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ABSTRACT
Graph Convolutional Network (GCN) is a new method for extract-
ing, learning, and inferencing graph data that builds an embedded
representation of the target node by aggregating information from
neighbouring nodes. GCN is decisive for node classification and link
prediction tasks in recent research. Although the existing GCN per-
forms well, we argue that the current design ignores the potential
features of the node. In addition, the presence of features with low
correlation to nodes can likewise limit the learning ability of the
model. Due to the above two problems, we propose Feature Rec-
ommendation Strategy (FRS) for Graph Convolutional Network in
this paper. The core of FRS is to employ a principled approach to
capture both node-to-node and node-to-feature relationships for
encoding, then recommending the maximum possible features of
nodes and replacing low-correlation features, and finally using GCN
for learning of features. We perform a node clustering task on three
citation network datasets and experimentally demonstrate that FRS
can improve learning on challenging tasks relative to state-of-the-art
(SOTA) baselines.

ARTICLE HISTORY
Received 18 March 2022
Accepted 17 May 2022

KEYWORDS
Feature recommendation
strategy; graph convolutional
network; GCN

1. Introduction

GCN is a powerful graph tool that can be applied to arbitrary structured graph data. It has
various application scenarios, such as computer vision (X. Zhao et al., 2021), knowledge
graphs (Gao et al., 2021), traffic prediction (N. Hu et al., 2021; C. Zhao et al., 2022) and gait
recognition (Wang et al., 2022). Wu et al. (2020) proposed to combine GCN with Markov
Random Fields (MRF) to design a spammer detection model that considers the impact
of multiple email senders on social network graphs. Shang et al. (2019) fully benefited
the node structure, node attributes, and edge relationship types in the knowledge graph
by uniting GCN and ConvE to accomplish accurate node embedding. Zheng et al. (2020)
designed a Graph Multi-Attention Network (GMAN) to forecast traffic conditions at various
points in the road network graph for the next few time steps. In addition, GCN can also be
adopted in computer vision. For example, Huang et al. (2020) explored applying GCN to
learn high-level relationships between body parts for skeleton-based action recognition. J.
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Figure 1. Illustration of a classical GCN model.

Chen et al. (2020) introducedmulti-relational GCN to recognise images of a given dish with
zero training samples to accomplish the automatic diet evaluation task. The most usual
approach in current research is to take full advantage of label information, node charac-
teristics, and network topology. For example, Qin et al. (2021) used the given label and the
estimated label to learn the task. Feng et al. (2021) focussed on cross-features and designed
an operator called Cross-feature Graph Convolution, which can model cross-features of
arbitrary order. L. Yang et al. (2019) investigated the correlation between node features
and network topology and proposed a topology Optimised Graph Convolutional Network
(TO-GCN).

In general, GCN ismapping theoriginal features of nodes into the low-dimensional space
bymultiplegraphconvolution layers. As illustrated in Figure1, a classicalGCNmodel usually
has two parts: node aggregation and feature transformation. The former enhances the rep-
resentation of the target node by fusing the information of the surrounding neighbouring
nodes. The latter converts the input features into a better description of the node’s feature
representation.

Current research focuses on developing various aggregationmethods for different con-
nection characteristics. For example, Kipf andWelling (2016) proposed local node similarity,
and Donnat et al. (2018) considered structural similarity. The transformation of node fea-
tures is vital for the research, such as feature cross-fusion (Feng et al., 2021) and random
cover features (Zhu et al., 2020). In addition, there are many feature-related works. For
example, Liu et al. (2020) proposed Deep Adaptive Graph Neural Network (DAGNN) by
decoupling feature transformation and information propagation entanglement. M. Chen
et al. (2020) developed an extended model of vanilla GCN that keeps input information
with constantmapping. Liu et al. (2021) captured remote dependencies fromnode features
with a non-local aggregation. X. Yang et al. (2021) proposed a self-supervised seman-
tic aligned convolutional network (SelfSAGCN) to investigate the semantic information
in features. We argue that the existing GCN approaches ignore the potential features of
nodes. Although the existing GCN has an extraordinary ability to capture features, we
believe that encoding potential features by a feature recommendation strategy can sig-
nificantly improve the learning capability of the model. For example, we focus on the
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Figure 2. Illustration of GCN+FRS. Our proposed FRS enriches feature information by maximum pos-
sible feature recommendation and enhances the representation capability after conversion. The circles
containing ∗ indicate the recommended new features.

features of users’ electronic purchase records: UserA = {Camera, Phone,Computer,Watch},
UserB = {Phone,Computer,Gamemachine,Watch,DVD}. After the feature recommenda-
tion, user A’s most likely additional feature is the Game machine, while user B
is not likely to have other features besides his own. The feature of the last two
users describes as UserA = {Camera, Phone,Computer,Watch,Game machine}, UserB =
{Phone,Computer,Game machine,Watch,DVD}. As shown in Figure 2, a feature recommen-
dationmodule can capture user-item interactions and opinions to obtain potential features
of users and make more accurate product recommendations (Fan et al., 2019).

In this paper, we propose the FRS, which is inspired by the social recommender system
(GraphRec) (Fan et al., 2019) and was initially proposed to solve the problem of encoding
heterogeneous graphs (user social graph, user-item graph) in the social recommendation.
We regard nodes and features as users and items and use a feature recommendation
strategy to enhance the learning ability of the GCN model. Two methods are explicitly
mentioned in the feature recommendation strategy. The first method is Maximum Pos-
sible Feature Recommendation (MPFR) means obtaining the maximum possible features
of nodes with the feature recommendation module. The second is Low-Weight1 Fea-
ture Replacement (LWFR), where the low-weight features are replaced with the maximum
possible features by sorting the personalised weights of the features.

We implemented GCN+FRS performance on three citation network datasets for the
node clustering task, and the experimental results demonstrate that both MPFR and LWFR
methods utilised by FRS can improve the learning ability of GCN.

In summary, our contribution is twofold:

• We propose a feature recommendation strategy, including maximum possible feature
recommendation and low-weight feature replacement methods, that can improve the
performance of the GCNmodel.

• Experimentation with node classification as a learning task on three publicly available
datasets demonstrates that GCN+FRS significantly outperforms SOTAmethods.

Organisation of our paper The rest of our paper is organised according to the following
structure. Section 2 outlines the background of graph convolutional networks and fea-
ture recommendation, respectively. Section 3 provides the necessary a priori knowledge.
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Section 4 summarises the overall model framework and describes each module’s specifics.
Section 5 reports the experimental results and experimental analysis. Section 6 concludes
the paper.

2. Related work

2.1. Graph convolutional network

Graph convolutional network has become an essential tool in graphdata analysis tasks, and
theirmainstreammethods canbedivided into two kinds of spatial convolution and spectral
convolution. The spatial convolution-basedapproachdefines the convolutionoperationon
the spatial relationship of each node, learning and updating the representation from the
neighbouring nodes. For example, Gilmer et al. (2017) proposed Message Passing Neural
Network (MPNN) viewsgraphconvolutionas amessage-passingprocesswhere information
can be passed directly from one node to another along an edge. Hamilton et al. (2017) sug-
gested an inductive GraphSAGEmethod for transductive network representation learning.
The method utilises both feature information and structure information of nodes to map
graphembedding and save it, which ismore scalable. AtwoodandTowsley (2016) designed
a propagation-convolutional neural network that adopts a matrix representation of H-hop
for each node (edge or graph). Each hop represents the neighbouring information of that
neighbouring range. The network can obtain local information better. Monti et al. (2017)
developed a hybrid model (MoNet) that generalises the traditional CNN to non-Euclidean
spaces (graphs and pops) and can learn local, smooth, combinatorial task-specific features.
In addition, Veličković et al. (2017) employed an attention mechanism for the weighted
summation of features of neighbouring nodes, which is used to address two critical draw-
backs. The first is that the features of neighbouring nodes are closely linked to the graph’s
structure, limiting the model’s generalisation ability. The second is that the model assigns
the same weights to various neighbouring nodes in the same order.

Unlike the spatial convolution-based GCN, the spectrum-based GCN method imple-
ments the convolution operation on topological graphs through graph theory. In the first
place, Bruna et al. (2013) developed a spectral convolutional neural network (Spectral
CNN), but the model suffers from computational complexity, nonlocal connectivity, and
too many convolutional kernel parameters to scale to large graphs. To address the above
challenges, Defferrard et al. (2016) designedCheNet to reduce the computational complex-
ity by constructing the filter as a diagonalised eigenvector approximated with Chebyshev
polynomials, but the computational effort of the eigenvalue decomposition of the Laplace
operator is still enormous. Thenbasedon thepreviouswork,Hammondet al. (2011) showed
that the operator could be fitted by a Kth truncated expansion of the Chebyshev polyno-
mial. Finally, Kipf andWelling (2016) proposed the first-order approximation of ChebNet, a
simple and effective layer propagation method obtained by simplifying the computation
through the first-order approximation method. The method has the advantages of weight
sharing, local connectivity, and perceptual field proportional to the number of convolu-
tional layers. In addition, some approximations to Chebyshev polynomialmethods are now
proposed for performing local polynomial filtering. For example, Levie et al. (2018) sug-
gested employing Cayley polynomial approximation filters, and Liao et al. (2019) proposed
multi-scale feature encoding to break the computational bottleneck of existing models.
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2.2. Feature recommendation

The user-item interaction is a specific graph data in recommendation system tasks, and
the utilisation of graph convolutional networks to solve recommendation problems is
already a relatively common approach. We simplify the user-item interaction to two rela-
tionships, i.e. whether or not the item is owned. For recommender systems, we can regard
the recommendation task as which new features the nodes are most likely to have, i.e.
the recommendation system is transformed into a feature recommendation system. Berg
et al. (2017) proposed a graph auto-coding framework that generates potential represen-
tations of users and items by passing distinguishable messages on the graph structure
to accomplish the link prediction task. Bian et al. (2020) exploited the rumour propaga-
tion directed graph with top-down rumour propagation to learn how rumours spread
and designed a diffusion propagation graph GCN with opposite directions to capture the
rumour diffusion structure and learn to feature representation for rumour detection. Wu
et al. (2020) suggested a novel social spammer detection model that explicitly considers
three types of neighbour structures to determine the most likely features of spam. Fur-
thermore, the feature interactions proposed by Feng et al. (2021) can also be regarded as
employing existing features to combine into new features.

Notably, the heterogeneity of relationships is also the focus of the research (Chang
et al., 2021). X.Wang et al. (2021) proposed a cross-view comparisonmechanism for hetero-
geneous graph neural networks (HGNN). Zhang et al. (2019) integrated the heterogeneous
structure information and the heterogeneous content information of each node to jointly
learn the node representation in the heterogeneous graph. X. Wang et al. (2019) suggested
anHGNNonahierarchical attentionmechanismandgenerates nodeembeddingsby ahier-
archical approach. There is also some other work on heterogeneous relationships (J. Hu
et al., 2021; Lian & Tang, 2022). Despite the convincing success of these works, little atten-
tion has been paid to the application of feature recommendations to GCNs. In this paper,
we attempt to utilise a feature recommendation strategy for generating new features of
nodes, which will enhance the representation capability of GCNmodels.

3. Preliminary knowledge

We start by introducing some of the symbols utilised in the following sections. We denote
vectors andmatrices with bold lowercase letters (e.g. x) and bold uppercase letters (e.g. X).
Note that all vectors are in column formwithout particular specification, and X ij represents
the elements of the ith rowand jth columnofmatrixX. Finally, we use� to denote element-
by-elementmultiplication. Someof the terms and symbols commonlyused in this paper are
given in Table 1.

3.1. Graph convolutional network

A graph G usually consists of an adjacency matrix (A ∈ R
n×n) and a feature matrix (X =

[x1, x2, . . . , xN]T ∈ R
n×d0 ), where n is the number of nodes and A indicates a connection

between two nodes. If Aij = 1means an edge exists between node i and node j, otherwise,
Aij = 0. d0 denotes the dimensional size of the input features. The basic process of GCN is
tomap the input graph into the low-latitude space through the hidden layer, then learn the
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Table 1. Symbols used in this paper.

Symbols Descriptions

G a graph.
X ∈ R

n×d0 , R ∈ R
n×d0 features matrix of a graph with N nodes.

A ∈ R
n×n adjacency matrix of a graph with N nodes.

neighbour(x) neighbouring nodes of a node x.
N(i) the set of 1th-order neighbouring nodes of a node.
AGG node aggregation function.
FT feature transformation function.
W weight matrix.
b bias matrix.
d0, d1, d2, d3 dimension of the node representation.
U,V set of nodes and features.
O set of known association relations.
T set of unknown association relations.
C(i) set of features of a node.
B(j) set of nodes containing a particular feature.
pi ∈ R

d0 embedding vector of node ui .
qj ∈ R

d0 embedding vector of feature vj .
σ(·) nonlinear activation function.

embedding representation of the nodes, and finally connect the output layer that performs
the learning task (e.g. node classification). To simplify the notation and representation, we
describe the content in terms of a single-layer GCN. As illustrated in Figure 1, the GCN per-
forms node aggregation operation on the input and then achieves the node representation
with feature transformation. The entire procedure can be described as:

xagg = AGG ({xn | n ∈ neighbour(x)})
hout = FT

(
xagg

) (1)

where AGG denotes the aggregation function on neighbouring nodes, xagg ∈ R
d1 indi-

cates thepotential features of the node as a result of theAGG operation,FT represents the
feature transformation function, and hout ∈ R

d2 is the final obtained rich representation of
the target node.

3.1.1. Node aggregation
Node aggregation is to update the information of the target node by aggregating that of
the neighbouring nodes. The basic principle is that neighbouring node feature information
reflects that of the target node. For example, in a citationnetwork, a target paperwith cross-
citation relationships with multiple papers in a field may be in the same field. Notice that
neighbour(x) can contain self-connections (form x to x), and sampling can fetch all neigh-
bouring nodes (Kipf & Welling, 2016) or a fixed number of random neighbouring nodes
(Hamilton et al., 2017). Furthermore, differentAGG methods capture different information
about neighbouring nodes (Duan et al., 2021; Hamilton et al., 2017; Kipf &Welling, 2016; Xu
et al., 2018), such as obtaining common attributes of nodes filtered by a fixed number of
neighbouring average pools, and maximum pools obtain the most salient features among
nodes.
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3.1.2. Feature transformation
Feature transformation is an operation to obtain a potentially rich representation by pro-
jecting the target node features into the high-latitude space. Existing GCNs usually adopt
nonlinear activation mappings:

hout = FT (x) = σ(Wx + b) (2)

where W ∈ R
d2×d0 represents the weight matrix, b ∈ R

d2 denotes the bias vector, and
σ indicates the activation function.

3.2. Feature recommendation

We employ the adjacency matrix and the feature matrix as inputs to the feature rec-
ommendation module to predict the maximum possible features of the nodes. Let U =
{u1, u2, . . . , un}T and V = {v1, v2, . . . , vm}T represent the set of nodes and features, respec-
tively, where m and n denote the number of features and nodes. Assume that R ∈ R

n×m

denotes the association matrix of nodes and features (i.e. the feature matrix X). Here we
define the association relationship with rij. Specifically, if vj is a feature of ui, then rij = 1,
otherwise, rij = 0. Suppose O = {〈ui, vj〉 | rij = 0 or rij = 1} is the set of known association
relations and T = {〈ui, vj〉 | rij /∈ O} denotes the set of unknown association relations. Let
N(i) be the set of first-order neighbouring nodes of ui, C(i) is the set of features of ui, and
B(j) represents the set of nodes containing feature vj. Furthermore, the adjacency matrix is
expressed with A ∈ R

n×n. Aij = 1 if there is a relationship between two nodes ui and uj,
otherwise Aij = 0. Knowing the feature matrix R and the adjacency matrix A, we aim to
predict the potential features of each node and obtain the maximum possible features of
the nodes. Also, we represent node ui with embedding vector pi ∈ R

d0 and feature vj with
embedding vector qj ∈ R

d0 .

4. Feature recommendation strategy for graph convolutional network

This section begins with a general introduction to the FRS framework, followed by detailed
descriptions of the feature recommendation module and the low-weight feature replace-
ment module, respectively, and finally explains how the GCN module performs feature
learning.

4.1. Overview of our proposed framework

The frameworkof ourproposedmodel is illustrated in Figure 3,which consists of threemod-
ules: feature recommendation module, low-weight feature replacement module, and GCN
module. The first module is feature recommendation, i.e. recommending the potential fea-
tures of each node. Since the recommendationmodule has two different inputs (adjacency
matrix and featurematrix), wewill learn the representationof nodes fromdifferent perspec-
tives. The second module primarily completes the low-weight feature replacement. After
the association weights between nodes and features are obtained from the recommenda-
tionmodule, we use themaximumpossible recommended features to replace the features
of low-weight connections. Finally, there is the GCN module, where we input the original
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Figure 3. The overall framework of our proposed model.

adjacency and the processed feature matrices, learn the representation of the nodes, and
complete the final classification task.

4.2. Feature recommendationmodule

Theoverall structure of the feature recommendationmodule is illustrated in Figure 4,which
consists of three components: nodemodelling, featuremodelling, and relationship predic-
tion. The first part is node modelling, i.e. learning the latent factors of the nodes. Since the
input contains two different matrices (adjacency matrix and feature matrix), we will learn
the representation of the nodes from two perspectives. Therefore, two aggregation opera-
tions are introduced tohandle the correspondingmatrix inputs. One is feature aggregation,
which understands nodes by feature matrix. That is, whether there is an association rela-
tionship between nodes and features. The other is neighbour aggregation, the relationship
between nodes and nodes. It can help us model a node from the perspective of its neigh-
bour relationship. The second component is feature modelling, which is learning about
the potential factors of features. Having already understood the nodes from the feature
perspective, we modelled the features from the node perspective (which nodes are a fea-
ture ownedby) to thoroughly understand the connection betweennodes and features. The
final component integrates the previous two components to learn the model parameters
through feature prediction. We will describe each component in detail below.

4.2.1. Nodemodelling
The purpose of nodemodelling is to learn the potential factors of nodes, and the challenge
is to figure out how to combine the adjacency matrix and the feature matrix to repre-
sent node ui as hi ∈ R

d3 . To better learn the node representation, we designed two types
of aggregation operations: feature aggregation and neighbour aggregation. As shown in
the left part of Figure 4, feature aggregation learns the potential representation of nodes
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Figure 4. The overall structure of the feature recommendation module. Node modelling, feature mod-
elling, and feature prediction are the three main components.

hFi ∈ R
d4 through the featurematrix, while neighbour aggregation is learning the potential

representation of nodes hAi ∈ R
d4 through the adjacency matrix. Then the potential repre-

sentation hi is obtained by combining the two representations. The following section will
detail feature aggregation, neighbour aggregation, and how to learn the representation of
nodes from the adjacency matrix and feature matrix.

4.2.1.1. A. Feature aggregation. We provide a principled approach for learning latent
user factors hFi in the node-feature-space by capturing the interaction of nodes and fea-
tures in the feature matrix. The purpose of feature aggregation is to learn the latent user
factors hFi in the node-feature-space by the features of the user ui. The following function
represents this aggregation:

hFi = σ (W · AGGfeature ({xia,∀a ∈ C(i)}) + b) (3)

where C(i) indicates the feature set of node ui, xia denotes the representation vector of the
association relationship between node ui and feature va, and AGGfeature is the aggrega-
tion operation. σ(·) represents the nonlinear activation function.W denotes the trainable
weight matrix, and b indicates the trainable bias matrix. In the following, we will describe
how to define the association relation xia and the aggregation functionAGGfeature.

The association relationship between nodes and features is indicated as r. The prefer-
ence of nodes for features can be captured through the association relationship, which
helps model the potential factors in the node-feature-space. To model the association
relationship, we introduce an embedding vector er ∈ R

d0 for the two association relation-
ships (associated and unassociated). We first combine the feature representation qa and
association relation representation er for the interactions between nodes ui, feature va,
and association relation r, followed by a multilayer perceptron (MLP) to obtain the fea-
ture interaction representation xia. The mathematical representation can be described as
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follows:

xia = gv
([
qa ⊕ er

])
(4)

where ⊕ represents the union of two vectors and gv indicates the fusion function.
AGGfeature was initially considered with mean aggregation, i.e. taking the mean of all

{xia,∀ a ∈ C(i)} vector elements. This aggregator is similar to the first-order linear approxi-
mation of a local convolution (Kipf & Welling, 2016) and can be expressed as:

hFi = σ

⎛
⎝W ·

⎧⎨
⎩

∑
a∈C(i)

αixia

⎫⎬
⎭ + b

⎞
⎠ (5)

where the size of αi is equal to 1
|C(i)| . In this aggregator, all feature interactions contribute

equally to thenodeui. However, this approach is not optimal for nodeunderstanding, sowe
need to assign differentweights to each interaction to represent the different contributions
to the potential factors of the node.

Differentweights need to be assigned for different interactions.We generate the feature
attention αia with a multilayered neural network, called attention network, i.e. assigning a
personalised weight to each (va, ui). Equation (5) can be rewritten as follows:

hFi = σ

⎛
⎝W ·

⎧⎨
⎩

∑
a∈C(i)

αiaxia

⎫⎬
⎭ + b

⎞
⎠ (6)

For attention networks, the inputs are the interacting association relations xia and the
embedding representations of the nodes pi. Attention network can be defined formally as:

α∗
ia = wT

2 · σ
(
W1 · [

xia ⊕ pi
] + b1

) + b2 (7)

Finally, the attention weights are normalised by the softmax function and the potential
factor contribution of the association relationship to node ui in the node-feature-space is
obtained as:

αia = exp
(
α∗
ia

)
∑

a∈C(i) exp
(
α∗
ia

) (8)

4.2.1.2. B. Neighbour aggregation. The feature preferences are similar to that of its
neighbouring nodes, so we will combine the information of neighbouring nodes to obtain
rich potential factors for the user. Therefore, we introduce an attention mechanism to
aggregate the information of neighbouring nodes. To understand the nodes from their
interactions, we will employ the adjacency matrix to aggregate the potential factors of
neighbouring nodes. In the node-adjacency-space, the potential factor hAi of node ui is
formed by aggregating the neighbouring nodes N(i). The specific function is described as
follows:

hAi = σ
(
W · AGGneighbours

({
hFo,∀ o ∈ N(i)

})
+ b

)
(9)

whereAGGneighbours represents the aggregation operation of neighbouring nodes.
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The AGGneighbours function is the first to adopt the mean aggregation, which performs
the mean operation on the elements of the vector in {hFo,∀o ∈ N(i)}. The function can be
expressed as:

hAi = σ

⎛
⎝W ·

⎧⎨
⎩

∑
o∈N(i)

βihFo

⎫⎬
⎭ + b

⎞
⎠ (10)

where βi is fixed as 1
|N(i)| . Themean aggregator assumes all neighbouring nodes contribute

to the target node. However, this method is likewise not optimal, so we also apply the
exact attention mechanism to generate personalised weights indicating the importance
of different neighbouring nodes to ui. The related function can be expressed as follows:

hAi = σ

⎛
⎝W ·

⎧⎨
⎩

∑
o∈N(i)

βiohFo

⎫⎬
⎭ + b

⎞
⎠

β∗
io = wT

2 · σ
(
W1 ·

[
hFo ⊕ pi

]
+ b1

)
+ b2

βio = exp
(
β∗
io

)
∑

o∈N(i) exp
(
β∗
io

)
(11)

where β∗
io represents the personalisation weight of neighbouring nodes.

4.2.1.3. C. Learning node latent factor. To learn the potential representations of nodes
more effectively, we need to consider both the potential representations of users in the
node-feature-space and the potential representations of users in the node-neighbour-
space. We utilise MLP to combine the two potential representations as to the potential
representation of the final node, where the potential representation of the node feature
space is hFi and the potential representation of the node neighbour space is hAi . Therefore,
the potential representation hi of the node can be defined as:

c1 =
[
hFi ⊕ hAi

]
c2 = σ (W2 · c1 + b2)

· · ·
hi = σ

(
W l · cl−1 + bl

)
(12)

where l indicates the serial number of the hidden layer.

4.2.2. Featuremodelling
As illustrated on the right side of Figure 4, feature modelling is utilised to achieve a poten-
tial representation Zj of feature vj in the feature-node-space by aggregating the nodes. We
learn the potential representations of features by capturing the interactions of nodes with
features in the feature matrix. For each feature vj, we need to capture information from the
set of nodes interacting with vj, denoted as Bj.

There are different association relations with different nodes, even for the same feature.
We useMLP to fuse the combination of the node representationpt and the association rela-
tion representation er . The fusion function is denoted as gu. The function can be expressed
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as:

f jt = gu
([
pt ⊕ er

])
(13)

where f jt denotes the interaction relationship. Then, we attempt to aggregate the inter-
action information of nodes in Bj for the feature vj. The aggregation function of nodes is
denoted asAGGnodes for aggregating the interactions of nodes {f jt ,∀ t ∈ B(j)}, and finally,
the potential representation of features zj can be defined as:

zj = σ
(
W · AGGnodes

({
f jt ,∀ t ∈ B(j)

}) + b
)

(14)

Similarly, we apply the attentionmethod and utilise a multilayer neural network to acquire
the personalisedweights of each node for the features.With f jt andqj as inputs, the process
can be expressed as:

zj = σ

⎛
⎝W ·

⎧⎨
⎩

∑
t∈B(j)

μjtf jt

⎫⎬
⎭ + b

⎞
⎠

μ∗
jt = wT

2 · σ
(
W1 · [

f jt ⊕ qj
] + b1

) + b2

μjt =
exp

(
μ∗
jt

)
∑

t∈B(j)
exp

(
μ∗
jt

)
(15)

where μjt denotes the personalised impact of different nodes on the potential representa-
tion of the learned features.

4.2.3. Feature recommendationmodule training
After acquiring potential representations of nodes and features, we will use feature predic-
tion to learn the model’s parameters. We first connect the two potential representations
([hi ⊕ zj]) and then input them to the MLP for the feature prediction task. The specific
process can be expressed as follows:

g1 = [
hi ⊕ zj

]
g2 = σ

(
W2 · g1 + b2

)
· · ·

r′ij = wT · gl−1

(16)

where l denotes the serial number of the hidden layer, r′ij represents the association
between node ui and feature vj. Finally, the new association relations form a new feature
matrix, each row representing a new feature of the node.

4.2.4. Feature prediction
To determine the parameters of the feature recommendation module, we use Euclidean
distance as the loss function for training. The loss function can be described as follows:

Loss = 1
2|O|

∑
i,j∈O

(
r′ij − rij

)2
(17)
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where |O| represents the number of association relations between nodes and features, and
rij is the true association relation between node ui and feature vj.

To optimise the objective function of the feature recommendation module, we employ
Adam (Kingma & Ba, 2014) as an optimiser in practice. In the model training phase, we
randomly initialise three embedding representations, including the embedding represen-
tation qj of nodes, the embedding representation pi of features, and the embedding
representation er of association relations. It is worth noting that the size of er depends
on the complexity of the relationship between features and nodes. For example, whether
nodes and features are associatedwith eachother, er uses twodifferent embedding vectors
to represent {0, 1}. In addition, to prevent the problem of overfitting, we adopt the dropout
strategy (Srivastava et al., 2014).

4.3. Low-weight feature replacementmodule

To obtain a richer feature representation, wemodel the nodes and features separately with
two aggregation operations in the feature recommendationmodule and finally achieve the
maximumpossible recommended features that exceed the threshold value by relationship
prediction. Meanwhile, personalisedweights for the influence of each node on the features
can also be available during the training process.

With these considerations, we try to use the maximum possible recommended features
to replace the low-weight features of the nodes. We divide the process into two steps: the
first is to add the maximum possible recommendation features for each node; the second
is to remove the same number of low-weight features.

4.4. GCNmodule and classification learning tasks

We adopt the model proposed by Kipf and Welling (2016) in the GCN module, assuming
that A ∈ R

n×n denotes the adjacency matrix and X ∈ R
n×d0 represents the feature matrix,

then its propagation rule can be described as:

H(l+1) = σ

(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, l = 0, 1 . . .

H(0) = X
(18)

where σ(·) denotes a nonlinear activation function. H(l) ∈ R
n×dl represents the (l − 1)th

hidden layer’s output and the lth hidden layer’s input. W(l) ∈ R
dl×dl+1 denotes the train-

able parametermatrix. Thematrix D̃− 1
2 ÃD̃− 1

2 denotes the normalisation of the convolution
matrix In + D− 1

2AD− 1
2 , where In denotes the unit matrix, andD denotes the degreematrix.

According to Kipf and Welling (2016) the best implementation is obtained by stacking
two layers of GCN. As shown in Equation (19).

H(1) = ReLU
(
D̃− 1

2 ÃD̃− 1
2XW(0)

)

H(2) = softmax
(
D̃− 1

2 ÃD̃− 1
2H(1)W(1)

) (19)
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whereW(0) ∈ R
d0×d1 andW(1) ∈ R

d1×d2 are trainable weight matrices of the correspond-
ing hidden layers. ReLU(·) and softmax(·) denote the two activation functions. Further-
more, let the actual label set be Y ∈ R

n×f , defined as Y ij = 1 if the label of node i is j,
otherwise Y ij = 0. The cross-entropy loss defines the classification error of the training:

Lclass = −1
n

n∑
i=1

f∑
j=1

Yij logH
(2)
ij (20)

5. Experiments

In this section, we first evaluate the effectiveness of the FRS on three publicly available
datasets, then analyse the model’s performance from different perspectives, and finally
demonstrate the portability and generalisation ability of the strategy.

5.1. Datasets

Citation networks are documents and the relationships between them, nodes represent
documents, tags indicate the topics of documents, features are thebagsofwords contained
in the content of documents, and edges denote the cross-references between documents.
We tested the proposed strategy on three citation network datasets, includingCora (McCal-
lum et al., 2000), Citeseer (Giles et al., 1998) and Pubmed (Sen et al., 2008). The details of the
three citation network datasets are as follows:

• Cora contains 2708 nodes and 5249 edges. All nodes are divided into seven classes, and
each node has a 1433-dimensional feature vector.

• Citeseer contains 3327 nodes and 4732 edges. All nodes are divided into six classes, and
each node has 3707-dimensional feature vectors.

• Pubmed is a relatively large citation network, containing 19,717 nodes and 44,338 edges.
All nodes are divided into three classes, and each node has a 500-dimensional feature
vector.

5.2. Baseline

Since we focus only on the feature aspect of modelling, we will ignore baselines
based on node aggregation modelling, such as GAT (Veličković et al., 2017), DCNN
(Atwood & Towsley, 2016) and DAGNN (Liu et al., 2020). The more advanced baselines are
listed below:

• SemiEmb (Weston et al., 2012) utilises a graph learning method based on Laplace
regularisation.

• DeepWalk (Perozzi et al., 2014) is a method for learning graph representations with skip-
gram techniques, where node representations are learned by performing randomwalks
through the generated node contexts.

• GCN (Kipf&Welling, 2016) performs feature transformation throughmatrixmappingand
aggregation of nodes through the pooling function.
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• GIN (Xu et al., 2018) is a generalisation of vanilla GCN with feature transformation with
MLP in each convolutional layer.

• Cross-GCN (Feng et al., 2021) learns the hidden representation of nodes bymodelling the
intersection features.

• GCN+RCF (Zhu et al., 2020) improves the feature learning capability of GCN by adopting
the strategy of randomly covering features.

• SelfSAGCN (X. Yang et al., 2021) learns nodeswith the same label fromboth semantic and
graph structure perspectives, respectively, and aligns node features with a class-centred
acquaintance.

5.3. Setup

Our implementation of GCN+FRS and SelfSAGNC+FRS uses Pytorch2 and adopts the pub-
lic code of GCN3 and SelfSAGCN.4 To illustrate the effectiveness of both MPFR and LWFR
methods in the recommended strategy, we employed the best parameters of GCN (Kipf
& Welling, 2016) from the original paper.

In the GCN module, We set the value of the deactivation rate to 0.5 and weights decay
to 5e−4. In the feature recommendation module, we dedicate 90% of the node features
to training, and then 10% of the features are applied to test the effect of the model. In
addition, we set the batch size to 128, and the relationship between nodes and features
is represented with 16 bits. Notably, the threshold value is 0.9. i.e. a predicted relationship
value between nodes and features above 0.9 indicates that the node has this feature. Due
to the sparsity of the features, we group positive samples with an equal number of ran-
domly samplednegative samples into a sample_set,which is employed to keep thebalance
of negative and positive samples during the training procedure by sample set. The model
works best when the sample_set value is 12. Adam (Kingma & Ba, 2014) optimises both the
feature recommendation and GCNmodules, and the initial learning rates are set to 0.01.

5.4. Experimental analysis

We first test the effect of both MPFR and LWFR methods on the model, then compare
the model performance with the SOTA method, and finally analyse the effect of different
parameters on the model performance. In addition, to illustrate the model’s effectiveness,
we run our method through 20 random trials and report the average performance and
margin of error.

5.4.1. Impact of the twomethods
To test the model performance improvement by the MPFRmethod and the LWFRmethod,
we evaluated different scenarios on the Cora data: using MPFR alone and a mixture of the
two methods.

Table 2 summarises the results of GCNperforming the node classification task after using
different recommendation strategies on the Cora dataset. We can observe from the results
that the use of MPFR alone and a mixture of both methods (MPFR & LWFR) can improve
the performance of GCN. After comparing the maximum and average values of the classi-
fication results, it can be concluded that the recommendation strategy with a mixture of
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Table 2. The performance of GCN in two scenarios.

Sample_set GCN ACC(%)

without 81.5
1∼5 MPFR 83.1 (82.6)

MPFR & LWFR 83.1 (82.8)
6∼10 MPFR 83.0 (82.9)

MPFR & LWFR 83.3 (83.1)
11∼15 MPFR 83.1 (83.0)

MPFR & LWFR 83.4 (83.2)
16∼20 MPFR 82.9 (82.6)

MPFR & LWFR 82.9 (82.6)
21∼25 MPFR 82.7 (82.6)

MPFR & LWFR 82.9 (82.5)
26∼30 MPFR 82.4 (82.3)

MPFR & LWFR 82.9 (82.7)

Note: Outside the parentheses are the maximum values, while
inside the parentheses are the average values.

the twomethods allows themodel to obtain better performance compared to using MPFR
alone.

5.4.2. Performance comparison
After applying FRS from the recommendation strategy to the GCN and SelfSAGCN, Table 3
reports the model’s performance on the three citation network datasets. It is clear from
Table 3 that our proposed recommended strategy improves the performance of GCN by
about 1.6%, 0.4%, and 0.4%, respectively. In addition,we use FRS for the latest GCNmethod,
SelfSAGCN, and SelfSAGCN+FRS achieves the most advanced performance compared to
other improved feature methods.

5.4.3. Effect of embedding size
We test the impact of different model complexity on the recommendation effect by repre-
senting embeddings of different sizes, and Figure 5 shows the results of the performance
tests on the Cora dataset. The embedding representation size of the recommended mod-
ule in the test is set to E = [8, 16, 32, 64, 128] and keeps the maximum possible features to
be updated at around 500. According to the experimental results, we can get the below
conclusions:

Table 3. Summary of results for classification accuracy on three databases.

Model Cora(%) Pubmed(%) Citeseer(%)

SemiEmb (Weston et al., 2012) 59.0 71.1 59.6
DeepWalk (Perozzi et al., 2014) 67.2 65.3 43.2
GCN+RCF (Zhu et al., 2020) 82.7 – –
GIN (Xu et al., 2018) 78.5 ± 1.9 78.7 ± 1.6 68.9 ± 2.0
GCN (Kipf & Welling, 2016) 79.1 ± 1.8 77.6 ± 2.0 69.7 ± 2.0
Cross-GCN (Feng et al., 2021) 78.9 ± 1.6 79.3 ± 1.8 71.3 ± 1.7
SelfSAGCN (X. Yang et al., 2021) 83.8 ± 0.5 80.7 ± 1.5 73.5 ± 1.2
GCN+FRS 81.4 ± 2.0 79.9 ± 1.6 71.6 ± 2.0
SelfSAGCN+FRS 84.1 ± 0.9 81.3 ± 1.3 73.8 ± 1.6
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Figure 5. Effect of embedding size. GCN+FRS1 denotes a single MPFR method operating on GCN,
whereas GCN+FRS2 represents a combination of MPFR and LWFR methods working on GCN.

• In all cases, the model’s performance with the recommended strategy is significantly
better than that of the GCN alone. It further illustrates the effectiveness of our proposed
recommendation strategy.

• In addition, GCN+FRS (GCN+FRS2) with E = 16 exhibits exciting performance, consis-
tently outperforming embedded representations with other sizes.

5.4.4. Different number of sample_set
This subsection tests the effect of different numbers of sample sets onmodel performance.
Figure 6 shows the classification task on the Cora datasetwith a different number of sample
sets. From the results observed, we obtain the following conclusions:

• Overall, better performance is obtained with the recommended policy than without it.
The effectiveness of the recommended policy is illustrated from this perspective.

• Themodel performed best on the Cora dataset when the value of the simple_set equals
12.

• From the results of the classification task, theperformancegenerally shows an increasing
trend as the simple_set increases from 1 to 12, but after exceeding 12 (Less than 19), the
performance starts to decrease.

We tested the prediction of the feature matrix using the recommendation module alone
with a correct rate of 74.1%. From the results, we can see noise in the predicted features.
When the correct number of recommended features is obtained, the positive impact of the
recommendation strategy on the classification results outweighs the negative impact, and
conversely, when the number of recommended features exceeds a specific value, the result
is the opposite.
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Figure 6. Differentnumberof simple_set. GCN+FRS1denotes a singleMPFRmethodoperatingonGCN,
whereas GCN+FRS2 represents a combination of MPFR and LWFR methods working on GCN.

5.4.5. Hyperparametric analysis
We also investigated the effect of hyperparameters on the recommendation effectiveness
of the recommendation module. We have chosen the dropout parameter as an example
to illustrate that this parameter affects the results of the classification task by influencing
the recommended features. Figure 7 shows the effect of the parameters on the model’s
performance when increasing the dropout from 0.1 to 0.7 on the Cora dataset. From the
results, we have the following analysis:

Figure 7. Hyperparametric analysis. GCN+FRS1 denotes a single MPFR method operating on GCN,
whereas GCN+FRS2 represents a combination of MPFR and LWFR methods working on GCN.
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Table 4. Summary of results for classification accuracy on three databases.

Model Cora(%) Citeseer(%) Pubmed(%)

GAT (Veličković et al., 2017) 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3
GAT+FRS1 83.5 ± 0.6 72.7 ± 0.9 79.3 ± 0.6
GAT+FRS2 83.6 ± 0.7 72.9 ± 1.1 79.2 ± 0.9

• After the dropout value is more significant than 0.5, the recommendation module does
not obtain the maximum possible characteristics of the node.

• The best performance of the GCN+FRS model is obtained when dropout value is equal
to 0.5 (GCN+FRS2). This result is reasonable since themost randomly generatednetwork
structures are available in this condition.

• GCN+FRS1 performs more consistently than GCN+FRS2. This is that GCN+FRS1 solely
employs the MPFR method, which keeps each node’s original features, but GCN+FRS2
combinesMPRF and LWFRmethods to replace original features with predicted features.
The noise affects the classification task results when too many features are replaced.

5.5. Portability and generalisability

We experiment on another representativemodel, GAT, to test our proposed recommenda-
tion strategy’s portability and generalisation ability. The experiment results are shown in
Table 4.

As we can see in Table 4, the feature recommendation strategy also improves the per-
formance of the GATmodel, demonstrating the portability and generalisation ability of the
recommendation strategy.

5.6. Limitations

In this section, we describe several limitations of the proposed model.
Rich information on node and feature interactions The current model understands the

interaction between a node and a feature as {0, 1}, i.e. whether the node possesses the fea-
ture or not. However, the interaction relationships in real datasets are rich in correlations.
For example, in the citation network dataset, each paper is represented by the bag ofwords
it contains while ignoring other information such as the frequency of the bag of words.

Feature-to-feature interaction The current model only focuses on three interactions:
node-to-node, node-to-feature, and feature-to-node, but feature-to-feature should also
have similar interactions to those between nodes. Feature-to-feature interaction can
achieve feature recommendation with better performance.

6. Conclusion

In this paper, we proposed a feature recommendation strategy (FRS) for graph convolu-
tional networks. It provides two feature recommendation strategies, maximum possible
feature recommendation and low-weight feature replacement, for updating node features
and improving the performance of the GCN model. Experiments are conducted on three
datasets, and the results demonstrate the effectiveness, portability, and generalisability of
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the recommendation strategy. In the future, we will discuss how to integrate feature rec-
ommendation methods into different heterogeneous graph neural frameworks to achieve
better messaging and generate more effective patient representations.

Notes

1. In this paper, low-correlation and low-weight mean the same thing, and we use themmixed.
2. https://pytorch.org
3. https://github.com/tkipf/pygcn
4. https://github.com/xdxuyang/SelfSAGCN
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