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Fuzzy Multi-context Systems
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Abstract—Multi-context systems provide an effective represen-
tation and reasoning framework for integrating heterogeneous
knowledge obtained from different sources and have been applied
in different fields. Because many application fields in real life have
to deal with uncertain and fuzzy knowledge, the present work
aims to combine the multi-context system and fuzzy logic theory
effectively and systematically to deal with the representation
and reasoning of uncertainty in heterogeneous contexts. The
current research in this area is still relatively limited, especially
in terms of systematic integration. Specifically, the present work
proposes a class of heterogeneous non-monotonic fuzzy multi-
context systems based on non-monotonic multi-context systems,
in which an abstract logic is proposed to capture different
types of logic and is used as a theoretical basis for fuzzy
multi-context knowledge representation and setting up bridging
rules to integrate heterogeneous knowledge. Fuzzy equilibria are
used to describe the semantics of fuzzy multi-context systems.
The syntactic and semantic framework of heterogeneous non-
monotonic fuzzy multi-context systems is then systematically
established. Finally, we show that the proposed fuzzy multi-
context system not only extends the non-monotonic multi-context
system to fuzzy settings, but also could expand the probabilistic
multi-context system and the possibility multi-context system in
the similar way.

Index Terms—Knowledge integration, multi-context systems,
abstract logics, fuzzy equilibria

I. INTRODUCTION

DRIVEN by initiatives such as the Word Wide Web
and the Internet of Things, there is a growing demand

for heterogeneous knowledge sharing and reasoning, which
poses various challenges to Knowledge Representation and
Reasoning scheme in artificial intelligence [1]. Multi-context
systems [2] can be deemed as a promising solution to address
such challenges. The basic idea of multi-context systems is to
capture different knowledge through distinct logical languages
and establish the relationship between them through the bridge
rules. Based on this, equilibria of multi-context systems are
defined as acceptable global states which are “stable” with
respect to information exchange.

Since multi-language systems (ML systems) were firstly
developed to integrate multiple monotonic inference system-
s [3], [4], various multi-context systems have been proposed
successively, such as multi-context systems based on default
logic (ConDL) [5], [6], probabilistic multi-context systems (p-
MCSs) with probabilistic reasoning [7], non-monotonic multi-
context systems (MCSs) with non-monotonic reasoning [2],
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and possibilistic multi-context systems (poss-MCSs) with pos-
sibilistic reasoning [8]. Besides, multi-context systems have
been applied to different domains, for instance, the Semantic
Web [9], engineering executable agents [10], ambient intelli-
gence [11], and optimization problems [12], to name just a
few.

It is worth noting that MCSs [2] integrate monotonic
and non-monotonic logics, have been extended into various
forms, such as managed multi-context systems (mMCSs) with
management capabilities (e.g., removal or revision of informa-
tion) [1], reactive multi-context systems (rMCSs) with reactive
reasoning [13], and preferential multi-context systems (PM-
CSs) with preference information [14]. Furthermore, several
methods have been developed to address the inconsistency in
MCSs that stems form information exchange [15]–[18].

However, the semantics of almost all existing multi-context
systems are defined in terms of definite information states [3]–
[6] or definite belief states [1], [2], [13], [14]. Therefore these
systems are unsuitable for handling uncertainties in practical
applications, with two exceptions: p-MCSs [7] and poss-
MCSs [8]. The former is based on propositional probabilistic
logics [19], and the latter is based on possibilistic logic
programs [20]. Nevertheless, both of them are homogeneous
multi-context reasoning frameworks because the methods of
inference are the same in either probabilistic or possibilistic
contexts.

As we all know, uncertainty in real-world applications
contains fuzziness which arises when the boundary of infor-
mation is not clear. Fuzzy knowledge indeed exists in practical
applications, especially in the area of the Semantic Web [21],
[22] and the Internet of Things [23], [24]. Thus, the issue of
dealing with fuzziness is of growing importance in knowledge
integration of different environments. That is, it is necessary to
cope with fuzzy knowledge in the heterogeneous knowledge
integration. Consider the following scenario as an illustration:

Example 1. Alice went to the hospital with a severe sore
throat that lasted for two days. And she is a little allergic to
antibiotics. Dr. John relies on his experience, interaction with
Alice, and the results from some lab tests to treat sore throats.

(1) If sore throat is at least moderate, he will strongly
suspect bacterial pharyngitis.

(2) It is quasi certain that if he suspects that the pharyngitis
is caused by bacteria, he will recommend a blood test.

(3) He is almost certain that antibiotics can cure bacterial
pharyngitis, and he is absolutely certain that lozenges can help
relieve sore throats.

(4) When the blood test result from the laboratory is pos-
itive, he will prescribe antibiotics if no information indicates
that Alice is highly allergic to antibiotics.
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(5) If the blood test result is negative, he will be very likely
to prescribe a lozenge.

If John strongly recommends a blood test, Alice will accept
John’s suggestion, and then she will pay the fee. If Alice pays,
the laboratory will conduct a blood test for Alice.

This medical scenario not only involves three heteroge-
neous contexts—the patient Alice, the doctor John, and the
laboratory—but also contains a great deal of uncertainty
caused by fuzzy knowledge such as the level of pain and the
reaction of antibiotic allergy, and by uncertain knowledge such
as the experience of the doctor.

As analyzed above, only p-MCSs and poss-MCSs provide
uncertainty modeling frameworks in all existing multi-context
systems. Nevertheless, (i) a probabilistic bridge rule in p-
MCSs is incapable of expressing the local absent information
from a context such as rule (4) in Example 1, since it
contains no default negation; (ii) a possibilistic bridge rule
in poss-MCSs is incapable of expressing the local uncertain
information from a context such as rules (1) and (4) in
Example 1, since a propositional atom in possibilistic bridge
rules can not model uncertainty; and (iii) both of p-MCSs
and poss-MCSs are less general since they are homogeneous
multi-context reasoning frameworks. Besides, fuzzy sets [25],
[26] and fuzzy logic theories [27]–[30] provide a solid theo-
retical foundation for the representation of, and the reasoning
with fuzzy knowledge. However, all proposed multi-context
systems neither incorporate fuzzy logic theory into them nor
meet the need of handling fuzzy knowledge. In a nutshell,
there is lack of a more general heterogeneous multi-context
reasoning framework for dealing with uncertainties.

The present work aims to establish a generic heterogeneous
multi-context reasoning framework for integrating heteroge-
neous knowledge under uncertainty. This reasoning frame-
work unifies and generalizes other multi-context frameworks,
including non-monotonic multi-context systems, probabilistic
multi-context systems, possibilistic multi-context systems, and
so forth. The main contributions of this work are simply
summarized as follows:

• Our work is based on various logics. We thus define
an abstract logic framework to capture different types
of logic, for instance, classical propositional logic, fuzzy
answer set programs [29], probabilistic logic under the
propositional case [19], and possibilistic normal logic
programs [20]. Moreover, we introduce notions of mono-
tonicity and reducibility of abstract logics, which apply
to any logic covered by this framework.

• We propose heterogeneous non-monotonic fuzzy multi-
context systems called fuzzy multi-context systems (FM-
CSs in short), which consist of fuzzy contexts based
on abstract logics. Specially, fuzzy equilibrium seman-
tics for FMCSs is investigated in details, including the
grounded fuzzy equilibrium and the well-founded fuzzy
equilibrium, which are generated by fixpoint iteration.
The proposed FMCSs contribute to the fusion of hetero-
geneous knowledge under uncertainty by using distinct
logic theories. For instance, Fig. 1 illustrates an FMCS
modeling the information exchange among three contexts

C1, C2 and C3 by fuzzy bridge rules. These contexts
are associated with heterogeneous (uncertain) knowledge:
a fuzzy answer set program K1, a possibilistic logic
program K2, and a probabilistic logic theory K3, respec-
tively.

C1
FMCS C2 C3

fuzzy brige rule

Heterogeneous
(uncertain)
knowlege

K1 K2 K3

information
exchange

Modeled

Fig. 1. Structure diagram of an FMCS

• We study the relationships between FMCSs and oth-
er multi-context systems: (i) FMCSs generalize non-
monotonic multi-context systems; (ii) probabilistic multi-
context systems and possibilistic multi-context systems
can be embedded into FMCSs, but not vice versa.

The remainder of this paper is organized as follows. In
Section II, some preliminaries, including logical operators and
non-monotonic multi-context systems are briefly reviewed.
In Section III, we introduce the formal concepts of abstract
logics, monotonic abstract logics, and reducible abstract logics
in our setting. Section IV presents a fuzzy multi-context
systems framework including its syntax and semantics. The
relationships between fuzzy multi-context systems and other
multi-context systems are discussed in Section V. We conclude
our work and point out future studies in Section VI.

II. PRELIMINARIES

Four common logical connectives are negation, conjunction,
disjunction, and implication, which are usually modeled in
an algebraic structure by logical operators negator, t-norm, t-
conorm, and implicator. In this section, we provide a brief
review of logical operators and non-monotonic multi-context
systems introduced by Brewka and Eiter [2].

A. Logical Operators

Complete lattice, L-fuzzy sets, and logical operators are
introduced in this subsection, more details can be found in
[26], [27], [29].

Complete lattice A complete lattice is a partially ordered
set (L,≤L) (L for short) such that each subset of L has the
least upper bound (supremum) and the greatest lower bound
(infimum) in L. 1L and 0L are used to denote the greatest
element and the least element of L, respectively.
L-fuzzy sets Let U be a universe and L a complete lattice.

An L-fuzzy set on U is a mapping A: U −→ L, which can
be written as a set {(x,A(x)) | x ∈ U , A(x) ∈ L} of ordered
pairs. An L-fuzzy set A is crisp if A(x) ∈ {1L, 0L} for
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all x ∈ U . In this case A is the characteristic function of
{x ∈ U | A(x) = 1L}. [0, 1]-fuzzy sets are referred to as
fuzzy sets as usual. By LU we denote the L-fuzzy space on U ,
namely LU = {A | A : U −→ L}. It is clear that (LU ,≤LU )
is a complete lattice, where A ≤LU B iff A(x) ≤L B(x) for
any x ∈ U .

Negator A unary operation N on a complete lattice L (i.e.,
a mapping L −→ L) is a negator if it satisfies N (1L) =
0L, N (0L) = 1L, and for each x, y ∈ L, y ≤L x implies
N (x) ≤L N (y) (decreasing).

Triangular norm A binary operation T on a complete
lattice L (i.e., a mapping L2 −→ L) is a triangular norm (t-
norm for short) if it satisfies four conditions: for each x, y, z ∈
L, T (x, y) = T (y, x) (commutativity), T (T (x, y), z) =
T (x, T (y, z)) (associativity), x ≤L y implies T (x, z) ≤L
T (y, z) (monotonicity), and T (1L, x) = x. A t-norm is
continuous if it is a continuous function.

Triangular conorm A binary operation S on a com-
plete lattice L (i.e., a mapping L2 −→ L) is a triangular
conorm (t-conorm for short) if it satisfies four conditions:
for each x, y, z ∈ L, S(x, y) = S(y, x) (commutativity),
S(S(x, y), z) = S(x,S(y, z)) (associativity), x ≤L y implies
S(x, z) ≤L S(y, z) (monotonicity), and S(0L, x) = x.

Implicator A binary operation I on a complete lattice L
(i.e., a mapping L2 −→ L) is an implicator if it is increasing
in the first argument and decreasing in the second (i.e., hybrid
monotonic) and satisfies I(0L, 0L) = 1L and I(1L, x) = x
for any x ∈ L. Residual implicator I based on a t-norm T
is defined as I(x, y) = sup{z ∈ L | T (x, z) ≤L y} for each
x, y, z ∈ L.

There are some important negators, t-norms, t-conorms, and
residual implicators defined on [0, 1] [27], [29]:

(1) Łukasiewicz t-norm TL, t-conorm SL, negator NL, and
residual implicator IL:

TL(x, y) = max{0, x+ y − 1}, SL(x, y) = min(x+ y, 1)

NL(x) = 1− x, IL(x, y) = min{1− x+ y, 1}.

(2) Gödel t-norm TG, t-conorm SG, negator NG, and
residual implicator IG:

TG(x, y) = min{x, y}, SG = max(x, y)

NG(x) =

{
0 x > 0

1 x = 0
, IG =

{
y x > y

1 x ≤ y
.

(3) Product t-norm TP , t-conorm SP , negator NP , and
residual implicator IP :

TP = x× y, SP = x+ y − x× y

NP = NG, IP (x, y) =

{
1 x ≤ y
y/x x > y

.

B. Non-monotonic Multi-context Systems

Non-monotonic multi-context systems (MCSs) introduced
by Brewka and Eiter is briefly reviewed in this subsection,
more details can be found in [2].

Definition 1. [2] A logic L is a tuple (KB,BS,ACC)
consisting of three components:

(1) KB is the set of knowledge bases of L. The element of a
knowledge base is called a formula of L;

(2) BS is the set of possible belief sets;
(3) ACC : KB −→ 2BS is a set-valued mapping describing

the set of acceptable belief sets of each knowledge base
in KB.

Various logics, such as classical propositional logic, descrip-
tion logic, modal logic, answer set programs [31], and default
logic [32], can be represented by L [2], [15], [16].

Definition 2. [2] Assume L = {L1, ...,Ln} is a set of logics,
where Lk = (KBk, BSk, ACCk) (1 ≤ k ≤ n). An Li-bridge
rule over the set L, 1 ≤ i ≤ n, is of the following form:

a← (r1 : p1),..., (rj : pj),not(rj+1 : pj+1),...,not(rm : pm)
(1)

where for any 1 ≤ k ≤ m, 1 ≤ rk ≤ n, pk ∈
⋃
BSrk , and

a ∈
⋃
KBi, i.e., a formula of Li.

We denote h(r) = a the head of a bridge rule r. Bridge
rules describe definite information between contexts.

Definition 3. [2] A multi-context system, or MCS for short,
M = {C1, ..., Cn} is a set of contexts Ci = (Li, kbi, bri) (1 ≤
i ≤ n), where Li = (KBi, BSi, ACCi), kbi ∈ KBi, and bri
is a collection of Li-bridge rules over the set {L1, ...,Ln}.

Definition 4. [2] A belief state of an MCS M = {C1, ..., Cn}
is a sequence S = (S1, ..., Sn) satisfying any Si ∈ BSi.

Definition 5. [2] Let S = (S1, ..., Sn) be a belief state, a
bridge rule of the form (1) is applicable w.r.t. S iff pi ∈ Sri
for 1 ≤ i ≤ j, and pk /∈ Srk for j + 1 ≤ k ≤ m.

Definition 6. [2] A belief state S = (S1, ..., Sn) of an MCS
M is an equilibrium iff for each 1 ≤ i ≤ n,

Si ∈ ACCi(kbi ∪ {h(r) | r ∈ bri is applicable in S}).

The equilibrium semantics substantially defines the definite
belief states that may be adopted by MCSs. However, MCSs
focus on definite knowledge and ignore uncertainty in appli-
cations.

III. ABSTRACT LOGICS

Logic theories play a central role in multi-context systems.
In this section, we define a new abstract logic to cover different
logics, including classical propositional logic, fuzzy answer
set programs [29], possibilistic normal logic programs [20],
and so on. Furthermore, we introduce the formal definitions
of monotonic abstract logics and reducible abstract logics in
our setting. A reducible abstract logic can be reduced to a
monotonic abstract logic.

Definition 7. An abstract logic L = (KB, U , L, FBS, ACC)
comprises five components as follows:
(1) KB ={kb | kb is a set describing well-formed knowledge

base of L}, the element of kb is a formula of L;
(2) U is a universe;
(3) L is a complete lattice w.r.t. ≤L;
(4) FBS = LU = {S | S : U −→ L} is a fuzzy belief space,

where S is an L-fuzzy set on U , called a fuzzy belief set;
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(5) ACC : KB −→ 2FBS is a mapping describing the set of
acceptable fuzzy belief sets of a knowledge base.

Syntax and semantics are the fundamental components of
any logic system. Intuitively, ACC captures the semantics of
L—the relationship between the knowledge bases set KB and
the fuzzy belief space FBS, while the knowledge base of L—
a set of formulas—captures the syntax of L. U could be a set
of formula or a set of atoms. L may be the range of truth
degrees, necessity degrees, or probabilities. The fuzzy belief
space FBS is the L-fuzzy space on U . Obviously, FBS is a
complete lattice w.r.t. ≤FBS , i.e., ≤LU .

Remark 1. The logic L = (KB,BS,ACC) can be translated
into an abstract logic LL = (KBL,UL,LL,FBSL,ACCL)
where
• KBL = KB, UL =

⋃
BS, LL is {0, 1} with natural

ordering, and FBSL = 2UL ;
• ACCL(kb) is the set of mappings v : UL −→ {0, 1} such

that, for each S ∈ ACC(kb),

v(s) =

{
1, s ∈ S,
0, otherwise.

Example 2. Some logics captured by L.
(1) Classical propositional logic CPL

CPL can be expressed as an abstract logic LC =
(KBC ,UC ,LC ,FBSC ,ACCC) comprising the following
components:
• KBC = 2F (A), where F (A) is the set of well-formed

formulas generated by connectives (¬,∧,∨,→) over a
propositional atoms set A;

• UC = F (A), LC is {0, 1} with natural ordering, and
FBSC = 2F (A);

• ACCC(kb) = {Cn(kb)}, where Cn(kb) = {ϕ∈F (A) |
kb |= ϕ} and kb |= ϕ means that each model of kb is
a model of ϕ. A model of a formula ϕ is an evaluation
v : A −→ {0, 1} such that v(ϕ) = 1.

(2) Fuzzy answer set programs FASP [29]
An atom is an expression of the kind P (x1, ..., xn) with an

n-ary predicate P , where xi (1 ≤ i ≤ n), called a term, is
either a constant or a variable.

A FASP P on a complete lattice (L,≤L) is a finite set of
fuzzy rules of the form

a0 ← f(a1, ..., an; b1, ..., bm) (2)

where each ai (0 ≤ i ≤ n) and bj(1 ≤ j ≤ m) is either an
atom or an element of L and f : Ln+m −→ L is a function
that increases in its first n arguments and decreases in its last
m arguments, such as a t-norm or a t-conorm. For convenience,
any FASP rule of the form (2) will be abbreviated as a0 ← a1
if f is the identity function, n = 1, and m = 0. On this basis,
if a1 is the greatest element of L, then r : a0 ← a1 will be
further shortened as a0.

A fuzzy interpretation I is a mapping from a atoms
set A to L. Furthermore, I(a) = a for each a ∈ L and
I(f(a1,..., an; b1,..., bm))=f(I(a1),..., I(an);I(b1),..., I(bm)).
A fuzzy interpretation I satisfies a fuzzy rule r of the form
(2) if f(I(a1), ..., I(an); I(b1), ..., I(bm)) ≤L I(a0). It is a
model of P if it satisfies every rule of P .

A fuzzy interpretation I is a fuzzy answer set of P iff it
is a minimal model of the fuzzy reduct P I which is obtained
from P by replacing each bj (1 ≤ j ≤ m) in the rule of the
form (2) with I(bj), i.e.,

P I = {a0 ← f(a1, ..., an; I(b1), ..., I(bm)) |
a0 ← f(a1, ..., an; b1, ..., bm) ∈ P}.

The minimal model of P I coincides with the least fixpoint
of the following immediate consequence operator

TF (J)(a0) = sup{J(f(a1, ..., an; I(b1), ..., I(bm))) |
a0 ← f(a1, ..., an; I(b1), ..., I(bm)) ∈ P I}.

FASP can be represented as an abstract logic LF =
(KBF ,UF ,LF ,FBSF ,ACCF ) where
• KBF = {kb | kb is a fuzzy answer set program over a

set A of atoms and complete lattice L};
• UF = A, LF = L (the complete lattice above), and
FBSF = {S | S : A −→ L};

• ACCF (kb) = {S | S is a fuzzy answer set of kb}.
FASP is an extension of answer set programs [31]. The

consistency problem of FASP under Łukasiewicz semantics
is NP-hard for normal logic programs and ΣP2 -complete for
disjunctive logic programs [33].
(3) Possibilistic normal logic programs PASP [20]

Let A be a set of atoms, a PASP P is a finite set of
possibilistic rules of the form

r = (p0 ← p1, ..., pj ,not pj+1, ...,not pn., α) (3)

where n ≥ 0, {p0, p1, ..., pn} ⊆ A, and α ∈ [0, 1],
called necessity degree, represents the certainty degree of
the information described by r. We denote r by (h(r) ←
B+(r), B−(r)., α), where h(r) = p0, B+(r) = {p1, ..., pj},
and B−(r) = {pj+1, ..., pn}. The possibilistic rule is positive
if B−(r) = ∅. For convenience, any possibilistic rule of the
form (3) will be abbreviated as (p0, α) if n = 0. On this basis,
if α = 1, then (p0, α) will be further shortened as p0.

A definite PASP consists of positive possibilistic rules. The
possibilistic reduct of a PASP P w.r.t. a set A of atoms is the
following definite PASP

PA = {(p0 ← p1, ..., pj ., α) | r ∈ P is of the form (3)

and B−(r) ∩A = ∅}.

A possibilistic atom is of the form (a, α) ∈ A × [0, 1],
where α is the necessity degree of a. A positive possibilistic
rule: (p0 ← p1, ..., pn., α) w.r.t. a set I of possibilistic
atoms is β-applicable where β = min{α1, ..., αn, α} if
{(p1, α1), ..., (pn, αn)} ⊆ I , and 0-applicable otherwise.

A possibilistic interpretation I is a mapping: A −→ [0, 1],
i.e., a set of possibilistic atoms. It is a possibilistic answer set
of a definite PASP P if it is the least fixpoint lfp(TP ) of the
immediate possibilistic consequence operator TP defined as

TP (I) = {(a,α) | APP (P, I, a) 6= ∅ and
α = max

r∈APP (P,I,a)
{β | r is β-applicable in I}}

where APP (P, I, a) = {r | r ∈ P, h(r) = a,
r is β-applicable in I, and β > 0}.
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A possibilistic interpretation I is a possibilistic answer set
of a PASP P iff it is a possibilistic answer set of P I

∗
, where

I∗ = {a | (a, α) ∈ I}.
PASP can be written as an abstract logic LP =

(KBP ,UP ,LP ,FBSP ,ACCP ) where
• KBP = {kb | kb is a possibilistic norm logic program

over a set A of atoms};
• UP = A, LP is [0, 1] with natural ordering, and FBSP =
{S | S : A −→ [0, 1]};

• ACCP (kb) = {S | S is a possibilistic answer set of kb}.
(4) Probabilistic logic: the propositional case [19], [34]

We only consider the probabilistic logic under the propo-
sitional case, called propositional probabilistic logic, which
combines classical propositional logic and probability theory
[19]. The related notions of classical propositional logic intro-
duced above will continue to be adopted.
F (A) is the set of propositional formulas on a finite set A of

propositional atoms. A probability formula is a pair (F, µ) ∈
F (A)× [0, 1], where µ is the probability of F . We use kb to
denote a finite set of probability formulas.

A subset w of A is called a possible world [34]. We use
W = {w | w ⊆ A} to denote the set of all possible worlds.
A probability distribution is a function WP : W −→ [0, 1]
satisfying Σw∈WWP (w) = 1. The probability µF of a
formula F is determined by a probability distribution WP
over W . That is µF = Σw|=FWP (w), which means that
the probability of a formula F is the sum of probabilities of
possible words w where F is true.

Let kb = {(F1, µF1
), ..., (Fm, µFm

)} and W = {w | w ⊆
A} the set of possible words. The so-called probabilistic
entailment of Nilsson’s probability logic is to deduce a prob-
ability formula (ϕ, µϕ) from kb, denoted by kb |=P (ϕ, µϕ),
where ϕ ∈ F (A), µϕ = Σw|=ϕWP (w), and WP is a
probability distribution over W . It is worth pointing out that
the above probability distribution WP is determined by the
following equations with constraints:

(1) for each (Fi, µi) ∈ kb, Σw|=Fi
WP (w) = µFi

,
(2) WP (w1) + · · ·+WP (wn) = 1,
(3) each WP (wi) ∈ [0, 1].
Propositional probabilistic logic can be expressed as an

abstract logic L′P = (KB′P ,U ′P ,L′P ,FBS
′
P ,ACC

′
P ) where

• KB′P = {kb = {(F1, µF1), ..., (Fm, µFm)} | kb is a
probability formulas set over a finite atoms set A};

• U ′P = F (A), L′P is [0, 1] with natural ordering, and
FBS ′P = {S | S : F (A) −→ [0, 1]};

• ACC′P (kb) = {{(ϕ, µϕ) | kb |=P (ϕ, µϕ)}}.

In addition, there are varieties of logics can be captured,
such as basic fuzzy logic [27], monoidal t-norm based logic
MTL [28], normal residuated logic programs NRLP [30],
multi-adjoint normal logic programs [35], and logics covered
by L.

Definition 8. An abstract logic L = (KB,U ,L,FBS,ACC)
is monotonic iff
(1) for all kb ∈ KB, ACC(kb) is a singleton set, and
(2) if kb ⊆ kb′ then S ≤FBS S ′ where ACC(kb) = {S} and
ACC(kb′) = {S ′}.

A monotonic abstract logic L guarantees that a knowledge
base kb accepts a unique belief set. Abstract logic LC =
(KBC ,UC ,LC ,FBSC ,ACCC) in Example 2 are monotonic,
whereas LF = (KBF ,UF ,LF ,FBSF ,ACCF ) and LP =
(KBP ,UP ,LP ,FBSP ,ACCP ) are non-monotonic.

Definition 9. Let L = (KB,U ,L,FBS,ACC) be an abstract
logic. If there is a nonempty subset KB′ of KB and a function
RL :KB × FBS −→ KB′ such that
(1) L′ = (KB′, U ,L,FBS,ACC) is monotonic;
(2) for any S ∈ FBS , RL(kb,S) = kb if kb ∈ KB′;
(3) if S1 ≤FBS S2 and ACC(RL(kb,Si)) = {S ′i} (i = 1, 2)

then S ′2 ≤FBS S ′1;
(4) ACC(RL(kb,S)) = {S} iff S ∈ ACC(kb).
Then we say that L is reducible w.r.t. RL, where RL is called
a reduction function of L.

From Definition 9, we know that (i) if kb ∈ KB′ then
it will not be reduced; (ii) condition (3) is weaker than the
condition that RL is decreasing in its second argument (i.e.,
RL(kb,S) ⊆ RL(kb,S ′) if S ′ ≤FBS S), since the latter
implies the former by Definition 8, but not vice versa; and
(iii) a fuzzy belief set S is accepted by a knowledge base kb
if it is accepted by the reduced knowledge base RL(kb,S), in
other words, we are able to use the reduction to verify whether
S is accepted.

Example 3. There are some examples of reducible logics.
(1) Each monotonic abstract logic is reducible, its reduction

function RmL (kb,S) = kb.
(2) FASP is reducible, its reduction function RFL (kb,S) =

kbS , where kb is a fuzzy answer set programming, S is a
fuzzy interpretation of kb, and kbS is the fuzzy reduct of
kb w.r.t. S.

(3) PASP is reducible, its reduction function RPL (kb,S) =
kbS

∗
, where kb is a possibilistic normal logic program-

ming, S is a set of possibilistic atoms, S∗ = {a | (a, α) ∈
S} is a set of atoms, and kbS

∗
is the possibilistic reduct

of kb w.r.t. S∗.

Moreover, normal residuated logic programming NRLP is
also reducible, its reduction function is similar to FASP’s (see
[30] for more details).

IV. FUZZY MULTI-CONTEXT SYSTEMS

In this section, we propose a fuzzy multi-context system
framework including both of its syntax and semantics. Spe-
cially, we define the (grounded) fuzzy equilibrium and the
well-founded fuzzy equilibrium to capture the semantics of
fuzzy multi-context systems. Some examples are provided to
illustrate different concepts of fuzzy multi-context systems.

A. Syntax of Fuzzy Multi-context Systems

A fuzzy multi-context system is composed of fuzzy contexts
which are based on abstract logics and fuzzy bridge rules.
Fuzzy bridge rules describe the flow of information between
fuzzy contexts, which are defined below.
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Definition 10. Let Li = (KBi, Ui, Li, FBSi, ACCi) (1 ≤
i ≤ n) be abstract logics. A (fuzzy) Li-bridge rule on the set
of abstract logics {L1, ..., Ln} is of the form

a← 〈c1 : (a1, µ1)〉, ..., 〈ck : (ak, µk)〉,
not〈ck+1 : (ak+1, µk+1)〉, ...,not〈cm : (am, µm)〉

(4)

where for any 1 ≤ j ≤ m, 1 ≤ cj ≤ n, aj ∈ Ucj , µj ∈ Lcj ,
and a ∈

⋃
KBi, i.e., a formula of Li.

We denote the fuzzy bridge rule r by h(r) ← B(r),
where h(r) = a is the head of r and B(r) is called body.
The body B(r) comprises B(r)+ and B(r)− which stand
for sets {〈c1 : (a1, µ1)〉, ..., 〈ck : (ak, µk)〉} and {〈ck+1 :
(ak+1, µk+1)〉, ..., 〈cm : (am, µm)〉}, respectively. The rule r
is positive if B(r)− = ∅.

Intuitively, a fuzzy bridge rule r says that h(r) should be
added to some well-formed knowledge base of Li if the degree
of aj (1 ≤ j ≤ k) in some fuzzy belief set of Lcj is at least
µj and the degree of at (k+1 ≤ t ≤ m) in some fuzzy belief
set of Lct is less than µj .

Definition 11. A fuzzy multi-context system, or FMC-
S for short, M is a set {C1, ..., Cn} of fuzzy contexts
Ci = (Li, kbi, bri) (1 ≤ i ≤ n), where Li =
(KBi,Ui,Li,FBSi,ACCi) is an abstract logic, kbi ∈ KBi,
and bri is a collection of fuzzy Li-bridge rules over
{L1, ..., Ln}.

In an FMCS M , the set {L1, ..., Ln} of logics specify
knowledge types and reasoning characteristics in all fuzzy
contexts and fuzzy bridge rules represent information flow
between fuzzy contexts. Whether we add information delivered
by fuzzy bridge rules to a fuzzy context depends on other fuzzy
contexts involved in bodies of these fuzzy bridge rules.

Example 4. [Continued from Example 1] Example 1 describes
three heterogeneous contexts—the patient Alice C1, the doctor
John C2, and the laboratory C3—and interactions among them.
The level of pain, the experience of doctor, and the reaction
of antibiotic allergy are full of uncertainty. We can use the
following fuzzy multi-context system M = {C1, C2, C3} to
represent this scenario, where Ci consists of Li, kbi, and
bri (i = 1, 2, 3) as follows
(1) L1 is the FASP over complete lattice L = [0, 1],

kb1 = {throat pain← 0.8, allergy ← 0.3,
pay blood test← accept blood test},

br1 = {(accept blood test, 1)←
〈2 : (recommend blood test, 0.9)〉}.

(2) L2 is the PASP,
kb2 = {(cure← antibiotics., 0.9),

(relieve pain← lozenges., 1),
(recommend blood test←

suspect bacteria., 0.95)},
br2 = {(suspect bacteria, 0.85)←

〈1 : (throat pain, 0.6)〉,
(lozenges, 0.8)← 〈3 : (negative, 1)〉,

(take antibiotics, 1)← 〈3 : (positive, 1)〉,
not〈1 : (allergy, 0.7)〉}.

(3) L3 is the CPL,
kb3 = ∅,

br3 = {(perform blood test, 1)←
〈1 : (pay blood test, 1)〉}.

Definition 12. A fuzzy context C = (L, kb, br) is reducible
w.r.t. RL if

(1) RL is a reduction function of L, and
(2) for any fuzzy belief set S, RL(kb∪H,S) = RL(kb,S)∪H

whenever H ⊆ {h(r) | r ∈ br}.
An FMCS M = {C1, ..., Cn} is reducible w.r.t. (RL1 , ..., RLn)
if for each i, Ci is reducible w.r.t. RLi .

In a reducible fuzzy context C, the abstract logic L is
reducible and the head h(r) of each fuzzy bridge rule r is
no longer reduced. This means that each B ⊆ {h(r) | r is
a bridge rule in C} belongs to the target class (KB′). Note
that a reducible FMCS based on monotonic logics may still
be non-monotonic because its fuzzy bridge rules may be non-
monotonic.

Example 5. [Continued from Example 4] The FMCS M
presented in Example 4 is reducible.

From Example 3, we know that PASP, FASP, and CPL are
reducible w.r.t. RPL , RFL , and RmL , respectively.

For each S in FASP, RFL (kb1 ∪ H,S) = kb1 ∪ H =
RFL (kb1,S) ∪H , where H = {(accept blood test, 1)}.

Therefore, C1 is reducible w.r.t. RFL .
For any S in PASP, RPL (kb2 ∪ H,S) = kb2 ∪ H =

RPL (kb2,S) ∪ H , where H = {(take antibiotics, 1),
(lozenges, 0.8), (suspect bacteria, 0.85)}.

Hence, C2 is reducible w.r.t. RPL .
For any S in CPL, RmL (kb3∪H,S) = H = RmL (kb3,S)∪H ,

where H = {(perform blood test, 1)}.
Thus, C3 is reducible w.r.t. RmL .
As a result, M is reducible w.r.t. (RPL , R

F
L , R

m
L ).

Definition 13. An FMCS M = {C1, ..., Cn} is definite iff

(1) M is reducible w.r.t. (RL1
, ..., RLn

),
(2) for each Ci = (Li, kbi, bri), RLi

(kbi,S) = kbi whenever
S ∈ FBSi, and

(3) all fuzzy bridge rules in M are positive.

A definite FMCS has desirable properties: it is reducible,
each kbi is the reduced form, and each fuzzy bridge rule is
positive.

Example 6. Consider an FMCS M = {C1, C2, C3}, where
Ci consists of Li, kbi, and bri (i = 1, 2, 3) as follows:

(1) L1 is the FASP over complete lattice L = [0, 1],
kb1 = {like← 0.95},
br1 = {(buy car, 0.9)← 〈1 : (like, 0.8)〉,

〈2 : (support, 0.7)〉, 〈3 : (on sale car, 1)〉}.
(2) L2 is the PASP,

kb2 = {(support← recommend., 0.9),
(quality good← ., 1)}.

br2 ={(recommend, 0.85)←〈2 : (quality good, 0.8)〉,
〈3 : (on sale car, 1)〉}.

(3) L3 is the CPL, kb3 = {on sale car}, and br3 = ∅.
It is obvious that each fuzzy bridge rule in M is positive.



7

According to Example 3, FASP, PASP, and CPL are re-
ducible w.r.t. RFL , RPL , and RmL , respectively.

For each S in FASP, RFL (kb1,S) = kb1, which implies
RFL (kb1 ∪ {(buy car, 0.9)},S) = kb1 ∪ {(buy car, 0.9)}

= RFL (kb2,S) ∪ {(buy car, 0.9)}.
Hence, C1 is reducible w.r.t. RFL .
For each S in PASP, RPL (kb2,S) = kb2, and so

RPL (kb2 ∪ {(recommend, 0.85)},S)
= kb2 ∪ {(recommend, 0.85)}
= RPL (kb2,S) ∪ {(recommend, 0.85)}.

Thus, C2 is reducible w.r.t. RPL .
For each S in CPL, RmL (kb3,S) = kb3, which implies

RmL (kb3 ∪ ∅,S) = kb3 = RmL (kb3,S).
Therefore, C3 is reducible w.r.t. RmL .
Consequently, M is reducible w.r.t. (RFL , R

P
L , R

m
L ).

From the above, M is definite.

B. Semantics of Fuzzy Multi-context Systems

For an FMCS, its semantics is to discuss the acceptable
fuzzy belief states it may adopt. In order to capture the
semantics of FMCSs, the (grounded) fuzzy equilibrium and
the well-founded fuzzy equilibrium are defined. Furthermore,
the well-founded fuzzy equilibrium of a reducible FMCS is
deemed as an approximation of its grounded fuzzy equilibria.

1) Fuzzy Equilibria:
A fuzzy equilibrium of an FMCS is essentially an acceptable
fuzzy belief state, providing the basis of the semantics of fuzzy
multi-context systems.

Definition 14. Let M = {C1, ..., Cn} be a fuzzy multi-context
system. S = FBS1 × · · · × FBSn is called the fuzzy belief
state space of M and S = (S1, ...,Sn) ∈ S a fuzzy belief state.

Since, for each i, FBSi is a complete lattice w.r.t. ≤FBSi
,

S is the product of complete lattices. The componentwise
ordering ≤S on S is defined as: let S,S′ ∈ S,

S ≤S S′ iff Si ≤FBSi
S ′i for each 1 ≤ i ≤ n.

According to [36], we know that the product of complete
lattices is still a complete lattice w.r.t. componentwise ordering.
For this reason, the following corollary holds.

Corollary 1. The fuzzy belief state space S of an FMCS M
is a complete lattice w.r.t. ≤S.

Definition 15. A fuzzy bridge rule r of the form (4) is
applicable w.r.t. a fuzzy belief state S = (S1, ...,Sn) iff
(1) for 1 ≤ j ≤ k, µj ≤Lcj

Scj (aj), and
(2) for k + 1 ≤ j ≤ m, Scj (aj) <Lcj

µj .

H(br, S) = {h(r) | r ∈ br is applicable w.r.t. fuzzy belief
state S} denotes the set of heads of applicable fuzzy bridge
rules. H(br, S) 6= ∅ means that the information described by
H(br, S) will be added to kb.

Definition 16. Let S = (S1, ...,Sn) be a fuzzy belief state
of an FMCS M . S is a fuzzy equilibrium for M iff for each
1 ≤ i ≤ n, Si ∈ ACCi(kbi ∪H(bri,S)).

From Definition 16, we know that for a fuzzy context Ci, if
H(bri,S) 6= ∅ then its acceptable fuzzy belief sets are affected

by the given fuzzy belief sets of the other fuzzy contexts.
A fuzzy equilibrium is a fuzzy belief state composed of an
acceptable fuzzy belief set for each fuzzy context.

Example 7. [Continued from Example 6] The fuzzy belief
state space of M in Example 6 is S = FBSP × FBSF ×
FBSC . It is easy to verify that S = (S1,S2,S3) is a fuzzy
equilibrium of M , where
S1 = {(like, 0.95), (buy car, 0.9)},
S2 = {(quality good, 1), (recommend, 0.85),

(support, 0.85)},
S3 = Cn({on sale car}).
The fuzzy equilibrium S indicates that a red car is on sale

in C3, C1 wants to buy the car very much (0.9), and C2 is
strongly (0.85) in favor of buying it.

Definition 17. Let S be the fuzzy belief state space of an
FMCS M . S is a minimal fuzzy equilibrium of M iff there
exists no fuzzy equilibrium S′ such that S′ <S S.

We will see later that S in Example 7 is the unique minimal
fuzzy equilibrium of M in Example 6.

2) Grounded Fuzzy Equilibria:
A definite FMCS has a unique minimal fuzzy equilibrium,
called the grounded fuzzy equilibrium, which can be calculated
through the iteration of fixed point. A reducible FMCS can be
transformed into a definite FMCS under a given fuzzy belief
state. On this basis, grounded fuzzy equilibria for reducible
FMCSs are defined.

Definition 18. Let M be a definite FMCS and S the fuzzy
belief state space of M . A fuzzy belief state S is the grounded
fuzzy equilibrium of M if it is the unique minimal fuzzy
equilibrium of M (under the ordering ≤S).

How to calculate the grounded fuzzy equilibrium is crucial
for a definite FMCS M . A method that depends on TM is
presented below.

Definition 19. Let M = {C1, ..., Cn} be a definite FMCS
and S the fuzzy belief state space of M . The immediate
consequence operator TM : S −→ S is defined as

TM (S) = S∗, i .e.,TM ((S1, ...,Sn)) = (S∗1 , ...,S∗n)

where ACCi(kbi ∪H(bri,S)) = {S∗i } (1 ≤ i ≤ n).

Theorem 1. Let S be the fuzzy belief state space of a definite
FMCS M = {C1, ..., Cn}. Then S ≤S S′ implies TM (S) ≤S
TM (S′), i.e., TM is monotonic.

Proof: Suppose S = (S1, ...,Sn), S′ = (S ′1, ...,S ′n),
TM ((S1, ...,Sn)) = (S∗1 , ...,S∗n), and TM ((S ′1, ...,S ′n)) =
(S ′∗1 , ...,S ′∗n ), where ACCi(kbi ∪ H(kbi,S)) = {S∗i } and
ACCi(kbi ∪H(kbi,S

′)) = {S ′∗i } for all i.
Considering that M is definite, we conclude from Defini-

tions 8, 9, 12 and 13 that, for each i,
(1) there exists a subset KB′i of KBi such that

(KB′i,Ui,Li,FBSi,ACCi) is monotonic,
(2) there is a reduction function RLi

of Li from KBi ×
FBSi to KB′i,

(3) each fuzzy bridge rule in M is positive,
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(4) RLi
(kbi ∪H(bri,S),Si) = RLi

(kbi,Si) ∪H(bri,S) =
kbi ∪H(bri,S) ∈ KB′i,

(5) RLi
(kbi∪H(bri,S

′
i),S ′i) = RLi

(kbi,S ′i)∪H(bri,S
′) =

kbi ∪H(bri,S
′) ∈ KB′i.

For each i, if a ∈ H(bri,S), then there is a positive fuzzy
bridge rule r in bri of the form

a← 〈c1 : (a1, µ1)〉 , ..., 〈ck : (ak, µk)〉
such that µj ≤Lcj

Scj (aj) for each j by Definition 15. It
follows from S ≤S S′ that µj ≤Lcj

S ′cj (aj), and r is applicable
w.r.t. S′. Therefore, a ∈ H(bri,S

′), which gives H(bri,S) ⊆
H(bri,S

′), so kbi∪H(bri,S) ⊆ kbi∪H(bri,S
′). By Definition

8, we have S∗i ≤FBSi S ′∗i , and thus TM (S) ≤S TM (S′).
The theorem below indicates that each definite FMCS has

a unique grounded fuzzy equilibrium, which can be computed
by the following transfinite sequences.

Theorem 2. [Fixpoint Semantics] Let S be the fuzzy belief
state space of a definite FMCS M = {C1, ..., Cn}. We define
the transfinite sequences TαM as follows:

T0
M = 0S,where 0S is the least element of S;

Tα+1
M = TM (TαM ), if α is a successor ordinal;

TαM = ∪β<αTβM , if α is a limit ordinal.

Then,
(1) there is an ordinal λ such that lfp(TM ) = TλM , and
(2) the grounded fuzzy equilibrium of M is lfp(TM ).

Proof: (1) It follows from Theorem 1 and the Tarski’s
theorem of fixpoint [37].

(2) It follows from Definition 18.

Example 8. [Continued from Example 6] The M in Example
6 is definite. We compute its grounded fuzzy equilibrium as
follows.

T0
M = (S01 ,S02 ,S03 ), where S01 = S02 = S03 = ∅.

T1
M = TM (T0

M ) = (S11 ,S12 ,S13 ), where
S11 = {(like, 0.95)},
S12 = {(quality good, 1)},
S13 = Cn({on sale car}).
T2
M = TM (T1

M ) = (S21 ,S22 ,S23 ), where
S12 = {(like, 0.95)},
S22 = {(quality good, 1), (recommend, 0.85),

(support, 0.85)},
S23 = Cn({on sale car}).
T3
M = TM (T2

M ) = (S13 ,S23 ,S33 ), where
S13 = {(like, 0.95), (buy car, 0.9)},
S32 = {(quality good, 1), (recommend, 0.85)

(support, 0.85)},
S33 = Cn({on sale car}).
T4
M = T3

M = lfp(TM ).
As a consequence, lfp(TM ) is the grounded fuzzy equilib-

rium of M .

In order to define grounded fuzzy equilibria for reducible
FMCSs, we first introduce the following reduction.

Definition 20. Let an FMCS M = {C1, ..., Cn} be reducible
w.r.t. (RL1

, ..., RLn
) and S = (S1, ...,Sn) a fuzzy belief state.

The S-reduct of M is

MS = {CS
1 , ..., C

S
n}

where for each 1 ≤ i ≤ n, CS
i = (Li, RLi(kbi,Si), brSi ) and

brSi is obtained from bri by
• removing rules with not 〈k : (a, µ)〉 in the body such that
µ ≤Lk

Sk(a), and
• removing not 〈k : (a, µ)〉 from all other rules.

For each reducible FMCS M and each fuzzy belief state S,
MS is a definite FMCS.

Example 9. Consider the FMCS M = {C1, C2} consisting
of fuzzy contexts Ci = (Li, kbi, bri) defined as follows
(1) L1 is the PASP,

kb1 = {(a← b, c., 0.9), (c← ., 0.8)},
br1 = {(b, 0.7)←〈1 : (c, 0.65)〉, not〈2 : (d, 0.5)〉}.

(2) L2 is the FASP over [0, 1],
kb2 = {e← 0.3, d← NL(m)},
br2 = {(m, 0.8)←〈2 : (e, 0.2)〉, not〈1 : (a, 0.9)〉}.

S = FBSP ×FBSF is the fuzzy belief state space of M .
Let S = (S1,S2) where S1 = {(a, 0.7), (b, 0.7), (c, 0.8)}

and S2 = {(d, 0.2), (e, 0.3), (m, 0.8)}, the reduction of M
w.r.t. S is a definite FMCS MS = {CS

1 , C
S
2 } where

(1) CS
1 = (L1, kb

′
1, br

′
i),

kb′1 = kb1,
brS1 = {(b, 0.7)← 〈1 : (c, 0.65)〉}.

(2) CS
2 = (L2, kb

′
2, br

′
i),

kb′2 = kbS2
2 = {e← 0.3, d← 0.2},

brS2 = {(m, 0.8)← 〈2 : (e, 0.2)〉}.

Definition 21. Let S be a fuzzy belief state of a reducible
FMCS M. S is a grounded fuzzy equilibrium of M if S is the
grounded fuzzy equilibrium of MS, i.e., S = lfp(TMS).

A grounded fuzzy equilibrium S of a reducible FMCS M
is substantially the grounded fuzzy equilibrium of the definite
FMCS MS.

Example 10. [Continued from Example 9] We further verify
that S given in Example 9 is a grounded fuzzy equilibrium of
M . That is to verify S = lfp(TMS), where MS has been given
in Example 9 .

T0
MS = (S01 ,S02 ), where S01 = S02 = ∅.

T1
MS = TM (T0

MS) = (S11 ,S12 ), where
S11 = {(c, 0.8)}, S12 = {(d, 0.2), (e, 0.3)}.
T2
MS = TM (T1

MS) = (S21 ,S22 ), where
S21 = {(a, 0.7), (b, 0.7), (c, 0.8)},
S12 = {(d, 0.2), (e, 0.3), (m, 0.8)}.
T3
MS = T2

MS = lfp(TMS) = S.

The following theorem provides a method to check whether
a fuzzy belief state S is a minimal fuzzy equilibrium of a
reducible FMCS M . Namely, S is a minimal fuzzy equilibrium
of M if S = lfp(TMS ).

Theorem 3. Let M be a reducible FMCS. A grounded fuzzy
equilibrium of M is a minimal fuzzy equilibrium of M .

Proof: Let M = {C1, ..., Cn} be reducible
w.r.t. (RL1

, ..., RLn
), S the fuzzy belief state space of

M , and S = (S1, ...,Sn) a grounded fuzzy equilibrium of M .
The proof will be divided into three steps.
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Step 1: we show that H(bri,S) = H(brSi ,S).
For each Ci = (Li, kbi, bri), let a ∈ H(brSi ,S), by

Definition 15 there is a positive fuzzy bridge rule rS ∈ brSi of
the form a← 〈c1 : (a1, µ1)〉 , ..., 〈ck : (ak, µk)〉, such that for
all j, µj ≤Lcj

Scj (aj).
By Definition 20, there exists a r ∈ bri corresponding to

rS, which is one of the following situations
(i) r = rS, where for all j, µj ≤Lcj

Scj (aj),
(ii) r is of the following form
a← 〈c1 : (a1, µ1)〉, ..., 〈ck : (ak, µk)〉,

not〈ck+1 : (ak+1, µk+1)〉, ...,not〈cm : (am, µm)〉
where µj ≤Lcj

Scj (aj) for 1 ≤ j ≤ k and Scj (aj) <Lcj
µj for

k + 1 ≤ j ≤ m.
In either case, that r is applicable w.r.t. S follows from

Definition 15. Therefore, a ∈ H(bri,S), which implies
H(brSi ,S) ⊆ H(bri,S). In a similar way, H(bri,S) ⊆
H(brSi ,S) can be proved. Consequently, H(bri,S) =
H(brSi ,S).

Step 2: we prove that S is a fuzzy equilibrium of M .
As S = (S1, ...,Sn) is a grounded fuzzy equilibrium of M ,

we have S = lfp(TMS) by Definition 21. Hence, for each i,
by Definitions 9, 12, 19, and 20,

{Si} = ACCi(RLi(kbi,Si) ∪H(brSi ,S))
{Si} = ACCi(RLi

(kbi ∪H(brSi ,S),Si))
Si ∈ ACCi(kbi ∪H(brSi ,S))
Si ∈ ACCi(kbi ∪H(bri,S))

Hence, S is a fuzzy equilibrium of M by Definition 16.
Step 3: we show that S is a minimal fuzzy equilibrium of

M by contradiction.
Let S′ = (S ′1, ...,S ′n) be a fuzzy equilibrium of M and

S′ <S S. By Definitions 9, 12, and 16, we have that for any i,
S ′i ∈ ACCi(kbi ∪H(bri,S

′))
{S ′i} = ACCi(RLi(kbi ∪H(bri,S

′),S ′i))
{S ′i} = ACCi(RLi

(kbi,S ′i) ∪H(bri,S
′))

S ′i ∈ ACCi(RLi
(kbi,S ′i) ∪H(brS

′

i ,S
′))

Hence, S′ is a fuzzy equilibrium of MS′ by Definitions 16
and 20, which implies lfp(TMS′ ) ≤S S′.

Since S is a grounded fuzzy equilibrium of M , we have
lfp(TMS ) = S.

Thus WM (S′) ≤S S′ and WM (S) = S by Definition 22.
S′ <S S implies WM (S) <S WM (S′) by Proposition 1.
Therefore, S = WM (S) <S WM (S′) ≤S S′, which

contradicts with S′ <S S.
3) Well-founded Fuzzy Equilibrium:

Motivated by the stable class semantics of logic programs
and default logic [38], the well-founded fuzzy equilibrium
of a reducible FMCS M is defined based on the operator
WM (S) = lfp (TMS).

Definition 22. Let M = {C1, ..., Cn} be a reducible FMCS
and S the fuzzy belief state space of M . The operator WM :
S −→ S is defined as WM (S) =lfp(TMS).

Proposition 1. Let S be the fuzzy belief state space of a
reducible FMCS M . Then WM is antimonotone, i.e., S ≤S S′

implies WM (S′) ≤S WM (S).

Proof: Let S = (S1, ...,Sn) and S′ = (S ′1, ...,S ′n).

It follows that WM (S) = lfp(TMS) = TλMS and
WM (S′) =lfp(TMS′ ) = Tλ

MS′ from Definition 22 and The-
orem 2.

Next, we show that WM (S′)≤SWM (S), i.e., Tλ
MS′ ≤STλMS

by transfinite induction.
For λ = 0,T0

MS = T0
MS′ = 0S.

For each β ≤ λ, assume that Tβ
MS′ ≤S Tβ

MS by induction
hypothesis.

If λ = α+ 1 is a successor ordinal then Tα
MS′ ≤S TαMS .

Hence, by monotony of TM and induction hypothesis,
Tλ
MS′ = TMS′ (TαMS′ )≤S TMS′ (TαMS)≤S TMS(TαMS) =TλMS .
If λ is a limit ordinal, then

Tλ
MS′ = ∪β<λTβMS′ ≤S ∪β<λTβMS = TλMS .

W2
M = WM ·WM , the mapping that applies WM twice, is

monotonic on S.

Corollary 2. W2
M is monotone on S.

Owing to the Tarski’s fixpoint theorem [37], W2
M has the

least fixpoint and the greatest fixpoint, denoted by lfp(W2
M )

and gfp(W2
M ), respectively. Based on this, we define the well-

founded fuzzy equilibrium of a reducible FMCS M .

Definition 23. Let M be a reducible FMCS. The well-founded
fuzzy equilibrium of M is WFE(M) = (lfp (W2

M ), gfp(W2
M )).

The lfp(W2
M ) can be computed through the upward iteration

of W2
M from the least element 0S of S, while the gfp(W2

M )
can be obtained by the downward iteration of W2

M from the
greatest element 1S of S.

Example 11. [Continued from Example 9] Let us calculate
the well-founded fuzzy equilibrium of M in Example 9. S =
FBSP ×FBSF is the fuzzy belief state space of M .

Compute the gfp(W2
M ) through the downward iteration of

W2
M from the greatest element 1S of S.

WM (1S) = lfp(TM1S ) = S1 = (S11 ,S12 ), where
S11 = {(c, 0.8)}, S12 = {(e, 0.3)}.
W2
M (1S) = lfp(TMS1 ) = S2 = (S21 ,S22 ), where

S21 = {(a, 0.7), (b, 0.7), (c, 0.8)},
S22 = {(d, 1), (e, 0.3), (m, 0.8)}.
WM (S2) = lfp(TMS2 ) = S3 = (S31 ,S32 ), where
S31 = {(c, 0.8)}, S32 = {(d, 0.2), (e, 0.3), (m, 0.8)}.
W2
M (S2) = lfp(TMS3 ) = S4 = (S41 ,S42 ), where

S41 = {(a, 0.7), (b, 0.7), (c, 0.8)},
S42 = {(d, 0.2), (e, 0.3), (m, 0.8)}.
WM (S4) = lfp(TMS4 ) = S4.
W2
M (S4) = lfp(TMS4 ) = S4 = gfp(W2

M ).
We can also compute the lfp(W2

M ) = S4 through the upward
iteration of W2

M from the least element 0S of S.
As a result, WFE(M) = (S4,S4).

As shown below, the well-founded fuzzy equilibrium can
be deemed as an approximation of grounded fuzzy equilibria
for a reducible FMCS.

Theorem 4. Let S be the fuzzy belief state space of a reducible
FMCS M . Then, lfp (W2

M ) ≤S S ≤S gfp(W2
M ) for any

grounded fuzzy equilibrium S of M .

Proof: Since S is the grounded fuzzy equilibrium of M ,
S = lfp(TMS), i.e., S = WM (S) which implies W2

M (S) = S.
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Hence, lfp(W2
M ) ≤S S ≤S gfp(W2

M ) by the Tarski’s fixpoint
theorem [37].

Particularly, if lfp(W2
M ) = gfp(W2

M ) = S, we denote the
well-founded fuzzy equilibrium of M by WFE(M) = S. In
such a case, WFE(M) captures the unique grounded fuzzy
equilibrium of M .

Proposition 2. Let M be a definite FMCS. If S is the grounded
fuzzy equilibrium of M , then WFE(M) = S.

Proof: Let S be the fuzzy belief state space of M . 0S
and 1S are the least element and the greatest element of S,
respectively.

Since M is definite, for each S′ ∈ S, MS′ = M by
Definitions 13 and 20.

According to Definition 22, we have that
WM (0S) = lfp(TM0S ) = lfp(TM ) = S
W2
M (0S) = WM (S) = lfp(TMS) = lfp(TM ) = S

WM (1S) = lfp(TM1S ) = lfp(TM ) = S
W2
M (1S) = WM (S) = lfp(TMS) = S

W2
M (S) = WM (WM (S)) = WM (S) = S

Hence, WFE(M) = S.
The above proposition shows that the grounded fuzzy equi-

librium coincides with the well-founded fuzzy equilibrium for
a definite FMCS.

C. A Scenario Example Illustration

So far, we have only used the reducible fuzzy multi-context
system M (see Examples 4 and 5) to represent the medical
scenario described in Example 1. Next, we compute the
minimal fuzzy equilibrium of M to predict which treatment
the doctor John will give.

Example 12. [Continued from Example 4] Compute the
minimal fuzzy equilibrium of M presented in Example 4.
Considering that well-founded fuzzy equilibrium is an approx-
imation of the minimal fuzzy equilibrium, we first calculate
its well-founded fuzzy equilibrium.

S = FBSF × FBSP × FBSC is the fuzzy belief state
space of the reducible FMCS M .

We first compute the lfp(W2
M ) through the upward iteration

of W2
M from the least element 0S of S.
WM (0S) = lfp(TM0S ) = S = (S1,S2,S3), where
S1 = {(throat pain, 0.8), (allergy, 0.3),

(accept blood test, 1), (pay blood test, 1)},
S2 = {(suspect bacteria, 0.85),

(recommend blood test, 0.85)},
S3 = Cn({perform blood test}).
W2
M (0S) = WM (S) = lfp(TMS) = S.

W2
M (S) = WM (S) = S = lfp(W2

M ).
We can also calculate gfp(W2

M ) = S by the downward
iteration of W2

M from the greatest element 1S of S.
Therefore, WFE(M) = S, which is also the minimal fuzzy

equilibrium of M . It indicates that John will strongly (0.85)
advise Alice to take a blood test, Alice will absolutely accept
this advice, and the laboratory will perform the test for Alice.

Since John strongly suspects the throat pain is caused
by bacterial pharyngitis, the initial treatment for Alice is

further examination. The treatment did not end before the test
results were given. Furthermore, suppose that the test result is
positive, an FMCS M ′ can be obtained by adding the formula
perform blood test → positive into kb3 in M . Its minimal
fuzzy equilibrium is S′ = (S ′1,S ′2,S ′3) where
S ′1 = {(throat pain, 0.8), (allergy, 0.3),

(accept blood test, 1), (pay blood test, 1)},
S ′2 = {(cure, 0.9), (suspect bacteria, 0.85),

(recommend blood test, 0.85), (take antibiotics, 1)},
S ′3 = Cn({perform blood test, positive}).
In this case, the test result shows that the throat pain is

caused by bacterial pharyngitis, John will prescribe antibiotics,
and the bacterial pharyngitis will be almost (0.9) cured.

In contrast, suppose that the test result is negative, an
FMCS M ′′ can be obtained by adding the formula perfor-
m blood test → negative into kb3 in M . Its minimal fuzzy
equilibrium is S′′ = (S ′′1 ,S ′′2 ,S ′′3 ) where
S ′′1 = {(throat pain, 0.8), (allergy, 0.3),

(accept blood test, 1), (pay blood test, 1)},
S ′′2 = {(suspect bacteria, 0.85), (relieve, 0.8)

(recommend blood test, 0.85), (lozenges, 0.8)},
S ′′3 = Cn({perform blood test, negative}).
In such a case, the test result shows that the throat pain is

not caused by bacteria, John is very (0.8) certain to prescribe
lozenges, and Alice’s pain will be greatly (0.8) relieved.

V. COMPARISON WITH OTHER MULTI-CONTEXT SYSTEMS

Representation and reasoning for multi-context systems
have been extensively investigated from ML systems [4] to
ConDL [5], MCSs [2], p-MCSs [7], poss-MCSs [8], and so
forth.

From the literatures above, we easily acquire the following
relationships among these multi-context systems:
• p-MCSs extend ML systems [7], and
• MCSs generalize ML systems and ConDL [2].
MCSs, poss-MCSs, and p-MCS relate to our work. We thus

compare FMCSs with them and summarize the results in the
following subsections.

A. Relationship to MCSs

In this subsection, we show how to translate an MCS M to
an FMCS τ(M) while “preserving” the equilibria of M , but
not vice versa.

Note that, MCSs are based on a set {L1, ...,Ln} of logics.
The logic L = (KB,BS,ACC) corresponds to the abstract
logic LL = (KBL,UL,LL,FBSL,ACCL) (see Remark 1). We
can also translate a bridge rule to a fuzzy bridge rule.

Remark 2. A bridge rule r of the form (1) can be translated
into the following fuzzy bridge rule τ(r)

a←〈r1 : (p1, 1)〉, ..., 〈rj : (pj , 1)〉,
not〈rj+1 : (pj+1, 1)〉, ...,not〈rm : (pm, 1)〉.

(5)

Definition 24. Let M = {C1, ..., Cn} be an MCS, where
Ci = (Li, kbi, bri) for each i. The corresponding FMCS is
τ(M) = {τ(C1), ..., τ(Cn)} where τ(Ci) = (LLi

, kbi, τ(bri))
and τ(bri) = {τ(r) | r ∈ bri}.
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The following theorem manifests that the equilibria of any
MCS M can be precisely captured by the fuzzy equilibria of
the corresponding FMCS τ(M).

Theorem 5. A belief state S = (S1, . . . , Sn) is an equilibrium
of an MCS M iff S = (S1, . . . ,Sn) is a fuzzy equilibrium of
τ(M), where Si is the mapping g :

⋃
BSi −→ {0, 1} such

that g(s) = 1 if s ∈ Si, and 0 otherwise.

Proof Sketch: For an MCS M = {C1, ..., Cn} with
Ci = (Li, kbi, bri), 1 ≤ i ≤ n, by Definition 24 we can
construct an FMCS τ(M) = {τ(C1), ..., τ(Cn)}, 1 ≤ i ≤ n,
where τ(Ci) = (LLi

, kbi, τ(bri)), τ(bri) = {τ(r) | r ∈ bri}.
Firstly, by Definitions 5 and 15 we can prove

{h(r) | r ∈ bri is applicable in S} = H(τ(bri),S).
Then, it follows from Definitions 6 and 16 that S =
(S1, . . . , Sn) is an equilibrium of M iff S = (S1, . . . ,Sn)
is a fuzzy equilibrium of τ(M). �

We next show that FMCSs are unable to be converted into
MCSs.

Belief sets in MCSs are crisp sets in accordance with
Definitions 2 and 4, whereas fuzzy belief sets in FMCSs are
L-fuzzy sets on a universe U by Definition 7.

To facilitate discussion, we first translate the abstract logic
L = (KB,U ,L,FBS,ACC) to a logic

LL = (KBL = KB, BSL, ACCL = ACC),
where BSL = {S = {(x,S(x)) | x ∈ U ,S ∈ FBS}}. It is
worth pointing out that a belief set S in the logic LL is not
deemed as an L-fuzzy sets on the universe U , but as a crisp
set on the universe U × L.

Then, a fuzzy bridge rule r of the form (4) is translated
into a bridge rule Q(r) of the form (1) through treating
(ak, µk) (1 ≤ k ≤ m) as an element of some belief set of the
logic LLck

, i.e., (ak, µk) ∈
⋃
BSLck

.
Furthermore, let M = {C1, ..., Cn} be an MCS, where

Ci = (Li, kbi, bri) for each i. The corresponding M-
CS is Q(M) = {Q(C1), ..., Q(Cn)} where Q(Ci) =
(LLi , kbi, Q(bri)) and Q(bri) = {Q(r) | r ∈ bri}. Note
that an FMCS M and the corresponding MCS Q(M) have
the same expression. The major difference between them is
that fuzzy belief sets in M are L-fuzzy sets on the universe
U , while belief sets in Q(M) are viewed as crisp sets on the
universe U × L.

Finally, suppose that S = (S1, ...,Sn) is a fuzzy equilibrium
of an FMCS M , S̄ = (S1, ..., Sn) with Si = {(x,Si(x)) | x ∈
U} is the corresponding belief state of S, and Q(M) is the
corresponding MCS of M . S̄ may not be an equilibrium of
Q(M) since the notion of applicability of bridge rules (see
Definition 5) differs from the notion of fuzzy bridge rules
(see Definition 15).

For example, assume that M is the FMCS in Example
4 which encodes the medical scenario in Example 1. Then,
according to the above analysis, Q(M) is the MCS with the
same expression as M . By Definition 6, it can be directly
verified that the corresponding belief state S̄ of the minimal
fuzzy equilibrium S of M presented in Example 12, is not an
equilibrium of Q(M). Additionally, S̄′ = (S′1, S

′
2, S
′
3) with

S′1 = {(throat pain, 0.8), (allergy, 0.3)}, S′2 = ∅, and S′3 =
Cn(∅) is the minimal equilibrium of the above Q(M), which

indicates that there is nothing the doctor John will do to help
Alice. This does not match the fact that since Alice’s throat
pain is severe, John strongly suspects bacterial pharyngitis
such that he strongly advises her to take a blood test.

B. Relationship to poss-MCSs

In this subsection, we show that poss-MCSs can be trans-
lated into FMCSs, but not vice versa.

1) poss-MCSs:
A poss-MCS [8] is based on possibilistic normal logic pro-
grams, comprising possibilistic contexts. The inference method
in each possibilistic context is the same, since the inference is
only rooted in possibilistic normal logic programs.

Definition 25. [8] A poss-MCS M = {C1, ..., Cn} is a set of
possibilistic contexts Ci = (Ai,Ki, Bi). For each 1 ≤ i ≤ n,
Ci consists of the following components:
(1) Ai is a set of atoms,
(2) Ki is a possibilistic logic program over Ai, and
(3) Bi is a collection of possibilistic bridge rules defined as

a← (c1 : p1), ..., (cj : pj),

not(cj+1 : pj+1), ...,not(cm : pm), [α]
(6)

where for each 1 ≤ j ≤ m, 1 ≤ cj ≤ n, pj is an atom in
Acj , α ∈ [0, 1], and a is an atom in Ai.

A poss-MCS is definite if all Ki and Bi do not contain not,
otherwise it is normal.

A possibilistic bridge rule of the form (6) is denoted
by h(r) ← B(r), [α] where h(r) = a is the head of r
and B(r) is called body. The body B(r) comprises B(r)+

and B(r)− which stand for sets {(c1, a1), ..., (cj , aj)} and
{(cj+1, aj+1), ..., (cm, am)}, respectively.

Definition 26. [8] A possibilistic belief state of a poss-MCS
M = {C1, ..., Cn} with Ci = (Ai,Ki, Bi) is a sequence S̃ =
(S1, ..., Sn) where Si = {(a, α) | a ∈ Ai and α ∈ [0, 1]}, i.e.,
a set of possibilistic atoms.

Definition 27. [8] Let S̃ = (S1, ..., Sn) be a possibilistic
belief state and r a possibilistic bridge rule of the form

a← (c1 : p1), ..., (cm : pm), [α]
where 1 ≤ ci ≤ n for each 1 ≤ i ≤ m. The possibilistic bridge
rule r is β−applicable in S̃ with β = min{α1, ..., αm, α} if
(pi, αi) ∈ Sci for each i, and 0-applicable otherwise.

Theorem 6. [8] Let M = {C1, ..., Cn} with Ci =
(Ai,Ki, Bi) be a definite poss-MCS and S̃ = (S1, ..., Sn)
a possibilistic belief state. S̃ is the possibilistic grounded
equilibrium of M iff for each 1 ≤ i ≤ n, Si is the
possibilistic answer set of Pi, i.e., Si = lfp(TPi

) where
Pi = Ki ∪ {(h(r), β) | r ∈ Bi, r is β−applicable in S̃, and
β > 0} and TPi

is the immediate possibilistic consequence
operator.

A normal poss-MCS can be reduced to a definite poss-MCS.
The reduct of a normal poss-MCS is based on the possibilistic
reduct of a PASP program.

Definition 28. [8] Let M = {C1, ..., Cn} with Ci =
(Ai,Ki, Bi) be a normal poss-MCS and S̃∗ = (S∗1 , ..., S

∗
n) a
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sequence of atoms sets S∗i ⊆ Ai. The reduct of M w.r.t. S̃∗ is a
definite poss-MCS M S̃∗ = {CS̃∗1 , ..., CS̃

∗

n } where, 1 ≤ i ≤ n,
• CS̃

∗

i = (Ai,K
S∗i
i , BS̃

∗

i ),
• K

S∗i
i is the possibilistic reduct of Ki w.r.t. S∗i , and

• BS̃
∗

i = {h(r) ← B(r)+, [α] | r ∈ Bi and for each
(ck, pk) ∈ B(r)−, pk /∈ S∗ck}.

Definition 29. [8] Let S̃ = (S1, ..., Sn) be a possibilistic
belief state of a normal poss-MCS M . S̃ is a possibilistic
grounded equilibrium of M if S̃ is the possibilistic grounded
equilibrium of M S̃∗ , where S̃∗ = (S∗1 , ..., S

∗
n) and for 1 ≤

i ≤ n, S∗i = {a | (a, α) ∈ Si} .

2) FMCSs Generalize poss-MCSs:
A poss-MCS M = {C1, ..., Cn} with Ci = (Ai,Ki, Bi)
is equivalent to a poss-MCS M ′ = {C ′1, ..., C ′n} based on
pairwise disjoint atoms sets A′i, where for each 1 ≤ i ≤ n,
C ′i = (A′i,K ′i, B′i), A′i = {ai | a ∈ Ai}, K ′i is obtained
from Ki by replacing each atom a in Ki with ai, and B′i is
obtained from Bi by replacing each atom a in Aj with aj

for each 1 ≤ j ≤ n. We thus assume that atoms sets Ai in a
poss-MCS M are pairwise disjoint in the rest of paper.

In Example 2, PASP logic corresponds to the abstract
logic LP = (KBP ,UP ,LP ,FBSP ,ACCP ). Any possibilistic
bridge rule can be translated into a possibilistic rule.

Remark 3. A possibilistic bridge rule r of the form (6) can
be translated into the following possibilistic rule ψ(r)

(a← p1, ..., pj ,notpj+1, ...,notpm, α). (7)

Definition 30. Let M = {C1, ..., Cn} with Ci = (Ai,Ki, Bi)
be a poss-MCS. The corresponding FMCS is ψ(M) =
{(LP , kb, br)} where kb =

⋃
(Ki ∪ ψ(Bi)), ψ(Bi) = {ψ(r) |

r ∈ Bi}, and br = ∅.

The above kb is essentially a possibilistic logic program
over the set

⋃
Ai of atoms. The following theorem suggests

that there is a one-to-one correspondence between the possi-
bilistic grounded equilibrium of a definite poss-MCS M and
the fuzzy equilibrium of the corresponding FMCS ψ(M).

Theorem 7. A possibilistic belief state S̃ = (S1, ..., Sn) is the
possibilistic grounded equilibrium of a definite poss-MCS M
iff S = (

⋃
Si) is the fuzzy equilibrium of ψ(M).

Proof Sketch: Let M = {C1, ..., Cn} with Ci =
(Ai,Ki, Bi) be a definite poss-MCS, S̃ = (S1, ..., Sn) a
possibilistic belief state. Then, the corresponding FMCS is
ψ(M) = {(LP , kb, ∅)} where kb =

⋃
(Ki ∪ ψ(Bi)) and

ψ(Bi) = {ψ(r) | r ∈ Bi}.
For each 1 ≤ i ≤ n, let Pi = Ki ∪ Hi where Hi =

{(h(r), β) | r ∈ Bi, r is β−applicable in S̃, and β > 0}.
Firstly, we can prove that for 1 ≤ i ≤ n, any r in Bi

is β−applicable in S̃ iff ψ(r) in ψ(Bi) is β−applicable in⋃
Si, by Definition 27 and the definition of β−applicable of

possibilistic rule (see Example 2).
Secondly, we can show that

⋃
TPi(Si) = Tkb(

⋃
Si), by

the definition of immediate possibilistic consequence operator
(see Example 2).

Finally, we can prove that S̃ = (S1, ..., Sn) is the possi-
bilistic grounded equilibrium of M iff S = (

⋃
Si) is a fuzzy

equilibrium of ψ(M), by Theorem 6, the definition of ACCP
(see Example 2), and Definition 16. �

The following theorem indicates that the possibilistic
grounded equilibria of any normal poss-MCS M correspond
one-to-one to the fuzzy equilibria of the corresponding FMCS
ψ(M).

Theorem 8. A possibilistic belief state S̃ = (S1, ..., Sn) is a
possibilistic grounded equilibrium of a normal poss-MCS M
iff S = (

⋃
Si) is a fuzzy equilibrium of ψ(M).

Proof Sketch: Let M = {C1, ..., Cn} with Ci =
(Ai,Ki, Bi) be a normal poss-MCS and S̃ = (S1, ..., Sn)
a possibilistic belief state. Then, the corresponding FMCS
is ψ(M) = {(LP , kb, ∅)} where kb =

⋃
(Ki ∪ ψ(Bi)) and

ψ(Bi) = {ψ(r) | r ∈ Bi}.
As M is a normal poss-MCS, kb is a normal PASP program

over the set
⋃
Ai of atoms and ψ(M) is a reducible FMCS.

By Definitions 28, the reduct of M w.r.t. S̃∗ = (S∗1 , ..., S
∗
n)

with S∗i = {a | (a, α) ∈ Si} is the definite poss-MCS M S̃∗ =

{CS̃∗1 , ..., CS̃
∗

n }. Furthermore, according to Definition 30, the
corresponding FMCS of M S̃∗ is ψ(M S̃∗) = {(LP , kb′, ∅)}.

By Definition 20, the S−reduct of ψ(M) is a definite FMCS
ψ(M)S = {(LP , kb

⋃
S∗i , ∅)}.

Firstly, due to the definition of possibilistic reduct (see
Example 2), Definition 28, and Remark 3, we can show that
ψ(M S̃∗) = ψ(M)S. That is, kb′ = kb

⋃
S∗i .

Then, according to Definition 29, Theorem 7, and Definition
16, we have that S̃ is a possibilistic grounded equilibrium of
M iff S = (

⋃
Si) is a fuzzy equilibrium of ψ(M)S. �

As shown above, both the definite poss-MCS and the normal
poss-MCS can be taken as a particular FMCS. According to
Theorems 7 and 8, the following corollary holds.

Corollary 3. A possibilistic belief state S̃ = (S1, ..., Sn) is a
possibilistic grounded equilibrium of a poss-MCS M iff S =
(
⋃
Si) is a fuzzy equilibrium of ψ(M).

The head and body of a possibilistic bridge rule of the
form (6) consist of proposition atoms, such that fuzzy bridge
rules of the form (4) can not be translated into possibilistic
bridge rules. Additionally, poss-MCSs are built on PASP
logic, whereas FMCSs are built on various logics captured
by abstract logic framework.

Hence that FMCSs can not be translated into poss-MCSs.

C. Relationship to p-MCSs
In this subsection, we show that p-MCSs can be embedded

into FMCSs, but not vice versa.
1) p-MCSs:

A p-MCS M = {C1, ..., Cn} [7] consists of probabilistic
contexts Ci based on propositional probabilistic logics [19].
The reasoning methods in all probabilistic contexts are the
same.

We first introduce some notations in an indexed probabilistic
context Ci. F (Ai) is the set of all propositional formulas over
a finite atomic propositions set Ai and (i, F )µF is named
as a p-labeled formula where F ∈ F (Ai) and µF ∈ [0, 1].
(i, F )µF stands for the probability of F in Ci is µF . It is
substantially a probability formula (F, µF ) in Ci.
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Definition 31. [7] A p-MCS M = {C1, ..., Cn} is a tuple of
probabilistic contexts Ci = (Ri, Bi). For each 1 ≤ i ≤ n, Ci
consists of the following components:
(1) Ri is a set of p-labeled formulas, building on a finite

atomic propositions set Ai, and
(2) Bi is a collection of probabilistic bridge rules of the form

(i, F )µF ← (c1 : F1)µF1
, ..., (cm : Fm)µFm

(8)

where for each 1 ≤ k ≤ m, 1 ≤ ck ≤ n, (i, F )µF and
(ck, Fk)µFk

are p-labeled formulas, and existing ck such
that i 6= ck.

Definition 32. [7] Given a p-MCS M = {C1, ..., Cn} where
for each 1 ≤ i ≤ n, Ci = (Ri, Bi) and Ri is built on a finite
set Ai of atomic propositions. w ⊆ Ai is a possible word for
Ci. Wi = 2Ai denotes the set of possible words for Ci.
(1) A contextual world probability density function for a

probabilistic context Ci is a mapping WPi : Wi −→ [0, 1]
such that Σw∈WiWPi(w) = 1.

(2) A contextual probabilistic interpretation for Ci is a func-
tion IWPi

: F (Ai) −→ [0, 1] defined as IWPi
(F ) =

Σw|=FWPi(w) for each F ∈ F (Ai).

Definition 33. [7] Let M = {C1, ..., Cn} be a p-MCS and for
each 1 ≤ i ≤ n, WPi a contextual world probability density
function on Wi for Ci. A p-labeled chain of M is a sequence
Ŝ = (S1, ..., Sn) where Si = {(w,WPi(w)) | w ∈Wi}.

Note that a p-labeled chain Ŝ is essentially a sequence
consisting of a world probability density function WPi for
each probabilistic context Ci.

Definition 34. [7] Let M = {C1, ..., Cn} with Ci = (Ri, Bi)
be a p-MCS and Ŝ = (S1, ..., Sn) with Si = {(w,WPi(w)) |
w ∈ Wi} a p-labeled chain. Ŝ satisfies M if for each Ci =
(Ri, Bi),
(1) whenever (i, φ)µφ ∈ Ri, Σw|=φWPi(w) = µφ, and
(2) whenever r ∈ Bi, Σw|=FWPi(w) = µF and

Σw|=Fj
WPcj (w) = µFj

for 1 ≤ j ≤ m.

Definition 35. [7] A p-labeled chain Ŝ = (S1, ..., Sn) of a p-
MCS M is said to be a p-labeled solution chain if Ŝ satisfies
M .

2) FMCSs Generalize p-MCSs:
From Example 2, we know that propositional probabilis-
tic logic can be translated into the abstract logic L′P =
(KB′P ,U ′P ,L′P ,FBS

′
P ,ACC

′
P ). Any probabilistic bridge rule

can be written as a fuzzy bridge rule.

Remark 4. A probabilistic bridge rule r of the form (8) can
be translated into the following fuzzy bridge rule π(r)

(F, µF )← 〈c1 : (F1, µF1)〉, ..., 〈cm : (Fm, µFm)〉. (9)

Definition 36. Given a p-MCS M = {C1, ..., Cn} where for
1 ≤ i ≤ n, Ci = (Ri, Bi) and Ri is built on a finite set Ai
of atomic propositions. The corresponding FMCS π(M) =
{π(C1), ..., π(Cn)} comprises the following components, for
each 1 ≤ i ≤ n,
(1) π(Ci) = (L′Pi

, kbi, bri),

(2) L′Pi
is the abstract logic corresponding propositional

probabilistic logic over Ai, and
(3) kbi={(F, µF ) | (i, F )µF ∈ Ri} and bri={π(r) | r ∈ Bi}.

The following theorem indicates that the p-labeled solution
chains of any p-MCS M correspond to the fuzzy equilibria of
the corresponding FMCS π(M).

Theorem 9. Given a p-MCS M = {C1, ..., Cn} where for
1 ≤ i ≤ n, Ci = (Ri, Bi) and Ri is built on a finite set Ai of
atomic propositions. If a p-labeled chain Ŝ = (S1, ..., Sn) with
Si = {(w,WPi(w)) | w ∈ Wi} is a p-labeled solution chain
of M then S = (S1, ...,Sn) with Si = {(ϕ, µϕ) | ϕ ∈ F (Ai)
and µϕ = Σw|=ϕWPi(w)} is a fuzzy equilibrium of π(M).

Proof Sketch: Let Ŝ = (S1, ..., Sn) with Si =
{(w,WPi(w)) |w∈Wi} be a p-labeled solution chain of M .

By Definition 36, we have that
π(M) = {π(C1), ..., π(Cn)} with π(Ci) = (L′Pi

, kbi, bri).
By Definitions 15, 34 and 35, we can obtain that for each

probabilistic bridge rule r, the corresponding fuzzy bridge rule
π(r) in π(M) is applicable in S = (S1, ...,Sn).

Therefore, for each kbi in π(M),
kbi ∪H(bri,S) = kbi ∪ {h(π(r)) | π(r) ∈ bri}.

By Definition 32 and the definition of probability distribu-
tion (see Example 2), we can obtain that for each π(Ci) in
π(M), WPi satisfies the following equations with constraints

(1) Σw|=φWPi(w) = µφ for each (φ, µφ) ∈ kbi,
(2) Σw|=FWPi(w) = µF for each (F, µF ) ∈ {h(π(r)) |

π(r) ∈ bri},
(3) Σw∈Wi

WPi(w) = 1 and WPi(w) ∈ [0, 1].
Hence, by the definition of ACC′Pi

(see Example 2), for
each i, Si ∈ ACC′Pi

(kbi ∪H(bri,S)), which implies that S =
(S1, ...,Sn) is a fuzzy equilibrium of π(M). �

Probabilistic bridge rules of the form (8) contain no default
negation, such that fuzzy bridge rules of the form (4) can
not be translated into probabilistic bridge rules. Besides, p-
MCSs are based on propositional probabilistic logic, whereas
FMCSs are based on various logics covered by abstract logic
framework.

As a result, FMCSs can not be embedded into p-MCSs.

VI. CONCLUSION REMARKS AND FUTURE WORKS

In the present work, a generic framework of multi-context
systems for dealing with multiple knowledge under imprecise
environments was proposed. Firstly, we investigated the formal
notions of abstract logics, monotonic abstract logics, and
reducible abstract logics in our setting. A monotonic abstract
logic is a special reducible abstract logic. Secondly, we
formalized the fuzzy multi-context system based on abstract
logics and established its syntactic and semantic framework.
In more specific details, the (grounded) fuzzy equilibrium and
the well-founded fuzzy equilibrium were introduced to capture
the semantics of fuzzy multi-context systems. Furthermore,
the fuzzy multi-context system along with its relevant theories
are illustrated with different examples, especially using a
simple medical diagnosis case scenario. Finally, we showed
the following facts: (i) FMCSs are a generalization of MCSs;
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(ii) p-MCSs can be embedded into FMCSs; and (iii) poss-
MCSs can be translated into FMCSs.

FMCSs hardly suffer from the limitation of bi-valued logic,
many-valued logic, monotonic logic, and non-monotonic logic.
It is worth pointing out that we can choose distinct logics to
handle the representation and reasoning of different types of
knowledge. In other word, FMCSs contribute to the integration
of different types of knowledge.

Although FMCSs have been presented here, it is just the
beginning. Several interesting issues are considered as future
works. On the one hand, to handle the inconsistency in FMCSs
arising from information exchange, we intend to adapt the
idea of inconsistency management of MCSs given in [15]
to FMCSs. On the other hand, we will study algorithms
and complexity related to fuzzy multi-context systems. The
complexity related to FMCSs is challenging in general. As
discussed in [2], however, we can similarly show that deciding
if an FMCS whose abstract logics have poly-size kernels has
a fuzzy equilibrium is one level above its underlying inference
of logics. Formally, an abstract logic L has poly-size kernels
if there exists a function g which assigns a set g(kb, S) ⊆ S
of size polynomial in the size of kb—the kernel of S—to each
kb ∈ KB and S ∈ ACC(kb), such that there exists a bijection
f between the fuzzy belief sets in ACC(kb) and their kernels,
that is, S 
 f(g(kb, S)) [2]. Furthermore, an abstract logic L
has kernel reasoning in ∆p

i if given an arbitrary knowledge
base kb, an element s, and a set G of elements, deciding
whether (1) G = g(kb, S) for some S ∈ ACC(kb) and (2)
s ∈ S is in ∆p

i [2]. Intuitively, given an FMCS M where each
abstract logic Li has poly-size kernels and kernel reasoning in
∆p
i and each knowledge base kbi and set bri of fuzzy bridge

rules are finite, deciding whether M has a fuzzy equilibrium
is in Σpi+1, which is the same as the conclusion in MCSs [2].
Finally, we will consider real-world applications where the
fuzzy multi-context systems framework could be applied.

ACKNOWLEDGMENT

The authors would like to thank the referees for their very
insightful suggestions and comments, and thank the NSFC
under Grant 61976065 and Grant U1836205 for support.

REFERENCES

[1] G. Brewka, T. Eiter, M. Fink, and A. Weinzierl, “Managed multi-context
systems,” in Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, Jul. 2011, pp. 786–
791.

[2] G. Brewka and T. Eiter, “Equilibria in heterogeneous nonmonotonic
multi-context systems,” in Proceedings of the Twenty-Second Conference
on Artificial Intelligence, Vancouver, British Columbia, Canada, Jul.
2007, pp. 385–390.

[3] C. Ghidini and F. Giunchiglia, “Local models semantics, or contextual
reasoning = locality + compatibility,” Artificial Intelligence, vol. 127,
no. 2, pp. 221–259, Apr. 2001.

[4] F. Giunchiglia and L. Serafini, “Multilanguage hierarchical logics or:
How we can do without modal logics,” Artificial Intelligence, vol. 65,
no. 1, pp. 29–70, Jan. 1994.

[5] G. Brewka, F. Roelofsen, and L. Serafini, “Contextual default reasoning,”
in Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, Jan. 2007, pp. 268–273.

[6] F. Roelofsen and L. Serafini, “Minimal and absent information in con-
texts,” in Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, Jul. 2005, pp. 558–
563.

[7] M. Sotomayor, K. Wang, Y. Shen, and J. Thornton, “Probabilistic multi-
context systems,” in The Semantic Web – Joint International Semantic
Technology Conference, Hangzhou, China, Dec. 2011, pp. 366–375.

[8] Y. Jin, K. Wang, and L. Wen, “Possibilistic reasoning in multi-context
systems: Preliminary report,” in Trends in Artificial Intelligence – 12th
Pacific Rim International Conference on Artificial Intelligence, Kuching,
Malaysia, Sep. 2012, pp. 180–193.

[9] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stucken-
schmidt, “Contextualizing ontologies,” Journal of Web Semantics, vol. 1,
no. 4, pp. 325–343, Oct. 2004.

[10] J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings, “Engineering
executable agents using multi-context systems,” Journal of Logic and
Computation, vol. 12, no. 3, pp. 413–442, Jun. 2002.

[11] A. Bikakis and G. Antoniou, “Defeasible contextual reasoning with
arguments in ambient intelligence,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 11, pp. 1492–1506, Feb. 2010.

[12] T. Le, T. C. Son, and E. Pontelli, “Multi-context system for optimization
problems,” in Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI-19, Hawaii, USA, Jan. 2019, pp. 2929–2937.

[13] G. Brewka, S. Ellmauthalera, R. Gonçalvesb, M. Knorrb, J. Leite, and
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