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University of Technology, Kemivägen 10, 41258 Gothenburg, Sweden
8Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
9These authors contributed equally
10Lead contact

*Correspondence: jonrob@chalmers.se (J.L.R.), johan.rockberg@biotech.kth.se (J.R.)

https://doi.org/10.1016/j.celrep.2022.110936
SUMMARY
Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and
product quality. To investigate cellular and metabolic characteristics associated with these limitations, we
compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein
at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxida-
tive phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes
exhibit specific expression patterns depending on the recombinant protein and the production rate. In a
clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to nega-
tive regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO pro-
duction in a subset of clones by overexpression or small interferingRNA (siRNA) knockdown.Our results offer
potential target pathways and genes for further development of the secretory power in mammalian cell
factories.
INTRODUCTION

The demand for greater efficiency and quality of protein produc-

tion in biotechnology is rapidly increasing due to substantial ad-

vances in drug discovery (Tambuyzer et al., 2020) and the need

for highly effective pharmaceutical proteins for the treatment of

severe diseases, such as cancer (Kintzing et al., 2016). Chinese

hamster ovary (CHO) cells are the current standard host for the

production of a wide range of recombinant proteins partly due

to the ability to generate similar post-translational modifications

(PTMs) to those in humans, which is often a requirement for com-

plex therapeutic proteins (Orellana et al., 2015; Meleady 2017;

Davy et al. 2017). However, the PTM pattern from CHO cells

is not identical to human PTMs (Dumont et al., 2016) and the
This is an open access article und
incompatibility with some types of proteins negatively affects

drug efficacy, potency, or stability (Kuriakose et al. 2016; Goh

and Ng 2017). Therefore, besides further development of the

CHO cell line to meet the high-quality PTM requirements and

increased yields (Datta et al. 2013; Koffas et al., 2018; Liang

et al., 2020; Tejwani et al., 2018; Fouladiha et al., 2020; Wang

et al., 2020), a lot of focus on improving hosts for biopharmaceu-

tical production is on cell factories derived from human cells with

the natural ability of generating human PTMs, such as the human

embryonic kidney 293 (HEK293) cells (Almo and Love 2014;

Malm et al., 2020; Tegel et al., 2020).

Although human-derived cell lines benefit from the ability to

generate human PTMs, challenges still remain, such as

increasing the protein production titer (Chin et al., 2019; Dietmair
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et al., 2012; Mori et al., 2020) and creating a genetic engineering

toolbox with specialized tools for human cells (Xu and Qi 2019).

Recent publications have pursued some of these challenges,

including the aim to increase the protein production and secre-

tion power either by cell-line development approaches (Chin

et al., 2019; Rahimpour et al., 2013) or cell culture process opti-

mization (Schwarz et al., 2019), as well as to increase the quality

of the secreted proteins by engineering folding and PTM path-

ways (Meuris et al., 2014; Del Val et al., 2016; Liang et al.,

2020; Behrouz et al., 2020). However, despite the current knowl-

edge of protein production and secretion in eukaryotic cells,

there is still notable ambiguity in understanding and predicting

the production and secretion rates as well as product quality un-

der different conditions (Kafri et al., 2016; Liu et al. 2016). This is

due to the complexity and presence of many specific biochem-

ical steps across multiple cell organelles that orchestrate, as well

as define, the rates of production and secretion of each protein

(Kaufman and Popolo 2018; Kafri et al., 2016). Accordingly, the

limited understanding of the biology behind the protein produc-

tion process, combined with the continuously increasing de-

mands on production quantity from industry and product quality

from regulatory bodies, result in a high risk of production failure

for many therapeutic proteins.

In the present study, we conducted a transcriptomic compar-

ative analysis to capture physiological differences caused by

protein production and secretion in HEK293F cells. In order to

understand which differences are caused by protein production

and which arise from the secretion-related processes, we gener-

ated two groups of cells producing either the erythropoietin

(EPO) or the non-secretory protein GFP and compared each of

these groups with each other and with their parental cell lines.

EPO is naturally produced via the conventional secretory

pathway mainly in kidney cells in response to hypoxia and stim-

ulates red blood cell production in the bone marrow (Scholz

et al., 1990). Recombinant human EPO (rhEPO) is an important

treatment for chronic kidney disease and anemia (Santoro and

Canova 2005). Moreover, EPO serves as a model recombinant

protein with complex glycostructures and PTMs (Salgado

et al., 2015). In our study, we identified genes whose expression

correlated with recombinant EPO or GFP production and then

explored the biological functions associated with these genes.

Furthermore, we detected ribosomal genes with specific pat-

terns of expression correlating with EPO and GFP production.

Since the generation of single clones resulted in one clone with

greatly increased EPO production titer—a 3-fold increase

compared with the other clones—we set out to identify the rea-

sons behind these improved protein titers, highlighting genes

that can potentially facilitate increased protein production and

secretion in future studies.

RESULTS

EPO and GFP producer clones have an altered
metabolism compared with the host cell line
To investigate recombinant protein production in HEK293 cells,

we transfected 293-F cell lines to generate stable clones

producing either a secretory protein (EPO) or a non-secretory

protein (GFP) (Figure 1A). Initially, polyclonal pools of cells pro-
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ducing either EPO or GFP (EPOpoly and GFPpoly, respectively)

were generated by random integration of plasmid DNA into the

host genome resulting in collections of clones with various

transgene integration sites and copy numbers. From these

pools, five EPO-producing and seven GFP-producing clones

were isolated. We observed that the growth rates of the EPO

and GFP producers were lower than those of their respective

host cell lines, but the decrease was no more than 22% and

14% compared with the hosts (Figure 1B). Recombinant pro-

tein productivity was, however, markedly different among

clones and varied by almost 6-fold for the EPO producers

and up to 4-fold for the GFP producers (Figures 1C and 1D).

The most productive EPO clone (EPOF21) had a cell-specific

productivity of 13.9 pg/cell/day, which was over 3-fold higher

than the second highest producing clone EPO8 (4.05 pg/cell/

day), and, interestingly, its EPO mRNA abundance was up to

20% lower than for EPO8 (Figures 1E and S1A). Except for

this extraordinary production clone, we could measure signifi-

cant correlation (Pearson’s r = 0.99, p = 0.001) between EPO

mRNA amount and the secreted EPO productivity for all clones

(Figures 1E and S1B). There was a similarly high correlation

observed between mRNA copy number and GFP productivity

(Pearson’s r = 0.88, p = 0.004; Figure S1C) for the GFP pro-

ducer clones. For both EPO and GFP clones, no significant cor-

relation was found between protein productivity and gene copy

number or clone growth rate (Figures S1A–S1C).

We analyzed and compared transcriptomic data (Illumina

HiSeq) to find how the protein producer cell lines differ from their

respective parental host cell lines (Table S1). Principal compo-

nent analysis (PCA) clustered clones in the first component

based on their respective recombinant protein (EPO or GFP

Figures 1F and S1D). We performed pairwise differential expres-

sion analysis between each recombinant protein producer clone

and its respective host (Figures S1E–S1G; Table S1). Results of

this analysis (Figures S1E and S1F) showed, while in the EPO

producers EPOI2 had the highest number of differentially ex-

pressed (B.H. adj. p < 0.05, |L2FC| > 1) genes (1,137 genes up-

regulated and 82 genes downregulated), in the GFP producers

the GFP26 clone was the most different compared with control

cell line (487 genes downregulated, 466 genes upregulated).

We also found 45 and 10 common differentially expressed genes

in EPO and GFP producers with their control cell line, respec-

tively (Figure S1G).

Pathway enrichment analysis using the Ingenuity Pathway

Analysis (IPA) (Krämer et al., 2014) database (Figure 1G) showed

that genes associated with axonal guidance signaling and oxida-

tive phosphorylation exhibited consistent upregulation by most

of the recombinant protein producer clones. Apart from these

two pathways, eIF2 signaling and mTOR signaling pathways

were significantly (B.H. adj. p < 0.05) altered across all EPO pro-

ducers (Figure 1G). We observed different functional enrichment

patterns between EPO and GFP clones and also clones in each

group of EPO and GFP versus their parental cell line. However,

axonal guidance signaling and oxidative phosphorylation ex-

hibited a more similar pattern of change in comparison of pro-

ducer clones with their corresponding parental cell (Figure 1G).

Mitochondrial dysfunction, regulation of eIF4, p7056K signaling,

and sirtuin signaling pathways were significantly (B.H. adj.
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Figure 1. Isolated EPO and GFP single clones showed differences in productivity and altered gene expression related to oxidative phos-

phorylation and axonal guidance signaling

(A) Schematic diagram of the cell line development resulting in random integration and copy number of the EPO and GFP genes across the cell genomes.

(B) Boxplot of growth rates of EPO and GFP producer clones.

(C) Boxplot of specific productivity of EPO in different HEK293 clones.

(D) Scatter plot of relative productivity of GFP in the different clones in comparison to the polyclonal batch of the GFP clones (GFPpoly).

(E) Specific EPO productivity versus its mRNA expression in duplicate or triplicate in different clones.

(F) Principal component 1 in PCA analysis RNA sequencing (RNA-seq) data generated in duplicate and triplicate separates producer clones based on their

recombinant EPO or GFP.

(G) Most significantly (B.H. adj. p < 0.05) enriched pathways in pairwise comparison of EPO or GFP producers against the control hosts.
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p < 0.05) altered inmore than three out of five EPOproducers. On

the other hand, gene enrichment analysis of GFP producers

against their parental 293-F cell line did not reveal any common

pathways enriched across all the cell lines. However, synapto-

genesis signaling andGP6 signaling pathways indicated a signif-

icant change (B.H. adj. p < 0.05) in at least four out of seven of the

GFP producers (Figure 1G). IPA indicated some of the signifi-

cantly upregulated (B.H. adj. p < 0.05) genes related to transla-

tional and post-translational pathways were enriched in eIF2

and mTOR signaling pathways in EPO producers compared

with the control cell line (Figures 1G and S2). An increase in the

expression of genes associated with translation was predicted

to activate downstream processes, including protein folding,

ER stress, and apoptosis, as well as upstream processes,

such as amino acid biosynthesis (Figure S2).

Expression of ribosomal genes differs between EPO and
GFP producers
We sought to find genes that significantly correlated with EPO

and GFP production and investigate their roles in the process
of recombinant protein production. For this purpose, we first ex-

tracted genes with an average transcript per million (TPM) above

10 across all cell lines in each group of EPO and GFP clones and

then considered positively and negatively correlated (|Spearman

r| > 0.5, p < 0.05) genes. Altogether, we found 67 and 126 genes

with positive and negative correlation with EPO production and

18 and 130 genes revealed positive and negative correlation

with GFP production (Figure 2A; Table S2). To find themajor reg-

ulators among the genes highly correlated (mean TPM > 10, |

Spearman r| > 0.5, p < 0.05) with either EPO or GFP productivity,

we generated interaction networks between the genes and their

first-order interacting partners based on experimental evidence

(confidence score >900) extracted from the STRING database

(Szklarczyk et al., 2019) (Figures 2A and Table S2). We excluded

those interacting genes that are not expressed in our dataset or

have very low expression (mean TPM < 10) and then ranked the

genes based on their node degree (k), which measures the inter-

activity of each gene based on the number of observed interact-

ing gene partners. The k of the top 10 most interactive genes

(Figure 2A: network hubs) ranged from 61 to 226 and 94 to 251
Cell Reports 39, 110936, June 14, 2022 3
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Figure 2. Translational and post-translational genes are strongly correlated with EPO production

(A) Most significantly (mean TPM >10, |Spearman’s r| > 0.5, p < 0.05) correlated genes with EPO or GFP production. Red and blue circles show positive and

negative correlated genes, respectively.

(B) Gene set enrichment analysis of positively correlated genes with EPO production highlights biological GO terms that mostly associated with ribosome

biogenesis, rRNA processing, and cytoskeleton reorganization, while negatively correlated genes with EPO production are mostly associated with ubiquitin

biosynthesis.
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in the networks of EPO- andGFP-correlating genes, respectively

(Table S2).

Among the top 10 interacting genes in the network of EPO-

correlating genes, three of them were directly involved in trans-

lation. RPL32 (r = 0.88, k = 94) and RPL35A (r = 0.88, k = 77),

both components of cytosolic ribosomal subunits, were posi-

tively correlated with EPO production (Colombo et al. 1996;

Anger et al., 2013) (r = 0.88, k = 73). Also, SNU13, a highly

conserved nuclear protein involved in pre-mRNA splicing,

showed a positive correlation with EPO production (Bertram

et al., 2017). To investigate enriched pathways by significantly

correlated genes, we used biological Gene Ontology (GO) terms

and performed gene enrichment analysis using detected

genes with a significant correlation with EPO production (Fig-

ure 2B, HyperGSA, p < 0.05). Pathways associated with ribo-

some biogenesis (p = 0.00004076) and RNA processing

(0.0001966 < p < 0.0005302) exhibited significant enrichment

by positively EPO-correlated genes. Likewise in GFP-correlated

genes, nine out of the top 10 hub genes were associated with the

ribosomal compartment, but all indicated negative trends of

expression with increasing GFP production (�0.88 < r < �0.78,

93 < k < 134; Figure 2A; Table S2).

We also performed Pearson correlation analysis to find over-

laps and differences compared with the Spearman rank-based

correlation approach (Figures S3A and S3B). Results of the Pear-

son correlation analysis revealed, altogether, 223 and 93 genes

were positively and negatively correlated with EPO production,

respectively, and 99 and 19 genes were positively and negatively

correlated with GFP production, respectively (Figure S3C, mean

TPM >10, |Pearson’s r| > 0.5, p < 0.05). Similar to the Spearman

analysis, we found major regulators among the genes highly

correlated (mean TPM >10, |Pearson’s r| > 0.5, p < 0.05) with

either EPO or GFP productivity by generating interaction net-

works (Figures S3D and S3E; Table S2). Four out of the top 10

interacting genes in the network of EPO-correlating genes

were involved in translation. RPL38 (r = �0.89, p = 0.01,

k = 73) and RPS9 (r = �0.91, p = 0.01, k = 88), both components

of cytosolic ribosomal subunits, were negatively correlated

with EPO production (Kondrashov et al., 2011), while MRPS11

(r = 0.9, p = 0.01, k = 71), a mitochondrial ribosomal gene, and

EFL1 (p = 0.82, r = 0.04, k = 48), involved in 60S ribosomal sub-

unit biogenesis (Thomson et al., 2013), were positively corre-

lated. Similarly, with GFP producers, we observed a negative

trend of expression in genes involved in translation with

increasing GFP production. Likewise, four out of the top 10

genes (EEF2, EEF1G, RPL3, and RPL4) with the highest number

of interactions in the network of GFP-correlating genes, serving

as translation factors or components of the ribosomal large sub-

unit, were negatively correlated (Pearson’s r < �0.7, p % 0.05,

94 < k < 202) with GFP production. Analysis of the corresponding

biological GO terms (HyperGSA, p < 0.05; Figures S3F and S3G)

for the EPO-correlating genes identified protein N-linked

glycosylation as the top enriched GO term with positively EPO-

correlated genes (HyperGSA, p = 0.01366; Figure S3F). Investi-

gation of associated genes with this pathway highlighted seven

genes that are positively correlated with EPO production and

are involved in N-linked glycosylation (Figure S3F). KRTCAP2

(p = 0.02, Pearson’s r = 0.85) and OST4 (p = 0.003, Pearson’s
r = 0.95) both are subunits of oligosaccharyltransferase (OST)

complex that catalyzes the initial transfer of a defined glycan

from dolichol-pyrophosphate to the nascent polypeptide chains

(Roboti and High 2012; Dumax-Vorzet et al. 2013). MGAT4A

(p = 0.03, Pearson’s r = 0.84) also regulates the formation of multi

antennary branching structures in the Golgi apparatus (López-

Orduña et al. 2007). MPDU1 (p = 0.01, Pearson’s r = 0.89),

ALG12 (p = 0.007, Pearson’s r = 0.92), and ALG3 (p = 0.009,

Pearson’s r = 0.91) are involved in mannose transfer in the pro-

cess of protein glycosylation (Kranz et al., 2001). However,

UBE2J1 (p = 0.01, Pearson’s r = 0.88) is involved in modification

of proteins with ubiquitin and targeting abnormal proteins for

degradation (Elangovan et al., 2017). Positive correlation of all

these genes with EPO production may highlight some changes

that happen in PTM processes coordinated with higher EPO

production.

Although the individual correlated genes detected by the

Pearson and Spearman approaches exhibited differences (Fig-

ure S3A), pathways related to translation and ribosome biogen-

esis were among the most significantly enriched (HyperGSA,

p < 0.05) by both approaches (Figures 2B, S3F, and S3G).

Furthermore, nine out of 10 hubs of the Spearman GFP-corre-

lation network were ribosomal proteins (Figure 2A). This

suggested that, in general, gene expression associated with

translation processes is adopted in each group of EPO and

GFP producers to support their specific needs imparted by

their particular recombinant protein. To follow this observation,

we investigated the expression of ribosomal genes in pairwise

comparison of each clone with its respective control

(Figures S4A and S4B). GFP producers did not share common

differentially expressed ribosomal genes (B.H. adj. p < 0.05;

Figure S4C). However, EPO producers showed 22 common

differentially expressed (p < 0.05) ribosomal genes with at least

50% increase in their expression in comparison with control

(Figure S4D). The functionality of these genes is mostly related

to signal recognition particle (SRP)-dependent co-translational

protein targeting the membrane. This suggests EPO producers

have increased the share of genes related to co-translational

protein targeting to membrane in their ribosomes to facilitate

EPO production.

EPO production results in a restructured cellular
metabolism
We sought to understand which changes in the protein pro-

ducers were due to the production of secretory EPO and which

were common to all producers. PCA of the EPO and GFP tran-

scriptomics data identified marked differences between EPO

and GFP producers (Figure 1F), where a complete separation

of EPO and GFP clones with the first principal component

(34% of variance explained) showed that the transcriptomics

data could capture differences between the secretory EPO and

non-secretory GFP producers. We found 986 (922 up- and 64

downregulated) differentially expressed genes (adj p < 0.05, |

Log2 fold change [L2FC ]| > 1) between EPO andGFP producers.

Gene set enrichment analysis (Figure S5A) showed that, for the

EPO producers, beside gene sets specific for secretory protein

production such as proteins targeting the ER or the cell mem-

brane, genes associated with the oxidative phosphorylation
Cell Reports 39, 110936, June 14, 2022 5
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pathway were significantly (B.H. adj. p < 0.05) upregulated

(Figure 3A).

To further explore the increased oxidative phosphorylation in

gene expression among EPO producers, we investigated

expression changes in genes associated with mitochondria (Fig-

ure 3A). All differentially expressed genes (B.H. adj. p < 0.05)

involved in oxidative phosphorylation exhibited increased

expression in EPO producers. The upregulated genes are asso-

ciated with all complexes in the electron transport chain except

for complex II, which facilitates the donation of electrons from

FADH2. Higher gene expression in NADH dehydrogenase (com-

plex I) followed by an increase in genes associated with complex

III and complex V, could lead to higher ATP production (Fig-

ure 3A). All genes of mitochondrial origin across the electron

transport chain (ETC) complexes exhibited at least a 2-fold

increase in their expression (Figure S3A: genes with names

starting with MT-). Apart from upregulation of mitochondrial

genes, other genes that are expressed from the nuclear genome

and are associated with oxidative phosphorylation also had a

significant (B.H. adj. p < 0.05) expression increase in EPO pro-

ducers (Figure 3A). To translate the findings to biological function

and to investigate other possible differences in metabolism

between EPO-producing cells versus GFP producers, we

measured cellular metabolism using extracellular flux analysis

(Figures 3B, 3C, S5B, and S5C). Using this technique, we could

simultaneously monitor both metabolic branches of cellular ATP

production, namely mitochondria and aerobic glycolysis. Here,

we found that EPO-producing cells indeed have higher basal

and maximal oxygen consumption rate (OCR) compared with

GFP-producing cells (Figures 3B and S5B). Moreover, we found

that aerobic glycolysis and pyruvate conversion to lactate (extra-

cellular acidification rate [ECAR]) was higher in EPO-producing

clones compared with the GFP clones investigated as well as

the parental cells (Figures 3C and S5C). This suggests that the

findings at the gene expression level regarding oxidative phos-

phorylation are translated into an increase in metabolic function

in EPO-producing cells and, together with an increase in aerobic

glycolysis, an increase in energy production.

Genes negatively regulating ER stress are upregulated
in EPO high-producer clone
Besides the observations regarding differences between mRNA

copy number and protein productivity in EPOF21 in comparison

with other EPO producers (Figure 1E), differences in transcrip-

tion and translation as well as post-translational pathways might

have affected protein productivity. In order to find genes and
Figure 3. Cellular metabolism is restructured to meet the energy dema

(A) The oxidative phosphorylation pathway was significantly (B.H. adj. p = 0.03)

alization of upregulated genes and their role in increasing ATP production show

NDUFA6, NDUFB1, and NDUFA4 in complex I; COX7B andCOX7A2 in complex II

expression increase in EPO producers compared with GFP producers.

(B) Comparison of oxygen consumption rate (OCR) of clones shows

fluoromethoxyphenylhydrazone) sensitive respiration in EPO clones versus GFP

(C) Comparison of extracellular acidification rate (ECAR) highlights an increased

Data are represented bymean + confidence interval [CI], and statistical significanc

a (significance versus GFP polyclone), b (GFP1), and c (GFP27). Each single dot re

gray) represent single experiments (n = 3).
pathways with altered patterns of expression, we first conducted

pairwise differential expression analysis to find which genes are

differentially expressed between EPOF21 and other EPO pro-

ducers (Figure S6A). All clones revealed a statistically significant

change (B.H. adj. p < 0.05) in EPO gene expression compared

with EPOF21. However, logarithmic fold changes of EPO were

different in each pairwise comparison of EPO clones with

EPOF21, and only in EPOI2 did the EPO gene expression pass

our arbitrary cutoff (L2FC > 1). The number of downregulated

differentially expressed genes (B.H. adj. p < 0.05, L2FC < �1)

varied between 186 (EPOF21 versus EPOI2) and 491 (EPOF21

versus EPO8), and the number of upregulated genes (B.H. adj.

p < 0.05, L2FC > 1) showed a variation between 113 (EPOF21

versus EPOI2) and 792 (EPOF21 versus EPO8) genes (Fig-

ure S6A). We also found 44 common differentially expressed

genes in comparisons of each of the EPO producer clones

against EPOF21. Gene set enrichment analysis between

EPOF21 and the other EPO producer cell lines (Figures S6B

and S6C) indicated that many common changes between

EPOF21 and the other EPO producers were related to post-

translational pathways. To obtain extended gene sets spanning

pathways related to protein secretion, we used a set of secretory

protein machinery genes that are defined as core genes involved

in protein secretion in human cells (Feizi et al., 2017; Gutierrez

et al., 2020), and then searched for all GO pathways (Liberzon

et al., 2011) that contained a significant (B.H. adj. p < 0.05) num-

ber of these genes (HyperGSA). This collection of gene sets was

then used to compare the different EPO producer cell lines (Fig-

ure 4A: top altered pathways in at least one of the comparisons).

Interestingly, when comparing EPOF21 with all other cell lines,

we observed marked differences between the EPO8 cell line

and the other EPO producers, which could have resulted from

differences in EPO mRNA expression levels between EPO8

and the other cell lines (Figure 1E). Furthermore, the upregulated

pathways in EPOF21 compared with all other EPO producers

except EPO8 indicated a marked increase in expression of

gene sets related to the ER and handling of misfolded proteins

(Figure 4A).

To further investigate specific differences between EPOF21

and the other EPO producers, we analyzed which genes ex-

hibited a significant pattern of differential expression (B.H adj.

p < 0.05, L2FC > 1, mean TPM > 10) between EPOF21 and other

EPO clones. Of the 19 genes that displayed a consistent pattern

of change, five were upregulated and 14 downregulated (Fig-

ure 4B). Among the upregulated genes, ATF6B is a transcription

factor active under ER stress conditions due to accumulation of
nds of EPO production

upregulated in EPO producers compared with GFP producers. Detailed visu-

s, apart from upregulation of mitochondrial encoded genes, other genes like

I; and ATP5MD and ATP5F1E in complex V have a significant (B.H. adj. p < 0.05)

an increase in basal, oligomycin, and FCCP (carbonyl cyanide-p-tri-

clones.

basal and oligomycin induced aerobic metabolism of EPO versus GFP clones.

e was calculated between each EPO andGFP clones and represented by using

presents a single technical replicate and different dot colors (white, black, and
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unfolded proteins (Thuerauf et al. 2004), whereas FN1 and INA

share a role in extracellular matrix assembly (Singh et al. 2010).

The gene with the highest positive fold change between

EPOF21 and other EPO producers, AC116533.1, is a pseudo-

gene of the ribosomal gene RPL36A, a ribosomal protein shown

to play a role in ribosome biogenesis in yeast (Wan et al. 2015).

Downregulated genes covered a wider spectrum of pathways,

including apoptosis and growth regulation (LGALS1, G0S2,

and EML2), nucleosome organization (HIST2H4A and SAMD1),

metabolism of nucleotides (NME1 and NME2), protein folding

(HSPA1A and HSPA1B), and vesicle trafficking (EHBP1L1).

Also, ID1 and NPAS1 play roles in transcription regulatory path-

ways (Erbel-Sieler et al., 2004; Sikder et al., 2003), and TSSC2 is

a pseudogene and a homologue to the Asparagine-Linked

Glycosylation 1 (ALG1) gene in yeast (Jaeken et al. 2015).

As gene sets related to ER stress and/or unfolded proteins

were identified as significantly enriched among secretion GO

slims, we investigated the common significantly up- or down-

regulated (B.H adj. p < 0.05) genes within these categories

(response to endoplasmic reticulum [ER] stress, cellular

response to topologically incorrect protein. and negative regu-

lation of response to ER stress) between EPOF21 and the

other EPO clones (Table S3). The most upregulated gene in

EPOF21 compared with the other clones within these gene

sets was ATF6B, also identified as one of the top most upre-

gulated genes among all genes (Figure 4B). Interestingly, nine

out of 10 genes belonging to the gene set of negative regula-

tion of response to ER stress were found to be upregulated in

EPOF21 compared with the other EPO producers. Besides

ATF6B, other significantly upregulated genes in EPOF21 of

this gene set included CLU, SYVN1, WFS1, HYOU1,

PPP1R15A, UBE2J1, DERL2, and TMBIM6. As ATF6B stands

out as one of the most differentially upregulated genes in

EPOF21, we evaluated the effect of ATF6B on EPO production

in high and low EPO producers. Overexpression of ATF6B in

the low-producing clone EPOI2 resulted in an increased trend

of specific EPO productivity (Figures 4C and S7A), whereas

small interfering RNA (siRNA) silencing of ATF6B expression

in the high producer EPOF21 showed a negative trend in volu-

metric EPO titers with lower ATF6B expression levels

(Figures 4E and S7C). In the case of siRNA experiments, a

lot of cell cluster formation, regardless of siRNA, prevented

reliable cell counting and hence the specific productivity was

not possible to determine. Even though changes in EPO

expression were not significant (ANOVA one-way followed

by Dunnett’s test) in any of the experiments, collectively the

trends in EPO production indicates that ATF6B may play a

role in regulating the ER stress as a result of a high level of re-

combinant EPO entering the ER, aiding increased EPO secre-

tion in the EPOF21 clone. Hence, ATF6B and other genes

negatively regulating ER stress serve as potential cell line
Figure 4. Post-translational pathways are different between EPO prod

(A) Significantly enriched GO terms in pairwise comparisons of EPOF21 and oth

(B) Gene expression levels of the most significant (B.H. adj. p < 0.05) consistently d

shows genes with upregulation in EPOF21 and blue genes are downregulated in

(C and D) EPO protein volumetric titers in supernatants (mean ± SD, n = 3) at day 3

(D) with an expression vector encoding rATF6B or an empty vector control, or (D) th
engineering targets for improved recombinant productivity in

HEK293 cells.

DISCUSSION

In the present study, we generated two groups of clones produc-

ing either EPO or GFP at different levels (Figure 1A). EPO and

GFP were chosen due to their different characteristics (i.e., final

cellular location) in order to study the pathways behind protein

production and differences caused by protein secretion. Indeed,

analysis of the clonal transcriptomics data, where both clonal

variation and the recombinant protein type were captured by

the most informative first principal component (Figure 1F), sug-

gests that the design of the experiment was appropriate for

exploring both the protein production and secretion stages.

However, despite individual HEK293 clones showing different

productivities as well as different gene expression profiles

(Figures 1C–1E and S1A), both transcription and translation

were very well synced (Figure S1B). Thus, all of the clones except

EPOF21, a clone with over 3-fold higher production levels

compared with the next highest EPO producer (Figure 1E), had

an almost equal ratio of secretion of the recombinant protein

versus transcription of the recombinant gene (Figure 1E). The

higher ratio in EPOF21 (in relation to the other clones) indicated

that major translational and post-translational processes were

affected. This suggests that, although all clones were useful to

study the effects related to non-secretory and secretory protein

production as well as their differences, the extraordinary

EPOF21 clone was particularly valuable in further pinpointing

major limiting parameters within secretory protein production,

which can in turn help to improve the general overall productivity

of cell factories.

Analysis of transcriptomic data between protein producer

hosts and control parental cells showed upregulation of oxida-

tive phosphorylation in the majority of the clones regardless of

the transgene or level of recombinant protein production (Fig-

ure 1G), which suggests a high energy metabolism requirement

to support transgene expression. Moreover, significant upregu-

lation of genes linked to oxidative phosphorylation was observed

when comparing EPO producers with GFP producers (Fig-

ure S5A), suggesting that the post-translatory secretory path-

ways in EPO clones may impose an even higher energy demand

(Gutierrez et al., 2020). Simultaneous upregulation of genes en-

coded in both the mitochondria and nucleus highlight that the in-

crease in transcription of genes involved in energy production is

governed by some cellular metabolic master regulator (Fig-

ure 3A). The potentially increased demand for energy in EPOpro-

ducers compared with GFP producers is reflected by an in-

crease in respiration and aerobic glycolytic pathway, which

can also increase energy production. Alternatively, the increased

energy production in EPO clones could be also related to the
ucer clones

er EPO producers using GO slim secretion.

ifferentially expressed genes between EPOF21 and other EPO producers. Red

EPOF21.

in cultivation after transfection of the low-producer clones EPOI2 (C) and EPO7

e high-producer EPOF21 clone with ATF6B siRNA or a negative control siRNA.
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intrinsic molecular differences between EPO and GFP or the

result of the general absence of secretory energy requirements

in GFP producers. For instance, there are 114 different

N-linked and O-linked reported structures for EPO (Alocci

et al., 2019), but the complexity of post translational processing

for GFP is simpler in general (Barondeau et al., 2003). Alterna-

tively, as EPO itself acts as a signaling molecule, it could poten-

tially impart regulatory effects on EPO-producing clones, such

as increased oxidative phosphorylation activity (Plenge et al.,

2012). However, EPO activity relies on the presence of the

EPO receptor (EPOR), which is generally restricted to erythroid

progenitor cells. Furthermore, a study of EPOR expression and

activity by Ott et al. (2015) detected no EPOR protein in

HEK293 cells unless they were transfected with an EPOR over-

expression vector. Accordingly, the EPOR expression in our da-

taset did not correlate with EPO production (Figure S8A),

and, furthermore, there was no significant difference in the

expression of this gene between EPO producers and GFP pro-

ducers or between EPO producers and their control cell line

(Figures S8A–S8D). Moreover, we did not detect any significant

difference (B.H adj. p < 0.05, L2FC > 1) in expression of down-

stream genes in the EPOR signaling pathway (Figure S8E) in

comparing the transcriptomes of EPOF21 and other EPO pro-

ducers (Figure S8F). We therefore reason that the transcriptional

changes observed in EPO-producing clones are likely to be

associated primarily with differences in secreted protein produc-

tion rather than EPO-EPOR signaling, although an effect from

signaling cannot be entirely ruled out.

In EPO-clones, significant upregulation of genes belonging to

the eIF2 and mTOR signaling pathways could lead to activation

of translation (Figure S2A). The eIF2 initiation complex is active in

translation initiation in eukaryotic cells and plays a role in stabi-

lizing the preinitiation complexes through binding to mRNA,

GTP, methionine tRNA, and finally the 40S ribosomal subunit,

to generate the 43S preinitiation complex (Hinnebusch 2011;

Wek et al. 2006; Stolboushkina and Garber 2011; Schmitt et al.

2010). Likewise, activation of the mTORC1 module in the

mTOR signaling pathway (Figure S2B) could promote protein

synthesis and profoundly increase cellular ATP level by control-

ling mitochondrial biogenesis (Laplante and Sabatini 2009).

We detected a negative trend in the expression of some cyto-

solic ribosomal genes (Figures 2A and S3E) with increasing GFP

production levels. The observed decrease in the expression of

some ribosome-associated genes could be a result of an

induced stress due to higher levels of translation, or it could indi-

cate a rearrangement in the profile of ribosomal components.

The latter is known as ribosome heterogeneity (Genuth and

Barna 2018b), which considers ribosomes as dynamic macro-

molecular complexes that use a variation of different compo-

nents in their structure to fit with desired specialized functions

(Genuth and Barna 2018a). It has previously been shown that

specialized ribosomes can preferentially translate different sub-

sets of mRNAs (Shi et al., 2017). Moreover, looking into associ-

ated biological GO terms of positively correlated genes with

EPO production showed an enrichment of ribosome biogenesis

and rRNA metabolic processes (Figure 2B). Our observations

highlight the presence of both upregulated and downregulated

ribosome-related pathways in EPO and GFP producers
10 Cell Reports 39, 110936, June 14, 2022
(Figures 2 and S3) and pinpoint transgene-specific correlations

between expression levels of different ribosomal genes and the

respective recombinant protein titers (Figure S4). These results

could suggest that cells decrease the expression of some ribo-

somal components in a transgene-specific manner, in favor of

more convenient production of the specific recombinant protein.

Focusing on the differences between high producer EPOF21

clone and other EPO producers, we observed that the majority

of differences are in the post-translational steps, including pro-

tein folding, PTMs, and handling ofmisfolded proteins (Figures 4,

S6B, and S6C). Indeed, in accordance with the increase of EPO

transcripts in the EPOF21 clone, post-translational and ER-

related pathways, such as negative regulation of ER stress,

were upregulated in EPOF21, compared with other EPO clones

with lower EPO transcript levels (Figure 4A). However, the

EPO8 clone, with almost 20% higher EPO transcript than

EPOF21 (Figures 1E and S1A), did not display an increased ac-

tivity in some of the ER-associated pathways compared with

EPOF21. This indicates that a higher expression of the recombi-

nant gene without the support of post-translational steps is not

only inefficient but can even cause problems with protein

expression and lead to lower protein productivity. Furthermore,

protein N-linked glycosylation was the highest enriched pathway

with positively EPO-correlating genes (Figure S3D). Since EPO is

a highly glycosylated protein (Falck et al., 2017) and these genes

have a role in N-linked glocalization and also indicate a signifi-

cant positive correlation with EPO expression, their higher

expression could support an increase in the EPO production

level.

To find the regulatory elements behind the higher activity of

post-translational pathways in EPOF21, we investigated genes

with a consistent pattern of change between EPOF21 and other

EPO producers. Among the top upregulated genes in EPOF21

was ATF6B (Figure 4B). ATF6B is integrated within the ER mem-

brane under normal conditions, but, during ER stress conditions,

the cytoplasmic N-terminal domain is cleaved and the protein

enters the nucleus to activate ER stress response genes (Thuer-

auf et al. 2004; Iurlaro andMuñoz-Pinedo 2016). Although ATF6B

and its isomer ATF6A both activate the ER stress response

genes (ERSRG), ATF6B represses the strong effect of ATF6A,

and through this regulation causes a moderated activation of

the ER stress response in comparison with ATF6A (Correll

et al., 2019; Koul et al., 2017). Moreover, a previous study indi-

cated that targeting ATF6A using a microRNA (miR-1287)

enhances productivity in CHO cells producing a therapeutic anti-

body (Pieper et al., 2017), wheremiR-1287 had a very similar role

to ATF6B in competing with and suppressing ATF6A to decrease

the ER stress response. Additionally, it has previously been re-

ported that continued ER stress causes higher expression of

genes involved in the folding process (Jäger et al., 2012).

Accordingly, activation of ATF6A during unfolded protein

response (UPR) condition induces upregulation of heat shock

proteins such as HSPA1A and HSPA1B (Gargalovic et al.,

2006; Lee et al., 2003). Thus, downregulation of the stress-induc-

ible chaperones HSPA1A and HSPA1B in EPOF21 (Figure 4B)

could suggest a moderate level of ER stress in this clone,

capable of supporting a high level of protein secretion, poten-

tially governed by the higher expression of ATF6B. Indeed,
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ATF6B expression knockdown in the high-producer clone, and

rATF6B overexpression in low producers, suggested a role for

the ATF6B transcription factor in enhancing EPO production in

293-F cells (Figures 4C and 4D). Other genes with negative reg-

ulatory roles during ER stress, which were upregulated in the

high-producer clone compared with low-producers, were, for

instance, CLU, encoding clusterin, and SYVN1, encoding E3

ubiquitin-protein ligase synoviolin. Clusterin is suggested to pro-

tect cells from apoptosis during ER stress, for instance by

inducing autophagy (Lee et al., 2019), whereas SYVN1 also pro-

tects cells from apoptosis and is involved in degradation of mis-

folded proteins (Yamasaki et al., 2007; Kaneko et al., 2002).

Another interesting example of an upregulated gene with nega-

tive regulatory effect on ER stress was PPP1R15A or GADD34,

shown to reverse eIF-2a-induced inhibition of protein translation

upon ER stress (Brush et al. 2003). The over-representation of

genes involved in negative regulation of ER stress that are upre-

gulated compared with downregulated in EPOF21 compared

with low producer clones, combined with the functional valida-

tion of the effect of ATF6B on EPO productivity, suggest that

EPOF21 may enable higher EPO production through a more

balanced ER stress response.

In conclusion, the present study offers important insights into

transcriptomic changes during secretory EPO and non-secre-

tory GFP production as well as key parameters influencing the

different rates of protein production across a variety of producer

clones. The results are thus valuable for improving our under-

standing of the biology behind protein secretion in mammalian

cells and the behavior of cells under ER stress conditions. More-

over, the key differences uncovered between high- and low-pro-

ducing EPO clones are potentially useful for future targeted

cell-line engineering to improve therapeutic protein production.

Limitations of the study
We report enhanced metabolism and negative regulation of ER

stress to support higher EPO production through studies of sta-

ble HEK293 clones and pools of varying production levels of EPO

and GFP. While experimentally confirming transcriptomics find-

ings by both upregulation and silencing of genes and functional

measurements, we believe further fine-tuning of key genes could

strengthen our claims further. As alluded to in the discussion,

part of the observed differences between clones could reflect

the intrinsic functionality of recombinant proteins in cell meta-

bolism andmight not be a direct result of the secretion properties

of the recombinant protein. Despite our reported attempts to

pinpoint such effects for EPO, a more complete analysis could

allow for such elucidation, which would make our conclusions

more widely applicable for other proteins.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-ATF6B, HPA046871 Kindly provided by the Human

Protein Atlas

https://www.proteinatlas.org

Monoclonal anti-FLAG M2 antibody produced

in mouse

Sigma Aldrich Cat# F3165, clone M2

Anti-GAPDH (5H11) antibody AbClon Cat# AbC-1001

Swine anti-rabbit immunoglobulins/HRP Agilent Cat# p039901-2

Goat anti-mouse immunoglobulins/HRP Agilent Cat# P044701-2

Chemicals, peptides, and recombinant proteins

Immobilon Western Chemiluminescent HRP

Substrate

Merck Millipore Cat# WBKLS0100

Critical commercial assays

Illumina HiSeq www.illumina.com

Targeted Locus Amplification (de Vree et al. 2014) www.cergentis.com

RNAlater(TM) stabilization solution, Invitrogen Thermo Fisher Scientific Cat# AM7024

293Fectin(TM) Transfection reagent Thermo Fisher Scientific Cat# 12347019

DsiRNA hs.Ri.ATF6B.13.1 Integrated DNA Technologies (IDT) Cat# hs.Ri.ATF6B.13.1

Negative control DsiRNA Integrated DNA Technologies (IDT) Cat# 51-01-14-04

Mem-PER(TM) plus membrane protein

extraction kit

Thermo Fisher Scientific Cat# 89842

Deposited data

Transcriptome data This paper Sequence Read Archive (SRA), BioProject:

PRJNA834597

Codes for analysis This paper Zenodo: https://zenodo.org/record/6519745#.

YnN_TPNBwUE

https://doi.org/10.5281/zenodo.6519745

Experimental models: Cell lines

293-F Thermo Fisher Scientific Cat# 11625019

Freestyle 293-F Thermo Fisher Scientific Cat# R79007

Softwares and algorithms

The R Project www.r-project.org

MATLAB R2017b The MathWorks, Inc. mathworks.com/products/matlab.html

Bioconductor (Gentleman et al., 2004) www.bioconductor.org/

DESeq2 (Love et al. 2014) R Bioconductor

PIANO (Väremo et al. 2013) R Bioconductor

IPA� QIAGEN Inc. digitalinsights.qiagen.com/

MSigDB database (Liberzon et al., 2011) www.gsea-msigdb.org/gsea/msigdb
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the LeadContact, Johan Rockberg (johan.

rockberg@biotech.kth.se).

Materials availability
Generated cell lines can be shared upon request but may be limited due to our need to maintain the stocks.
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Data and code availability
d Code and datasets to reproduce the figures presented here as well as all analysis outputs, are available on GitHub repository:

https://zenodo.org/record/6519745#.YnN_TPNBwUE. DOI is listed in the key resources table (https://doi.org/10.5281/zenodo.

6519745).

d Data files too large to host on GitHub were deposited on Sequence Read Archive (SRA), BioProject: PRJNA834597.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The HEK293 derived suspension cell lines 293-F and Freestyle 293-F (Thermo Fisher Scientific) have been used in this study to

generate stable cell clones expressing GFP or EPO.

METHOD DETAILS

Cell line generation and cultivation
HEK293 cell lines 293-F and Freestyle 293-F were cultivated in Freestyle 293 expression medium (Gibco, Thermo Fisher Scientific) at

37�C, 125 rpm and 8%CO2. Stable cell clones expressing EPO orGFPwere generated by transfection of linearized pD2529 plasmids

(Atum), expressing either recombinant human EPO fused to a C-terminal HPC4-tag or recombinant GFP, into Freestyle 293-F (for

EPO clones) or 293-F (for GFP clones) cell lines. Transfections were carried out using PEI at a DNA:PEI ratio of 1:3 and 1 mg plasmid

per 1million cells. Polyclonal batches of cells expressing GFP and EPO, respectively, were generated by puromycin selection. Single

clones of HEK293 cells expressing EPO or GFP were generated from the polyclonal batches by seeding single cells per well of

384-well plates by either limiting dilution or FACS (Astrios, Beckman Coulter). In case of GFP-expressing cells, sorting by FACS

was performed based on the GFP-signal. Verification of cell monoclonality was performed by microscopy (Leica DMI6000B). Single

cells were expanded in 1.5% HEPES and growth media at 37�C and 8% CO2. Cells of single clones were seeded at 0.3 million cells/

mL in duplicates per clone and cultivated for 72 hours in 125 mL Erlenmeyer shake flasks with vented caps at 125 rpm, 37�C and 5%

CO2. Every 24 hours cell growth and viability were determined using a TC20 cell counter (Bio-Rad Laboratories). At 72 hours post

inoculation, cell and supernatant samples were collected for downstream analysis. Cell samples for downstream RNA isolation

were stored in RNAlaterTM stabilization solution (InvitrogenTM). Over-expression of ATF6B was performed by transfection of the

pKTH16 plasmid expressing ATF6B fused to a FLAG-tag, alone or combined with an empty pKTH16 plasmid to get a final concen-

tration of 1 mg DNA per ml cell cultivation at 1 million cells/mL in a 2.5 mL total volume in 24 deep-well plates. Transfection was per-

formed using PEImax at a DNA to PEI ratio of 1:3. Plates were incubated at 225 rpm, 37�C and 5% CO2. ATF6B silencing was per-

formed by transfecting a dsiRNA targeting ATF6B (hs.Ri.ATF6B.13.1, Integrated DNA Technologies) or a negative control dsiRNA

(Integrated DNA Technologies) at a final concentration of 2 or 10 nM using 293Fectin transfection reagent at 2 mg/mL (Thermo Fisher

Scientific) in 125 mL Ehrlenmeyer shake flasks as described previously. Cell samples were collected after 48 h and both cell and su-

pernatant samples were harvested after 72 h.

Protein expression analysis
Productivity of EPO in cell supernatants was determined by Octet RED96 biolayer interferometry (ForteBio, Fremont, CA, USA) as

described by (Kol et al., 2015). Briefly, biotinylated VHH-anti EPO (Capture SelectTM, Thermo Scientific) was immobilized on strep-

tavidin sensors and used to measure EPO binding directly in cell supernatants in citric acid (20 mM), 0.1% BSA, 0.1% tween-20,

0.5 M NaCl. Signals were compared to an EPO standard curve of known concentration. Regeneration of sensors was performed us-

ing 10mMNaH2PO4 (pH 12). GFP productivity was determined bymeasuring theGFP signal (FL-1 channel) of cells by flow cytometry

(Gallios, Beckman Coulter). EPO productivity following siRNA ATF6B silencing or ATF6B overexpression was determined by LC-MS/

MS. Fifty microliter supernatant from each cultivation was spiked with 2.1 pmol stable isotope labeled protein fragment mapping to

the EPO sequence. The samples were precipitated by addition of 200 mL cold acetone and incubated at �20�C overnight. The sam-

ples were centrifuged (20,000 x g, 4�C) for 30min and the supernatant was discarded. The pellet waswashed twice with cold acetone

with subsequent centrifugations (20,000 x g, 4�C, 10 min). The pellets were resuspended in 20 mL 7 M urea, 2 M thiourea and sub-

sequently diluted by addition of 140 mL 100mM triethylammonium bicarbonate. Five microliters of each sample was diluted in 1xPBS

(10 mM phosphate, 150 mMNaCl) for tryptic digestion. The samples were reduced by addition of dithiothreitol added to the samples

to a final concentration of 10 mM. The samples were incubated for 1 hour at 30�C. This was followed by alkylation by addition of

2-chloroacetamide to a final concentration of 50 mM and incubated for 30 min, in darkness at room temperature. Trypsin (P/N

90058, Thermo Fisher Scientific, Waltham, MA, USA) was added to the samples in a 1:50 ratio (enzyme:substrate) and the samples

were incubated at 37�C overnight. Digestion was quenched by addition of formic acid (FA) to a final concentration of 0.5%. The sam-

ples were analyzed using a TSQ Altis (Thermo Fisher Scientific) coupled to an Ultimate 3000 LC-system (Thermo Fisher), equipped

with a 15 cm EASY-Spray analytical column (P/N ES906A, particle size: 2 mm, pore size: 100Å, 150 mm 3 15 cm, Thermo Fischer

Scientific) and an Acclaim PepMap 100 trap cartridge column (PN 160454, particle size: 5 mm, pore size: 100 Å, 0.3 mm 3 5 mm,
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Thermo Fischer Scientific). Ten microliters of each sample was loaded onto the column and the peptides were separated over a

10 min long gradient (1-30% solvent B; solvent A [3% acetonitrile, 0.1% FA], solvent B [95% acetonitrile, 0.1% FA], 3 mL/min).

The mass spectrometer was operated in a scheduled SRMmode with 3 min retention time windows and a cycle time of 0.5 s, target-

ing 51 transitions in total (Table S3).

All data were processed using Skyline (v. 21.1.0.146) (MacLean et al., 2010), from which the ratio to standard was extracted for all

peptides (Table S3). Quantification for all samples was based on the peptide VNFYAWK++.

Intracellular protein extraction prior to western blotting was performed byMem-PER plusmembrane protein extraction kit (Thermo

Fisher Scientific). ATF6B expression after over-expression or siRNA silencing was evaluated by SDS-PAGE and western blotting us-

ing a mouse anti-FLAG antibody (Sigma Aldrich) at a 1:2000 dilution, or rabbit anti-ATF6B antibody (HPA046871, Atlas Antibodies) at

a 1:320 dilution, respectively for detection. For loading control, membranes were stripped and stained with a mouse anti-GAPDH

antibody (5H11, AbClon) at a 1:10000 dilution. Primary rabbit antibodies were detectedwith aHRP-conjugated swine anti-rabbit anti-

body (p039901-2, Dako) at a 1:4000 dilution, and mouse primary antibodies were detected with an HRP-conjugated polyclonal goat

anti-mouse antibody (P0447, Dako) at a 1:10000 dilution. For chemiluminescent detection, Immobilon Western Chemiluminescent

HRP Substrate (Millipore) was added to membranes and images were acquired using a ChemiDoc Imaging system (Bio-rad).

Genome copy number estimation
Cryopreserved cell stocks, in cell growth medium with 10% DMSO, of each cell clone were sent to Cergentis B.V. (Utrecht, The

Netherlands) for Targeted Locus Amplification (TLA) (de Vree et al., 2014) and next-generation sequencing by Illumina MiniSeq.

EPO and GFP transgene sequences were mapped to the pD2529 plasmid sequences used for generating stable clones. Target-spe-

cific sequences were mapped to the hg19 genome (Genome Reference Consortium Human Build 37 (GRCh37). Estimations of copy

numbers were based on the number of plasmid integrations into the genome, number of fusion reads and ratio between coverage of

the transgene and the surrounding genomic region.

Correlation analysis
For correlation analyses between growth rates, protein productivity, gene and transcript copy number and final visualizations, the R

package GGally v1.5.0 (https://github.com/ggobi/ggally) was used with default settings. Correlation analysis between gene expres-

sion and EPO or GFP production was performed using the Pearson and Spearmanmethods, where results were filtered based on the

significance threshold of 0.05 and absolute correlation coefficients surpassing 0.5. An additional filter was applied to exclude genes

with amean of TPM lower than 10 across all samples of the same producing group. Interaction between correlating genes was based

on the STRING database (Szklarczyk et al., 2019) and filtered according to experimental evidence and a confidence interval higher

than 900. First-order interacting partners of correlating genes with mean of TPM higher than 10, were also included in the networks.

For network visualization and gene set analysis of highly correlated genes, NetworkAnalyst (Zhou et al., 2019) was used with default

settings and GO biological process version v7.1 was used as the gene set collection.

RNA sequencing and data analysis
Total RNAwas extracted from cells using RNeasy plusMini Kit (Qiagen) according to the protocol provided by themanufacturer. RNA

integrity was verified by RNA 6000 Nano chips on a 2100 Bioanalyzer instrument (Agilent Technologies). Extracted RNA samples

were shipped to GATC (Konstanz, Germany) for mRNA sequencing by Illumina HiSeq instrument using the Inview Transcriptome

Discover service (paired end, 2 3 150 bp read length, >30 million read pairs).

Transcript quantification was performed using the standalone package Kallisto v0.43.1_1 (Bray et al., 2016) with default settings

and version GrCh38 of the human genome (Schneider et al., 2017) was used for transcript mapping. To import raw counts data into R,

the tximport package v1.14.2 (Soneson et al. 2015). For PCA analysis, the R package DESeq2 v1.26.0 (Love et al. 2014) was used

with default settings and log transformed normalized counts. Differential expression analysis was also performed using DESeq2

v1.26.0, where the Wald test was used for calculating logarithmic fold changes and p-values were adjusted by the Benjamini-Hoch-

berg method. To find genes with a robust expression change between EPOF21 and other EPO producer clones, we filtered genes

with an absolute log2 fold change higher than 1, adjusted p-value smaller than 0.05 and average TPM higher than 10 across all

samples.

Ingenuity pathway analysis
Enrichment analysis for finding enriched pathways was performed using Ingenuity Pathway Analysis (IPA�) software (Ingenuity Sys-

tems, http://ingenuity.com) with default settings. For all comparisons, gene names were first mapped to the Ingenuity database and

then statistically significant differentially expressed genes (B.H. adj. p-value < 0.05) with at least 50%change in their expression were

selected for finding significantly enriched pathways (Benjamini-Hochberg corrected p-value < 0.05).

Gene set analysis
Tomeasure the enrichment of different gene groups, gene set analysis (GSA) was performed. The procedure for runningGSAwas the

same across the study. First, gene set collections were retrieved from the Molecular Signature Database (MSigDB) (Liberzon et al.,

2011). For gene sets related to Human1 (Robinson et al., 2020), the MATLAB toolbox RAVEN v2.3.1 was used (H. Wang et al., 2018)
Cell Reports 39, 110936, June 14, 2022 e3
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with default settings to group genes based on their associations with reactions in different subsystems of the Human1 v1.3.1 model.

To calculate test statistics for each given gene set, theWilcoxon rank-sum from the R package PIANO v2.2.0 (Väremo et al. 2013) was

used, where results for each gene set based on p-values and log2 fold-change of genes from the DE analysis were compared with

100,000 randomly shuffled gene sets of the same size (random permutations = 100,000).

Extracellular flux analysis (SeaHorse)
Metabolic flux analysis was performed on different clones of EPO andGFP producing cells as well as their parental controls 293F and

293Freestyle using Seahorse XF96 Extracellular Flux Analyzer (Agilent Technologies, Santa Clara, CA, U.S.). The same day of the

experiment a XF96 cell plate was coated with Cell-Tak (Corning, NY, U.S.) at 22.4 mg/mL and 25 mL per well for 30 m. After washing

each well twice with 200 mL H2O, the plate was allowed to dry in the cell culture hood for 30 m before cell seeding. HEK cells were

washed once with assay media (XF DMEM containing 25 mM glucose, 4 mM glutamine, 1 mM pyruvate, pH 7.4), resuspended and

counted. 30000 cells/well were seeded in 50 mL and the plate was spun at 200xg for 1 mwithout brake. The plate was then incubated

at 37�C without CO2 for 30 m and a further 130 mL of assay media was added to each well.

The oxygen consumption rate (OCR) and acidification rate (ECAR) were recorded at a basal level and following injection of oligo-

mycin (3 mM final), carbonyl-cyanide 4-trifluoromethoxy-phenylhydrazone FCCP (0.2-0.6 mM final), and a mixture of rotenone and

antimycin A (5 mM). The running template was 2mmix, 1mwait and 3mmeasure. All chemicals were purchased from Sigma-Aldrich.

Data were normalized on the number of cells per well and against basal OCR and ECAR. Normalization for cell number was carried

out by staining the nuclei with Hoescht 33342 (Molecular Probes) injected together rotenone and antimycin A and then imaging each

well using a BD pathway 855 instrument(BD Biosciences, Franklin Lakes, U.S.) with 10x objective and montage 534. Cell number

was counted with Cell profiler software.

Data were analyzed after outlier removal (GraphPad software SanDiego, U.S.) by using ANOVA (non parametric) considering all the

technical replicates of 3 different experiments.

Generating GO slim secretion
To estimate the extent to which the protein secretory subsystems differed between EPOF21 and other EPO producers, a GO slim for

protein secretion-related gene subsets was generated for use in gene set analysis. The GO slim consisted of a list of 590 previously

reported genes involved in human protein secretion and their association to core components of the secretory pathway (Feizi et al.,

2017). In addition, gene sets were retrieved from the GO biological processes, GO cellular components and GOmolecular functions

MSigDB collections (Liberzon et al., 2011) if they were significantly enriched in secretion-associated genes (B.H. adj. p-value < 0.05).

A one-tailed Fisher’s exact from the R package PIANO v2.2.0 was used as the statistical test for calculating the enrichment signif-

icance of gene sets and p-values were adjusted to control for the false discovery rate (FDR) with the Benjamini-Hochberg procedure.

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational analyses were performed using R v3.6 (www.r-project.org) and Matlab R2017b (www.mathworks.com). More de-

tails about each of the analyses are provided under the method details section.
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