Taylor & Francis
Taylor & Francis Group

CONNECTION . .
SCIENCE Connection Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ccos20

Feature recommendation strategy for graph
convolutional network

Jisheng Qin, Xiaoqin Zeng, Shengli Wu & Yang Zou

To cite this article: Jisheng Qin, Xiaogin Zeng, Shengli Wu & Yang Zou (2022) Feature
recommendation strategy for graph convolutional network, Connection Science, 34:1, 1697-1718,
DOI: 10.1080/09540091.2022.2080806

To link to this article: https://doi.org/10.1080/09540091.2022.2080806

8 © 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

@ Published online: 14 Jun 2022.

N
C)/ Submit your article to this journal &

||I| Article views: 104

A
& View related articles '

) view crossmark data @

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=ccos20

https://www.tandfonline.com/action/journalInformation?journalCode=ccos20
https://www.tandfonline.com/loi/ccos20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09540091.2022.2080806
https://doi.org/10.1080/09540091.2022.2080806
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ccos20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2022.2080806
https://www.tandfonline.com/doi/mlt/10.1080/09540091.2022.2080806
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2022.2080806&domain=pdf&date_stamp=2022-06-14
http://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2022.2080806&domain=pdf&date_stamp=2022-06-14

CONNECTION SCIENCE)
2022,VOL. 34,NO. 1, 1697-1718 ’ Taylor & Francis
https://doi.org/10.1080/09540091.2022.2080806 A Tayorrancis Group

8 OPEN ACCESS [l Checkforupdates‘

Feature recommendation strategy for graph convolutional
network

Jisheng Qin ©2, Xiaoqin Zeng?, Shengli WuP and Yang Zou?

3Institute of Intelligence Science and Technology, Hohai University, Nanjing, People’s Republic of China;
bSchool of Computing, Ulster University, Belfast, UK

ABSTRACT ARTICLE HISTORY
Graph Convolutional Network (GCN) is a new method for extract- Received 18 March 2022
ing, learning, and inferencing graph data that builds an embedded Accepted 17 May 2022
representation of the target node by aggregating information from KEYWORDS
neighbouring nodes. GCN is decisive for node classification and link Feature recommendation
prediction tasks in recent research. Although the existing GCN per- strategy; graph convolutional
forms well, we argue that the current design ignores the potential network; GCN

features of the node. In addition, the presence of features with low

correlation to nodes can likewise limit the learning ability of the

model. Due to the above two problems, we propose Feature Rec-

ommendation Strategy (FRS) for Graph Convolutional Network in

this paper. The core of FRS is to employ a principled approach to

capture both node-to-node and node-to-feature relationships for

encoding, then recommending the maximum possible features of

nodes and replacing low-correlation features, and finally using GCN

for learning of features. We perform a node clustering task on three

citation network datasets and experimentally demonstrate that FRS

can improve learning on challenging tasks relative to state-of-the-art

(SOTA) baselines.

1. Introduction

GCN is a powerful graph tool that can be applied to arbitrary structured graph data. It has
various application scenarios, such as computer vision (X. Zhao et al., 2021), knowledge
graphs (Gao et al., 2021), traffic prediction (N. Hu et al., 2021; C. Zhao et al,, 2022) and gait
recognition (Wang et al., 2022). Wu et al. (2020) proposed to combine GCN with Markov
Random Fields (MRF) to design a spammer detection model that considers the impact
of multiple email senders on social network graphs. Shang et al. (2019) fully benefited
the node structure, node attributes, and edge relationship types in the knowledge graph
by uniting GCN and ConvE to accomplish accurate node embedding. Zheng et al. (2020)
designed a Graph Multi-Attention Network (GMAN) to forecast traffic conditions at various
points in the road network graph for the next few time steps. In addition, GCN can also be
adopted in computer vision. For example, Huang et al. (2020) explored applying GCN to
learn high-level relationships between body parts for skeleton-based action recognition. J.

CONTACT Xiaogin Zeng @ xzeng@hhu.edu.cn

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.aisb.org.uk/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/09540091.2022.2080806&domain=pdf&date_stamp=2022-06-13
http://orcid.org/0000-0001-7224-212X
mailto:xzeng@hhu.edu.cn
http://creativecommons.org/licenses/by/4.0/

1698 J.QINETAL.

_____________________________ N
{ |
I I
I |
I I
I |
I I
I + I
I . '
[. '
[. '
I I
I + I
I I
I |
| ' '
| ! |
I Inputs : outputs |
e e T)
Node Aggregation Feature Transform

Figure 1. lllustration of a classical GCN model.

Chen et al. (2020) introduced multi-relational GCN to recognise images of a given dish with
zero training samples to accomplish the automatic diet evaluation task. The most usual
approach in current research is to take full advantage of label information, node charac-
teristics, and network topology. For example, Qin et al. (2021) used the given label and the
estimated label to learn the task. Feng et al. (2021) focussed on cross-features and designed
an operator called Cross-feature Graph Convolution, which can model cross-features of
arbitrary order. L. Yang et al. (2019) investigated the correlation between node features
and network topology and proposed a topology Optimised Graph Convolutional Network
(TO-GCN).

In general, GCN is mapping the original features of nodes into the low-dimensional space
by multiple graph convolution layers. Asillustrated in Figure 1, a classical GCN model usually
has two parts: node aggregation and feature transformation. The former enhances the rep-
resentation of the target node by fusing the information of the surrounding neighbouring
nodes. The latter converts the input features into a better description of the node’s feature
representation.

Current research focuses on developing various aggregation methods for different con-
nection characteristics. For example, Kipf and Welling (2016) proposed local node similarity,
and Donnat et al. (2018) considered structural similarity. The transformation of node fea-
tures is vital for the research, such as feature cross-fusion (Feng et al., 2021) and random
cover features (Zhu et al., 2020). In addition, there are many feature-related works. For
example, Liu et al. (2020) proposed Deep Adaptive Graph Neural Network (DAGNN) by
decoupling feature transformation and information propagation entanglement. M. Chen
et al. (2020) developed an extended model of vanilla GCN that keeps input information
with constant mapping. Liu et al. (2021) captured remote dependencies from node features
with a non-local aggregation. X. Yang et al. (2021) proposed a self-supervised seman-
tic aligned convolutional network (SelfSAGCN) to investigate the semantic information
in features. We argue that the existing GCN approaches ignore the potential features of
nodes. Although the existing GCN has an extraordinary ability to capture features, we
believe that encoding potential features by a feature recommendation strategy can sig-
nificantly improve the learning capability of the model. For example, we focus on the

CONNECTION SCIENCE 1699

,__________________\
o

outputs

Node Aggregation Feature Recommendation Feature Transform

Figure 2. lllustration of GCN+FRS. Our proposed FRS enriches feature information by maximum pos-
sible feature recommendation and enhances the representation capability after conversion. The circles
containing # indicate the recommended new features.

features of users’ electronic purchase records: UserA = {Camera, Phone, Computer, Watch},
UserB = {Phone, Computer, Gamemachine, Watch, DVD}. After the feature recommenda-
tion, user A’s most likely additional feature is the Game machine, while user B
is not likely to have other features besides his own. The feature of the last two
users describes as UserA = {Camera, Phone, Computer, Watch, Game machine}, UserB =
{Phone, Computer, Game machine, Watch, DVD}. As shown in Figure 2, a feature recommen-
dation module can capture user-item interactions and opinions to obtain potential features
of users and make more accurate product recommendations (Fan et al., 2019).

In this paper, we propose the FRS, which is inspired by the social recommender system
(GraphRec) (Fan et al., 2019) and was initially proposed to solve the problem of encoding
heterogeneous graphs (user social graph, user-item graph) in the social recommendation.
We regard nodes and features as users and items and use a feature recommendation
strategy to enhance the learning ability of the GCN model. Two methods are explicitly
mentioned in the feature recommendation strategy. The first method is Maximum Pos-
sible Feature Recommendation (MPFR) means obtaining the maximum possible features
of nodes with the feature recommendation module. The second is Low-Weight! Fea-
ture Replacement (LWFR), where the low-weight features are replaced with the maximum
possible features by sorting the personalised weights of the features.

We implemented GCN-+FRS performance on three citation network datasets for the
node clustering task, and the experimental results demonstrate that both MPFR and LWFR
methods utilised by FRS can improve the learning ability of GCN.

In summary, our contribution is twofold:

e We propose a feature recommendation strategy, including maximum possible feature
recommendation and low-weight feature replacement methods, that can improve the
performance of the GCN model.

e Experimentation with node classification as a learning task on three publicly available
datasets demonstrates that GCN+-FRS significantly outperforms SOTA methods.

Organisation of our paper The rest of our paper is organised according to the following
structure. Section 2 outlines the background of graph convolutional networks and fea-
ture recommendation, respectively. Section 3 provides the necessary a priori knowledge.

1700 J.QINETAL.

Section 4 summarises the overall model framework and describes each module’s specifics.
Section 5 reports the experimental results and experimental analysis. Section 6 concludes
the paper.

2. Related work
2.1. Graph convolutional network

Graph convolutional network has become an essential tool in graph data analysis tasks, and
their mainstream methods can be divided into two kinds of spatial convolution and spectral
convolution. The spatial convolution-based approach defines the convolution operation on
the spatial relationship of each node, learning and updating the representation from the
neighbouring nodes. For example, Gilmer et al. (2017) proposed Message Passing Neural
Network (MPNN) views graph convolution as a message-passing process where information
can be passed directly from one node to another along an edge. Hamilton et al. (2017) sug-
gested an inductive GraphSAGE method for transductive network representation learning.
The method utilises both feature information and structure information of nodes to map
graph embedding and save it, which is more scalable. Atwood and Towsley (2016) designed
a propagation-convolutional neural network that adopts a matrix representation of H-hop
for each node (edge or graph). Each hop represents the neighbouring information of that
neighbouring range. The network can obtain local information better. Monti et al. (2017)
developed a hybrid model (MoNet) that generalises the traditional CNN to non-Euclidean
spaces (graphs and pops) and can learn local, smooth, combinatorial task-specific features.
In addition, Velickovic¢ et al. (2017) employed an attention mechanism for the weighted
summation of features of neighbouring nodes, which is used to address two critical draw-
backs. The first is that the features of neighbouring nodes are closely linked to the graph’s
structure, limiting the model’s generalisation ability. The second is that the model assigns
the same weights to various neighbouring nodes in the same order.

Unlike the spatial convolution-based GCN, the spectrum-based GCN method imple-
ments the convolution operation on topological graphs through graph theory. In the first
place, Bruna et al. (2013) developed a spectral convolutional neural network (Spectral
CNN), but the model suffers from computational complexity, nonlocal connectivity, and
too many convolutional kernel parameters to scale to large graphs. To address the above
challenges, Defferrard et al. (2016) designed CheNet to reduce the computational complex-
ity by constructing the filter as a diagonalised eigenvector approximated with Chebyshev
polynomials, but the computational effort of the eigenvalue decomposition of the Laplace
operator is stillenormous. Then based on the previous work, Hammond et al. (201 1) showed
that the operator could be fitted by a Kth truncated expansion of the Chebyshev polyno-
mial. Finally, Kipf and Welling (2016) proposed the first-order approximation of ChebNet, a
simple and effective layer propagation method obtained by simplifying the computation
through the first-order approximation method. The method has the advantages of weight
sharing, local connectivity, and perceptual field proportional to the number of convolu-
tional layers. In addition, some approximations to Chebyshev polynomial methods are now
proposed for performing local polynomial filtering. For example, Levie et al. (2018) sug-
gested employing Cayley polynomial approximation filters, and Liao et al. (2019) proposed
multi-scale feature encoding to break the computational bottleneck of existing models.

CONNECTION SCIENCE (&) 1701

2.2. Feature recommendation

The user-item interaction is a specific graph data in recommendation system tasks, and
the utilisation of graph convolutional networks to solve recommendation problems is
already a relatively common approach. We simplify the user-item interaction to two rela-
tionships, i.e. whether or not the item is owned. For recommender systems, we can regard
the recommendation task as which new features the nodes are most likely to have, i.e.
the recommendation system is transformed into a feature recommendation system. Berg
et al. (2017) proposed a graph auto-coding framework that generates potential represen-
tations of users and items by passing distinguishable messages on the graph structure
to accomplish the link prediction task. Bian et al. (2020) exploited the rumour propaga-
tion directed graph with top-down rumour propagation to learn how rumours spread
and designed a diffusion propagation graph GCN with opposite directions to capture the
rumour diffusion structure and learn to feature representation for rumour detection. Wu
et al. (2020) suggested a novel social spammer detection model that explicitly considers
three types of neighbour structures to determine the most likely features of spam. Fur-
thermore, the feature interactions proposed by Feng et al. (2021) can also be regarded as
employing existing features to combine into new features.

Notably, the heterogeneity of relationships is also the focus of the research (Chang
etal, 2021). X. Wang et al. (2021) proposed a cross-view comparison mechanism for hetero-
geneous graph neural networks (HGNN). Zhang et al. (2019) integrated the heterogeneous
structure information and the heterogeneous content information of each node to jointly
learn the node representation in the heterogeneous graph. X. Wang et al. (2019) suggested
an HGNN on a hierarchical attention mechanism and generates node embeddings by a hier-
archical approach. There is also some other work on heterogeneous relationships (J. Hu
etal., 2021; Lian & Tang, 2022). Despite the convincing success of these works, little atten-
tion has been paid to the application of feature recommendations to GCNs. In this paper,
we attempt to utilise a feature recommendation strategy for generating new features of
nodes, which will enhance the representation capability of GCN models.

3. Preliminary knowledge

We start by introducing some of the symbols utilised in the following sections. We denote
vectors and matrices with bold lowercase letters (e.g. x) and bold uppercase letters (e.g. X).
Note that all vectors are in column form without particular specification, and Xjj represents
the elements of the ith row and jth column of matrix X. Finally, we use © to denote element-
by-element multiplication. Some of the terms and symbols commonly used in this paper are
givenin Table 1.

3.1. Graph convolutional network

A graph G usually consists of an adjacency matrix (A € R"*") and a feature matrix (X =
X1,X3,...,xN]7 € R"*do), where n is the number of nodes and A indicates a connection
between two nodes. If Aj = 1 means an edge exists between node i and node j, otherwise,
Ajj = 0.dp denotes the dimensional size of the input features. The basic process of GCN is
to map the input graph into the low-latitude space through the hidden layer, then learn the

1702 J.QINETAL.

Table 1. Symbols used in this paper.

Symbols Descriptions
agraph.
X € R"%d R ¢ RM*do features matrix of a graph with N nodes.
A e R™" adjacency matrix of a graph with N nodes.
neighbour(x) neighbouring nodes of a node x.
N(i) the set of 1th-order neighbouring nodes of a node.
AGG node aggregation function.
FT feature transformation function.
w weight matrix.
b bias matrix.
do, dv,d>,d3 dimension of the node representation.
uv set of nodes and features.
(o] set of known association relations.
T set of unknown association relations.
C(i) set of features of a node.
B(j) set of nodes containing a particular feature.
p; € R% embedding vector of node u;.
qg; € R% embedding vector of feature v;.
o(+) nonlinear activation function.

embedding representation of the nodes, and finally connect the output layer that performs
the learning task (e.g. node classification). To simplify the notation and representation, we
describe the content in terms of a single-layer GCN. As illustrated in Figure 1, the GCN per-
forms node aggregation operation on the input and then achieves the node representation
with feature transformation. The entire procedure can be described as:

Xagg = AGG ({xn | n € neighbour(x)})
hout = FT (Xagg)

where AGG denotes the aggregation function on neighbouring nodes, xg4q € R indi-
cates the potential features of the node as a result of the AGG operation, 7 represents the
feature transformation function, and hoy: € R% is the final obtained rich representation of
the target node.

3.1.1. Node aggregation

Node aggregation is to update the information of the target node by aggregating that of
the neighbouring nodes. The basic principle is that neighbouring node feature information
reflects that of the target node. For example, in a citation network, a target paper with cross-
citation relationships with multiple papers in a field may be in the same field. Notice that
neighbour(x) can contain self-connections (form x to x), and sampling can fetch all neigh-
bouring nodes (Kipf & Welling, 2016) or a fixed number of random neighbouring nodes
(Hamilton et al.,, 2017). Furthermore, different AGG methods capture different information
about neighbouring nodes (Duan et al., 2021; Hamilton et al., 2017; Kipf & Welling, 2016; Xu
et al,, 2018), such as obtaining common attributes of nodes filtered by a fixed number of
neighbouring average pools, and maximum pools obtain the most salient features among
nodes.

CONNECTION SCIENCE (&) 1703

3.1.2. Feature transformation
Feature transformation is an operation to obtain a potentially rich representation by pro-
jecting the target node features into the high-latitude space. Existing GCNs usually adopt
nonlinear activation mappings:

hout = FT (x) = o (Wx + b) (2)

where W € R%2x% represents the weight matrix, b € R% denotes the bias vector, and
o indicates the activation function.

3.2. Feature recommendation

We employ the adjacency matrix and the feature matrix as inputs to the feature rec-
ommendation module to predict the maximum possible features of the nodes. Let U =
{ug,uy, .. .,u,,}T and V = {vq,vy,..., vm}T represent the set of nodes and features, respec-
tively, where m and n denote the number of features and nodes. Assume that R € R"*™
denotes the association matrix of nodes and features (i.e. the feature matrix X). Here we
define the association relationship with r;. Specifically, if v; is a feature of u;, then rj =1,
otherwise, rjj = 0. Suppose O = {{u;,vj) | rj = 0 or rj = 1} is the set of known association
relations and 7 = {(u;, ;) | rj ¢ O} denotes the set of unknown association relations. Let
N(i) be the set of first-order neighbouring nodes of u;, C(i) is the set of features of u;, and
B(j) represents the set of nodes containing feature v;. Furthermore, the adjacency matrix is
expressed with A € R"*". A; = 1 if there is a relationship between two nodes u; and uj,
otherwise Aj = 0. Knowing the feature matrix R and the adjacency matrix A, we aim to
predict the potential features of each node and obtain the maximum possible features of
the nodes. Also, we represent node u; with embedding vector p; € R% and feature vj with
embedding vector g; € R%.

4. Feature recommendation strategy for graph convolutional network

This section begins with a general introduction to the FRS framework, followed by detailed
descriptions of the feature recommendation module and the low-weight feature replace-
ment module, respectively, and finally explains how the GCN module performs feature
learning.

4.1. Overview of our proposed framework

The framework of our proposed modelis illustrated in Figure 3, which consists of three mod-
ules: feature recommendation module, low-weight feature replacement module, and GCN
module. The first module is feature recommendation, i.e. recommending the potential fea-
tures of each node. Since the recommendation module has two different inputs (adjacency
matrix and feature matrix), we will learn the representation of nodes from different perspec-
tives. The second module primarily completes the low-weight feature replacement. After
the association weights between nodes and features are obtained from the recommenda-
tion module, we use the maximum possible recommended features to replace the features
of low-weight connections. Finally, there is the GCN module, where we input the original

1704 J.QINETAL.

Feature Recommendation Add Maximum Possible
Recommended Features
o o T T o \
| |
|
: ! Task Specific
| | Loss Function
|
X)
= B B B /
Remove Low-weight Features GCN

O Node . Feature recommended feature [] Remove low-weight feature m GCN Layer

Figure 3. The overall framework of our proposed model.

adjacency and the processed feature matrices, learn the representation of the nodes, and
complete the final classification task.

4.2. Feature recommendation module

The overall structure of the feature recommendation module is illustrated in Figure 4, which
consists of three components: node modelling, feature modelling, and relationship predic-
tion. The first part is node modelling, i.e. learning the latent factors of the nodes. Since the
input contains two different matrices (adjacency matrix and feature matrix), we will learn
the representation of the nodes from two perspectives. Therefore, two aggregation opera-
tions are introduced to handle the corresponding matrix inputs. One is feature aggregation,
which understands nodes by feature matrix. That is, whether there is an association rela-
tionship between nodes and features. The other is neighbour aggregation, the relationship
between nodes and nodes. It can help us model a node from the perspective of its neigh-
bour relationship. The second component is feature modelling, which is learning about
the potential factors of features. Having already understood the nodes from the feature
perspective, we modelled the features from the node perspective (which nodes are a fea-
ture owned by) to thoroughly understand the connection between nodes and features. The
final component integrates the previous two components to learn the model parameters
through feature prediction. We will describe each component in detail below.

4.2.1. Node modelling

The purpose of node modelling is to learn the potential factors of nodes, and the challenge
is to figure out how to combine the adjacency matrix and the feature matrix to repre-
sent node u; as h; € R%. To better learn the node representation, we designed two types
of aggregation operations: feature aggregation and neighbour aggregation. As shown in
the left part of Figure 4, feature aggregation learns the potential representation of nodes

CONNECTION SCIENCE (&) 1705

Feature Prediction

Node Modeling Feature Modeling

-
@ o cnocsans

Opinon Embecig
Neihoor Agaregaion | - .

Figure 4. The overall structure of the feature recommendation module. Node modelling, feature mod-
elling, and feature prediction are the three main components.

h,-F € R% through the feature matrix, while neighbour aggregation is learning the potential
representation of nodes h;-“ € R% through the adjacency matrix. Then the potential repre-
sentation h; is obtained by combining the two representations. The following section will
detail feature aggregation, neighbour aggregation, and how to learn the representation of
nodes from the adjacency matrix and feature matrix.

4.2.1.1. A. Feature aggregation. We provide a principled approach for learning latent
user factors hf in the node-feature-space by capturing the interaction of nodes and fea-
tures in the feature matrix. The purpose of feature aggregation is to learn the latent user
factors h,-F in the node-feature-space by the features of the user u;. The following function
represents this aggregation:

h! = 6 (W - AGGteature ({Xia, Ya € C(i)}) + b) (3)

where C(i) indicates the feature set of node uj, xi; denotes the representation vector of the
association relationship between node u;j and feature v,, and AGG¢eature is the aggrega-
tion operation. o (-) represents the nonlinear activation function. W denotes the trainable
weight matrix, and b indicates the trainable bias matrix. In the following, we will describe
how to define the association relation x;; and the aggregation function AGGseature-

The association relationship between nodes and features is indicated as r. The prefer-
ence of nodes for features can be captured through the association relationship, which
helps model the potential factors in the node-feature-space. To model the association
relationship, we introduce an embedding vector e, € R% for the two association relation-
ships (associated and unassociated). We first combine the feature representation q, and
association relation representation e, for the interactions between nodes u;, feature v,
and association relation r, followed by a multilayer perceptron (MLP) to obtain the fea-
ture interaction representation xj;. The mathematical representation can be described as

1706 J.QINETAL.

follows:

Xia = gv ([9, ® &]) (4)

where & represents the union of two vectors and g, indicates the fusion function.

AGGteature Was initially considered with mean aggregation, i.e. taking the mean of all
{xiq, ¥V a € C(i)} vector elements. This aggregator is similar to the first-order linear approxi-
mation of a local convolution (Kipf & Welling, 2016) and can be expressed as:

hf:a w . Z aiXigr +b (5)
aeC(i)
where the size of «; is equal to . In this aggregator, all feature interactions contribute

40l
equally to the node u;. However, this approach is not optimal for node understanding, so we

need to assign different weights to each interaction to represent the different contributions
to the potential factors of the node.

Different weights need to be assigned for different interactions. We generate the feature
attention «jg with a multilayered neural network, called attention network, i.e. assigning a
personalised weight to each (vg, u;). Equation (5) can be rewritten as follows:

aeC(i)

For attention networks, the inputs are the interacting association relations xj; and the
embedding representations of the nodes p;. Attention network can be defined formally as:

ay=w5-o (Wi -[Xia ®p;]+b1) + by 7)

Finally, the attention weights are normalised by the softmax function and the potential
factor contribution of the association relationship to node u; in the node-feature-space is
obtained as:

exp (af)

_ (8)
> _acc(iy €XP (o)

Qjg =

4.2.1.2. B. Neighbour aggregation. The feature preferences are similar to that of its
neighbouring nodes, so we will combine the information of neighbouring nodes to obtain
rich potential factors for the user. Therefore, we introduce an attention mechanism to
aggregate the information of neighbouring nodes. To understand the nodes from their
interactions, we will employ the adjacency matrix to aggregate the potential factors of
neighbouring nodes. In the node-adjacency-space, the potential factor h,A of node u; is
formed by aggregating the neighbouring nodes N(i). The specific function is described as
follows:

h;-q =0 (W . Aggneighbours ({hf,,V (2S N(’)}) + b) 9)

where AGG eighbours represents the aggregation operation of neighbouring nodes.

CONNECTION SCIENCE (&) 1707

The AGG neighbours function is the first to adopt the mean aggregation, which performs
the mean operation on the elements of the vector in {hg,‘v’o € N()}. The function can be
expressed as:

h?:a w . Z ,Bihg +b (10)
0eN(i)
where g; is fixed as . The mean aggregator assumes all neighbouring nodes contribute

ING)I
to the target node. However, this method is likewise not optimal, so we also apply the

exact attention mechanism to generate personalised weights indicating the importance
of different neighbouring nodes to u;. The related function can be expressed as follows:

h'=c|W-1 > Bohgt+b

oeN(i)
ﬁ,%:wg.a(w1.[hg@pi]+b1>+b2 (11)
exp (B)
lgio = ~ 7 a\
2 _o0eN() EXP (BE)

where B represents the personalisation weight of neighbouring nodes.

4.2.1.3. C. Learning node latent factor. To learn the potential representations of nodes
more effectively, we need to consider both the potential representations of users in the
node-feature-space and the potential representations of users in the node-neighbour-
space. We utilise MLP to combine the two potential representations as to the potential
representation of the final node, where the potential representation of the node feature
space is hf and the potential representation of the node neighbour space is hf‘. Therefore,
the potential representation h; of the node can be defined as:

= [hf ® h}q]

=0 Wy ¢ +by)

hi=o0 (W/ - €1 + b/)

where [indicates the serial number of the hidden layer.

4.2.2. Feature modelling
As illustrated on the right side of Figure 4, feature modelling is utilised to achieve a poten-
tial representation Z; of feature v; in the feature-node-space by aggregating the nodes. We
learn the potential representations of features by capturing the interactions of nodes with
features in the feature matrix. For each feature v;, we need to capture information from the
set of nodes interacting with v;, denoted as B;.

There are different association relations with different nodes, even for the same feature.
We use MLP to fuse the combination of the node representation p; and the association rela-
tion representation e,. The fusion function is denoted as g,,. The function can be expressed

1708 J.QINETAL.

as:

fir = gu ([P ®er) (13)

where fj; denotes the interaction relationship. Then, we attempt to aggregate the inter-
action information of nodes in B; for the feature v;. The aggregation function of nodes is
denoted as AGGnodes for aggregating the interactions of nodes {fj;, V t € B(j)}, and finally,
the potential representation of features z; can be defined as:

zj=0 (W - AGGnodes ({fit.Vt € B()}) + b) (14)

Similarly, we apply the attention method and utilise a multilayer neural network to acquire
the personalised weights of each node for the features. With f;: and g; as inputs, the process
can be expressed as:

zi=o0 w - Zﬂjtfjf +b

teB(j)
M}‘;:W;—'U(W1‘[fjt@qj]+b1)+b2 (15)
oo(s)
Mjt = -
2 teBy) XP (th)

where pj; denotes the personalised impact of different nodes on the potential representa-
tion of the learned features.

4.2.3. Feature recommendation module training

After acquiring potential representations of nodes and features, we will use feature predic-
tion to learn the model’s parameters. We first connect the two potential representations
(hi ® z]]) and then input them to the MLP for the feature prediction task. The specific
process can be expressed as follows:

g1 = [hi@zj]
g,=0(Wy-g,+b))

/ T
ry=w -g,_,

where | denotes the serial number of the hidden layer, r,’.j represents the association
between node u; and feature v;. Finally, the new association relations form a new feature
matrix, each row representing a new feature of the node.

4.2.4. Feature prediction
To determine the parameters of the feature recommendation module, we use Euclidean
distance as the loss function for training. The loss function can be described as follows:

1 , 2
Loss = 210] 2 (rij - r,-,-) (17)
ijeO

CONNECTION SCIENCE (&) 1709

where |O| represents the number of association relations between nodes and features, and
rij is the true association relation between node u; and feature v;.

To optimise the objective function of the feature recommendation module, we employ
Adam (Kingma & Ba, 2014) as an optimiser in practice. In the model training phase, we
randomly initialise three embedding representations, including the embedding represen-
tation g; of nodes, the embedding representation p; of features, and the embedding
representation e, of association relations. It is worth noting that the size of e, depends
on the complexity of the relationship between features and nodes. For example, whether
nodes and features are associated with each other, e, uses two different embedding vectors
to represent {0, 1}. In addition, to prevent the problem of overfitting, we adopt the dropout
strategy (Srivastava et al., 2014).

4.3. Low-weight feature replacement module

To obtain a richer feature representation, we model the nodes and features separately with
two aggregation operations in the feature recommendation module and finally achieve the
maximum possible recommended features that exceed the threshold value by relationship
prediction. Meanwhile, personalised weights for the influence of each node on the features
can also be available during the training process.

With these considerations, we try to use the maximum possible recommended features
to replace the low-weight features of the nodes. We divide the process into two steps: the
first is to add the maximum possible recommendation features for each node; the second
is to remove the same number of low-weight features.

4.4. GCN module and classification learning tasks

We adopt the model proposed by Kipf and Welling (2016) in the GCN module, assuming
that A € R"*" denotes the adjacency matrix and X € R"*% represents the feature matrix,
then its propagation rule can be described as:

HHD = & <B‘5ZB‘5H<’>W(’>>, I=0,1...
(18)

HO =x

where o (-) denotes a nonlinear activation function. H" € R"*% represents the (/ — 1)th
hidden layer's output and the /th hidden layer’s input. W € R¥*%+1 denotes the train-
able parameter1matri3<. The matrix 5_%25_% denotes the normalisation of the convolution
matrix I, + D™ 2AD™ 2, where I, denotes the unit matrix, and D denotes the degree matrix.

According to Kipf and Welling (2016) the best implementation is obtained by stacking
two layers of GCN. As shown in Equation (19).

H" = RelLU (53Z5;xw(°>>

H® = softmax <5;25;H(1)W(1)>

1710 J.QINETAL.

where W(©® ¢ R%xd1 gnd W) e R%1%% gre trainable weight matrices of the correspond-
ing hidden layers. ReLU(-) and softmax(-) denote the two activation functions. Further-
more, let the actual label set be ¥ € R"*f, defined as Yj; = 1 if the label of node i is j,
otherwise Y;; = 0. The cross-entropy loss defines the classification error of the training:

f
1 n
chass = _E Z Z Yij Iog H,S'Z) (20)

i=1 j=1

5. Experiments

In this section, we first evaluate the effectiveness of the FRS on three publicly available
datasets, then analyse the model’s performance from different perspectives, and finally
demonstrate the portability and generalisation ability of the strategy.

5.1. Datasets

Citation networks are documents and the relationships between them, nodes represent
documents, tags indicate the topics of documents, features are the bags of words contained
in the content of documents, and edges denote the cross-references between documents.
We tested the proposed strategy on three citation network datasets, including Cora (McCal-
lum et al., 2000), Citeseer (Giles et al., 1998) and Pubmed (Sen et al., 2008). The details of the
three citation network datasets are as follows:

e (Cora contains 2708 nodes and 5249 edges. All nodes are divided into seven classes, and
each node has a 1433-dimensional feature vector.

e (iteseer contains 3327 nodes and 4732 edges. All nodes are divided into six classes, and
each node has 3707-dimensional feature vectors.

e Pubmedis arelatively large citation network, containing 19,717 nodes and 44,338 edges.
All nodes are divided into three classes, and each node has a 500-dimensional feature
vector.

5.2. Baseline

Since we focus only on the feature aspect of modelling, we will ignore baselines
based on node aggregation modelling, such as GAT (Velickovi¢ et al., 2017), DCNN
(Atwood & Towsley, 2016) and DAGNN (Liu et al., 2020). The more advanced baselines are
listed below:

e SemiEmb (Weston et al.,, 2012) utilises a graph learning method based on Laplace
regularisation.

e DeepWalk (Perozzi et al., 2014) is a method for learning graph representations with skip-
gram techniques, where node representations are learned by performing random walks
through the generated node contexts.

o GCN (Kipf & Welling, 2016) performs feature transformation through matrix mapping and
aggregation of nodes through the pooling function.

CONNECTION SCIENCE (&) 1711

e GIN (Xu et al,, 2018) is a generalisation of vanilla GCN with feature transformation with
MLP in each convolutional layer.

e Cross-GCN (Feng et al., 2021) learns the hidden representation of nodes by modelling the
intersection features.

e GCN+RCF (Zhu et al., 2020) improves the feature learning capability of GCN by adopting
the strategy of randomly covering features.

e SelfSAGCN (X.Yang etal., 2021) learns nodes with the same label from both semantic and
graph structure perspectives, respectively, and aligns node features with a class-centred
acquaintance.

5.3. Setup

Our implementation of GCN-+FRS and SelfSAGNC+FRS uses Pytorch? and adopts the pub-
lic code of GCN3 and SelfSAGCN.# To illustrate the effectiveness of both MPFR and LWFR
methods in the recommended strategy, we employed the best parameters of GCN (Kipf
& Welling, 2016) from the original paper.

In the GCN module, We set the value of the deactivation rate to 0.5 and weights decay
to 5e—4. In the feature recommendation module, we dedicate 90% of the node features
to training, and then 10% of the features are applied to test the effect of the model. In
addition, we set the batch size to 128, and the relationship between nodes and features
is represented with 16 bits. Notably, the threshold value is 0.9. i.e. a predicted relationship
value between nodes and features above 0.9 indicates that the node has this feature. Due
to the sparsity of the features, we group positive samples with an equal number of ran-
domly sampled negative samples into a sample_set, which is employed to keep the balance
of negative and positive samples during the training procedure by sample set. The model
works best when the sample_set value is 12. Adam (Kingma & Ba, 2014) optimises both the
feature recommendation and GCN modules, and the initial learning rates are set to 0.01.

5.4. Experimental analysis

We first test the effect of both MPFR and LWFR methods on the model, then compare
the model performance with the SOTA method, and finally analyse the effect of different
parameters on the model performance. In addition, to illustrate the model’s effectiveness,
we run our method through 20 random trials and report the average performance and
margin of error.

5.4.1. Impact of the two methods

To test the model performance improvement by the MPFR method and the LWFR method,
we evaluated different scenarios on the Cora data: using MPFR alone and a mixture of the
two methods.

Table 2 summarises the results of GCN performing the node classification task after using
different recommendation strategies on the Cora dataset. We can observe from the results
that the use of MPFR alone and a mixture of both methods (MPFR & LWFR) can improve
the performance of GCN. After comparing the maximum and average values of the classi-
fication results, it can be concluded that the recommendation strategy with a mixture of

1712 J.QINETAL.

Table 2. The performance of GCN in two scenarios.

Sample_set GCN ACC(%)
without 81.5
1~5 MPFR 83.1(82.6)
MPFR & LWFR 83.1(82.8)
6~10 MPFR 83.0(82.9)
MPFR & LWFR 83.3(83.1)
11~15 MPFR 83.1(83.0)
MPFR & LWFR 83.4(83.2)
16~20 MPFR 82.9 (82.6)
MPFR & LWFR 82.9 (82.6)
21~25 MPFR 82.7 (82.6)
MPFR & LWFR 82.9 (82.5)
26~30 MPFR 82.4(82.3)
MPFR & LWFR 82.9(82.7)

Note: Outside the parentheses are the maximum values, while
inside the parentheses are the average values.

the two methods allows the model to obtain better performance compared to using MPFR
alone.

5.4.2. Performance comparison

After applying FRS from the recommendation strategy to the GCN and SelfSAGCN, Table 3
reports the model's performance on the three citation network datasets. It is clear from
Table 3 that our proposed recommended strategy improves the performance of GCN by
about 1.6%, 0.4%, and 0.4%, respectively. In addition, we use FRS for the latest GCN method,
SelfSAGCN, and SelfSAGCN+FRS achieves the most advanced performance compared to
other improved feature methods.

5.4.3. Effect of embedding size

We test the impact of different model complexity on the recommendation effect by repre-
senting embeddings of different sizes, and Figure 5 shows the results of the performance
tests on the Cora dataset. The embedding representation size of the recommended mod-
ule in the test is set to E = [8, 16, 32, 64, 128] and keeps the maximum possible features to
be updated at around 500. According to the experimental results, we can get the below
conclusions:

Table 3. Summary of results for classification accuracy on three databases.

Model Cora(%) Pubmed (%) Citeseer(%)
SemiEmb (Weston et al., 2012) 59.0 71.1 59.6
DeepWalk (Perozzi et al.,, 2014) 67.2 65.3 43.2
GCN+RCF (Zhu et al., 2020) 82.7 - -

GIN (Xu et al.,, 2018) 785+19 787 £1.6 689+ 2.0
GCN (Kipf & Welling, 2016) 79.1+1.8 776 +£2.0 69.7 + 2.0
Cross-GCN (Feng et al., 2021) 789+ 1.6 793+18 7134+17
SelfSAGCN (X. Yang et al., 2021) 83.8+0.5 80.7 £ 1.5 735+1.2
GCN+-FRS 814420 799+t 1.6 716 £2.0

SelfSAGCN+-FRS 84.1+£09 813+13 738+ 16

CONNECTION SCIENCE (&) 1713

83.5 -
83.4
83.3
Q 832 832
< 3.1 GCN
g] GCN+FRS1
S 83.0 83 [GCN+FRS2
[
S 82.9
5‘5 82.8 82.8
v
= 82.7
S 82.7]
.
=]
2 82.5
[
S
§ 82.3 82.3 82.3 82.3 82.3
<
820 T T T T T T T T T
8 16 32 64 128

Embedding Size

Figure 5. Effect of embedding size. GCN+FRS1 denotes a single MPFR method operating on GCN,
whereas GCN+-FRS2 represents a combination of MPFR and LWFR methods working on GCN.

e In all cases, the model’s performance with the recommended strategy is significantly
better than that of the GCN alone. It further illustrates the effectiveness of our proposed
recommendation strategy.

e In addition, GCN+FRS (GCN-FRS2) with E = 16 exhibits exciting performance, consis-
tently outperforming embedded representations with other sizes.

5.4.4. Different number of sample_set

This subsection tests the effect of different numbers of sample sets on model performance.
Figure 6 shows the classification task on the Cora dataset with a different number of sample
sets. From the results observed, we obtain the following conclusions:

e Overall, better performance is obtained with the recommended policy than without it.
The effectiveness of the recommended policy is illustrated from this perspective.

o The model performed best on the Cora dataset when the value of the simple_set equals
12.

e Fromtheresults of the classification task, the performance generally shows an increasing
trend as the simple_set increases from 1 to 12, but after exceeding 12 (Less than 19), the
performance starts to decrease.

We tested the prediction of the feature matrix using the recommendation module alone
with a correct rate of 74.1%. From the results, we can see noise in the predicted features.
When the correct number of recommended features is obtained, the positive impact of the
recommendation strategy on the classification results outweighs the negative impact, and
conversely, when the number of recommended features exceeds a specific value, the result
is the opposite.

1714 J.QINETAL.

83.4 -
—¥— GCN

e GCN+FRS1
S 83.2 4 [—e— GCN+FRS2
=
£
= 83.0
S 83,
=
A
= 828
<
e
=]
£ 826 -
[+
1
2
3 824
< S

82.2

T T T T T 1
0 5 10 15 20 25 30

Number of sample_set

Figure 6. Different number of simple_set. GCN+FRS1 denotes a single MPFR method operating on GCN,
whereas GCN+-FRS2 represents a combination of MPFR and LWFR methods working on GCN.

5.4.5. Hyperparametric analysis

We also investigated the effect of hyperparameters on the recommendation effectiveness
of the recommendation module. We have chosen the dropout parameter as an example
to illustrate that this parameter affects the results of the classification task by influencing
the recommended features. Figure 7 shows the effect of the parameters on the model’s

performance when increasing the dropout from 0.1 to 0.7 on the Cora dataset. From the
results, we have the following analysis:

= 83.4

é GCN

£ 83.2 GCN+FRS1
£ 83.

= —e— GCN+FRS2
S 83.0

= |

§ 82.8

T) B

45 82.6

oy

g 824

} S

g

3 8221
<

82.0 T T T T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Dropout

Figure 7. Hyperparametric analysis. GCN4FRS1 denotes a single MPFR method operating on GCN,
whereas GCN+-FRS2 represents a combination of MPFR and LWFR methods working on GCN.

CONNECTION SCIENCE (&) 1715

Table 4. Summary of results for classification accuracy on three databases.

Model Cora(%) Citeseer(%) Pubmed(%)
GAT (Veli¢kovic¢ et al., 2017) 83.0£0.7 725+£0.7 79.0£0.3
GAT+FRS1 83.5+0.6 727 £0.9 793 + 0.6
GATH-FRS2 83.6 £ 0.7 729 + 1.1 79.24+0.9

e After the dropout value is more significant than 0.5, the recommendation module does
not obtain the maximum possible characteristics of the node.

e The best performance of the GCN+FRS model is obtained when dropout value is equal
to 0.5 (GCN+-FRS2). This result is reasonable since the most randomly generated network
structures are available in this condition.

e GCN+FRS1 performs more consistently than GCN-++FRS2. This is that GCN+FRS1 solely
employs the MPFR method, which keeps each node’s original features, but GCN+4-FRS2
combines MPRF and LWFR methods to replace original features with predicted features.
The noise affects the classification task results when too many features are replaced.

5.5. Portability and generalisability

We experiment on another representative model, GAT, to test our proposed recommenda-
tion strategy’s portability and generalisation ability. The experiment results are shown in
Table 4.

As we can see in Table 4, the feature recommendation strategy also improves the per-
formance of the GAT model, demonstrating the portability and generalisation ability of the
recommendation strategy.

5.6. Limitations

In this section, we describe several limitations of the proposed model.

Rich information on node and feature interactions The current model understands the
interaction between a node and a feature as {0, 1}, i.e. whether the node possesses the fea-
ture or not. However, the interaction relationships in real datasets are rich in correlations.
For example, in the citation network dataset, each paper is represented by the bag of words
it contains while ignoring other information such as the frequency of the bag of words.

Feature-to-feature interaction The current model only focuses on three interactions:
node-to-node, node-to-feature, and feature-to-node, but feature-to-feature should also
have similar interactions to those between nodes. Feature-to-feature interaction can
achieve feature recommendation with better performance.

6. Conclusion

In this paper, we proposed a feature recommendation strategy (FRS) for graph convolu-
tional networks. It provides two feature recommendation strategies, maximum possible
feature recommendation and low-weight feature replacement, for updating node features
and improving the performance of the GCN model. Experiments are conducted on three
datasets, and the results demonstrate the effectiveness, portability, and generalisability of

1716 J.QINETAL.

the recommendation strategy. In the future, we will discuss how to integrate feature rec-
ommendation methods into different heterogeneous graph neural frameworks to achieve
better messaging and generate more effective patient representations.

Notes

1. In this paper, low-correlation and low-weight mean the same thing, and we use them mixed.
2. https://pytorch.org

3. https://github.com/tkipf/pygcn

4. https://github.com/xdxuyang/SelfSAGCN

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu
Province (KYCX21_0408).

ORCID
Jisheng Qin = http://orcid.org/0000-0001-7224-212X

References

Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In Advances in neural
information processing systems (Vol. 29). Curran Associates, Inc.

Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263. https://doi.org/10.48550/arXiv.1706.02263

Bian, T., Xiao, X., Xu, T, Zhao, P., Huang, W., Rong, Y., & Huang, J. (2020). Rumor detection on social
media with bi-directional graph convolutional networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(1), 549-556. https://doi.org/10.1609/aaai.v34i01.5393

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks
on graphs. arXiv preprint arXiv:1312.6203. https://doi.org/10.48550/arXiv.1312.6203

Chang, F, Ge, L, Li, S, Wu, K, & Wang, Y. (2021). Self-adaptive spatial-temporal network
based on heterogeneous data for air quality prediction. Connection Science, 33(3), 427-446.
https://doi.org/10.1080/09540091.2020.1841095

Chen, J,, Pan, L., Wei, Z., Wang, X,, Ngo, C. W., & Chua, T. S. (2020). Zero-shot ingredient recognition
by multi-relational graph convolutional network. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(7), 10542-10550. https://doi.org/10.1609/aaai.v34i07.6626

Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph convolutional networks.
In International conference on machine learning (pp. 1725-1735). PMLR.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neural information processing systems. (Vol.
29).Curran Associates, Inc.

Donnat, C,, Zitnik, M., Hallac, D., & Leskovec, J. (2018). Learning structural node embeddings via diffu-
sion wavelets. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining. Association for Computing Machinery, New York, NY, United States.
https://doi.org/10.1145/3219819.3220025.

Duan, Y., Wang, J.,, Ma, H.,&Sun, Y. (2021). Residual convolutional graph neural network with subgraph
attention pooling. Tsinghua Science and Technology, 27(4), 653-663. https://doi.org/10.26599/TST.
2021.9010058

https://pytorch.org
https://github.com/tkipf/pygcn
https://github.com/xdxuyang/SelfSAGCN
http://orcid.org/0000-0001-7224-212X
https://doi.org/10.48550/arXiv.1706.02263
https://doi.org/10.1609/aaai.v34i01.5393
https://doi.org/10.48550/arXiv.1312.6203
https://doi.org/10.1080/09540091.2020.1841095
https://doi.org/10.1609/aaai.v34i07.6626
https://doi.org/(Vol. 29)
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.26599/TST.2021.9010058

CONNECTION SCIENCE (&) 1717

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019). Graph neural networks for social
recommendation. In The world wide web conference (pp. 417-426)., Association for Computing
Machinery, New York, NY, United States. https://doi.org/10.1145/3308558.3313488.

Feng, F., He, X,, Zhang, H., & Chua, T. S. (2021). Cross-GCN: Enhancing graph convolutional net-
work with k-Order feature interactions. IEEE Transactions on Knowledge and Data Engineering, pp.
1-1. https://doi.org/10.1109/TKDE.2021.3077524.

Gao, J,, Liu, X, Chen, Y., & Xiong, F. (2021). MHGCN: Multiview highway graph convolutional
network for cross-lingual entity alignment. Tsinghua Science and Technology, 27(4), 719-728.
https://doi.org/10.26599/TST.2021.9010056

Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An automatic citation indexing system. In
Proceedings of the third ACM conference on digital libraries (pp. 89-98), ACM. https://doi.org/
10.1145/276675.276685.

Gilmer, J,, Schoenholz, S. S, Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for
quantum chemistry. In International conference on machine learning (pp. 1263-1272). PMLR.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In
Advances in neural information processing systems (Vol. 30). Curran Associates, Inc.

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2), 129-150. https://doi.org/10.1016/
j.acha.2010.04.005

Hu, J.,, Wang, Z,, Chen, J,, & Dai, Y. (2021). A community partitioning algorithm based on network
enhancement. Connection Science, 33(1), 42-61. https://doi.org/10.1080/09540091.2020.1753172

Hu, N., Zhang, D., Xie, K., Liang, W., & Hsieh, M. Y. (2021). Graph learning-based spatial-temporal
graph convolutional neural networks for traffic forecasting. Connection Science, 34(1), 429-448.
https://doi.org/10.1080/09540091.2021.2006607.

Huang, L., Huang, Y., Ouyang, W., & Wang, L. (2020). Part-level graph convolutional network for
skeleton-based action recognition. Proceedings of the AAAl Conference on Artificial Intelligence, 34(7),
11045-11052. https://doi.org/10.1609/aaai.v34i07.6759

Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907

Levie, R., Monti, F., Bresson, X., & Bronstein, M. M. (2018). Cayleynets: Graph convolutional neural net-
works with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1), 97-109.
https://doi.org/10.1109/TSP.2018.2879624

Lian, S., & Tang, M. (2022). APl recommendation for Mashup creation based on neural graph collabora-
tive filtering. Connection Science, 34(1), 124-138. https://doi.org/10.1080/09540091.2021.1974819

Liao, R., Zhao, Z., Urtasun, R., & Zemel, R. S. (2019). Lanczosnet: Multi-scale deep graph convolutional
networks. arXiv preprint arXiv:1901.01484. https://doi.org/10.48550/arXiv.1901.01484

Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining (pp. 338-348), Associ-
ation for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3394486.
3403076.

Liu, M., Wang, Z., & Ji, S. (2021). Non-local graph neural networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1-1. https://doi.org/10.1109/TPAMI.2021.3134200.

McCallum, A. K., Nigam, K., Rennie, J., & Seymore, K. (2000). Automating the construction of internet
portals with machine learning. Information Retrieval, 3(2), 127-163. https://doi.org/10.1023/A:1009
953814988

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric deep learn-
ing on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 5115-5124). |EEE.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and
data mining (pp. 701-710), Association for Computing Machinery, New York, NY, United States.
https://doi.org/10.1145/2623330.2623732.

{~}https://doi.org/10.1145/3308558.3313488
{~}https://doi.org/10.1109/TKDE.2021.3077524
https://doi.org/10.26599/TST.2021.9010056
https://doi.org/10.1145/276675.276685
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1080/09540091.2020.1753172
https://doi.org/10.1080/09540091.2021.2006607
https://doi.org/10.1609/aaai.v34i07.6759
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1109/TSP.2018.2879624
https://doi.org/10.1080/09540091.2021.1974819
https://doi.org/10.48550/arXiv.1901.01484
https://doi.org/10.1145/3394486.3403076
https://doi.org/10.1109/TPAMI.2021.3134200
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1145/2623330.2623732

1718 J.QINETAL.

Qin, J,, Zeng, X, Wy, S., & Tang, E. (2021). E-GCN: Graph convolution with estimated labels. Applied
Intelligence, 51(7), 5007-5015. https://doi.org/10.1007/s10489-020-02093-5

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification
in network data. Al Magazine, 29(3), 93-93. https://doi.org/10.1609/aimag.v29i3.2157

Shang, C,, Tang, Y., Huang, J., Bi, J., He, X., & Zhou, B. (2019). End-to-end structure-aware convolu-
tional networks for knowledge base completion. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(1), 3060-3067. https://doi.org/10.1609/aaai.v33i01.33013060

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1),
1929-1958.

Veli¢kovi¢, P., Cucurull, G., Casanova, A., Romero, A, Lio, P., & Bengio, Y. (2017). Graph attention
networks. arXiv preprint arXiv:1710.10903. https://doi.org/10.48550/arXiv.1710.10903

Wang, L., Chen, J., Chen, Z, Liu, Y., & Yang, H. (2022). Multi-stream part-fused graph convo-
lutional networks for skeleton-based gait recognition. Connection Science, 34(1), 1252-1272.
https://doi.org/10.1080/09540091.2022.2026294.

Wang, X., Ji,H., Shi, C, Wang, B., Ye, Y., Cui, P., & Yu, P.S. (2019). Heterogeneous graph attention network.
In The world wide web conference (pp. 2022-2032), Association for Computing Machinery, New
York, NY, United States. https://doi.org/10.1145/3308558.3313562.

Wang, X, Liu, N., Han, H., & Shi, C. (2021). Self-supervised heterogeneous graph neural network with co-
contrastive learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery &
data mining (pp. 1726-1736), Association for Computing Machinery, New York, NY, United States.
https://doi.org/10.1145/3447548.3467415.

Weston, J., Ratle, F., Mobahi, H., & Collobert, R. (2012). Deep learning via semi-supervised embedding.
In Neural networks: Tricks of the trade (pp. 639-655). Springer. https://doi.org/10.1007/978-3-642-
35289-8_34

Wu, Y., Lian, D, Xu, Y., Wu, L., & Chen, E. (2020). Graph convolutional networks with markov ran-
dom field reasoning for social spammer detection. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(1), 1054-1061. https://doi.org/10.1609/aaai.v34i01.5455

Xu, K, Hu, W., Leskovec, J., &Jegelka, S. (2018). How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826. https://doi.org/10.48550/arXiv.1810.00826

Yang, L., Kang, Z., Cao, X, Jin, D., Yang, B., & Guo, Y. (2019). Topology optimization based graph
convolutional network. In 1JCAL (pp. 4054-4061). AAAI, Press.

Yang, X., Deng, C., Dang, Z., Wei, K., & Yan, J. (2021). SelfSAGCN: Self-supervised semantic alignment
for graph convolution network. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (pp. 16775-16784). IEEE.

Zhang, C,, Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous graph neural net-
work. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining (pp. 793-803), Association for Computing Machinery, New York, NY, United States.
https://doi.org/10.1145/3292500.3330961.

Zhao, C, Li, X, Shao, Z,, Yang, H., & Wang, F. (2022). Multi-featured spatial-temporal and dynamic
multi-graph convolutional network for metro passenger flow prediction. Connection Science, 34(1),
1252-1272. https://doi.org/10.1080/09540091.2022.2061915

Zhao, X., Wang, Z., Gao, L., Li, Y., & Wang, S. (2021). Incremental face clustering with optimal sum-
mary learning via graph convolutional network. Tsinghua Science and Technology, 26(4), 536-547.
https://doi.org/10.1109/TST.5971803

Zheng, C, Fan, X, Wang, C, & Qi, J. (2020). Gman: A graph multi-attention network for traf-
fic prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 34(1), 1234-1241.
https://doi.org/10.1609/aaai.v34i01.5477

Zhu,Q.,Du, B, &Yan, P.(2020). Self-supervised training of graph convolutional networks. arXiv preprint
arXiv:2006.02380. https://doi.org/10.48550/arXiv.2006.02380

https://doi.org/10.1007/s10489-020-02093-5
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aaai.v33i01.33013060
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.1080/09540091.2022.2026294
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3447548.3467415
https://doi.org/10.1007/978-3-642-35289-8_34
https://doi.org/10.1609/aaai.v34i01.5455
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1080/09540091.2022.2061915
https://doi.org/10.1109/TST.5971803
https://doi.org/10.1609/aaai.v34i01.5477
https://doi.org/10.48550/arXiv.2006.02380

	1. Introduction
	2. Related work
	2.1. Graph convolutional network
	2.2. Feature recommendation

	3. Preliminary knowledge
	3.1. Graph convolutional network
	3.1.1. Node aggregation
	3.1.2. Feature transformation

	3.2. Feature recommendation

	4. Feature recommendation strategy for graph convolutional network
	4.1. Overview of our proposed framework
	4.2. Feature recommendation module
	4.2.1. Node modelling
	4.2.2. Feature modelling
	4.2.3. Feature recommendation module training
	4.2.4. Feature prediction

	4.3. Low-weight feature replacement module
	4.4. GCN module and classification learning tasks

	5. Experiments
	5.1. Datasets
	5.2. Baseline
	5.3. Setup
	5.4. Experimental analysis
	5.4.1. Impact of the two methods
	5.4.2. Performance comparison
	5.4.3. Effect of embedding size
	5.4.4. Different number of sample_set
	5.4.5. Hyperparametric analysis

	5.5. Portability and generalisability
	5.6. Limitations

	6. Conclusion
	Notes
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

