi-

nation of protein expression values. Receiver operator characteristic (ROC) curves were

obtained via pROC package [38]. Finally, Youden Index [39] was used to choose the best point

in ROC curve to calculate thresholds for model score to obtain sensitivity and specificity values.

Box plot and beeswarm plot were drawn using beanplot package [40] and beeswarm package

[41] respectively, and gplots package [42] and ggrepel package [43] were used for presenting the

results. The final model selection was done based on Area Under the ROC Curve (AUC) metric,

which is the most preferred metric for the classification problems. Enrichment analysis and Pro-

tein-Protein Interaction (PPI) network analysis was performed using STRING database [44].

The Gene Ontology (GO) terms were summarised using REVIGO [45] with its default parame-

ters and the PPI networks were visualised using Cytoscape [46], an open-source software com-

monly used for network-based analysis. The Pearson’s correlation coefficient between the

protein features was computed using stats namespace under base R package. This was followed

by hierarchical clustering and plotting using the heatmaply package [47].

Feature selection with machine learning

A total of 500 simulations were run by randomly splitting the dataset into 80%:20% and a

GLM was learned on 80% training data and tested on 20% test data. If the GLM model had bet-

ter than random performance (i.e., AUC> 0.5), the feature selected in the model was then

appended to a feature list. Thus, the importance of a feature reflects its frequency in the feature

list. For example, a frequency of 0.8 for a feature represents that the feature showed up in 80%

of the 500 simulated models. It is worth mentioning here, that multiple proteomics signature,

having different feature set, are possible [48]. However, getting all the signature and its perfor-

mance can be computationally expensive due to large number of combinations possible.

Therefore, we went with a deterministic approach of stepwise feature selection, by calculating

feature importance (FI) as described above, using a fixed seed value of 200 for 500 simulations.

Machine learning based model development

Our dataset involved 89 samples; hence we chose 5-fold double alias nested cross-validation

(CV) for the development of the predictive model [49]. This CV scheme for testing ensures no

bias in the selection of completely independent model-blind test-set [50]. Model evaluation was

done first by having only gender and baseline DAS and then including protein features one-by-

one as per the frequency obtained during feature selection in decreasing order. Mean AUC of

training and test sets were measured after fitting a GLM, which was optimised for lambda

hyperparameter by 10-fold CV within the training set. The GLM was an Elastic Net with alpha

of 0.9, which implements regression with 90% LASSO and 10% Ridge regularization. The aim

was to select non-correlated protein, which is achieved by LASSO regularization; a popular

method used for feature selection. However, 10% of Ridge regularization was kept to overcome

LASSO’s limitation to saturate with fewer features. The protein feature set having the highest
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test set AUC, without the decrease in training set AUC, was selected and the model perfor-

mance was noted. Finally, with these protein features along with gender and baseline DAS, the

model was trained on the whole data and the beta or regression coefficients were computed.

ATRPred tool development

An R-based package was developed for implementing the above-mentioned ML model with the

help of devtools package [51]. An input file template along with sample input files of a responder

as well as a non-responder are also included in the examples folder present within the package.

The R function antiTNFresponse() reads the input and normalises the same with the internal 89

patient data to get comparable numbers for feature sets and finally scores the patient for

response to the anti-TNF therapy. It then calculates the patient’s probability to respond anti-

TNF treatment and predicts if the patient will be a responder or non-responder. This tool is

provided as an open-source GitHub repository at https://github.com/ShuklaLab/ATRPred.

Results

The main demographic and clinical features of the patients are shown in Table 1. Gender and

DAS values at both baseline and 6 months, were found to be statistically significant (p< 0.05)

between responders and non-responders. The anti-TNF response rate of 67% in our study is

almost identical to the 68% reported in a larger study [52]. However, neither this study]52] nor

any other study has reported any gender difference as per the author’s knowledge. This defer-

ence might be due to gender selective confounders like smoking history for which unfortu-

nately the data was not available.

Exploratory data analysis on plasma proteins

Principal Component Analysis (PCA) for all n = 89 patients was performed to visualise poten-

tial endotypes based on plasma proteome profile. The elbow plot of first 30 PCs showed the

drop of explained variance to less than 1% at PC 20 (S1A Fig). Therefore, we carried out

Table 1. Demographic and clinical features of rheumatoid arthritis patients. Gender and DAS values (both at baseline and 6 months) were found to be statistically sig-

nificant between responders and non-responders. RF = Rheumatoid Factor, ACPA = Anti-citrullinated protein/peptide antibody, Anti-CCP = Anti-cyclic citrullinated

peptides, DMARD = Disease-modifying antirheumatic drugs and DAS28-ESR = Disease activity score for 28 joint counts-erythrocyte sedimentation rate.

Cohort Characteristics Responders (N = 60) Non-Responders (N = 29) Combined (N = 89) P-value

Gender, female, n (%) 51 (85.0) 17 (58.6) 68 (76.4) �0.006

Age at baseline, mean (s.d.), years 60.6 (11.8) 61.1 (10.3) 60.8 (11.3) 0.848

Disease duration, mean (s.d.), years 8.7 (7.9) 11.1 (10.8) 9.5 (9.0) 0.299

RF Seropositivity, n (N)# 38 (48) 18 (25) 56 (73) 0.65

ACPA/anti-CCP Seropositivity, n (N)# 34 (42) 16 (23) 50 (65) 0.46

Concurrent conventional DMARD at baseline, n (%) 55 (91.6) 26 (89.7) 81 (91.0) -

Concurrent conventional DMARD at 6 months, n (%) 38 (63.3) 14 (48.3) 52 (58.4) -

Adalimumab, n (%) 40 (66.7) 12 (41.4) 52 (58.4) -

Etanercept, n (%) 17 (28.3) 12 (41.4) 29 (32.6) -

Infliximab, n (%) 0 (0.0) 1 (3.4) 1 (1.1) -

Certolizumab, n (%) 2 (3.3) 2 (6.9) 4 (4.5) -

Golimumab, n (%) 1 (1.7) 2 (6.9) 3 (3.4) -

DAS28-ESR at baseline, mean (s.d.) 5.7 (1.2) 4.8 (1.4) 5.4 (1.3) �0.006

ΔDAS28-ESR at 6 months, mean (s.d.) -3.0 (1.1) -0.2 (1.1) -2.1 (1.7) �4.8e-14

�significant (p < 0.05)
#where data was available

https://doi.org/10.1371/journal.pcbi.1010204.t001
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LOOCV of the first 20 PCs, which gave top 20, 6, and 4 PCs with minimum predicted sum of

squares (PRESS) for naïve, approximate, and pseudoinverse approaches, respectively (S1B

Fig). Although the naïve approach has limitations [53], all three LOOCV approaches suggested

that at least first 4 PCs are important. The first two principal components (PC1 and PC2) did

not show any segregation; however, the third principal component (PC3) was able to subdivide

patients into two distinct clusters i.e., endotypes (Fig 1). The demographic and clinical features

for each cluster are shown in Table 2. A statistically significant difference (p< 0.05) in baseline

DAS and gender was noted between the two clusters. Age, disease duration and anti-TNF bio-

logic treatment response were not significantly different between the two clusters. The associa-

tion between baseline DAS and gender within the clusters is illustrated in Fig 1. The plot

indicates a relatively higher baseline DAS and a higher proportion of females in the cluster

positioned in the upper/positive PC3 quadrant. It appears that the two endotypes clearly dis-

tinguish patients based on disease activity and are gender dependent.

Anti-TNF response feature selection and classifier

A quick summary of the computational pipeline built for the discovery of plasma protein sig-

nature is presented in Fig 2A and the detailed ML analysis schema for model development is

presented in Fig 2B; both are discussed in more detail in methods section. The feature set avail-

able for building the ML classifier includes demographic and clinical data (viz. gender, age, dis-

ease duration, baseline DAS (BLDAS) and ΔDAS at 6 months) as well as 352 QC passed

Fig 1. Principal component analysis (PCA) plot of rheumatoid arthritis patients (n = 89) using 352 plasma protein Normalised Protein Expression

(NPX) values reveals two molecular sub-classes or endotypes with respect to positive and negative third principal component (PC3) values. Endotype 1 is

with PC3 values> 0 and endotype 2 is with PC3 values< 0. Each data point represents a patient, where size of the dot is proportional to the disease activity

score (DAS) of the patient at baseline.

https://doi.org/10.1371/journal.pcbi.1010204.g001
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proteins’ normalised NPX values. Since gender and BLDAS were found to be statistically sig-

nificant to response to anti-TNF therapy as per Table 1, these two features were also included

in the signature formulation.

The Feature Importance (FI) of top 30 proteins, along with gender and BLDAS is shown in

Fig 3A. The graph depicting mean AUC for training as well as test set for each stepwise addi-

tion of protein features up to 30 proteins is shown in Fig 3B. The threshold of 30 proteins as

features was decided after noting the gradual dip in the AUC values for test set (Fig 3B). A set

of 17 protein gave the maximum mean AUC of 0.86 on test sets, without decreasing the train-

ing set AUC. The ROC curves for 5-fold training sets and test sets are shown in Fig 3C and 3D,

respectively. The corresponding best point threshold on ROC curve gave a mean sensitivity of

0.75 and mean specificity of 0.86 on the test sets. The overall mean accuracy was 0.81 on test

set. Further, the mean Matthews correlation coefficient (MCC), popularly used and advocated

to assess the quality of binary classification [54], was 0.60, implying a good prediction for each

class, viz. responders and non-responders. The summary of mean performance metrics is pre-

sented in S1 Table. The final model was trained on the whole dataset and mathematical formu-

lation is presented in the next section.

Plasma protein model for clinical decision making

The final model was trained on whole dataset and the beta coefficient of each feature obtained

from the model was plotted against its feature importance (FI) obtained from the feature selec-

tion procedure and presented as Fig 4A. Table 3 summarises all the model features; gender,

BLDAS and seventeen selected proteins along with their Uniprot and Entrez gene IDs, gene

names, Feature Importance (FI) and Effect Sizes (ES) or regression/beta coefficients. Further

the boxplot of calculated scores along with p-value for the patients is shown in Fig 4B. The

model score (S) for each patient is given by:

S ¼
Xn

i¼1

bixi þ b

Where, xi are model features, βi are corresponding effect sizes (or regression/beta coeffi-

cients) and b is the intercept (or bias). Finally, the patient’s response to anti-TNF can be

binarised, i.e., 0 for NR and 1 for R, by choosing a threshold (t) and mapping the score to logis-

tic function, which takes the output to a probability of response by patient, p2[0,1] as per:

p ¼ logit S � tð Þ ¼
1

1þ e� ðS� tÞ

Where t is the best point threshold, which was found to be 0.7136 (Fig 4B).

Table 2. Demographic and clinical features of two molecular sub-class or endotypes presented in Fig 1. Gender and baseline DAS values were found to be statistically

significant between the two endotypes. DAS28-ESR = Disease activity score 28 joint counts-erythrocyte sedimentation rate.

Cohort Characteristics Endotype 1 (N = 55) Endotype 2 (N = 34) P-value

Gender, female, n (%) 46 (83.6) 22 (64.7) �0.041

Age at baseline, mean (s.d.), years 61.2 (11.1) 60.1 (11.8) 0.648

Disease duration, mean (s.d.), years 10.1 (8.5) 8.5 (9.8) 0.480

DAS28-ESR at baseline, mean (s.d.) 5.7 (1.1) 5.0 (1.4) �0.022

ΔDAS28-ESR at 6 months, mean (s.d.) -2.3 (1.6) -1.9 (1.8) 0.248

Responders, n (%) 38 (64.7) 22 (69.1) 0.668

�significant (p < 0.05)

https://doi.org/10.1371/journal.pcbi.1010204.t002

PLOS COMPUTATIONAL BIOLOGY ATRPred: Anti-TNF treatment response predictor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010204 July 5, 2022 8 / 20

https://doi.org/10.1371/journal.pcbi.1010204.t002
https://doi.org/10.1371/journal.pcbi.1010204


Enrichment analysis with Gene Ontology (GO) terms and KEGG pathways

The 17 protein set, when tested for enrichment with Gene Ontology (GO) terms for Biological

Process (BP) using STRING database, gave 72 significant (FDR< 0.05) hits as shown in

S2 Table. These 72 GO BP terms along with its FDR, when summarised using REVIGO

Fig 2. (A) Computational pipeline for the development of plasma protein signature. PEA = Protein Expression Analysis, LoD = Limit of Detection,

QC = Quality Control, k-NN = k Nearest Neighbour, AUC = Area Under the Curve. (B) The Machine Learning (ML) schema. 5-fold nested cross-validation

(CV) followed for building the classifier for response to anti-tumour necrosis factor (anti-TNF) treatment in rheumatoid arthritis (RA) patients.

https://doi.org/10.1371/journal.pcbi.1010204.g002
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(S3 Table), were mostly involved with inflammatory response or its regulation (S2 Fig). The

enrichment for GO terms for Molecular Function (MF) gave 8 significant (FDR< 0.05) hits

(S4 Table), mostly corresponding to receptor binding. Furthermore, the enrichment for GO

terms for Cellular Components (CC) gave 4 significant (FDR< 0.05) hits (S5 Table), mostly

suggesting extracellular region as the location of proteins. Finally, the enrichment analysis for

the KEGG pathway gave 6 significant (FDR < 0.05) hits as shown in S6 Table. These hits

include, as expected, rheumatoid arthritis pathway. Further, it also included IL-17 signalling

Fig 3. (A) Feature importance of top 30 proteins along with significant demographic and clinical features, viz. base line disease activity score (BLDAS) and

gender. (B) Area Under the Curve (AUC) of training and test set vs. number of protein features. A set of 17 proteins along with BLDAS and gender gave the

maximum mean AUC of 0.86 on test set without decreasing the training set’s AUC. Receiver Operator Characteristics (ROC) for the 5-fold cross-validation

using BLDAS, gender and 17 protein features of (C) training sets and corresponding (D) test sets.

https://doi.org/10.1371/journal.pcbi.1010204.g003
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pathway as well as NF-kappa B signalling pathway, which are well known for their role in

inflammatory response in case of rheumatoid arthritis [55,56], suggesting their pathological

role in response to biologic DMARDs as well. It was also interesting to see Measles appearing

in these hits. It was recently found through pathway and network analyses of Genome-Wide

Association Studies (GWAS) that Measles truly contributes to rheumatoid arthritis [57].

Network analysis

STRING database reports scores for Protein-Protein Interaction (PPI). These scores range

from 0 for no evidence of interaction to 1 implying evidence of strong interaction. These

scores are computed using different parameters such as co-expression, annotated pathways,

neighbourhood, text mining, etc. We obtained the combined PPI scores of all combination of

our feature proteins. The PPI network thus obtained, was then uploaded in Cystoscope for

visualizing the graph in circular layout (Fig 4C). The size of the cell corresponds to the degree

i.e., number of connections with the other proteins. We note that the cytokine IL13 has the

Fig 4. (A) Effect sizes (ES) or beta coefficients of regression vs. feature importance, i.e. fraction of 500 models, the feature appeared. (B) Boxplot of model score

of each patient. NR = Non-responder, R = Responder. (C) Protein-Protein Interaction (PPI) network obtained from STRING database for 17 featured proteins.

The size of the cell depicts the degree of the node i.e. number of connection with the other proteins, whereas the edge thickness represents the STRING

database’s interaction scores. ES = effect size, as presented in Table 3. (D) Pearson’s correlation coefficient plot of 17 feature proteins. The size of circle depicts

the -log10(p-value) of the correlation.

https://doi.org/10.1371/journal.pcbi.1010204.g004
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highest degree of connection in the network; connected to 10 other feature proteins (Fig 4C).

This was closely followed by CXCL1 which was connected to 9 other feature proteins. Further,

the edge thickness is proportional to the score from STRING database. Fig 4C shows thick

edges connecting IL13, CXCL1, CCL8 (alias MCP-2) and MMP1, thus implying high interac-

tion between them. Interestingly, all these proteins are present in the extracellular region (S5

Table) and except CCL8 all other proteins are involved in IL17 signalling pathway (S6 Table).

Out of these four highly interactive proteins, only CXCL1 has positive effect size to response to

treatment, whereas IL13, CCL8, and MMP1 have negative effect sizes (Table 3). Thus, a high

expression of CXCL1 and low expression of IL13, CCL8, and MMP1 will lead to a better

response to anti-TNF treatment response. Further, these four highly interacting proteins have

smaller effect sizes compared to other proteins (Fig 4A), suggesting they are correlated due to

their high PPI scores. We confirmed that indeed MMP1, MCP-2 (alias CCL8) and CXCL1 are

significantly and highly correlated (Fig 4D). The elastic net regression distributes the weigh-

tage among the three proteins due to redundancy, as these variables have similar variations.

On the contrary, less correlated features, even if they have low FI, have high effect sizes, since

they have independent variation and can contribute more to anti-TNF treatment response

prediction.

Discussion

Rheumatoid arthritis (RA) patients show different pathologies in terms of functional or biolog-

ical mechanism, treatment response, etc. and hence can be considered as a broad disease class

containing different disease entity or sub-class. Therefore, there is a need to further stratify

patients based on their distinct functional or pathobiological mechanism, more commonly

called as endotypes [58]. A recent review article [59], investigates such pathobiological

Table 3. Plasma protein signature, along with gender and baseline DAS (BLDAS) for anti-TNF treatment response prediction. Feature Importance (FI) is defined as

the fraction of models a feature appears in. Beta (β) Coefficients are the effect sizes of features obtained from the logistic regression analysis. DAS = Disease activity score.

Features Uniprot ID Entrez Gene ID Gene Name Olink Panel FI β Coeff.

Intercept or bias, b - - - - - 3.800

Baseline DAS (BLDAS) - - - - 0.21 2.133

Gender (M:1; F:0) - - - - 0.17 0.116

KRT19 P08727 3880 Keratin 19 IMMUNE 0.13 -2.126

HAOX1/HAO1 Q9UJM8 54363 Hydroxyacid oxidase 1 CVD II 0.13 -2.068

CXCL1 P09341 2919 C-X-C motif chemokine ligand 1 CVD II + INFLAM 0.10 0.421

RARRES2 Q99969 5919 Retinoic acid receptor responder 2 CVD III 0.10 2.488

FCRL6 Q6DN72 343413 Fc receptor like 6 IMMUNE 0.10 -2.595

REN P00797 5972 Renin CVD II 0.10 -0.960

IL13 P35225 3596 Interleukin 13 INFLAM 0.09 -0.651

SPON1 Q9HCB6 10418 Spondin 1 CVD III 0.08 2.557

MMP-1/MMP1 P03956 4312 Matrix metallopeptidase 1 INFLAM 0.08 -0.830

ARNT P27540 405 Aryl hydrocarbon receptor nuclear translocator IMMUNE 0.07 -0.758

TNFSF13B Q9Y275 10673 Tumor necrosis factor superfamily member 13b CVD III 0.07 1.281

PRKCQ Q04759 5588 Protein kinase C theta IMMUNE 0.07 0.744

TRAIL-R2/TNFRSF10B O14763 8795 TNF receptor superfamily member 10b CVD II 0.07 -0.421

hOSCAR/OSCAR Q8IYS5 126014 Osteoclast associated, immunoglobulin-like receptor CVD II 0.05 2.661

MCP-2/CCL8 P80075 6355 C-C motif chemokine ligand 8 INFLAM 0.05 -0.243

DPP10 Q8N608 57628 Dipeptidyl peptidase like 10 IMMUNE 0.05 2.990

GDNF P39905 2668 Glial cell derived neurotrophic factor INFLAM 0.05 -2.574

https://doi.org/10.1371/journal.pcbi.1010204.t003
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endotypes in early RA (n = 85). They validated 2 proteins, 52 SNPs and 72 gene expression bio-

markers, that were predictive of changes in DAS28-CRP, identified from literature review. Out

of the 72 biomarkers, they independently replicated 8 biomarkers (SORBS3, AKAP9,

CYP4F12, MUSTN, CX3CR1, SLC2A3, C21orf58 and TBC1D8). Further, the two protein can-

didates viz. sICAM1 and CXCL13 were also validated as predictor of anti-TNF response. They

have also validated 2 SNPs (rs6028945 and rs73055646), that were significantly associated with

anti-TNF response. Using 11 biomarkers, this integrative approach showed an anti-TNF

response predictability with an AUC of 0.815.

The current study uncovered two distinct endotypes based on the expression profile of all

352 plasma proteins, which had significantly different gender proportions and baseline DAS

(Fig 1 and Table 2). Since these endotypes were not significantly different in terms of their

anti-TNF treatment response (Table 2), there is a possibility of the existence of two distinct RA

disease endotypes, which may be important in other aspects of the disease management or

other drug response.

Gender is known to be significantly associated with plasma protein profile [60]. Further,

DAS28 is also known to be correlated with the plasma proteins such as IL37 [61] and CXCL10

[62]. A significantly higher average ESR has been observed in females of age up to 75 years

[63]. Considering the above literature, there is another possibility that the two endotypes

uncovered in this study may be totally unrelated to RA. Hence, the clinicians may consider

keeping a strict vigil on these endotypes, which may be helpful in better informed decision

making.

Anti-TNF therapy is also a part of treatment regimens followed in other inflammatory dis-

orders like psoriatic arthritis and inflammatory bowel disease (IBD), which includes Crohn’s

disease (CD) and ulcerative colitis (UC). Proteomic signature for response to anti-TNF treat-

ment in these disorders have also been studied. About 57 out of 107 targeted proteins were

found to be predictive to anti-TNF treatment response with AUC of 0.76 in psoriatic arthritis

[64]. In another study [65], 25 potential anti-TNF treatment predictive biomarkers based on

significant differential expression between good and poor response were suggested out of 119

investigated proteins in psoriatic arthritis (n = 12). They further went on to investigate 4 out of

the 25 proteins as the anti-TNF treatment predictive biomarkers, however, none of these 25

differentially expressed proteins have any intersection with our feature proteins. Another

study [66] tried to stratify patients (n = 56) for prognosis or predicting response to anti-TNF

therapy in IBD by identifying candidate proteomics biomarkers involved in therapeutic path-

ways. They suggested overall expression of defensin-5α and eosinophil cationic protein was

related to responders (n = 25) and high expression of cathepsin, IL-12, IL17A and TNF was

related to non-response (n = 31). Unfortunately, performance of anti-TNF treatment response

prediction was not reported. With AUC of 0.86 for a relatively bigger cohort (n = 89), our

plasma protein signature for the prognosis of anti-TNF therapy responsiveness in RA patients

is different and its prediction performance is more accurate than of those described in the

studies discussed above.

A robust machine learning based bioinformatics study requires a complete independent

test set from the cross-validation set for the evaluation of the predictive model. Conventionally,

single choice of independent test set is implemented, leading to possible biasness towards bet-

ter performance of the predictive model. To mitigate this issue and being conscious of our lim-

ited sample size, we implemented a double or nested cross-validation based ML architecture

(Fig 2B), which not only ensures an independent test set from the cross-validation sets, but

also removes the biasness from choosing the independent test set by averaging the perfor-

mance for all possible choice of independent test sets.
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The feature importance (FI) for the proteins, obtained from the feature selection procedure,

suggest the need for the feature to be included in the model. Further, the effect sizes or regres-

sion/beta coefficient, obtained from the model training, suggests the contribution of a particu-

lar feature protein has on the final score of the patient. However, FI and β-coefficient are not

correlated (Fig 4A). This is due to the fact that some of the proteins are interacting with each

other (Fig 4C) and therefore are correlated (Fig 4D). All the feature proteins having a lower β-

coefficients are mostly correlated with each other and therefore the Elastic-Net regression

analysis distributes their weightage due to redundancy. Proteins that can classify patients into

responders and non-responders to anti-TNF drugs were filtered down to seventeen (Table 3).

The model presented is a simple linear combination of plasma protein expression values that

has been implemented to develop a R-based tool ATRPred. Further, the model was 5-fold

cross-validated and the mean performance was reported, which although modest, is the high-

est till date as per the literature review presented and the author’s knowledge.

In current clinical practice, RA patients who may not respond to conventional DMARDs

are routinely administered anti-TNF therapy, without enough prior knowledge of potential for

efficacy. Table 3 indicates that gender and baseline disease activity score (BLDAS) have the

highest discriminatory feature importance with respect to future response to anti-TNF ther-

apy. These two features were also significantly different for treatment response to anti-TNF

therapy (Table 1). It is common knowledge amongst clinicians that the response to biologics is

greater when the ESR is higher. This knowledge is also advocated by NICE guidelines which

recommends a cut-off of DAS28-ESR >5.1. The patients had all fulfilled the criteria (DAS28

>5.1) but at the time they started therapy their disease could have been going through a flare

or a dip in disease activity. The former would clearly be expected to respond better, partly

from the ‘regression to the mean’ trend. However, significance of female patients in general

respond better to biologics than male patients has not been widely reported. Females are less

likely to achieve remission with DAS28-ESR partly due to differences in the baseline ESR and

the way the DAS28 is calculated [52]. Further, it is known that RA is more commonly found in

women than men [67]. In line with this, most of the patients observed by the clinicians in our

BioRA cohort were also females (Table 1). We have taken these two demographic and clinical

features, viz. BLDAS and gender, as confounders and included in our signature summarised in

Table 3. As per the model performance (S1 Table), we can note that the performance using

just the gender and BLDAS has a test set 5-fold mean AUC of 0.57. A random model has an

AUC 0.5, hence the clinical decision making using these two demographic and clinical features

is only slightly better than random. However, inclusion of the 17 informative plasma proteins

increased the test set 5-fold mean AUC to 0.86, resulting in about 51% increase in performance

(S1 Table). Thus, our plasma protein signature may prove to be an advancement in the current

clinical decision making and treatment regime of anti-TNF therapy for RA patients.

Different genome wide association studies clearly implicate the central role of the immune

system in RA. To further investigate the pathways defining the patients’ responsiveness and to

understand the biological processes underlying the 17 protein signature, we went on to carry

out enrichment analysis and network analysis. Well known rheumatoid arthritis related path-

ways such as IL-17 and NF-kappa B signalling pathway were found to be significantly enriched

in this protein signature. Further, the clustering of significant GO BP terms for the 17 featured

protein set suggests that they mostly belong to either inflammatory response or its regulation

(S2 Fig). However, our study was limited to the set of proteins obtained from four pre-selected

Olink Proteomics’ panels; so, there is a possibility of selection bias which would influence

enrichment analysis. To get an unbiased pathway topology, we extracted a protein-protein

interaction network that was built on pre-existing knowledge (Fig 4C). We identified four

highly interacting proteins IL13, CXCL1, CCL8, and MMP1. IL13, CXCL1 and MMP1 are
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involved in IL-17 signalling pathway, and their signature in responders suggests a potential

role of IL-17 signalling pathway in anti-TNF response. Out of these proteins, only CXCL1 has

positive effect size i.e., its higher baseline expression is indicative of future anti-TNF response.

Further, CXCL1 is known to contribute to inflammation and present at higher levels during

inflammatory flare [68]. Thus, a high pre-treatment CXCL1 expression may act as a sentinel of

future good response towards anti-TNF treatment.

We have identified two clusters (Fig 1 and Table 2) driven by plasma protein profile as a

plausible endotypes. Unfortunately, they do not correspond to anti-TNF therapy responsive-

ness, but they are still significantly different in terms of disease activity and gender, and thus

possibly play an important role in patient management. For example, since these endotypes

are independent of future treatment response, they may indicate pre-biologic treatment

pathology sub-groups, which can be investigated in future studies. Further, we have built a ML

based classifier ATRPred to predict anti-TNF treatment response of RA patients at earlier

timepoint using seventeen proteins feature set along with gender and BLDAS. Our model was

rigorously cross-validated and performance on model-blind test sets have been presented. We

have provided this tool in the form of a R-based package on an open-source GitHub repository

at https://github.com/ShuklaLab/ATRPred, which may aid clinicians in deciding about putting

an RA patient under anti-TNF therapy. This will help in saving the treatment cost as well as

preventing nonresponsive patients to go through refractory condition of the disease leading to

poor quality of life.

Availability and future directions

ATRPred tool is built in R and provided as an open-source GitHub repository at https://

github.com/ShuklaLab/ATRPred. A README file has been provided with the instructions for

how to install the package and run the tool. All the R scripts and raw data used in the analysis

and development of ATRPred have been included in the scripts and raw data folders present

within the package. An input file template along with sample input files of a responder as well

as a non-responder are also included in the examples folder present within the package. The R

function antiTNFresponse() reads the input and normalises the same with the internal 89

patient data to get comparable numbers for feature sets and finally scores the patient for

response to the anti-TNF therapy. It then calculates the patient’s probability to respond anti-

TNF treatment and predicts if the patient will be a responder or non-responder. ATRPred

may aid clinicians to optimise treatment selection, reduce spend on biologics in unresponsive

patients and overall improve quality of life for non-responsive RA patients.

Supporting information

S1 Fig. (A) Elbow plot for first 30 Principal Components (PCs). Dotted line represents the

cut-off of 1% explained variance, crossing between PC 19 and 20. (B) Predicted sum of squares

(PRESS) vs. number of PCs for first 20 PCs. Solid dot represents minimum value of PRESS.

(TIF)

S2 Fig. TreeMap summary view of significant Gene Ontology (GO) Biological Process

(BP) terms for the 17 featured protein set. Size of each rectangle represents log10 p-value of

the GO terms.

(TIF)

S1 Table. The ML classifier performance with 5-fold nested cross-validation and the inclu-

sion of protein features one-by-one with decreasing feature importance along with base-

line DAS and gender information. The best model performance with 17 protein features
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S2 Table. Enrichment analysis of Gene Ontology terms (Biological Process).
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S3 Table. REVIGO summary analysis of Gene Ontology terms (Biological Process).
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S4 Table. Enrichment analysis of Gene Ontology terms (Molecular Function).
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