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“Awareness by itself is not enough: it must be joined by mastery. We need gradually to
develop a steering ability to keep ourselves from slipping mechanically into this or that sub-
personality. Thus we become able to identify with each part of our being as we wish. We can
have more choice. It is the difference between being impotently transported by a roller coaster
and, instead, driving a car and being able to choose which way to go and for what purpose to
make the journey.”

Piero Ferrucci — What We May Be (1982)
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Doctor of Philosophy

Leveraging Temporal Word Embeddings for the Detection of Scientific Trends

by Amna DRIDI

Tracking the dynamics of science and early detection of the emerging research trends
could potentially revolutionise the way research is done. For this reason, compu-
tational history of science and trend analysis have become an important area in
academia and industry. This is due to the significant implications for research fund-
ing and public policy. The literature presents several emerging approaches to detect-
ing new research trends. Most of these approaches rely mainly on citation counting.
While citations have been widely used as indicators of emerging research topics,
they pose several limitations. Most importantly, citations can take months or even
years to progress and then to reveal trends. Furthermore, they fail to dig into the
paper content.

To overcome this problem, this thesis leverages a natural language processing
method – namely temporal word embeddings – that learns semantic and syntactic re-
lations among words over time. The principle objective of this method is to study
the change in pairwise similarities between pairs of scientific keywords over time,
which helps to track the dynamics of science and detect the emerging scientific
trends. To this end, this thesis proposes a methodological approach to tune the
hyper-parameters of word2vec – the word embedding technique used in this the-
sis – within the scientific text. Then, it provides a suite of novel approaches that
aim to perform the computational history of science by detecting the emerging sci-
entific trends and tracking the dynamics of science. The detection of the emerging
scientific trends is performed through the two approaches Hist2vec and Leap2Trend.
These two approaches are, respectively, devoted to the detection of converging key-
words and contextualising keywords. On the other hand, the dynamics of science is
performed by Vec2Dynamics that tracks the evolvement of semantic neighborhood
of keywords over time.

All of the proposed approaches have been applied to the area of machine learning
and validated against different gold standards. The obtained results reveal the effec-
tiveness of the proposed approaches to detect trends and track the dynamics of sci-
ence. More specifically, Hist2vec strongly correlates with citation counts with 100%
Spearman’s positive correlation. Additionally, Leap2Trend performs with more than
80% accuracy and 90% precision in detecting emerging trends. Also, Vec2Dynamics
shows great potential to trace the history of machine learning literature exactly as
the machine learning timeline does. Such significant findings evidence the utility of
the proposed approaches for performing the computational history of science.
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Chapter 1

Introduction

“Begin at the beginning," the King said
gravely, “and go on till you come to
the end: then stop."

— Lewis Carroll. (1832-1898), Alice in
Wonderland

1.1 Preamble

Due to the easily accessible reservoir of data, researchers and scholars have an in-
creased need for a deeper understanding of the structure and dynamics of science.
In other words, sophisticated techniques and tools are highly solicited to help re-
searchers to learn better about knowledge production processes, curate insights from
scholarly data and speculate upcoming research topics. This PhD thesis proposes
novel approaches towards a fine-grained computational history of science. These
approaches follow different methodologies – all of them aiming to track the dynam-
ics of science and detect the emerging scientific trends.

This chapter introduces the motivation behind the research problem addressed
in this thesis related to scholarly data mining – the field that studies scholarly data,
detailed in Chapter 2 – and trend analysis – the related sub-field that interests the
study of the upcoming topics. Furthermore, it details the problem statement and
along with it raises the corresponding research questions. Afterward, it highlights
the main contributions, and it concludes by setting the outline of this thesis.

1.2 Motivation

With the vast increase of research works undertaken in academia and industry and
the widespread use of scholarly networks and digital libraries, we now have access
to an abundant academic resources such as books, peer-reviewed articles, confer-
ence papers and websites from authoritative organisations and institutions. These
resources are ranging from more than 300k to almost 400 million offered by 28 search
systems in 2020 (Gusenbauer and Haddaway, 2020). In a further study performed
by (Bornmann and Mutz, 2014) on the growth of science, the two bibliometric an-
alysts have found the real rate of the global scientific output closer to 8-9% in 2012
each year, which is equivalent to a doubling of global scientific output roughly every
nine years.

As a consequence of this increasing volume of scholarly data and the growth rate
of scientific output, the extraction of useful knowledge and the understanding of the
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structure and dynamics of science are hampered (Gaber, 2010). This has recently
led to the emergence of scholarly data mining as an important research field, facing
new challenges due to the typical nature of science, considering the complexity of
the academic landscape and the 5V feature (Volume, Variety, Velocity, and Value) of
scholarly data (Kaisler et al., 2013; Feng et al., 2017).

Currently, the main problem that the researchers and scholars are facing is not
simply obtaining any useful information from this accessible reservoir of data. It is
rather understanding the structure of the scholarly communication, and tracking the
dynamics of science. This could provide better academic services for scholars and
researchers. Nevertheless, this is not a trivial task since scholarly data is very differ-
ent and usually includes some special features such as (i) the complexity drawn from
the fact that it involves various entities (papers, authors, journals) and relationships
among these entities and (ii) the veracity, which comes from author disambiguation
and deduplication (Ferreira et al., 2012).

The extraction of useful knowledge from this amount of data is essential to pro-
vide support not only to scholars on their understanding of the rules and laws of sci-
ence (Feng et al., 2017), but also to governments and institutions on several decision-
making processes such as policy making for fund disbursement, speculating upcom-
ing research areas, etc.

In this regard, scholarly data mining has become essential for several key reasons.
First, it is the availability of abundant academic resources. In addition to the schol-
arly documents such as papers, books, reports, etc, multiple associated data is avail-
able today including information about authors, citations, institutions, funds and
academic networks (J. Liu et al., 2018). Furthermore, there have been several ini-
tiatives by governments and organisations to digitise academic resources in order
to meet the challenges of information explosion. As a matter of fact, the scholarly
communication has been revolutionised drastically over the past two decades due
to the unprecedented advancement in information and communication technology
(IT). For instance, IT has been used to digitise the knowledge that used to be in the
conventional print form. It has then brought a revolutionary form in archiving and
accessing knowledge.

Second, due to this easily accessible reservoir of data, researchers and scholars
are in an elevating need for a deeper understanding of the structure and dynamics
of science. Consequently, developed tools are highly demanded to assist scholars in
the knowledge production processes and the prediction of the upcoming research
trends.

Third, the availability of this vast amount of data about scientists’ collaborations,
document sharing and publications enables the evaluation of scientific impact of dif-
ferent entities including papers, authors and journals. The measurement of this sci-
entific impact is deemed vital for governments and businesses for decision-making
processes such as funding allocation, research gap identification, university ranking
determination, tenure and recruitment decisions.

Fourth, in addition to studying the advantages of the scientific impact of avail-
able resources, it is also essential to consider the negative effects of science, or what
is termed “Bad Science” (Goldacre, 2008). In fact, the scientific misconduct is heavily
present in the scientific communities and it has different forms. For example, re-
searchers copying others, presenting false results, or distorting of the research pro-
cess by fabrication of data, text, hypothesis, or methods from another researcher’s
manuscript. Similarly, for citations, the citing behaviour could possibly be for non-
scientific reasons (Bornmann and Daniel, 2008), such as the reputation of an author
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or a journal, or other bad reasons. This could possibly mislead the identification of
research trends that are based on the citation counts. Consequently, developed tools
are demanded to assist scholars, researchers and organisations to understand the
scientific behaviour and uncover the cases of Bad Science.

Finally, going beyond the study of the scientific impact, scholarly data analysis
also promotes the understanding of human social activities. It provides sociologists
with valuable data to observe researcher interactions and community formation. It
also allows countries to evaluate the impact of institutions or scientists to allocate
resources. Overall, scholarly data mining contributes to the Science of Science (Fortu-
nato et al., 2018; Light et al., 2014) that advances our understanding of the structure
and dynamics of science.

According to the literature, there have not been enough attempts to closely study
the approaches for scholarly data analysis. An effort in this direction could reveal
new branches for research in this area. One of the main branches of scholarly data
mining is to study how research topics evolve over time and to track emerging topics
and trends. In the literature, this task is termed as trend analysis (An et al., 2017; Dridi
et al., 2019b; Hou et al., 2018; Rossetto et al., 2018; Soriano et al., 2018; C. Zhang and
Guan, 2017).

Trend analysis has received considerable interest in the past few years, because
finding a research trend is key to finding a niche in a particular field of interest, espe-
cially for those new to this field. The main goal of trend analysis is to reveal hidden
trends within these vast resources, such as research trend evolution and community
dynamics (Feng et al., 2017).

The emerging research addressing trend analysis can be categorised into three
categories: bibliometrics-based approaches (An et al., 2017; Hou et al., 2018; Rossetto et
al., 2018; Soriano et al., 2018; C. Zhang and Guan, 2017) that are based on social net-
work analysis, citation and co-citation analysis; content-based approaches (Dridi et al.,
2019a; Dridi et al., 2019b; Weismayer and Pezenka, 2017) that treat entities – essen-
tially keywords – reflecting the paper content (Weismayer and Pezenka, 2017) or dig
deeply into the paper content and study the associations between keywords (Dridi et
al., 2019a; Dridi et al., 2019b); and hybrid approaches (Effendy and Yap, 2017; Hoonlor
et al., 2013) that combine both citation and content.

Despite the relatively interesting body of literature on trend analysis, there are
still open issues to tackle. Specifically, the following issues: the limitations of citation
counts and the drawbacks of the natural language processing techniques used to
model the scientific content. Consequently, it becomes essential to closely study the
approaches for trend analysis, explore the techniques involved in mining scholarly
data, and find the most suitable techniques to improve the understanding of the
structure and dynamics of science, and accordingly reveal hidden trends within the
vast quantity of available resources.

1.3 Problem Statement

Over the past few years, the computational history of science – as a part of scholarly
data mining/analysis (Feng et al., 2017) – has grown into a scientific research area
that is increasingly being applied in different domains such as business, biomedical,
and computing. The surge in interest is due to (i) the explosion of publicly available
data on scholarly networks and digital libraries, and (ii) the importance of the study
of scientific literature, which is continuously evolving. In fact, the recent literature
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is rich in dealing with the enigmatic question of the dynamics of science (An et al.,
2017; Ashton et al., 2012; Effendy and Yap, 2017; Hall et al., 2008; Hoonlor et al.,
2013; Hou et al., 2018; Mortenson and Vidgen, 2016; Rossetto et al., 2018; Soriano et
al., 2018; C. Zhang and Guan, 2017). The dynamics of science does not only involve
tracking topic evolvement (Zehra and Umut, 2018), but also how to predict future re-
search trends and popular research topics, termed as trend analysis approaches (Feng
et al., 2017).

Most of these approaches rely mainly on citation counting from papers, which
have been published and consequently find clues to topic evolvement (Zehra and
Umut, 2018). While citation counts are used as indicators of emerging research top-
ics, they can take months or even years to reveal research trends. Also, they fail
to dig into the paper content, which could lead to a more accurate computational
history. Therefore, there is a need to shift from citation-based approaches to more
fast yet accurate approaches for trend analysis that drill into the content of scholarly
publications.

Despite their ability to give an overview on the appearance/disappearance and
the frequencies of keywords, the statistical methods were not considered for the con-
tent analysis of scholarly publications in this thesis and in the literature in general.
This is justified by the fact that the count of keywords does not reflect the semantics
embedded within the scientific language. The extraction and the understanding of
these semantics help to generate new knowledge. For this reason, semantic-based
approaches for text mining are needed to analyse the content of scholarly publica-
tions. Following this trend, some work (Ashton et al., 2012; Bakarov et al., 2018; Li et
al., 2019; Paul and Girju, 2009; Salatino et al., 2017) emerged and explored topic mod-
els to forecast the emergence of new research topics. While topic models intend to
extract semantics by capturing document level associations among words, they fail
to detect pairwise associations of keywords. This is a considerable limitation since
emerging topics often start first by an increasing closeness of keywords that may
lead to a merge. For instance, in the artificial intelligence field, the research topic
“deep learning” resulted from the merge between the two keywords/topics “machine
learning” and “neural networks”. For this reason, a fine-grained study of the associa-
tions between pairs of keywords is needed for an early detection of emerging trends
and early uncovering of the dynamics of science. In this thesis, the early detection of
emerging trends means detecting the trends at a very early stage; at the time of pub-
lication of new scholarly communications. In comparison with citations that need
months or even years to be accumulated, the idea here is to analyse the content of
available publications and early reveal the pairs of keywords that the combination
is likely to result in a new trend.

The goal in this PhD project is to propose a suite of novel methods that aim to
effectively and early detect the emerging scientific trends and track the dynamics
of science by addressing the limitations of topic models. To do so, word embed-
dings (Mikolov et al., 2013c) as a natural language processing technique are lever-
aged in this thesis due to their abilities to detect pairwise similarities between words.
Word embeddings represent words in the form of real-valued vectors such that the
words that are closer in the vector space are expected to be similar in meaning. This
vector representations of words can promote the automatic knowledge extraction
from unstructured text. This is useful for different NLP tasks such as semantic text
analogy, word-sense disambiguation, sentiment analysis, etc. Considering that this
thesis will tackle the semantic text analogy within the scientific language, therefore
any word embedding technique could be applied. In this thesis, word2vec (Mikolov
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et al., 2013e) is chosen to be applied in a temporal fashion, which is termed in this
thesis as temporal word embeddings. A detailed treatment on the choice of word2vec is
discussed in Chapter 3, Section 3.5.4.

1.4 Research Questions

With the above-stated research problem in mind, the following research question –
that represents the core research question of this thesis – is asked:

How the dynamics of science can be tracked and how the emerging sci-
entific trends can be early detected?

Based on the core research question, three related questions can be revealed as
follows:

1. Research Question 1: How to represent the scientific text with natural lan-
guage processing techniques that help to reveal the semantics and the dynam-
ics of scientific keywords over time?

To answer this question, three sub-questions have to be answered:

• Are word embeddings – as a natural language processing technique –
(namely word2vec (Mikolov et al., 2013e)) able to detect semantic and syn-
tactic analogies in scientific language?

• How the hyper-parameters of word embedding techniques can be tuned?
• How to find/create analogy datasets as gold standard to validate the abil-

ity of word embeddings to detect semantic analogies from scientific text?

2. Research Question 2: How to explore the vector representation of scientific
keywords in order to study their semantic shifts, and consequently perform a
computational history of science?

To answer this question, the following sub-questions have to be answered:

• How to detect the semantic shifts of scientific keywords over time?
• How to perform the computational history of science?
• How to represent the temporal dimension in an effective way to perform

the computational history of science?

3. Research Question 3: How to evaluate the detected emerging trends and vali-
date the obtained results on the dynamics of science?

To answer this question, the following five sub-questions have to be answered:

• How to find/define gold standards related to the application areas that
help to define scientific trends?

• Which standard validation measures can be used to assess the effective-
ness of the obtained results?

• How to conduct comparative studies with existing approaches?
• Which standards can be defined for descriptive analyses, where norma-

tive analyses are not suitable for the analysis of the computational history
of science?

• How visual analyses can be used as qualitative analyses to highlight the
semantic shifts of scientific keywords over time?
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1.5 Contributions

This thesis proposes a suite of novel approaches towards a fine-grained computa-
tional history of science. These approaches follow different methodologies – all
of them aiming to track the dynamics of science and detect the emerging scien-
tific trends. To do so, a word embedding technique – namely word2vec (Mikolov
et al., 2013a) – is leveraged and applied to scientific literature across time to learn
the change in pairwise similarities between pairs of scientific keywords.

To this end, three main stages are followed. (1) The first stage is devoted to
methodological studying word embeddings – the natural language processing tech-
nique this thesis uses for the representation of scientific text – and deeply understand
the embedding behavior within scientific corpora. This methodological study con-
cerns finding the optimal hyper-parameters of word embeddings. Typically, accord-
ing to the literature, most of the existing research work that used word embeddings
as features computed their vector representations with a default or arbitrary choice
of embedding hyper-parameters. However, these hyper-parameters are crucial to
the prediction performance as they directly affect the accuracy of the generated
analogies. Given that analogies can be used in hypotheses synthesis, consequently
an accurate analogy will lead to a precise hypothesis. For example, “decision tree” is
a component of “ensemble” and “decision tree” is a “classifier”. So, by analogy any
classifier should be a component of an ensemble. While this thesis does not synthe-
sise hypotheses, it is worth noting that having accurate analogies will regulate the
accuracy of hypotheses, and the accuracy of these hypotheses will regulate the accu-
racy of finding trending keywords. It is now understood that the hyper-parameters
of word embeddings play an important role in generating accurate analogies. For
this reason, it is crucial to methodologically set them.

After testing the effectiveness of word embeddings in generating analogies in sci-
entific text and proving their ability to accurately represent the scientific language,
(2) the second stage aims to learn word embeddings across time and use their
outputs to propose different approaches towards a computational history of sci-
ence. In this thesis, the computational history of science is performed following
two paths. (i) The first path is devoted to the detection of the emerging scientific
trends/keywords. These trends are defined according to the flow of science as con-
verging keywords or contextualising keywords. The converging keywords refer to the
keywords that converge in similarity over time, which lead to the appearance of
new keyword as a merge of these converging keywords. For example, “deep learn-
ing” is the keyword that emerged from the convergence between “machine learning”
and “neural networks” at a specific point in time. Similarly, “bioinformatics” is the
keyword that emerged from the convergence between “biology” and “information en-
gineering”. However, contextualising keywords refer to the keywords that start to
appear in the same context, but not necessarily merge, which lead to the emergence
of a new application area or a combination of existing tools. A notable example of
contextualising keywords is “healthcare” and “artificial intelligence”. This implies the
application of the artificial intelligence models to the healthcare, and accordingly the
emerging of this application as a scientific trend. Based on these two definitions of
scientific trends (converging keywords and contextualising keywords), this thesis makes
the assumption that emerging trends are defined as a pair of fast conversing key-
words. It is then clear that this thesis is not looking into new terms that appear as a
result other than merging existing terms. It rather focuses on the semantics behind,
and provides a conceptual approach that assist with the task of early detection of
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trends independently from the terminology. (ii) The second path is devoted to the
study of the dynamism of keywords. This latter is performed through tracking the
evolvement of the semantic neighbourhood of keywords over time, which gives a
more generic view on the dynamics of science including emerging, dying, recurrent
and persistent keywords.

According to the two followed paths to perform the computational history of
science in this thesis, the proposed approaches are named Hist2Vec, Leap2Trend and
Vec2Dynamics. Both Hist2Vec and Leap2Trend detect the emerging scientific trends by
detecting converging and contextualising keywords, respectively. Hist2Vec detects
the converging keywords that may result in trending keywords by computing the
acceleration of similarities between keywords over successive timespans (a times-
pan is a time window that represent a fixed number of years of publications). As
shown in the box (a) in Figure 1.1, the two keywords © and � are getting closer
over time, until converging at a certain point in time (timespan t). However, going
beyond the row values of similarities, Leap2Trend adopts the rankings of similarities
and computes the ascents in ranking over different timespans to detect the trending
keywords that co-occur in the same context. According to the box (b) in Figure 1.1,
the pair of keywords 4 and © is being used in the same context in the timespan
(t − 1). They are then considered contextualising keywords. While Hist2Vec and
Leap2Trend tracks the trending keywords, Vec2Dynamics tracks the dynamics of key-
words by tracking the evolvement of their semantic neighbourhood over time. The
box (c) in Figure 1.1 shows an overview of the dynamics of scientific keywords. The
keyword	 appears only in timespan 1 and then it totally disappears. It is considered
a dying keyword. However, the keyword ⊗ appears in all timespans. It represents
the persistent keywords. The keyword � appears in timespan 1, it disappears in next
timespans, then it re-appears again in timespan (t− 1) and t. It then represents the
recurrent keywords. Finally, the keyword ⊕ emerges in timespan t. It accordingly
represents the emerging keywords.
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FIGURE 1.1: Overview of Hist2Vec, Leap2Trend and Vec2Dynamics

Finally, (3) the third stage provides standards to validate the results of the pro-
posed approaches. Both quantitative and qualitative analyses are proposed for the
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validation process.
All the proposed approaches are domain-independent and they can be applied

to any scientific area. However, in this thesis, these approaches are evaluated in the
area of machine learning. This choice is based on the authors’ background, and the
fact that machine learning has witnessed notable successes and growth in the recent
years. Therefore, any machine learning corpora can be used to evaluate the proposed
approaches. In this thesis, Neural Information Processing Systems (NIPS) – recently
abbreviated as NeurIPS – corpora are used for three main reasons. First, the NIPS
conference is a long standing venue in the area of machine learning with more than
30 editions. This is important for the work proposed in this thesis that requires his-
tory in publications to perform the computational history of science. Second, NIPS
has a h5-index equal to 198 and an impact score equal to 33.49. These metrics show
that the citation counts of the NIPS publications is weighty. This is important for this
thesis because the proposed approaches will be evaluated against the citation-based
approaches, where the dynamics of citation counts is essential for the comparative
study. These metrics also reflect the value and the prestige of the conference. It is
ranked top 2 conference in the area of machine learning and artificial intelligence,
according to Guide2Research rankings 1. It comes after IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), which is more specialised in computer
vision applications. NIPS is then a more generic venue and covers a wide range
of machine learning topics including computer vision. It can be then considered
the top 1 conference in generic machine learning conferences like the International
Conference on Machine Learning (ICML), International Conference on Learning Represen-
tations (ICLR) and European Conference on Machine Learning and Knowledge Discovery
in Databases (ECMLPKDD) that are ranked top 6, top 17 and top 104, respectively.
Finally, aligning with its reputation, the NIPS dataset is made publicly available
on Kaggle2, where the papers database is easily manageable, with the papers’ fea-
tures, such as the title, the abstract and the paper text, which is time-stamped. The
availability of this database makes from the task of data collection an efficient task.
Moreover, bioinformatics corpora are used in addition to the NIPS corpora in Chap-
ter 6. This choice is firstly because the area of bioinformatics is increasingly rely-
ing on machine learning algorithms, which aligns with the application area of the
thesis. Secondly, because Chapter 6 is dedicated to the detection of contextualising
keywords, and the area of bioinformatics is one of the areas, where contextualising
keywords may frequently appear. Recall that in this thesis words and keywords are
used exchangeably. Words/keywords refer to either unigrams or bigrams. The choice
of bigrams is justified by their frequent use in the scientific language such as “ma-
chine learning” or “neural networks”, etc. Recall that trigrams are also important and
highly used in the area of machine learning such as “artificial neural netoworks”, “sup-
port vector machines”, etc. However, in general their abbreviations are more frequent
(“ANN”, “SVM”). For this reason, trigrams were not considered in this thesis. As
an alternative, their abbreviations were considered as unigrams. As such, the main
contributions of this thesis are fourfold:

Contribution 1: A methodological approach for tuning word embedding hyper-
parameters. This contribution consists of four sub-contributions:

1https://www.guide2research.com/topconf/machine-learning
2https://www.kaggle.com/benhamner/nips-papers/data

https://www.guide2research.com/topconf/machine-learning
https://www.kaggle.com/benhamner/nips-papers/data
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1. The use of the stability of k-nearest neighbors (k-NN) of word vectors as an
objective to measure while learning word2vec hyper-parameters.

2. The enhancement of the standard skip-gram model (Mikolov et al., 2013c)
– the word2vec architecture adopted in this thesis, which is thoroughly
described in Chapter 3 – by bigrams as a method for corpus augmenta-
tion.

3. The creation of an analogy dataset for machine learning – the application
area of this thesis – by methodologically curating Association for Com-
puting Machinery (ACM) hierarchy and Wikipedia outline of machine
learning.

4. A quantitative and qualitative evaluation of the proposed methodological
approach on the NIPS corpora and the obtaining of interesting semantic
relations in the area of machine learning.

The outcomes of this contribution have been published in:

“Amna Dridi and Mohamed Medhat Gaber and R. M. Atif Azad and Jagdev Bhogal
(2018). k-NN Embedding Stability for word2vec Hyper-Parametrisation in
Scientific Text. In: Discovery Science - 21st International Conference, DS 2018,
Limassol, Cyprus, October 29-31, 2018, pp. 328–343”.

Contribution 2: Hist2Vec: A temporal word embedding approach for the detec-
tion of converging keywords. The main features of this approach are as fol-
lows:

1. A similarity matrix that records the similarity between pairs of frequent
keywords, which are represented by their embedding vectors, over each
timespan.

2. An acceleration matrix that computes the acceleration of pairs of keywords
over subsequent timespans in order to detect the fast converging pairs of
keywords. The acceleration represents the difference in similarities be-
tween pairs keywords over two successive timespans.

3. A qualitative and quantitative evaluation of the proposed approach with
the NIPS publications between the years 1987 and 2015. The qualitative
evaluation consists of t-distributed stochastic neighbor embedding (t-SNE) vi-
sualisations (Maaten and Hinton, 2008) that illustrate the fast acceleration
between the pairs of scientific keywords. Moreover, the quantitative eval-
uation consists of a comparative study with citation counts approaches
that returns 100% positive correlation between the citation counts and the
similarities returned by the proposed approach.

The outcomes of this contribution have been published in:

“Amna Dridi and Mohamed Medhat Gaber and R. M. Atif Azad and Jagdev Bhogal
(2019). DeepHist: Towards a Deep Learning-based Computational History
of Trends in the NIPS. In: International Joint Conference on Neural Net-
works - IJCNN 2019 Budapest, Hungary, July 14-19, 2019, pp. 1–8”.

Contribution 3: Leap2Trend: A temporal word embedding approach for the de-
tection of contextualising keywords. The main features of this approach are
as follows:
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1. Introducing a new framework for the detection of contextualising key-
words, which led to the detection of new research trends at a very early
stage.

2. Leveraging temporal word embedding techniques, namely word2vec, for
fine-grained content analysis of scientific corpora, following two tempo-
ral paradigms: incremental (a sequence of time stamped corpora gradu-
ally created following a 1-year annual basis) and sliding (a sequence of
three time stamped corpora; the corpus of the window t will contain the
corpora of the timespan (t− 1, t + 1)), in order to study the impact of re-
search history in detecting new emerging trends.

3. Applying Leap2Trend to real-world datasets in two research areas – ma-
chine learning and bioinformatics – which could give insights about the
validity and the generalisability of the proposed approach.

4. Validating the approach using Google Trends hits and Google Scholar cita-
tions as gold standards.

The outcomes of this contribution have been published in:

“Amna Dridi and Mohamed Medhat Gaber and R. M. Atif Azad and Jagdev Bho-
gal (2019). Leap2Trend: A Temporal Word Embedding Approach for Instant
Detection of Emerging Scientific Trends. In: IEEE Access Journal - IEEE Vol-
ume 7, 2019, pp. 176414-176428”.

Contribution 4: Vec2Dynamics: A temporal word embedding approach to explor-
ing the dynamics of scientific keywords – Tracking the dynamism of scien-
tific keywords. The main features of this approach are as follows:

1. To detect the dynamics of keywords, word vectors are learned across
time. Then, based on the similarity measure between the embedding vec-
tors of keywords, the k- nearest neighbors (k-NN) of each keyword are
defined over successive timespans.

2. The change in stability of k-NN over time refers to the dynamics of key-
words and accordingly the dynamics of the research area.

3. Vec2Dynamics is evaluated with the NIPS publications between the years
1987 and 2016.

4. Both numerical and visual methods are adopted to perform a descriptive
analysis and evaluate the effectiveness of Vec2Dynamics in tracking the
dynamics of scientific keywords.

The outcomes of this contribution have been submitted to Springer Machine
Learning journal as:

“Amna Dridi and Mohamed Medhat Gaber and R. M. Atif Azad and Jagdev Bho-
gal. Vec2Dynamics: A temporal word embedding approach to exploring the
dynamics of scientific keywords”.

1.6 Thesis Outline

The rest of this thesis is structured as follows (see Table 1.1) :
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Chapter 2: Scholarly Data Mining. This chapter presents a description of the state-
of-the art related to the core research area of this thesis. It introduces and dis-
cusses scholarly data mining applications following a literature-based analy-
sis. It also reviews the methods used for scholarly data mining ranging from
statistical and empirical analysis to machine learning techniques. Additionally,
it highlights the areas of application of scholarly data mining. Finally, it dis-
cusses the open challenges in the area of scholarly data mining, and how this
thesis contributes to address some of these challenges. The work described in
this chapter has been published in:

“Amna Dridi and Mohamed Medhat Gaber and R. M. Atif Azad and Jagdev Bhogal
(2020). Scholarly data mining: A systematic review of its applications. In:
WIREs Data Mining and Knowledge Discovery, e1395. doi.org/10.1002/widm.1395,
2021”.

Chapter 3: Word Embedding Technique – Word2vec. This chapter presents the back-
ground chapter of the thesis. It thoroughly presents the natural language pro-
cessing technique used in this thesis – word embeddings (word2vec). It introduces
their foundations and describes word2vec technique. Additionally, it high-
lights the temporal dimension given to word embeddings and summarises re-
lated work in this direction.

Chapter 4: k-NN Embedding Stability for Word2vec Hyper-parametrisation. This
chapter introduces the first contribution of this thesis. It presents the method-
ological approach that this thesis proposed to tune word embedding hyper-
parameters, which is based of the stability of k-nearest neighbors of word vec-
tors. In addition, it details the quantitative and qualitative evaluation method
that is performed to evaluate the proposed approach in the area of machine
learning. This chapter, in summary, answers the first research question raised
in Section 1.4, while Chapters 5, 6 and 7 provide answers to the second and
third research questions raised in the same section.

Chapter 5: Hist2Vec: Detecting The Converging Keywords. This chapter presents
the second contribution of this thesis. It introduces Hist2Vec, the temporal
word embedding approach that is proposed to detect the converging scientific
keywords that may lead to emerging scientific trends. This approach repre-
sents the first path that this thesis follows to perform the computational his-
tory of science by detecting the emerging scientific trends in the area of ma-
chine learning, and it is devoted to the first definition given to the emerging
scientific trends – converging keywords. A detailed description of the evaluation
methodology is also presented in this chapter following both quantitative and
qualitative analyses.

Chapter 6: Leap2Trend: Detecting The Contextualising Keywords. This chapter
describes the third contribution of this thesis. It introduces Leap2Trend, a novel
approach to early detection of research trends that relies on temporal word
embeddings to track the dynamics of similarities between pairs of keywords,
their rankings and respective uprankings (ascents) over time. This approach
also represents the first path that this thesis follows to perform the computa-
tional history of science by detecting the emerging scientific trends in the area
of machine learning, and it is devoted to the second definition given to the
emerging scientific trends – contextualising keywords. Furthermore, this chapter
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details the rigorous evaluation method that is proposed and it relies on solid
standards such as Google Trends hits and Google Scholar citations to validate
the proposed approach in two datasets related to the area of machine learning
and bioinformatics.

Chapter 7: Vec2Dynamics: Tracking The Dynamism of Keywords. This chapter
describes the fourth contribution of this thesis. It introduces Vec2Dynamics,
a temporal word embedding approach that reports the stability of k-nearest
neighbors of scientific keywords over time to check whether they are taking
new neighborhood due to evolution of scientific literature, and accordingly
track their dynamics over time. This approach represents the second path that
this thesis follows to perform the computational history of science by tracking
the dynamism of scientific keywords over time. In this chapter, a descriptive
analysis is performed to verify the efficacy of the proposed approach in the
area of machine learning.

Chapter 8: Conclusion and Future Directions. This chapter summarises the thesis
contributions and results. Moreover, a discussion about current and future
challenges of scholarly data mining and trend analysis is provided.

Chapter 1 Introduction

Chapter 2 Scholarly Data Mining Literature review
(Dridi et al., 2021)

Chapter 3 Word Embedding Techniques – Word2vec Background

Chapter 4
abc

k-NN Embedding Stability for Word2vec
Hyper-parametrisation

Contribution 1
(Dridi et al., 2018)
abc

Chapter 5

abc

Hist2Vec: Detecting The Converging Key-
words

Contribution 2
(Dridi et al., 2019a)
abc

Chapter 6

abc

Leap2Trend: Detecting The Contextualis-
ing Keywords

Contribution 3
(Dridi et al., 2019b)
abc

Chapter 7
abc

Vec2Dynamics: Tracking The Dynamism
of Scientific Keywords

Contribution 4
(under review) abc

Chapter 8 Conclusion and Future Directions

TABLE 1.1: Thesis outline
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Chapter 2

Scholarly Data Mining

“Knowledge is but a body, of which
intelligence is the soul.”

— Walter Moxon, M.D., F.R.C.P.
(1836–1886)

After stating the research problem addressed in this thesis and introducing the
main research area related to the contributions – which is the area of scholarly data
mining – in the previous chapter, this chapter presents the state-of-art on scholarly
data mining. In particular, it initially considers the research interest analysis of schol-
arly data in Section 2.1. This is followed by a survey on the applications of schol-
arly data mining and the analysis methods used in these applications in Sections 2.2
and 2.3, respectively. It then shows the areas of application of scholarly data mining
in Section 2.4. Afterwards, the chapter discusses the open challenges in the area of
scholarly data mining, and how this thesis contributes to address some of these chal-
lenges in Section 2.5. Finally, the chapter is concluded by a summary in Section 2.6.
The work described in this chapter has been published in (Dridi et al., 2021).

2.1 Research Interest Analysis

Although the study of scholarly data is relatively new, some studies have emerged
(Feng et al., 2017) on how to investigate scholarly data usage in different disciplines.
These studies motivate investigating the scholarly data generated via academic tech-
nologies such as scholarly networks and digital libraries for building scalable ap-
proaches for retrieving, recommending and analysing the scholarly content. Con-
sequently, this has spawned five key applications that are citation analysis (Dey et
al., 2017; Shi et al., 2015; Zehra and Umut, 2018; Ying et al., 2014), document analy-
sis (Cornelia et al., 2015; Shardlow et al., 2018; Tuarob et al., 2016; S. Kim et al., 2018),
conference analysis (Effendy et al., 2014; Effendy and Roland, 2016), trend analysis (An
et al., 2017; Dridi et al., 2019b; Hou et al., 2018; Rossetto et al., 2018; Soriano et al.,
2018; C. Zhang and Guan, 2017), and literature analysis (Y. Liu et al., 2015; Tan et al.,
2016; Tang, 2016; Tang et al., 2008; H. Li et al., 2006; Dunne et al., 2012; Osborne
et al., 2013). Nevertheless, due to the increasing interest to scholarly data mining,
it becomes essential to closely study the approaches for scholarly data analysis, cat-
egorise them based on the literature features or explore the techniques involved in
mining scholarly data. In this regards, the aim of this chapter is to systematically
review the most interesting research works published on the use of scholarly data
mining. An important collection of research articles has been analysed with special
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attention paid to the investigated literature features and the different analysis meth-
ods used. The final aim is therefore to provide the readers with a systematic revision
about existing scholarly data mining applications: the involved techniques and the
application areas.

2.1.1 Research Motivation

The importance of scholarly data mining has been raised for several key reasons. First,
it is the availability of abundant academic resources. In addition to the scholarly
documents such as papers, books, reports, etc, multiple associated data are available
today including information about authors, citations, institutions, funds and aca-
demic networks (J. Liu et al., 2018). Furthermore, there have been several initiatives
by governments and organisations to digitise academic resources in order to meet
the challenges of information explosion. As a matter of fact, the scholarly commu-
nication has been revolutionised drastically over the past two decades due to the
unprecedented advancement in information and communication technology. This
latter has brought a revolutionary form in archiving and accessing knowledge in the
digitised form that used to be in the conventional print form. Second, due to this eas-
ily accessible reservoir of data, researchers and scholars are in an elevating need for
a deeper understanding of the structure and dynamics of science. In other words,
sophisticated techniques and tools are highly solicited to help researchers to learn
better about knowledge production processes, curate insights from scholarly data
and speculate upcoming research topics. Third, the availability of this vast amount
of data about scientists’ collaborations, document sharing and publications enables
the evaluation of scientific impact of different entities including papers, authors and
journals. The measurement of this scientific impact is deemed vital for governments
and businesses for decision-making processes such as funding allocation, research
gap identification, university ranking determination, tenure and recruitment deci-
sions. Finally, going beyond the study of the scientific impact, scholarly data analysis
also promotes the understanding of human social activities. It provides sociologists
with valuable data to observe researcher interactions and community formation. It
also allows countries to evaluate the impact of institutions or scientists to allocate
resources. Overall, scholarly data mining contributes to the Science of Science (Fortu-
nato et al., 2018; Light et al., 2014) that advances the understanding of the structure
and dynamics of science.

According to the literature, there have not been enough attempts to closely study
the approaches of scholarly data mining, categorise them based on the literature fea-
tures or explore the techniques involved in mining scholarly data. An effort in this
direction could reveal new branches for future research in this area. In fact, there
have been some recent reviews related to scholarly data but not deeply exploring
the aforementioned specific issue. For instance, on the one hand, two reviews (Khan
et al., 2017; Feng et al., 2017) considered scholarly data from a general perspective.
The authors studied the use of big data in scholarly ecosystems, starting from schol-
arly data management and relevant technologies, through data analysis methods, to
finally looking into the research issues. On the other hand, another three reviews
were specific and had a narrow perspective. The first of these reviews (Ying et al.,
2014) provides a comprehensive overview of citation analysis in terms of its theo-
retical foundations, methodical approaches and example applications. The second
review (J. Liu et al., 2018) addressed the issue of scholarly data visualisation by fo-
cusing on the visualisation tools and analytic systems. The third review (Bai et al.,
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2019) dealt with the scientific recommendation problem as a sub-problem of schol-
arly data analysis. It provided a comprehensive review on the scholarly paper rec-
ommendation by reviewing the recommendation algorithms, introducing the eval-
uation methods of different recommender systems and highlighting the open issues
in the paper recommendation systems.

These reviews are all recent, which shows a great interest in the topic of scholarly
data mining, not only for the opportunities it offers to the scientists and scholars to
understand the unprecedented amount of scholarly data freely available, but also for
institutions and governments that could take benefit from the proposed approaches
for decision-making processes.

2.1.2 Research Process

In the search process, two methods have been followed to obtain the articles re-
viewed in this chapter:

• Database Search using queries related to the research area of this thesis. The
following databases were used to gather articles combining scholarly data min-
ing tools, techniques and applications: Web of Science 1, Google Scholar 2,
DBLP 3, ScienceDirect 4, ACM Digital Library 5, and IEEE Xplore Digital Li-
brary 6. In each of these databases, the used search queries search for terms –
related to the topic of the review – in the title of publications, such as “scholarly
data mining”, “knowledge discovery”, “scientific data”, “trend analysis”, “scientific
recommendation”, “citation analysis”, and “bibliometrics”.

• Selection of related publication venues that are known to publish in the area
of scholarly data and related topics. Specifically, two venues are considered.
The first venue is Scientiometrics journal 7, which is a peer reviewed journal
concerned with the quantitative aspects of the Science of Science and scien-
tific research. The second venue is the Joint Conference on Digital Libraries
(JCDL) 8 that represents a major international forum focusing on digital li-
braries and associated issues.

As the search queries used were a mixed bag of generic and specific terms, the re-
sults were refined by reading the titles and the abstracts within the articles, filtering
out those that did not align with the scope of this review. Particularly, all papers had
to be about applications of scholarly data mining and knowledge discovery from
scientific data. All the works studied in this thesis were published in peer reviewed
journals or top conferences, which guarantees that they satisfy a certain standard of
quality.

1https://login.webofknowledge.com/
2https://scholar.google.com/
3https://dblp.uni-trier.de/
4https://www.sciencedirect.com/
5https://dl.acm.org/
6https://ieeexplore.ieee.org/Xplore/
7https://link.springer.com/journal/11192
8https://www.jcdl.org/

https://login.webofknowledge.com/
https://scholar.google.com/
https://dblp.uni-trier.de/
https://www.sciencedirect.com/
https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/
https://link.springer.com/journal/11192
https://www.jcdl.org/
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2.1.3 Research Statistics

An important number of publications has been analysed in this thesis. The increas-
ing interest in the research of scholarly data mining becomes clear from the yearly
increase in the number of publications related to this area mainly in the last five
years starting from 2014 (see Figure 2.1 that shows the distribution of the number of
publications studied in this chapter until 2019, which is the last year of the studied
literature, marked in green color. The Y-axis represents the raw number of publica-
tions per year). However, it is worth mentioning that the field traces its roots back in
the late 1980’s and mid 1990’s through initial empirical studies principally on cita-
tion analysis. These early studies were focusing on the understanding of the citation
behavior of scientific community. This may have contributed to the study of only
citations as a literature feature of scientific publications during the first decade that
preceded the emergence of the field. Also, this may justify why these analyses were
mainly tackled in the area of information science rather than the area of computer
science.
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FIGURE 2.1: Number of publications by year

It is also interesting to analyse the geographic distribution of publications. To
this end, the country of publications’ authors is considered. Figure 2.2 shows the
total number of publications corresponding to each country. Recall that the data
collected corresponds to the literature analysed in this chapter. What can be clearly
seen in this figure is the dominance of both USA and China in publishing in the
area, followed by the UK and Germany. Interestingly, this highly correlates with the
report on the research outputs by country9, published by Nature Index in 2019. Also,

9https://www.natureindex.com/country-outputs/generate/All/global/All/n_article

https://www.natureindex.com/country-outputs/generate/All/global/All/n_article
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it aligns with the global Research and Development (R&D) spending by country
according to the latest statistics from the UNESCO Institute for Statistics10.

FIGURE 2.2: Number of publications by country

A further interest indicator is the number of citations of each work. The mean
number of citations per year in the last decade is analysed. The results are very
sensitive to the low number of works per year that is in the pool of studied articles.
Table 2.1 illustrates the mean number of citations. It is somewhat intuitive that the
mean number of citations of the papers published early in the time is significantly
higher than the one of those published recently. However, it is worth noting that
the mean number of citations is also relatively high during the last two years of the
analysis (2018-2019). This is insightful as it shows that the research area of scholarly
data mining is developing and becoming of interest nowadays.

2011 2012 2013 2014 2015 2016 2017 2018 2019
29.33 93 61.5 66.75 13.6 15.87 13.1 7.4 3.33

TABLE 2.1: Mean number of citations of the papers published be-
tween 2011 to 2019 by year

2.2 Literature-based Analysis

The ultimate goal of scholarly data mining is to understand the relational structure
of science and provide the scholars with better academic services such as academic
recommendation and literature organisation. To this end, scholarly data mining in-
volves various applications, which are mainly categorised based on the literature
features: documents, citations, conferences and trends. In this section, these appli-
cations are examined with respect to the aforementioned literature features. Table 2.2
summarises these applications and categorises the references with respect to the lit-
erature features they have investigated.

10http://uis.unesco.org/en/news/new-uis-data-sdg-9-5-research-and-development

http://uis.unesco.org/en/news/new-uis-data-sdg-9-5-research-and-development
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2.2.1 Citation Analysis

As citation counts remain the most important measure of scientific impact, citations
– as a literature feature – have presided the attention of researchers investigating the
area of scholarly data mining. Therefore, citation analysis has been widely explored
as an application of scholarly data mining.

Citation analysis has been extensively used to understand the scholarly commu-
nication through citation patterns (Ying et al., 2014). It does not only aim to assess
the impact of research outputs, but it also aims to reveal the scholarly communica-
tion, map the landscape of scientific disciplines and track the knowledge transfer
across domains.

In addition to the conventional study of citation and co-citation network to mea-
sure the impact of scientific papers, citation analysis involves different patterns that
include readership counts (Aduku et al., 2017; Maflahi and Thelwall, 2018; Thelwall,
2018), bibliometrics (Godin, 2006; Lv et al., 2011; Martínez-Gómez, 2015; McBurney
and Novak, 2002; Monroy and Diaz, 2018; Pilkington, 2004) and even the metrics
derived from social media – termed as altmetrics (Bornmann and Haunschild, 2018;
Nabout et al., 2018; Priem and Costello, 2010; Weller et al., 2011).

Citation and Co-citation Analysis

Citation and co-citation analysis is shaped around citation counting and citation
relationships between documents/scholars that are cited together by other docu-
ments/scholars (Dey et al., 2017; Shi et al., 2015; Zehra and Umut, 2018).

Citation analysis mainly studies the citation network, where nodes represent
papers, authors, or journals, and edges represent the number of times each pa-
per/author has been cited, co-authored, or co-cited (Ying et al., 2014). It then mea-
sures the impact of published research quantitatively, and could be termed as count-
based citation analysis. While citation count remains essential to measure the scientific
impact, it fails to address the “how and why” questions of citation analysis. To fill
this gap, content-based citation analysis (Ying et al., 2014) has been proposed as the
next generation of citation analysis. It aims to study both syntactic and semantic
levels of citations. The syntactic level considers the location of the reference in a
citing article while the semantic level studies why a reference has been cited in a
citing article. The content analysis of citations has included both manual approach
and semi-automatic approach of natural language processing (NLP). The main goal
of content citation analysis is then to develop a code-book used to annotate citation
contexts. NLP techniques have been used to extract the key concepts from citation
contexts to understand the citing behavior. However, the identification of the best
window size to extract the proper citation context and the detection of the correct
citing paper sections are still an open challenge.

Co-citation analysis studies citation relationships in the co-citation network (Star
Zhao and Ye, 2013). It measures the frequency with two papers/scholars are cited to-
gether by other papers/scholars. Typically, there are mainly two types of co-citation
analysis methods namely author co-citation analysis (Jeong et al., 2014) and document
co-citation analysis (Trujillo and Long, 2018). The author co-citation analysis mea-
sures the similarity between co-cited authors by considering author’s citation con-
text. To this end, the citing sentences are extracted to obtain the topical related-
ness between the cited authors instead of traditional author co-citation frequency.
The citing sentence similarity is then measured by topical relatedness between two
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citing sentences. However, the document co-citation analysis enables to identify
relevant literature and scholarly communities that may be left unnoticed in stan-
dard approaches to literature searching. Resulting networks help to identify gaps
between published research areas. Document co-citation analysis is then proposed
as a potential methodology to promote trans-disciplinary. In (Trujillo and Long,
2018), the authors have explored 229 source articles from the literature of systems
thinking, extracted from the Web of Science Core Collection11. After generating the
document co-citation network, the authors have explored patterns in influential lit-
erature developed across different disciplines. For instance, they have demonstrated
that community structure could be detected within the co-citation networks for sys-
tems thinking. Both of them enable the identification of the intellectual structure of
a research domain and the recognition of relevant scholarly communities.

Both citation and co-citation analyses have been used for different scholarly aims
such as author names ambiguity (Sun et al., 2011), topic classification (Cornelia et
al., 2015), scientific success prediction (Acuna et al., 2012), identification of sleeping
beauties (Dey et al., 2017), identification of dynamic knowledge flow patterns (An
et al., 2017) and trend analysis (Hou et al., 2018).

Readership Analysis

Readership analysis studies Mendeley12 reader counts – that correspond to the num-
ber of readers of each article – and their evidence of early scholarly impact for pub-
lished articles. Different works (Aduku et al., 2017; Maflahi and Thelwall, 2018;
Thelwall, 2018) have studied whether Mendeley reader counts reflect the scholarly
impact of publications. While (Maflahi and Thelwall, 2018; Thelwall, 2018) have fo-
cused their studies on investigating the early scholarly impact of Mendeley reader
counts for journal articles, (Aduku et al., 2017) have studied whether this impact is
equally true for conference papers. To do so, the authors have extracted Mendeley
readership data and Scopus13 citation counts for both journal articles and confer-
ence papers published in 2011 in computer science and engineering. The authors
have found Mendeley a moderate correlation between readership counts and ci-
tation counts for both journal articles and conference papers in computer science.
However, the correlations were much lower between Mendeley readers and cita-
tion counts for conference papers than for journal articles in engineering. Therefore,
there seem to be disciplinary differences in the usefulness of Mendeley readership
counts as impact indicator for conference papers. Overall, all research works investi-
gating Mendeley reader counts have found significant positive correlations between
readership counts and citation counts, while Mendeley reader counts appear before
citations. Readership analysis has been then proposed as a valuable early impact
indicator for published research, addressing the issue of citations that take time to
accumulate.

Bibliometrics Analysis

Bibliometrics analysis (Monroy and Diaz, 2018) focuses on the use of statistical
analysis to examine scientific production patterns in a scientific field (Godin, 2006;
McBurney and Novak, 2002). For instance, the authors in (Monroy and Diaz, 2018)

11https://clarivate.com/webofsciencegroup/solutions/web-of-science-core-collection/
12https://www.mendeley.com/
13https://www.scopus.com/home.uri

https://clarivate.com/webofsciencegroup/solutions/web-of-science-core-collection/
https://www.mendeley.com/
https://www.scopus.com/home.uri
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have applied time series tools to bibliometric data to conduct a comparative study
of the dynamics of scientific production for several countries, in terms of papers
published. They have compared the histories of scientific development of countries,
aiming to understand the causes and circumstances that led to dynamics of knowl-
edge production. They have then identified the dynamical changes that affected
global scientific production, and the instances, where global production was influ-
enced by social, political and economic circumstances. On the other hand, bibliomet-
rics have applied statistical analysis to assess relationships between authors, entities,
journals or countries, in addition to measuring the impact of research and linkage
involving co-citations and keywords employed (Lv et al., 2011; Martínez-Gómez,
2015; Pilkington, 2004). In this context, the authors in (Lv et al., 2011) have applied
statistical analysis and knowledge visualisation technology to study graphene liter-
ature from different subjects, authors, countries and keywords distributed in several
aspects of research topics. For this matter, the authors have collected and analysed
data from 1991 to 2010 from the Science Citation Index database, Conference Proceeding
Citation Index database and Derwent Innovation Index database integrated by Thom-
son Reuters14. Their bibliometric analysis has shown that the clusters distributed
regularly in keywords of applied patents in recent 5 years due to the potential appli-
cations of graphene research gradually found.

Bibliometrics analysis is centrally, but not only, based on citation analysis. It
also involves descriptive linguistics (Gleason, 1961), the development of thesauri,
the evaluation of reader usage, and the analysis of associated keywords. All these
bibliometrics patterns are used to identify research clusters, emerging topics and
leading scholars in bitcoin literature by analysing 1162 papers indexed in Web of
Science (Merediz and Aurelio, 2019).

Bibliometrics are frequently used in the field of library and information science.
A sub-filed of it – that is concerned with the study of scientific publication – is called
scientometrics, which is defined as “the study of the quantitative aspects of the pro-
cess of science as a communication system” (Mingers and Leydesdorff, 2015).

Altmetrics Analysis

Altmetrics analysis (Bornmann and Haunschild, 2018; Nabout et al., 2018; Priem and
Costello, 2010; Weller et al., 2011) supports the use of activities on online social media
platforms as an early signal of research impact for scientific publications. Altmetrics
seek new means of quantifying the impact of research outside the realm of research
papers, such as online media and social network. This class of metrics includes
mentions in the news, blogs, and on Twitter15; article page-views and downloads;
GitHub16 repository watchers.

Altmetrics have been considered as a measure of scientific dissemination and an
early indicator of scientific influence and impact. For instance, they can point to
interesting spikes in different types of attention. As a proof of evidence, some stud-
ies (Nabout et al., 2018) have proven that altmetrics are concordant with citation-
based metrics. By way of illustration, (Nabout et al., 2018) have studied the cor-
relation between traditional citation-based indicators and activities on online social
media platforms in a dataset of 2, 863 papers published in five ecological journals.
Their results supported the use of activities on online social platforms as an early

14https://www.thomsonreuters.com/en.html
15https://twitter.com/
16https://github.com/

https://www.thomsonreuters.com/en.html
https://twitter.com/
https://github.com/
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signal of research impact of ecological articles. However, this outcome is not to-
tally supported by (Bornmann and Haunschild, 2018) who studied Twitter dataset
to measure the impact of science and found that without considering the content of
the tweets, simple counting can lead to wrong conclusions.

2.2.2 Document Analysis

A document represents an important literature feature in scholarly communication,
which is defined by a set features itself including author, content, structure; and it
is used for different scholarly usages such as recommendation and summarisation.
Document analysis includes then subsequent analyses detailed below.

Authorship Analysis

Authorship analysis has been treated differently in the literature. For instance, the
authors in (Rexha et al., 2018) have proposed to associate segments of text with their
real authors using content-agnostic and stylometric features to solve the problem of
authorship identification. For this purpose, two pilot studies have been conducted
on a selected data from the free database created by the US National Library of
Medicine – PubMed17. Both studies aimed to understand how humans can iden-
tify authorship among documents with high content similarity. The first study was
a quantitative experiment involving crowd-sourcing, while the second was a qual-
itative one executed by the authors. Both experiments and observations contribute
to automating the process of authorship identification as well as to distinguish spe-
cific features used by humans in their decision-making process. In (Sun et al., 2011),
however, the authors have explored heuristic features based on citations and crowd-
sourced topics to detect ambiguous author names in the context of social citation
analysis systems such as Scholarometer18 system. Two classes of features were used.
The first is a heuristic based on the percentage of citation accrued by the top name
variations for an author, while the second feature class relies on crowd-sourced data
to detect ambiguity at the topic level. The proposed approach succeeded to detect
ambiguous author names in crowd-sourced scholarly data with an accuracy of 75%.

Document Structure Analysis

Document structure analysis (Boyack et al., 2018; Heffernan and Teufel, 2018a;
Lu et al., 2018a) studies the internal document structure by identifying the func-
tional structure (further detailed at three levels: section header-based identifica-
tion, section content-based identification or paragraph-based identification (Lu et
al., 2018a)), identification of problems and solutions in a specific paper by making a
binary decision about problem-hood and solution-hood of a given phrase in the pa-
per (Heffernan and Teufel, 2018a), or by studying research proposals and analysing
their discourse for clarity (Boyack et al., 2018). For the functional structure identifi-
cation, the authors in (Lu et al., 2018a) have proposed a novel clustering algorithm
to generate a domain-specific functional structure, applied to 300 research papers in
computer science. The application of the proposed approach, in two tasks: academic
search and keyword extraction, confirms that the identified structure obtains more

17https://pubmed.ncbi.nlm.nih.gov/
18https://scholarometer.indiana.edu/
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relevant information and achieves better performance. However, for the identifica-
tion of problems and solutions, the authors in (Heffernan and Teufel, 2018a) have
proposed an automatic classifier that makes a binary decision about problem-hood
and solution-hood of a given phrase, that may or may not be a description of a scien-
tific problem or a solution. The authors have defined a set of 15 features, including
syntactic information (part-of-speech (POS) tags), document and word embeddings,
and have applied several machine learning algorithms such as Naïve Bayes, Logistic
Regression and Support Vector Machine, on a corpus of 2000 positive and negative
examples of problems and solutions extracted from the 2016 Association of Compu-
tational Linguistics (ACL) anthology. The obtained results reveal the ability of the
proposed classifier to distinguish problems from non-problems with an accuracy of
82%, and solutions from non-solutions with an accuracy of 79%. Regarding research
proposal analysis, the authors in (Boyack et al., 2018) have used both citation and
discourse analyses of 369, 501 proposals submitted to the U.S. National Institutes
of Health (NIH) by the University of Michigan Medical School, to discover possi-
ble predictors of proposal success. The analyses have focused on two issues: the
Matthew effect in science – Merton’s claim that eminent scientists have an inher-
ent advantage in the competition for funds – and quality of writing or clarity. The
obtained results suggested that a clearly articulated proposal is more likely to be
funded than a proposal with lower quality of discourse.

Document structure analysis also includes the study of slide presentations (We-
ber and Gunawardena, 2011). It investigates the use of knowledge units – that rep-
resent scientific knowledge by combining elements of procedural, declarative, and
structural knowledge – for the automated construction of slides. The knowledge
units have been defined as the three paradigms of the research process background,
progress and completed.

Content Analysis

Document content analysis treats the document in two ways: a coarse-grained way
by studying only keywords (S. Kim et al., 2018) and a fine-grained way by digging
into the paper textual content (Cornelia et al., 2015; Shardlow et al., 2018; Tuarob
et al., 2016).

Keyword analysis (S. Kim et al., 2018) examines connections between keywords
used to describe theses and dissertations in order to vividly picture similarities and
differences among research domains. In this context, the authors in (S. Kim et al.,
2018) have analysed data from 29, 435 dissertations and theses found in the ProQuest
Theses and Dissertation database19 in the years 2009–2014. The obtained results
identified interdisciplinary clusters, as well as the key differences in connections
between the four computing disciplines in the database: computer science, com-
puter engineering, information technology and information science. However, tex-
tual content analysis involves different applications such as topic classification (Cor-
nelia et al., 2015), identification of research hypotheses (Shardlow et al., 2018) and
extraction of algorithms (Tuarob et al., 2016). For topic classification, the authors in
(Cornelia et al., 2015) have proposed a co-training approach that uses the text and
citation information of a research article as two different views to identify the topic
of an article. A subset sampled from the CiteSeerx digital library20 – consisting of

19https://about.proquest.com/products-services/databases/
20https://citeseerx.ist.psu.edu/
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3, 186 labeled papers – has been used for topic classification with a co-training clas-
sifier. The obtained results showed that the proposed approach performed better
than other semi-supervised and supervised methods. However, for the identifica-
tion of research hypotheses, the authors in (Shardlow et al., 2018) have proposed
a supervised method to extract new meta-knowledge dimensions that encode re-
search hypotheses. A corpus of one thousand MEDLINE21 abstracts on the subject
of transcription factors in human blood cells has been used, and a random forest
classifier has been applied to achieve a better performance than previous efforts in
detecting knowledge type, with a precision ranging from 86% to 100%. Regarding
the extraction of algorithms, the authors in (Tuarob et al., 2016) have developed Al-
gorithmSeer, a system for extracting and searching for algorithms. To do so, hybrid
machine learning approaches have been proposed to discover algorithm represen-
tations, and different techniques have been adopted to extract textual metadata for
each algorithm. Finally, a demonstration version of AlgorithmSeer that is built on
Solr/Lucene open source indexing and search system is presented and applied to
over 200k algorithms extracted from over 2 million scholarly documents.

Scientific Recommendation

Scientific recommendation includes topic recommendation (Alam and Ismail, 2017)
and reviewer recommendation (Shu Zhao et al., 2018a). Scientific paper recommen-
dation has been provided to assist scholars in finding relevant papers across the
tremendous amount of academic information in the era of big scholarly data. In this
context, (Kong et al., 2018) have developed VOPRec, a scientific paper recommenda-
tion system based on vector representation learning of paper in citation networks.
In fact, paper recommendation takes into account both text information of papers
and structural identity with the citation network. Similarly, topic recommendation
hinges upon bibliometric information of the literature to identify a suitable topic of
current importance from a plethora of research topics. In this context, (Alam and Is-
mail, 2017) have developed RTRS – a recommender system for academic researchers
– to assist both novice and experienced researchers in selecting research topics in
their chosen field.

Scientific Text Summarisation

Scientific text summarisation has been proposed to help scholars to know about the
most influential content of the paper due to the vast growth of literature that makes
it difficult for them to find high impact papers on unfamiliar topics (Mei and Zhai,
2008). Different approaches have been proposed to generate summaries of scien-
tific papers. The authors in (Rahul et al., 2013) have presented a system that takes
a topic query as input and generates a survey of the topic by first selecting a set of
relevant documents, and then selecting relevant sentences from those documents.
In (Qazvinian and Radev, 2008), on the other hand, the authors have proposed a
citation summary network that uses a clustering approach, where communities in
the citation summary’s lexical network are formed and sentences are extracted from
separate clusters. Another summarising problem has been tackled by (Mei and Zhai,
2008), which is summarizing the impact of a scientific publication. The authors have
used language modeling methods – that incorporate features such as authority and

21https://www.medline.com/
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proximity extracted from the citation context – to extract sentences that can rep-
resent the most influential content of the paper. The scientific summarisation in-
cludes also summarising document-elements like tables, figures, and algorithms in
scientific publications to augment search results and enable the retrieval of these
document-elements (Bhatia and Mitra, 2012).

2.2.3 Conference Analysis

Conference analysis (Effendy et al., 2014; Effendy and Roland, 2016) studies con-
ference categorisation (Effendy and Roland, 2016) and relatedness between confer-
ences (Effendy et al., 2014). A case-study approach was adopted by (Effendy et al.,
2014) to assess the relatedness measures between conferences in computer science
based on the computer science bibliography DBLP22. They have shown that the re-
latedness ranking produced can correlate well with the reputation ranking from the
Australian Computer Research and Education conference ranking (CORE)23.

Both studies help to understand the basis of conference reputation ratings, de-
termine what conferences are related to an area and the classification of conferences
into areas.

2.2.4 Trend Analysis

Trend analysis has received considerable interest in the past few years, because find-
ing a research trend is a key to find a niche in a particular field of interest, especially
for those new to this field. The main goal of trend analysis is to reveal hidden trends
within these vast resources, such as research trend evolution and community dy-
namics (Feng et al., 2017).

Different approaches in the literature dealt with trend analysis using different
features such as citation counts, paper content especially keywords, or both of them.
These approaches can the be categorised into three categories with respect to the fea-
tures they have been using: (i) bibliometrics-based approaches (An et al., 2017; Hou et
al., 2018; Rossetto et al., 2018; Soriano et al., 2018; C. Zhang and Guan, 2017) that are
based on social network analysis, citation and co-citation analysis, (ii) content-based
approaches (Dridi et al., 2019a; Dridi et al., 2019b; Weismayer and Pezenka, 2017) that
treat entities – essentially keywords – reflecting the paper content (Weismayer and
Pezenka, 2017) or dig deeply into the paper content and study the associations be-
tween keywords (Dridi et al., 2019a; Dridi et al., 2019b) and (iii) hybrid approaches (Ef-
fendy and Yap, 2017; Hoonlor et al., 2013) that combine both citation and content.

The bibliometrics-based approaches rely mainly on citation counts of published
papers, and consequently find clues to topic evolvement (Zehra and Umut, 2018).
For instance, the authors in (An et al., 2017) have considered both backward and
forward citations to propose a hidden markov model to identify temporal patterns
of knowledge flows in business method patents. However, (Hou et al., 2018) have
used a document co-citation analysis of a subsequent 7, 574 articles published in
10 information science (IS) journals between 2009 and 2016, including 20, 960 refer-
ences, to study changes in the research topics in the IS domain. Similarly, (Rossetto
et al., 2018) have used citation and co-citation analysis to understand what are the
main theoretical pillars that support the structure of innovation theories and fields.
While citation counts may infer the importance of scientific work, they fail to delve

22https://dblp.uni-trier.de/
23https://www.core.edu.au/
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into the paper content, which could lead to a more accurate computational history.
For this reason, content-based approaches have emerged. For instance, some emerg-
ing works (Ashton et al., 2012; Hall et al., 2008; Mortenson and Vidgen, 2016) have
proposed topic models to study the dynamics of research topics and accordingly
the progress of science. While topic models try to extract semantics by capturing
document level associations between words, they fail to detect pairwise associa-
tions between keywords. To overcome this problem, word embedding techniques
have been proposed to conduct a fine-grained content analysis of scientific content.
In this matter, (J. He and Chen, 2018) have proposed the first work that aimed to
track the semantic changes of scientific terms over time in the biomedical area. The
other work in this direction has been proposed by this thesis (Dridi et al., 2019a;
Dridi et al., 2019b) that introduced a temporal word embedding approach for com-
putational history applied to machine learning publications. The approaches detect
the converging keywords that may result in trending keywords by computing the
acceleration of similarities between keywords, their rankings and uprankings over
successive timespans.

The hybrid approaches use both citation analysis and content analysis to detect
research trends. For instance, Hoonlor et al. (Hoonlor et al., 2013) have analysed data
on grant proposals, ACM24 and IEEE25 publications using sequence mining, bursty
word detection and clustering. In like manner, Hou et al. (Hou et al., 2018) tracked
the evolution of research topics between 2009 and 2016 using the timeline knowl-
edge map through Document-Citation Analysis (DCA) of articles published in in-
formation science journals. They employed dual-map overlays of the information
science literature to trace the evolution of the knowledge base of IS research based
on scientometric indicators (H-index), citation analysis and scientific collaboration.
In the same context, Effendy and Yap (Effendy and Yap, 2017) obtained the compu-
tational history using the Microsoft Academic Graph (MAG)26 dataset. In addition
to the citation-basic method, they used a content-based method by leveraging the
hierarchical Field of Study (FoS) given by MAG for each paper to determine the level
of interest in any particular research area or topic, and accordingly general publica-
tion trends, growth of research areas and the relationship among research areas in
computer science.

These approaches have been applied to a wide range of disciplines such as re-
lations and economy (Soriano et al., 2018), innovation and entrepreneurial ecosys-
tem (C. Zhang and Guan, 2017), business (Rossetto et al., 2018) and business model
innovation (An et al., 2017), marketing and tourism (Weismayer and Pezenka, 2017),
medical domain (Boyack et al., 2018), biology (Y. Liu et al., 2015), information sci-
ence (Hou et al., 2018) and computer science (Alam and Ismail, 2017; Dey et al., 2017;
Effendy et al., 2014; Effendy and Yap, 2017; Effendy and Roland, 2016; Hoonlor et al.,
2013; S. Kim et al., 2018).

This thesis concentrates on the areas of computer science (CS) – namely machine
learning – and bioinformatics. While no previous work on predicting research trends
in bioinformatics is present, research findings on trend analysis within computer sci-
ence is reported in the following. For instance, Hoonlor et al. (Hoonlor et al., 2013)
were the early researchers interested in learning about the evolution of CS research.
They analysed data from 1990 to 2010 on proposals for grants supported by the U.S

24https://dl.acm.org/
25https://ieeexplore.ieee.org/
26https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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National Foundation27 and on CS publications in the ACM Digital Library28 and
IEEE Xplore Digital Library29 using sequence mining, bursty word detection and
clustering, network extraction and visualisation. They aimed to investigate changes
over time in the CS research landscape; interaction of CS research communities; sim-
ilarities and dissimilarities between research topics. Similarly, Hou et al. (Hou et al.,
2018) revealed the evolution of research topics between 2009 and 2016 using the
timeline knowledge map through Document-Citation Analysis (DCA) of 7, 574 ar-
ticles published in 10 information science (IS) journals including 20, 960 references.
They used dual-map overlays of the IS literature to track the evolution of the knowl-
edge base of IS research based on scientometric indicators (H-index), citation analy-
sis and scientific collaboration. In the same context, Effendy and Yap (Effendy and
Yap, 2017) performed trend analysis using the Microsoft Academic Graph (MAG)30

dataset. But, in addition to the bibliometric-basic method (citation analysis), they ap-
plied a content-based method by using the hierarchical FoS (Field of Study) provided
by MAG for each paper to measure the level of interest in any particular research
area or topic, and consequently revealed general publication trends, evolution of
research areas and the relationship among research areas in CS.

Both approaches described above can be categorised as hybrid approaches. They
combine the citation analysis with the content analysis to reveal research trends. The
content analysis only studies bursty keywords in (Hoonlor et al., 2013) and fields of
studies in (Effendy and Yap, 2017) without drilling into the paper content or fol-
lowing a fine-grained analysis. Instead, they focused on citation analysis to reveal
citation trends and consequently reveal the evolution of research areas. While cita-
tion counts are deemed essential to evaluating the importance of scientific work, the
citing behavior could possibly be for non-scientific reasons (Bornmann and Daniel,
2008). Moreover, citations can take months to even years to stabilise enough to re-
veal research trends. As a matter of fact, there can be interesting papers – termed
as sleeping beauties (Dey et al., 2017) – which do not get cited much for several years
after publication, but then unexpectedly start getting cited.

For these reasons and the fact that citation-based approaches fail to dig into the
paper content, the work presented in this thesis tends to be placed in the category of
content-based approaches by following a fine-grained content analysis of research
papers.

In this direction, some work has begun to emerge. Anderson et al. (Ashton et al.,
2012) have developed a people-centric methodology for computational history that
tracks the flow of authors across topics to discern how some sub-fields flow into
the next, forming new research directions. This methodology is based on a central
phase of topic modelling that classifies papers into topics and identifies the topics
the authors contribute to. In the same context, Salatino et al. (Salatino et al., 2017)
have proposed Augur, which is an approach that analyses the diachronic relation-
ships between research areas and detects clusters of topics that exhibit dynamics of
already established topics. Similarly, Li et al. (Li et al., 2019) have recently proposed
an improved method by introducing WordNet to LDA in order to find latent topics
of large corpora of NIPS publications and discover the dynamics of research top-
ics. To do so, their method groups the documents by time in each topic. Then, it

27https://www.nsf.gov/
28https://dl.acm.org/
29https://ieeexplore.ieee.org/
30https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/



2.3. Scholarly Data Mining Methods 27

counts the number of documents by time, which helps to reveal whether the topics
are rising or falling in popularity.

While these approaches (Ashton et al., 2012; Li et al., 2019; Salatino et al., 2017)
intend to perform a content analysis of research papers by applying topic modelling,
they still suffer from the delay in time in the detection of trends. For instance, both
the flow of authors across topics and the dynamics of established topics take time to
happen. In addition, topic modelling – as a natural language processing technique
used for these content-based approaches – is not able to detect pairwise associations
between words while the study of these associations could lead to the detection of
emerging trends at a very early stage.

2.2.5 Literature Analysis

Literature analysis encloses more than one literature feature (H. Li et al., 2006;
Dunne et al., 2012; Y. Liu et al., 2015; Osborne et al., 2013; Tan et al., 2016; Tang,
2016; Tang et al., 2008; Tao et al., 2017). It studies the key nodes of the academic
social network such as papers, authors, citations and corresponding relationships at
the same time.

Generally, literature analysis has been shaped around the development of new
tools and systems that support the exploration of scholarly data. This has been seen
in the case of development of academic search systems that aim to comprehensively
search and mine literature (Y. Liu et al., 2015; Tan et al., 2016; Tang, 2016; Tang et al.,
2008) such as ArnetMiner (Tang et al., 2008), AMiner (Tang, 2016) and CiteSeerX (H. Li
et al., 2006). Another example of these tools is the study maps that have been built
efficiently and thoroughly through topic analysis methods to dig into the underly-
ing principles of a specific paper (Tao et al., 2017). Also, visualisation has gained
a great interest in literature analysis approaches because it helps to describe, anal-
yse, simulate an academic social network and support community detection and
collaboration networks. For instance, Action Science Explorer (ASE) (Dunne et al.,
2012) has been developed to show citation patterns and identify clusters; and Rex-
plore (Osborne et al., 2013) has integrated statistical analysis, semantic technologies
and visual analytics to provide effective support for exploring and making sense of
scholarly data.

2.3 Scholarly Data Mining Methods

Scholarly data mining has been realised with different methods including statistical
and empirical analysis, social network analysis, machine learning techniques, and
natural language processing techniques. In the following, the methods of scholarly
data mining are briefly introduced and the applications they have been used for are
specified. Table 2.3 summarises these methods and the related applications.

2.3.1 Statistical and Empirical Analysis

Whereas statistics can broadly be defined as the discipline that deals with the col-
lection; organisation; analysis; interpretation and presentation of data, empirical
analysis refers to the research that uses empirical evidence (Romijn, 2014). Con-
sidering that using statistical methods in scientific studies is critical to determining
the validity of empirical research, statistical methods and empirical studies have
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TABLE 2.2: Summary of references related to the applications of
scholarly data mining

Applications Sub-Applications References

Citation analysis

Citation and co-
citation analysis

(Dey et al., 2017; Shi et al., 2015; Zehra and
Umut, 2018; Ying et al., 2014) (Shu Zhao et
al., 2018a; Jeong et al., 2014) (Trujillo and
Long, 2018; Cornelia et al., 2015; Acuna et
al., 2012) (An et al., 2017)

Readership analysis
(Aduku et al., 2017; Maflahi and Thelwall,

2018; Thelwall, 2018)

Bibliometrics analy-
sis

(Monroy and Diaz, 2018; Godin, 2006;
McBurney and Novak, 2002; Lv et al., 2011;
Martínez-Gómez, 2015; Pilkington, 2004;
Gleason, 1961; Merediz and Aurelio, 2019;
Mingers and Leydesdorff, 2015)

Altmetrics analysis
(Bornmann and Haunschild, 2018; Nabout
et al., 2018; Priem and Costello, 2010; Weller
et al., 2011)

Document analysis

Authorship analysis (Rexha et al., 2018; Sun et al., 2011)

Structure analysis
(Boyack et al., 2018; Heffernan and Teufel,
2018a; Lu et al., 2018a; Weber and Gunawar-
dena, 2011)

Content analysis
(Cornelia et al., 2015; Shardlow et al., 2018;
Tuarob et al., 2016; S. Kim et al., 2018)

Scientific recom-
mendation

(Alam and Ismail, 2017; Shu Zhao et al.,
2018a)

Scientific text sum-
marisation

(Mei and Zhai, 2008; Bhatia and Mitra, 2012;
Rahul et al., 2013; Qazvinian and Radev,
2008)

Conference anal-
ysis

(Effendy et al., 2014; Effendy and Roland,
2016)

Trend analysis

(An et al., 2017; Hou et al., 2018; Rossetto
et al., 2018; Soriano et al., 2018; C. Zhang
and Guan, 2017) (Dridi et al., 2019a; Dridi
et al., 2019b; Weismayer and Pezenka, 2017)
(Effendy and Yap, 2017; Hoonlor et al., 2013)

Literature analy-
sis

(Y. Liu et al., 2015; Tan et al., 2016; Tang,
2016; Tang et al., 2008; H. Li et al., 2006;
Dunne et al., 2012; Osborne et al., 2013)

been widely used together in scientific research. Defined as “research about re-
search”, scholarly data mining has been particularly relying on statistical and em-
pirical analysis mainly for citation analysis (Bornmann and Daniel, 2008; Bornmann
and Haunschild, 2018; Virginia, 1989; Godin, 2006; McBurney and Novak, 2002; Lv
et al., 2011; Martínez-Gómez, 2015; Monroy and Diaz, 2018; Nabout et al., 2018; Pilk-
ington, 2004; Priem and Costello, 2010; Shadish et al., 1995; Thelwall, 2018; Weller
et al., 2011; Acuna et al., 2012). This is justified by the quantitative aspect provided
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by citation counts; they are measurable indicators of research impact. The quanti-
tative aspect of citation counts has been used from different perspectives. The first
perspective concerns the study of the scientific production. For instance, (Lv et al.,
2011) have applied statistical analysis to evaluate global scientific production and
developing trend of graphene research using the Science Citation Index, the Con-
ference Proceeding Citation Index and the Derwent Innovation Index database in-
tegrated by Thomson Reuters databases. Similarly, (Martínez-Gómez, 2015) have
applied statistical and predictive analyses to 286 scientific works published between
1973 and 2013 in order to study the evolution of the research and the dissemina-
tion of knowledge. In the same context, (Acuna et al., 2012) have relied on statistics
to track scientific careers and predict scientific success using h-index. They have
used a dataset of 3, 085 neuroscientists, 57 Drosophila and 151 evolutionary sci-
entists to understand how science develops. However, (Monroy and Diaz, 2018)
have used statistics to study the dynamics of scientific production of several coun-
tries in terms of published papers. They have analysed Scopus database to identify
dynamical changes that affected global scientific production such as social, politi-
cal and economic circumstances. The second perspective concerns the study of the
broad impact measurements of research beyond science, which is defined as altmet-
rics (Priem and Costello, 2010; Weller et al., 2011). In this context, (Nabout et al.,
2018) have studied a dataset of 2, 863 papers published in five ecological journals
to study the correlation between traditional citation-based indicators and activities
on online social media platforms such as Twitter and Mendeley. Similarly, (Born-
mann and Haunschild, 2018) have studied Twitter data to measure the impact of
science in order to fulfill the demands from governments and funding organisa-
tions. In addition to the statistical analysis, empirical and descriptive analyses have
been used thoroughly (i) to study the origins of bibliometrics (Godin, 2006) and their
purposes (McBurney and Novak, 2002); (ii) to study the citation behavior of scien-
tists (Bornmann and Daniel, 2008; Virginia, 1989) and explore the meanings of ci-
tations (Shadish et al., 1995); and (iii) to investigate the intellectual pillars of the
technology management literature and explore differences in the research agendas
of worldwide scholars (Pilkington, 2004).

Some other scholarly data mining applications have been realised with statisti-
cal and empirical studies, such as trend analysis (Kaempf et al., 2015) and literature
analysis (Wu et al., 2014). For trend analysis, the authors in (Kaempf et al., 2015)
followed a statistical analysis to measure a topic importance based on page-view
time series of Wikipedia articles. They have studied the emergence and life cycle
of the emerging Hadoop market. To do so, they have developed ETOSHA, an open
source software framework for Wikipedia analysis. ETOSHA has been used to inves-
tigate the changes in the frequency of views of Wikipedia pages. These changes have
been used as indicator of collective interests and social trends. More specifically,
the statistical analysis follows both qualitative interpretation and quantitative mea-
surement of the network properties of Wikipedia pages. This includes measuring
the context sensitive relevance of Wikipedia topics with respect to local and global
neighborhood. As a matter of fact, ETOSHA has initially relied on exploratory data
analysis (Tukey, 1977), namely representation plots, to unveil existing implicit se-
mantic relationships between Wikipedia pages to automatically discover the context
neighborhoods. Then, based on these neighborhoods, ETOSHA has used relative
relevance indexes including the time-dependant relevance index that identifies con-
tent relevance and public recognition of Wikipedia topics. Unlike Google search that
fails to reveal how other keywords with strong relation influence trends, ETOSHA
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has leveraged context neighborhoods from Wikipedia page links to detect emerg-
ing trends. However, for literature analysis, descriptive statistics have been used
to mine scholarly documents in a large-scale setting and provide scholarly appli-
cations, such as citation recommendation, expert recommendation and collaborator
discovery. For instance, (Wu et al., 2014) have built a scholarly big data platform
based on CiteseerX system that integrates different services for scholarly data such
as information extraction and user/log data analytics. The proposed platform is
based on a virtual architecture using a private cloud with the design of the key mod-
ules, which included a focused crawler, a crawl-extraction-ingestion workflow, and
distributed repositories and databases.

2.3.2 Social Network Analysis

Due to the inherent social network generated from academic activities (such as ci-
tations, collaborations and academic communications) – named academic social net-
work (Mumtazimah et al., 2018), social network analysis has been proposed to in-
vestigate the topologies and dynamics of this network (Feng et al., 2017). Social
network analysis is mainly based on the graph theory (Deo, 1974) and aims to de-
scribe, analyse, and simulate an academic social network by representing, visualis-
ing and detecting communities in a given network of main scientific entities such
as researchers, papers, conferences and citations. For instance, the citation network
has been extensively studied to grasp the relationship among the scientific litera-
tures (Rossetto et al., 2018). As well as, it has been used to detect the most influential
nodes for graph summarisation problem on citation networks (Shi et al., 2015), and
to study the power-law link strength distribution in paper co-citation networks (Star
Zhao and Ye, 2013). The paper network has been used to aid in the exploration of rela-
tionships among scientific documents for different purposes. For instance, (Dunne
et al., 2012) aimed to provide a summary, while identifying key papers, topics and
research groups. To this end, they have developed Action Science Explorer (ASE)
and have tested it on a collection of 17, 610 computational linguistics papers from
the ACL Anthology Network. On the other hand, (H. Li et al., 2006) have proposed
CiteSeerX, which is a scientific literature library and search engine that automatically
crawls and indexes scientific documents in the field of computer and information
science. In addition to the paper network that studies scientific papers externally
based on their interconnections via citation network, topic network tends to study the
papers internally by studying the topics they are discussing from different perspec-
tives. For instance, (Tao et al., 2017) have proposed a study map oriented method
called Reference Injection based Double-Damping Page Rank (RIDP) that guides re-
searchers to dig into the underlying principles of a specific paper. However, (S. Kim
et al., 2018; Salatino et al., 2017) have studied the keywords associated with each
paper in order to analyse the dynamics of research topics and visualise information
on the growth and change in focus of research fields. The academic network has been
studied by (Tang et al., 2008) to extract and mine academic social networks. They
have provided search services for the academic network by extracting nearly half
million research profiles.

Due to the strong relatedness between the aforementioned academic entities, so-
cial network analysis has been widely used to understand the large and heteroge-
neous networks formed by these entities and grasp the big picture of academic fields.
Therefore, some works (Hoonlor et al., 2013; Osborne et al., 2013; Rossetto et al.,
2018; Tan et al., 2016; Tang, 2016) have provided a systematic modeling approaches
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to gain a deep understanding of the large academic networks. For instance, (Tang,
2016) have developed AMiner – based on a large scholar dataset with more than
130, 000, 000 researchers’ profiles and 100, 000, 000 papers from multiple publication
databases – in order to study the heterogeneous networks formed by authors, papers
they have published, and venues in which they were published. In the same context,
(Osborne et al., 2013) have developed Rexplore, which integrates statistical analysis,
semantic technologies and visual analytics, to understand the dynamics of research
areas, relate authors semantically, and perform fine-grained academic expert search
along multiple dimensions.

It is worthy of note that the new learning paradigm network representation learn-
ing (D. Zhang et al., 2018) has recently attracted some works in big scholarly data
due to its ability to capture complex relationships across various disciplines such
as citation networks. In this respect, (Kong et al., 2018) have learned vector repre-
sentation of papers with network embedding after bridging text information and
structural identity with citation network, aiming to develop a robust scientific paper
recommendation system. In other respects, (Jiaying Liu et al., 2019) have proposed
a novel model that relies on network representation learning to discover advisor-
advisee relationships hidden behind scientific collaboration networks.

Social network analysis has been widely used in scholarly data mining applica-
tions including citation analysis (Rossetto et al., 2018; Shi et al., 2015; Star Zhao and
Ye, 2013), literature analysis (Tan et al., 2016; Tang et al., 2008; Tan et al., 2016; Tao
et al., 2017; Osborne et al., 2013; Dunne et al., 2012; H. Li et al., 2006), document
analysis (S. Kim et al., 2018; Salatino et al., 2017), conference analysis (Effendy et al.,
2014) and trend analysis (Hoonlor et al., 2013; C. Zhang and Guan, 2017).

2.3.3 Machine Learning Techniques

Scholarly data mining involves different machine learning (ML) techniques ranging
from supervised approaches to unsupervised approaches, namely classification and
clustering.

Classification

In machine learning, classification refers to the task that requires the use of su-
pervised learning algorithms to learn how to categorise a given set of data into
classes (Alpaydin, 2010). Considering that the variety of scholarly data intrigues
categorisation, classification has been used for different scholarly applications in-
cluding (i) content-based citation analysis (Zehra and Umut, 2018), where citations
were divided into four main categories; citation meaning, citation purpose, citation
shape, and citation array; (ii) early identification of sleeping beauties – scientific
publications, which do not get much cited for several years after being published,
but then suddenly start getting cited heavily (Dey et al., 2017); (iii) paper reviewer
recommendation (Shu Zhao et al., 2018a); (iv) identification of ambiguous author
names (Sun et al., 2011); and (v) topic classification (Cornelia et al., 2015).

Different classification techniques have been used. For instance, (a) Naîve Bayes
Multinomial and Random Forest algorithms have been used for automatic citation sen-
tence classification in a dataset of 423 peer-reviewed articles associated with 12, 881
references and 101, 019 sentences, and have performed 90% success rate (Zehra and
Umut, 2018). (b) Linear Support Vector Machine, Decision Tree and KNN have been
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used to classify papers as sleeping beauties or not (Dey et al., 2017). The classi-
fiers have been applied to a dataset of more than 2 million papers published in the
computer science domain and indexed by Microsoft Academic Search; and have
achieved a precision of 73% in identifying sleeping beauties immediately after their
year of publications. In a different task, Support Vector Machine and Naîve Bayes
Multinomial have been used for topic classification of research papers (Cornelia et al.,
2015), applied to a subset sampled from the CiteSeerx digital library. (c) Logistic Re-
gression algorithm has been proposed to detect ambiguous author names in crowd-
sourced scholarly data extracted from Scholarmeter (Sun et al., 2011). Two classes
of features of a scholar’s publications are supplied to the classifier: (i) name varia-
tions and citations, and (ii) topic consistency, which helped to reach a 75% accuracy.
In addition to the existing classification techniques, (Shu Zhao et al., 2018a) have
proposed a novel classification method named (d) Word Mover’s Distance Construc-
tive Covering Algorithm (WMD-CCA) to solve the reviewer recommendation problem
as a classification issue. It has been applied to four public datasets and a synthetic
dataset from Baidu Scholar31 and has shown its effectiveness to solve the reviewer
recommendation task as a classification issue and improve the recommendation ac-
curacy.

Clustering

Clustering, in machine learning, relies on unsupervised learning algorithms to di-
vide data points into a number of groups such that data points in the same groups
are more similar to other data points in the same group and dissimilar to the data
points in other groups (Alpaydin, 2010). Due to the availability of unlabeled schol-
arly data, clustering has been used in different scholarly applications. As a matter
of fact, clustering has been extensively used for document analysis (Ashton et al.,
2012; Lu et al., 2018a; Salatino et al., 2018). For instance, the authors in (Ashton et
al., 2012) and (Salatino et al., 2018) have relied on clustering to group research top-
ics. The former study has grouped topics into clusters based on how authors move
through them, while the later has detected clusters of topics that exhibit dynamics
correlated with the emergence of new research topics. On the other hand, the au-
thors in (Lu et al., 2018a) have used clustering for document structure analysis; they
have generated domain-specific structures based on high-frequency section headers
in scientific documents of a domain.

Similarly to its utility in document analysis, clustering has been used in literature
analysis to explore internal structure of papers and finding research topics (Y. Liu et
al., 2015). Furthermore, for trend analysis, clustering has been utilised to identify
features of meta-knowledge (C. Zhang and Guan, 2017), and to investigate changes
over time in the research landscape through clustering bursty keywords (Hoonlor
et al., 2013).

Clustering has also served as a useful method for citation analysis (Dunne et al.,
2012; Hou et al., 2018). This has been shown in the case of clusters identification
of citation patters, which helps scholars by providing some forms of automated de-
scriptions for interesting subsets of a document collection.

Different clustering techniques have been explored including hierarchical cluster-
ing (Ashton et al., 2012), k-means (Lu et al., 2018a) and advanced clique percolation
method (ACPM), which is a novel clustering algorithm developed by (Salatino et al.,

31https://scolary.com/tools/baidu-scholar

https://scolary.com/tools/baidu-scholar
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2018) to detect clusters of topics in the evolutionary networks that exhibit an inten-
sive activity in terms of pace of collaboration.

Other ML Techniques

Other than classification and clustering, different other ML techniques have been
used for scholarly data mining. For instance, Hidden Markov Model (HMM) – which
is defined as a statistical tool that models generative sequences that can be char-
acterised by an underlying process generating an observable sequence (Baum and
Petrie, 1966) – has been explored for citation analysis. In (An et al., 2017), the au-
thors identified dynamic patterns of knowledge flows driven by business method
patents using HMM and patent citation data as an input. They have conducted
a case study with the business method patents in 16 sub-classes related to secure
transactions. Their analysis revealed that business method patents play increasingly
important roles in advancement of business models. The proposed HMM based ap-
proach outperformed the existing research on knowledge flows that mainly focuses
on static analysis while knowledge flows are intrinsically a dynamic phenomenon.
Moreover, for document analysis, ensemble learning – which is a machine learning
paradigm, where multiple learners are trained to solve the same problem (Polikar,
2006) – and association rules – which is a rule-based machine learning method, used
to find correlations and co-occurrences between data sets (Piatetsky-Shapiro, 1991)
– have been used by (Tuarob et al., 2016) to extract algorithm representations in
a heterogeneous pool of scholarly documents. The proposed techniques discover
pseudo-codes and algorithmic procedures, identify sections in scholarly documents,
and use a heuristic that links different algorithm representations referring to the
same algorithm together. The proposed techniques cover the limitations of the rule-
based method proposed by (Bhatia et al., 2010) for pseudo-code detection, which
assumes that each pseudo-code is accompanied by a caption. However, such an
assumption is not usually true because of the wide variations in writing styles fol-
lowed by different journals and authors. However regression – which is defined as
a set of statistical processes that attempt to determine the strength and character of
the relationship between one dependent variable and a series of other variables – has
been used by (Asooja et al., 2016) to predict future keyword distribution in order to
map scientific topic evolution over time. The prediction is based on historical data
of 55k keywords extracted from Language Resources Evaluation Conference (LREC)
conference proceedings from 2000 to 2014, and a time series dataset of topics and
their popularity have been generated. Unlike existing approaches that simply map
the evolution of scientific topics over years, the proposed approach automatically
predicts keyword distribution. Consequently, it outperforms the methods based on
topic modelling or clustering that require expert knowledge to manually label top-
ics.

Deep learning – which is a form of machine learning based on artificial neural net-
works, which are capable to learn from unstructured and unlabelled data without
human supervision – has been also used to analyse scientific literature. For instance
(Safder and Hassan, 2018) have designed a deep search system for algorithms from
full-text scholarly big data. In contrast to traditional term frequency-inverse doc-
ument frequency (TF-IDF) based approaches that use frequent terms as in bag of
words models, the authors first generated a synopsis of the full-text document and
then enriched it with sentences that classify as algorithm-specific metadata from
full-text to improve the capabilities of algorithmic-specific searching tasks. These
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sentences were classified from deep learning based bi-directional long short term
memory network (LSTM) model. The proposed model outperformed Support Vec-
tor Machine (SVM) in classifying 37, 000 algorithm-specific metadata sentences with
81% accuracy.

2.3.4 Natural Language Processing Techniques

Scholarly data mining involves scholarly text mining (Feng et al., 2017), which plays
an important role in the analysis of document content. Thus, text mining and natural
language processing techniques have been widely employed to analyse scientific
publications.

Current research in scholarly text mining relies mainly on topical analysis. In-
deed, topic model – which is defined as a statistical model for discovering the abstract
topics that occur in a collection of documents (Blei, 2012) –, namely Latent Dirichlet
Allocation (LDA) (Blei et al., 2003), has been extensively used either to assign top-
ics to documents based on a given keyword set (document classification) (Paul and
Girju, 2009; Tang et al., 2008; Weismayer and Pezenka, 2017) or to detect groups of
similar documents (document clustering) (Ashton et al., 2012; Bakarov et al., 2018;
Hall et al., 2008; Tang, 2016).

On the other hand, few recent works have explored word embeddings (Mikolov
et al., 2013d) – the newly discovered natural language processing technique that
represents individual words as real-valued vectors in a predefined vector space –
to analyse the content of scientific publications. For instance, the authors in (J. He
and Chen, 2018) have proposed word embeddings to track the semantic changes of
scientific terms over time in the biomedical area. Going beyond the existing studies
on topic-level analysis based on topic modeling techniques (Blei et al., 2003) – that
automatically detect research topics based on textual information and identify their
novelty –, the proposed approach investigates the impact of the novelty degree of re-
search topics on the growth of scientific knowledge. In (Vahe et al., 2019), the authors
have relied on word embeddings to capture latent knowledge from materials science
literature and predict novel thermoelectric compositions. The authors have shown
that – unlike supervised natural language processing techniques (Friedman et al.,
2001; Swain and Cole, 2016), which requires large hand-labelled datasets for train-
ing – word embeddings can be efficiently used to encode materials science knowl-
edge present in the published literature as information-dense vector representations
without human labelling or supervision. As a result, without any explicit insertion
of chemical knowledge, these embeddings capture complex materials science con-
cepts such as the underlying structure of the periodic table and structure–property
relationships in materials. Similarly, in this thesis (Dridi et al., 2019a; Dridi et al.,
2019b) word embeddings have been used to early detect converging keywords that
may result in trending topics in the area of machine learning.

2.4 Publications Areas

Scholarly data mining has been applied to a wide range of disciplines ranging from
neuroscience (Acuna et al., 2012) to literature studies (Martínez-Gómez, 2015).

Figure 2.3 presents distribution per application domains of scholarly data min-
ing applications. What can be clearly seen from this figure is that computer & infor-
mation science is the field with greatest number of publications. This observation
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is somehow obvious because the majority of scholars investigating scholarly data
mining are coming from the area of computer science, where the investigation of
their area of expertise is more convenient for interpretation and conclusion draw-
ing. Different sub-areas of computer science have been studied such as artificial
intelligence (Alam and Ismail, 2017; Dridi et al., 2019a; Dridi et al., 2019b), computa-
tional linguistics (Ashton et al., 2012; Hall et al., 2008; Bakarov et al., 2018; Paul and
Girju, 2009; Asooja et al., 2016), and big data (Kaempf et al., 2015). Besides, different
scholarly data applications have been explored within the area of computer & in-
formation science such as document analysis (Alam and Ismail, 2017; Ashton et al.,
2012; Salatino et al., 2017; Salatino et al., 2018; Bakarov et al., 2018; Paul and Girju,
2009; Tuarob et al., 2016; Cornelia et al., 2015), citation analysis (Zehra and Umut,
2018; Weller et al., 2011), literature analysis (Dunne et al., 2012; H. Li et al., 2006;
Osborne et al., 2013), conference analysis (Effendy et al., 2014; Effendy and Roland,
2016; Tao et al., 2017; Nuzzolese et al., 2016), and trend analysis (Effendy and Yap,
2017; Dey et al., 2017; Asooja et al., 2016; Kaempf et al., 2015; Dridi et al., 2019a; Dridi
et al., 2019b).

Number of publications

Multidisciplinary

Economy & Business

Medicine & Biology

Chemistry & Material Science

Computer & Information
Science

Other disciplines

FIGURE 2.3: Distribution per application domains of scholarly data
mining publications

Based on Figure 2.3, the second major part of studies has applied scholarly data
mining to multidisciplinary area, where more than one discipline has been stud-
ied (Thelwall, 2018; Boyack et al., 2017; Wu et al., 2014; C. Zhang and Guan, 2017;
Sun et al., 2011; Godin, 2006; McBurney and Novak, 2002; Monroy and Diaz, 2018;
Tang et al., 2008).

Economy & Business area has also attracted the attention of scholars in scholarly
data mining. They have investigated different aspects such as relations and econ-
omy (Soriano et al., 2018); innovation and entrepreneurial ecosystem (C. Zhang and
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Guan, 2017); business (Rossetto et al., 2018) and business model innovation (An et
al., 2017); and marketing and tourism (Weismayer and Pezenka, 2017).

The area of Medicine & Biology has been also studied through scholarly data
mining. The existing studies (Rexha et al., 2018; Shardlow et al., 2018; Y. Liu et
al., 2015) have studied the document content of biomedical publications to extract
knowledge from scientific literature and discover underlying interesting research
topics. Similarly, the area of Chemistry & Material Science has seen the application of
scholarly data mining for citation analysis (Lv et al., 2011) and trend analysis (Vahe
et al., 2019).

The other disciplines that have been involved in scholarly data analysis are as
following: neuroscience (Acuna et al., 2012); ecology (Nabout et al., 2018), social
science (Priem and Costello, 2010); education (Paul and Girju, 2009; Weber and Gu-
nawardena, 2011); and translation and interpreting studies (Martínez-Gómez, 2015).
The main scholarly data mining application applied to these areas is citation analy-
sis.

2.5 Discussion

The majority of the reviewed studies demonstrated that scholarly data mining can
be effectively applied to a wide range of scholarly applications to learn about the
structure and the dynamics of science. The investigation done within this thesis
suggested that scholarly data mining can be utilised to address different scholarly
applications and provide better services to scholars such as academic recommenda-
tion, scientific text summarisation and research trend prediction. This is significant
because these services can potentially accelerate science and facilitate the identifi-
cation of fundamental mechanisms responsible for scientific discovery (Fortunato
et al., 2018). However, despite its notable advantages, scholarly data mining also
brings different challenges. The challenges that this thesis addresses are as follows.

Representation of scholarly data. Given the size of scholarly data, the complexity
of its structure and the nature of the scientific language, the representation of
the scientific content has become increasingly challenging. In fact, big schol-
arly data is characterised by the 5V feature (volume, variety, velocity, value,
veracity) (Feng et al., 2017). Velocity refers to the dynamics of scholarly data,
including the scientific language. This velocity reflects therefore the dynamics
of science. This feature makes from the representation of scholarly content a
challenging task. This thesis addresses this challenge by focusing on the repre-
sentation of the scientific language as an important type of scholarly data. To
this end, temporal word embeddings are leveraged to represent the scientific
text towards a better tracking of the dynamics of science. A rigorous study has
been conducted to test the effectiveness of word embeddings to represent the
semantics behind the scientific language. This study is described in Chapter 4.

Lack of methodologies and concepts. The computational history of science, as an
application of scholarly data mining, is increasingly attracting research inter-
est. However, no rigorous methodologies are available as standards to fol-
low to perform the computational history of science. The existing works track
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the evolvement of research topics or perform the trend analysis, claiming per-
forming the computational history of science. While trend analysis is a key
step towards the computational history of science, the concept of trend is still
ambiguous; no standard definition is given. Furthermore, the computational
history of science is not only limited to the task of trend analysis. It rather
includes the tracking of the dynamics of science. Establishing methodologies
and defining concepts to perform an accurate computational history of science
is therefore a need. This thesis attempts to satisfy this need by proposing a
methodology that includes the detection of emerging trends (Chapter 5 and 6)
and the tracking of the dynamics of science (Chapter 7). Importantly, in this
thesis, the concept of trend is defined, and accordingly the trends are detected
(Chapter 5 and 6).

Lack of gold standards. Some scholarly applications require gold standards to eval-
uate their outcomes such as trend analysis. However, there are no standards to
use to perform comparative studies or to validate the obtained results. Most of
existing studies on trend analysis have relied on descriptive analysis to present
their studies. However, applying machine learning techniques requires stan-
dards for validation, which makes this task challenging. This thesis attempts
to build a gold standard relying on Google Trends hits. The approach pre-
sented in Chapter 6 highlights the importance of promoting gold standards
for the matter of trend analysis. In fact, this scholarly application represents
an important direction towards knowledge discovery and the study of the dy-
namics of science.

Scholarly data mining brings some other challenges that are not addressed in this
thesis. These challenges are described as follows.

Collecting and processing scholarly data. Given the 5V feature (volume, variety,
velocity, value, veracity) (Feng et al., 2017), veracity and variety make from
collecting and processing scholarly data a complex task, where ambiguity is
present and different entities are involved. The complexity of this task makes
scholarly data management a challenging task.

Insufficiency of metrics to evaluate the research quality. Evaluating the research
quality is an essential component of research assessment, and outcomes of
such evaluations can help in institutional research strategies such as funding
and recruitment. However, there are little standards to measure scientific per-
formance objectively. For instance, metrics alone have been unable to achieve
the task of predicting scientific impact and assessing research quality (Sahel,
2011). Improving existing research evaluation practices is, therefore, an urge.
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2.6 Summary

This chapter has provided a systematic review about scholarly data mining appli-
cations, performing a literature-based analysis, and a description of current ap-
proaches investigating scholarly data; indicating the interest in the field from dif-
ferent perspectives such as the type of the techniques used and the disciplines in-
vestigated.

The value proposition of scholarly data mining is that with a deeper understand-
ing of the structure of science, more scientific discovery problems can be effectively
addressed, and tools and policies that have the potential to perform computational
history of science can be developed. In the following chapters, the proposed solu-
tion to tackle the problem of the computational history of science is presented. This
solution relies mainly on word embedding techniques, namely word2vec (Mikolov et
al., 2013c). For this reason, the next chapter will introduce the foundations of word
embedding techniques and describe the architectures of word2vec.
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Chapter 3

Word Embeddings Techniques –
Word2vec

“The knowledge of many minds
consists principally of the news of the
day and the talk at the last tea-party.”

— James Lendall Basford, it Sparks
from the Philosopher’s Stone. (1845–1915)

As discussed in the previous chapter, a natural language processing (NLP) tech-
nique, namely word embeddings, has been used for the analysis of scholarly data.
This chapter details word embeddings that represent the NLP technique used through-
out this thesis. In this chapter, after stating the history of word embeddings in
Section 3.1, the three main foundations of word embeddings are represented in
Section 3.2, namely vector space semantics, word senses, and machine learning. Then,
word2vec (Mikolov et al., 2013d) – the word embedding technique used in this thesis
– is extensively described in Section 3.3 by describing its two models in Section 3.3.1.
Afterwards, a summary of works on temporal word embeddings is given in Section 3.4.
This is justified by the fact that the approaches proposed in this thesis will adopt tem-
poral word embeddings to perform a computational history of science. Finally, other
word embedding techniques are described in Section 3.5, where also a discussion
section (Section 3.5.4) is provided to justify the choice of word2vec in this thesis as a
word embedding technique to perform the computational history of science. Finally,
Section 3.6 summarises the chapter.

3.1 History of Word Embeddings

In Computational Linguistics, word embeddings (WEs) have a long history in
the area of Distributional Semantics, where the term distributional semantic model
was dominating till 2013 when a team at Google led by Thomas Mikolov created
word2vec (Mikolov et al., 2013e), a word embedding toolkit. And, since then, the
terminology word embedding (WE) started to be the dominating term.

The basic idea of word embeddings is that the contextual information constitutes
a viable representation of linguistic items. This idea has its theoretical root in lan-
guage philosophy “a word is characterized by the company it keeps” (Firth, 1957). The
earliest attempt at representing words as vectors dates back to the 1960s with the
development of the vector space model (G. Salton et al., 1975) and Osgood’s semantic
differentials (Osgood et al., 1975) that use handcraft features. Methods that use auto-
matically generated contextual features were developed around the 1990s and can
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be divided into two categories: count-based methods (e.g., Latent Semantic Analy-
sis (Furnas et al., 1988)), and predictive methods (e.g., neural probabilistic language
models (Yoshua Bengio et al., 2003)).

The difference between these two categories of methods is mainly the type of
contextual information they use. The count-based models use documents as con-
texts, which is justified by their roots in information retrieval. The predictive mod-
els instead use words as contexts taking into account the linguistic and the cognitive
perspective.

The area developed gradually and has seen an explosion in 2013 when
word2vec (Mikolov et al., 2013e) was developed. Since then, most new word em-
bedding techniques rely on neural network architecture instead of n-gram models,
which are statistical language models that assign probabilities to the sequences of
words (Jurafsky and Martin, 2009).

3.2 Foundations of Word Embeddings

This section introduces the three main foundations of word embeddings, which are
vector space semantics, word senses and machine learning.

3.2.1 Vector Space Semantics

Vector Space Semantics, also known as Distributional Semantics (DS) (Harris, 1954), is
defined as a usage-based model of meaning (Lenci, 2018) that aims to distribution-
ally represent words by means of vectors. The meaning of a word is supposed to
be entirely defined by “the company it keeps” (Firth, 1957). Indeed, the vector space
semantics rely on the distributional hypothesis (Harris, 1954) that underlines the idea
that “words that occur in similar contexts tend to have similar meanings” (Erk, 2012; Tur-
ney and Pantel, 2010).

Distributional Semantics are typically implemented through vector space models
(VSM), where words are represented as points in high-dimensional space. The VSM
have been introduced in the area of information retrieval by Salton et al. (G. Salton
et al., 1975) and represent a collection of documents with a matrix whose rows are
vectors corresponding to lexical items and whose columns are vectors correspond-
ing to documents, and each matrix entry records the occurrences of a lexical item in
a document (Lenci, 2018).

VSM gained a lot of success and continued to be used in information retrieval.
However, they were completely ignored in computational linguistics until the early
1990s, because of the dominance of formal and logic approaches (Lenci, 2018). Start-
ing in the late 1980s, NLP has seen a revolution with the introduction of machine
learning (ML) algorithms for language processing. This revolution was termed “
statistical revolution” (Johnson, 2009) as NLP research has relied heavily on ML. This
favored a growing interest in DS that became a mainstream research paradigm in
computational linguistics (Lenci, 2018).

DS represent meaning through observed contexts. Figure 3.1 shows a simple
example for the target word “brexit”. The corpus on the left (wiki corpus) consists of
few sentences from Brexit Wikipedia page. In the middle are co-occurrence counts
derived from the corpus (showing counts for only some of the context words). For
this example, the lemmatised context words are counted in the full sentence in which
the target “ brexit” occurs. DS are commonly implemented in vector space models
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(VSM) that represent a target word – here, “brexit” – as a point in high-dimensional
space. The dimensions correspond to context items, and in the simplest case, the
coordinates are the co-occurrence counts. Figure 3.1 (right) shows parts of the vector
of “brexit” derived from wiki corpus.

FIGURE 3.1: Creating a simple vector space representation for
“brexit”: A wiki corpus of sample sentences from the Brexit Wikipedia
page (left), context word counts (middle), and the corresponding vec-

tor (right)

Figure 3.1 explains the basic idea of the VSM that represent text as Bag of Words
(BoW) using word frequencies. More formally, a vocabulary V is established, where
each word wi has a unique integer index i. A document d is represented by a column
vector vj, where each element vij stores the frequency fij of word wi in document dj.

For the standard vector space model, BoW is normalised such that each vij value
does not necessarily show the exact word/term frequency, but stores a weight wij
that represents a relevance measure of the term in the document. Some of the most
popular weighting schemes are TF.IDF (Karen, 1988) and BM25 (Robertson et al.,
1992). Table 3.1 presents the known weighting schemes.

The distributional similarity between two words is measured with the similarity
between their distributional vectors. The cosine is the most popular measure of vec-
tor similarity in DS. Table 3.2 summarises all similarity metrics between two vectors.

The Distributional Semantic Model (DSM) is a particular configuration of the
parameters used to build distributional representations. These parameters include
the selection of target lexemes, the definition of context type, the choice of weight-
ing scheme, the application of dimensionality reduction, and the choice of a vector
similarity measure (Lenci, 2018). One of the major variations among distributional
semantic models is the method to learn distributional representations. Matrix mod-
els are the most common method of distributional semantic models. They generalise
the vector space models and learn the representation of a target lexeme by recording
its co-occurrences in linguistic contexts. Table 3.3 presents the most common matrix
distributional semantic models.



44 Chapter 3. Word Embeddings Techniques – Word2vec

TABLE 3.1: Term weighting schemes. fij denotes the target word fre-
quency in a particular context, fi the total target word frequency, f j
the total context frequency, N the total of all frequencies, nj the num-

ber of non-zero contexts. P(tij|cj) is defined as
fij
f j

and P(tij) is defined

as
fij
N .

Weighting Schema Definition
None (Harris, 1954) wij = fij

TF.IDF (Karen, 1988) wij = log(fij)× log(N
nj
)

TF.ICF (Reed et al., 2006) wij = log(fij)× log(N
fj
)

Okapi BM25 (Robertson et al., 1992) wij =
fij

0.5+1.5×
fj
fj
j

+fij
log N−nj+0.5

fij+0.5

ATC (Sebastiani, 2002) wij =
(0.5+0.5×

fij
maxf

) log( N
nj
)√

∑N
i=1[(0.5+0.5×

fij
maxf

) log( N
nj
)]2

LTU (Singhal et al., 1996) wij =
(log(fij)+1.0) log( N

nj
)

0.8+0.2×fi× j
fi

MI (Cover and Thomas, 2006) wij = log P(tij|cj)

P(tij)P(cj)

Lin98a (Lin, 1998b) wij =
fij×f
fi×fj

Lin98b (Lin, 1998a) wij = −1× log nj
N

Gref94 (Grefenstette, 1994) wij =
log fij+1
log nj+1



3.2. Foundations of Word Embeddings 45

TABLE 3.2: Similarity measures between vectors v and u, where vi is
the ith component of v

Measure Definition
Cosine u·v

|u|·|v|

Euclidean 1
1+
√

∑n
i=1(ui−vi)2

Cityblock 1
1+∑n

i=1 |ui−vi|

Chebyshev 1
1+maxi|ui−vi|

Correlation (u−¯u)·(v−¯v)
|u|·|v|

Dice 2 ∑n
i=0 min(ui,vi)

∑n
i=0 ui+vi

Jaccard u·v
∑n

i=0 ui+vi

Jaccard2 ∑n
i=0 min(ui,vi)

∑n
i=0 max(ui,vi)

Lin ∑n
i=0 ui,vi
|u|+|v|

Tanimoto u·v
|u|+|v|−u·v

Jensen-Shannon Div 1−
1
2 (D(u|| u+v

2 )+D(v|| u+v
2 ))√

2 log 2

α-skew 1− D(u||ffv+(1−ff )u)√
2 log 2

TABLE 3.3: The most common matrix distributional semantic mod-
els (Lenci, 2018)

Model Description Reference

Latent Semantic Analy-
sis (LSA)

Word-by-region matrix, weighted
with entropy and reduced with
Singular Value Decomposition (SVD)

(Landauer
and Dutnais,
1997)

Hyperspace Analogue
of Language (HAL)

Window-based model with directed
collocates

(Burgess,
1998)

Latent Relational Anal-
ysis (LRA)

Pair-by-pattern matrix reduced with
SVD to measure relational similarity

(Landauer
and Dutnais,
1997)

Dependency Vectors
(DV)

Syntactic model with dependency-
filtered collocates

(Pado and La-
pata, 2007)

Topic Models
Wordr-by-region matrix reduced with
Bayesian inference

(Steyvers and
Griffiths, 2007)

Distributional Memory
(DM)

Target-link-context tuples formalised
with a high order tensor

(Baroni and
Lenci, 2010)

High-Dimensional Ex-
plorer (HiDEx)

Generalisation of HAL with a larger
range of parameter settings

(Shaoul and
Westbury,
2010)

Global Vectors (GloVe)
Word-by-word matrix reduced with
weighted least-squares regression

(Pennington et
al., 2014a)



46 Chapter 3. Word Embeddings Techniques – Word2vec

3.2.2 Word Senses

In linguistics, word sense is defined as the word usage as per Wittgenstein’s sug-
gestion “the meaning of a word is its use in the language” (Wittgenstein, 1953). The
definition of meaning was more specified by Harris, when he proposed that words
with similar syntactic usage have similar meaning (Harris, 1954).

Since words might have different meanings (word senses), people and comput-
ers must use a process called word-sense disambiguation (WSD) (Ide and Véronis, 1998)
to find the correct meaning of a word. This process uses context (such as neighbor-
ing words) to narrow the possible senses down to the possible ones. Research on
WSD has been an interest since the earliest days of computer treatment of language
in the 1950’s, where language understanding was required for different applications
such as machine translation (Yehoshua, 1960), information retrieval (Gerard Salton,
1968; Gerard Salton and McGill, 1986), content and thematic analysis (P. J. Stone and
Hunt, 1963; P. Stone, 1969), grammatical analysis (Jensen and Binot, 1987), speech
processing (Sproat et al., 1992), text processing (Yarowsky, 1994).

There are four different approaches to WSD:

• Knowledge based approaches. They rely on several types of lexical knowl-
edge bases such as dictionary or thesaurus, WordNet (Miller, 1995), Sem-
Cor (Landes et al., 1998), Wikipedia, etc., to provide the appropriate sense of
word in a context. The fundamental principle of these approaches is the match-
ing of information, obtained from the context of the word, with the information
obtained from the lexical knowledge base (Singh and Gupta, 2015).

• Supervised approaches. They rely on the assumption that the context pro-
vides evidence to disambiguate words. In other words, the basic idea is that
words surrounding the target word can provide clues about the word sense,
these words are called features. These features are learned by a classifier on
training data, and then the classifier is used on test data to see how much ac-
curately the selected features have disambiguated the word sense (Singh and
Gupta, 2015). The most commonly used algorithms in supervised approaches
are Naive Bayes (Jin et al., 2010), Decision Trees (Quinlan, 1990), Neural Net-
works (McCulloch and Pitts, 1988) and Support Vector Machines (Boser et al.,
1992).

• Unsupervised approaches. They overcome the problem of knowledge ac-
quisition bottleneck because they do not require sense annotated data. They
rely on the assumption that similar senses occur in similar contexts, and thus
the important task of these approaches is to identify sense clusters (Chandra
and Dwivedi, 2014) using similarity measures of context. Then, new occur-
rences of the word can be classified into the closest clusters or senses. Dif-
ferent unsupervised WSD approaches have been proposed such as HyperLex
approach (Véronis, 2004), Roget’s Categories approach (Yarowsky, 1992) and
Lin’s approach (Lin, 1997).

• Semi-supervised approaches. They are also known as weakly supervised ap-
proaches, which allows both labeled and unlabeled data. They tend to solve the
problem when fully labeled data is not available and it is expensive and time
consuming to label the unlabeled data. Some semi-supervised approaches
have been proposed such as the Yarowsky algorithm (Yarowsky, 1995) and the
bootstrapping approach (Yarowsky, 1994). The Yarowsky algorithm (Yarowsky,
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1995) was an early example of such approaches. it uses the “one sense per col-
location” and “one sense per discourse” properties of human languages for WSD.
The bootstrapping approach (Yarowsky, 1994) starts with small amount of sense
labeled data (seed data), a large amount of unlabeled data and one or more
classifiers. The seed data is used to train an initial classifier, using any super-
vised algorithm. This classifier is then used on the unlabeled data to extract
a larger training set, in which only the most confident classifications are in-
cluded. The process is repeated, each new classifier being trained on a succes-
sively larger training set until the whole data set is trained.

3.2.3 Machine Learning

Machine learning is defined as a subset of artificial intelligence dealing with algo-
rithms that allow computer programs to automatically improve through experi-
ence (Mitchell, 1997). Machine learning algorithms are then used to make predic-
tions from training data without being explicitly programmed to do so (Koza et al.,
1996). This advantage makes machine learning algorithms evolve and has brought
about an explosion of use in different applications such as image recognition, NLP,
automatic speech recognition, etc.

A subset of machine learning algorithms is related to computational statistics,
while another subset is related to neural networks and their derivations. The first
subset focuses on making predictions using computers, while the second tends to
imitate the human brain in processing data and creating patterns for use in decision
making. Both subsets of machine learning algorithms have been leveraged in NLP.

In this thesis, the focus is on the application of machine learning algorithms in
NLP that has been started since the early 2000s with the implementation of language
models (Yoshua Bengio et al., 2003), and recently with the introduction of word em-
beddings (Mikolov et al., 2013d).

3.3 Word Embeddings – Word2vec

This section describes the two main models of word2vec, which are the continuous-
bag-of-words model (CBOW) and the skip-gram model (SG).

3.3.1 Models of Word2vec

Introduced by Mikolov et al. (Mikolov et al., 2013e), word2vec was the first pop-
ular embeddings technique for NLP tasks. The model is used for learning vector
representations for words, where semantically similar words are mapped to nearby
points in the vector space. This vector representation is performed through the two-
layer neural network that characterises word2vec. It takes a text corpus as input and
produces word vectors as output. The embeddings are actually the weights of the
hidden layer in the neural network.

Word2vec is defined as a computationally-efficient predictive model that either
uses context to predict a target word (a model known as CBOW model), or uses a
word to predict a target context (which is called skip-gram model) (Mikolov et al.,
2013e). Figure 3.2 represents the difference between the two models.
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FIGURE 3.2: Word2vec architectures: CBOW and skip-gram models

Continuous Bag-of-Words Model

The CBOW model predicts target words from source context words (Mikolov et
al., 2013e). The architecture of the CBOW model, shown in Figure 3.3, is detailed
as follows: the input layer consists of the one-hot encoded input context words
{x1, . . . , xC} for a word window of size C and vocabulary of size V. The hidden
layer is an N-dimensional vector h. Finally, the output layer is the output word y in
the training example, which also consists of a one-hot encoded vector. The one-hot
encoded input vectors are connected to the hidden layer via a V×N weight ma-
trix W and the hidden layer is connected to the output via a N×V weight matrix
W′ (Word2Vec Tutorial Part II: The Continuous Bag-of-Words Model n.d.).

X1k

X2k

XCk

hiWVxN

C x V_dim

N_dim

Hidden layer

Input layer

Output layer

V_dim

W’NxV
yj

FIGURE 3.3: Continuous bag-of-words architecture

The output vectors are computed from the inputs via froward propagation. The
first step consists to evaluate the output of the hidden layer h by computing the
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average of the input vectors weight by the matrix W as follows:

h =
1
C

W · (
C

∑
i=1

xi) (3.1)

The second step consists to compute the inputs to each node in the output layer
as follows:

uj = v′Twj
· h (3.2)

where v′wj
is the jth column of the output matrix W′. At the final step, the output yj

of the output layer is computed by passing the input uj throught the softmax function
as follows:

yj = P(wyj |w1, . . . , wc) =
exp(uj)

∑V
j=1 exp(u′j)

(3.3)

In order to learn the weight matrices, W and W′, randomly initialized values
have to be chosen. Then, training examples have to be sequentially fed to the model
while observing the error that represents the difference between the expected output
and the observed output. The gradient of this error is computed with respect to
the elements of both weight matrices W and W′, and the errors are corrected in the
direction of this gradient. The general optimisation procedure is known as stochastic
gradient descent (SGD), but the method by which the gradients are derived is called
backpropagation.

The first step is to define the loss function. The objective is to maximize the condi-
tional probability of the output word woutput given the input context winput, therefore
the loss function is defined in Equation 3.4.

E = − log p(woutput|winput) = −uj∗ − log
V

∑
j′=1

exp(uj′) = −vT
woutput

· h− log
V

∑
j′=1

exp(vT
wj′
· h)

(3.4)
where j∗ is the index of the actual output word.
The next step consists to derive the update equation for the hidden-output layer

weights W′, then derive the weights for the input-hidden layer weights W.
To update the hidden-output layer weights, three steps have to be followed. The

first step consists to compute the derivative of the loss function E with respect to the
input to the jth node in the output layer uj.

∂E
∂uj

= yj − tj (3.5)

where tj = 1 if j = j∗ otherwise tj = 0. This is simply the prediction error of node
j in the output layer. The second step consists to take the derivative of E with respect
to the output weight w′ij using the chain rule.

∂E
∂w′ij

=
∂E
∂uj
·

∂uj

∂w′ij
= (yi − tj) · hi (3.6)

The third step consists to define the stochastic gradient descent equation, given
the obtained gradient with respect to an arbitrary output weight w′ij, as follows:

w′(new)
ij = w′(old)

ij − η · (yj − tj) · hi (3.7)
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or
v′(new)

wj = v′(old)
wj − η · (yj − tj) · h (3.8)

where η > 0 is the learning rate.
To update the input-hidden layer weights, similarly to the hidden-output layer,

a similar update equation for the input weights wij has to be derived. The first step
consists to compute the derivative of E with respect to an arbitrary hidden node hi
using the chain rule as follows:

∂E
∂hi

=
V

∑
j=1

∂E
∂uj
·

∂uj

∂hi
=

V

∑
j=1

(yj − tj) · w′ij (3.9)

where the sum is needed because the hidden layer node hi is connected to each node
of the output layer and therefore each prediction error must be incorporated. The
second step consists to compute the derivative of E with respect to an arbitrary input
weight wki as follows:

∂E
∂wki

=
∂E
∂hi
· ∂E

∂wki
=

V

∑
j=1

(yj − tj) · w′ij ·
1
C
· xk =

1
C
(X · EH) (3.10)

where EH is an N-dimensional vector of elements ∑V
j=1(yj − tj) ·w′ij from i = 1, . . . , N.

However, since the inputs X are one-hot encoded, only one row of the N×V matrix
1
C (X · EH) will be nonzero. Thus, the final stochastic gradient descent equation for
the input weights is given as follows:

v′(new)
wInput,c = v′(old)

wInput,c − η · 1
C
· EH (3.11)

where wInput,c is the cth word in the input context.

Skip-gram Model

Differently to CBOW model that predicts the current word based on the context, the
skip-gram model uses each current word as an input to predict words within a certain
range before and after the current word (Mikolov et al., 2013e). More formally, the
input of the skip-gram model is a single word wInput and the output is the words in
the wInput’s context {wOutput,1, . . . , wOutput,C} defined by a word window of size C.

The architecture of the skip-gram model is shown in Figure 3.4. X represents
the one-hot encoded vector corresponding to the input word in the training instance
and {y1, . . . , yC} are the one-hot encoded vectors corresponding to the output words
in the training instance. The V×N matrix W is the weight matrix between the input
layer and the hidden layer whose ith row represents the weights corresponding to
the ith word in the vocabulary. The learning focuses on the weight matrix W because
it contains the vector encodings of all of the words in the vocabulary (Word2Vec
Tutorial Part I: The SkipGram Model n.d.).

Each output word vector also has an associated N×V output matrix W′. The
hidden layer consists of N nodes, where the input to a unit in this layer hi is the
weighted sum of its inputs. Since the input vector X is one hot encoded, the weights
coming from the nonzero element will be the only ones contributing to the hidden
layer. Therefore, for the input X with xk = 1 and xk′ = 0 for all k′ 6= k the outputs of
the hidden layer will be equivalent to the kth row of W. Or mathematically,
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FIGURE 3.4: Skip-gram architecture

h = XTW = W(k,.) := VwInput (3.12)

where no activation function is used here because the inputs are bounded by the
one-hot encoding.

In the same way, the inputs to each of the C×V output nodes is computed by
the weighted sum of its inputs. Therefore, the input to the jth node of the cth output
word is

uc,j = V
′T
wj
· h (3.13)

It is worth noting that the output layers for each output word share the same weights
therefore uc,j = uj. Finally, the output of the jth node of the cth output word is com-
puted via the softmax function, which produces a multinomial distribution.

p(wc,j = w(Output,c)|wInput
) = yc,j =

exp(uc,j)

∑V
j′=1 exp(uj′)

(3.14)

where the obtained value represents the probability that the output of the jth node
of the cth output word is equal to the actual value of the jth index of the cth output
vector.

After these steps, the inputs are propagated forward through the network to
produce outputs. The aim after is to derive the error gradients necessary for the
backpropagation algorithm to learn both W and W′. To learn W′, three steps are
provided. The first step is defining a loss function as follows:
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E = − log p(wOutput,1, wOutput,2, . . . , wOutput,C|wInput)

= − log ΠC
c=1

exp(uc,j∗c)

∑V
j′=1 exp(u′j)

= −
C

∑
c=1

uj∗c + C · log
V

∑
j′=1

exp(u′j)

(3.15)

where the obtained value represents the probability of the output words (the words
in the input word’s context) given the input word wInput, and j∗c is the index of the cth

output word. The second step consists to compute the error derivative with respect
to the inputs of the final layer uc,j as follows:

∂E
∂uc,j

= yc,j − tc,j (3.16)

where tc,j = 1 if the jth true output word is equal to 1, otherwise tc,j = 0. This repre-
sents the prediction error of the jth node of the cth output word.

Once the error derivative with respect to uc,j is found, the third step consists to
derive the derivative with respect to the output matrix W′ using the chain rule as
follows:

∂E
∂W ′ij

=
C

∑
c=1

∂E
∂uc,j

·
∂uc,j

∂w′ij
=

C

∑
c=1

(yc,j − tc,j) · hi (3.17)

Therefore, the gradient descent update equation for the output matrix W′ is given
by:

w′(new)
ij = w′(old)

ij − η ·
C

∑
c=1

(yc,j − tc,j) · hi (3.18)

Similarly to W′, three steps are required to derive the update equation for the
input-hidden layer weights in W. The first step consists to compute the error deriva-
tive with respect to the hidden layer as follows:

∂E
∂hi

=
V

∑
j=1

∂E
∂uj
·

∂uj

∂hi
=

V

∑
j=1

C

∑
c=1

(yc,j − tc,j) · w′ij (3.19)

The next step computes the derivative with respect to W following Equation 3.20.

∂E
∂wki

=
∂E
∂hi
· ∂hi

∂wki
=

V

∑
j=1

C

∑
c=1

(yc,j − tc,j) · w′ij · xk (3.20)

Finally, the gradient descent equation for the input weights is given as following:

w(new)
ij = w(old)

ij − η ·
V

∑
j=1

C

∑
c=1

(yc,j − tc,j) · w′ij · xj (3.21)

Each gradient descent update requires a sum over the entire vocabulary V, which
is computationally expensive. In order to make this computation more efficient,
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computation techniques such as hierarchical softmax and negative sampling are used in
practice.

Hierarchical Softmax

It was introduced by Morin and Bengio (Morin and Y. Bengio, 2005) in the context of
neural network language models and provides a computationally efficient approxi-
mation of the full softmax. In order to obtain the probability distribution of V output
nodes in the neural network, instead of evaluating all nodes it evaluates only about
log2(V) output nodes (Mikolov et al., 2013d).

The hierarchical softmax defines a binary tree representation of the output layer
with the V words as leaves and, for each node, explicitly represents the relative
probabilities of its child nodes. Then it uses a random walk to assign probabilities
to words. More formally, each word w can be reached by an appropriate path from
the root of the tree. Let n(w, j) be the jth node on the path from the root to w, and let
L(w) be the length of this path, so n(w, 1) = root and n(w, L(w)) = w. Furthermore,
for any inner node n, let ch(n) be an arbitrary fixed child of n and let [[x]] be 1 if x
is true and −1 otherwise. Then the hierarchical softmax defines p(wOutput|wInput) as
follows:

p(wOutput|wInput) = ΠL(w)−1
j=1 σ

(
[[n(w, j+ 1) = ch(n(w, j)))]]

)
· v′n(w, j)TvwInput (3.22)

where œ(x) = 1/(1 + exp(−x)). It can be verified that ∑V
w=1 p(w|wInput) and

∇ log p(wOutput|wInput) is proportional to L(wOutput), which on average is no greater
that log V (Mikolov et al., 2013d).

Negative Sampling

It was introduced by Mikolov et al. (Mikolov et al., 2013d) and used as standard
component for both the CBOW and skip-gram models of word2vec. It replaces the
softmax – which its gradient is dependant on the summation across all classes – with
binary classifiers to prevent expensive and slow training.

The negative sampling is then defined by the objective:

log σ(v′wOutput
TvwInput) +

k

∑
i=1

Ewi ∼ Pn(w)
[

log σ(−v′wi
TvwInput)

]
(3.23)

It is used to replace every log p(wOutput|wInput) term in the skip-gram objective.
Hence, the aim is to distinguish the target output word wOutput from draws from the
noise distribution Pn(w) using logistic regression, where there are k negative samples
for each data sample. The noise distribution Pn(w) is empirically defined as the
unigram distribution of the words to the 3

4
th

power: Pn(w) = U(w)
3
4 / ∑V

i=1 U(wi)
3
4 (J.

Zhang et al., 2018).

3.3.2 Hyper-parameters of Word2vec

Word embedding methods depend on several hyper-parameters that have crucial
impact on the quality of embeddings. For this reason, Mikolov et al. (Mikolov et
al., 2013c; Mikolov et al., 2013a) and Pennington et al. (Pennington et al., 2014b)
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– the inventors of the popular low-dimensional embedding word2vec and GloVe,
respectively – have deeply studied the optimisation of the embedding parameters,
mainly the vector dimension and the context size. The performance of the embed-
dings has been measured based on word similarity that uses cosine distance between
pairs of word vectors to evaluate the intrinsic quality of such word representations,
and word analogies that capture fine-grained semantic and syntactic regularities us-
ing vector arithmetic. The optimal parameters have been obtained through training
on large Wikipedia and Google News corpora. But, no evidence was given for gen-
eralisation of these parameters to any other corpus with a general or specific topic
and guarantee the performance of embeddings. However, most of the work using
word embeddings relies on these parameters as the default ones.

Unlike work that uses default settings, literature on learning embedding hyper-
parameters is relatively short (Levy and Goldberg, 2014; Miñarro-Giménez et
al., 2015). Levy and Goldberg (Levy and Goldberg, 2014) followed Mikolov et
al. (Mikolov et al., 2013e; Mikolov et al., 2013c) and Pennington et al. (Pennington
et al., 2014b) and trained their embeddings on general topic using Wikipedia cor-
pus. They basically tested their model with different vector dimensions and differ-
ent window sizes aiming to study the impact of syntactic contexts – that are derived
from automatically produced dependency parse-trees – on detecting functional sim-
ilarities of cohyponym nature. While Miñarro-Giménez et al. (Miñarro-Giménez et
al., 2015) trained their word embeddings on a domain-specific corpus of medical
data in order to study the ability of word embeddings (word2vec) to capture lin-
guistic regularities in the medical corpora. Similar to the previous work, Miñarro-
Giménez et al. trained their word2vec embeddings with different parameter set-
tings, i.e., dimensionality of vector space, context size, and different model architec-
tures, i.e., CBOW and SG (Mikolov et al., 2013e), and simultaneously compared the
relationships identified by word2vec with manually curated information from Na-
tional Drug File – Reference Terminology ontology as a gold standard using word
similarity and word analogies in order to evaluate the effectiveness of word2vec in
identifying properties of pharmaceuticals and medical relationships. The obtained
results (49% accuracy) revealed the unsuitability of word2vec for applications re-
quiring high precision like medical applications. While this research work seems
interesting mainly with its appeal to setting hyper-parameters for domain-specific
word embeddings, it does not bring a defined method to efficiently set these param-
eters.

Leading on from the aforementioned observation, the work presented in this
thesis lies within the context of word embedding hyper-parametrisation for domain-
specific use. The proposed domain to investigate is the scientific domain and more
specifically computer science with machine learning, as a case study.

There have been some efforts to integrate word embeddings in the scientific do-
main (Heffernan and Teufel, 2018b; Lu et al., 2018b; Shu Zhao et al., 2018b) for clus-
tering scientific documents based on their functional structures (Lu et al., 2018b)
or for identifying problem-solving patterns in scientific text (Heffernan and Teufel,
2018b) or for paper-reviewer recommendation (Shu Zhao et al., 2018b) or for extract-
ing domain knowledge from rich text (Amin et al., 2020). All the previous research
work integrated word embeddings as features for their learning algorithms using
either arbitrary or default settings (Mikolov’s settings (Mikolov et al., 2013e)). How-
ever, none of them has focused on training the embeddings and methodologically
setting the hyper-parameters suitable for scientific text.

According to the literature, the work described in Chapter 4 represents the first
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attempt to methodologically set word embeddings hyper-parameters in the scientific
domain.

3.4 Temporal Word Embeddings

Recent years have witnessed a great interest in computational linguistics and more
precisely word embeddings due to their ability to detect word semantics and mean-
ings, which helps to understand and extract knowledge from human language con-
tent. Assuming that human language is evolving throughout time and consequently
words are continuously changing meanings, temporal word embeddings have been re-
cently proposed to track semantic shifts.

Although the study of temporal word embeddings is relatively new, some work
has emerged (Kutuzov et al., 2018) on how to leverage word embeddings for time-
aware knowledge extraction tasks such as sentiment analysis (Hamilton et al., 2016b;
Huang et al., 2017) or temporal information retrieval (Chenliang Li et al., 2017; Rosin
et al., 2017). In general, the approaches in previous work can be categorised into
two main categories according to (Kutuzov et al., 2018): linguistic studies and event
detection approaches.

Linguistic studies focus on learning and understanding the semantic shifts of hu-
man language in general context. As a matter of fact, these studies aim to (i) explore
and analyse emerging word meanings and semantic shifts of particular words (Carlo
et al., 2019; Y. Kim et al., 2014; Kulkarni et al., 2015) or sentiment words (Hamilton et
al., 2016b), (ii) detect temporal correspondence that requires finding different words
with semantically similar meanings at different points in time (Szymanski, 2017; Y.
Zhang et al., 2016), (iii) identify changes in word usage overtime using word epoch
disambiguation (Dubossarsky et al., 2019; Rada and Vivi, 2012), and (iv) reveal sta-
tistical laws of semantic evolution (Hamilton et al., 2016a). While linguistic studies at-
tempted to trace temporal changes in language semantics in a general context, event
detection approaches have been proposed to track the ‘cultural’ semantic shifts that
follow real-world events such as tracing armed conflicts (Kutuzov et al., 2017), per-
forming a time-sensitive query expansion for temporal information retrieval (Rosin
et al., 2017) or detecting trending concepts behind words (Yao et al., 2018a).

Following this trend, the work presented in this thesis tends to be placed, where
both categories will be employed to trace evolving keywords in scientific language
in order to detect trending scientific topics and track the dynamics of science. This
thesis concentrates on the area of machine learning. According to the literature, the
proposed approach represents the first attempt harnessing temporal word embeddings
in a domain-specific language – scientific language, aiming to perform the compu-
tational history of science in the area of machine learning.

3.5 Word Embeddings – Other Techniques

This section presents and describes other word embedding techniques.

3.5.1 GloVe

GloVe, for Global Vectors, is a model for distributed word representation that captures
the global statistics of the corpus (Pennington et al., 2014a). It has been introduced
in 2014. The model is an unsupervised method for learning vector representation
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of words from these statistics. It aims to achieve two goals: (i) create word vectors
that capture meaning and analogy in the vector space, and (ii) take advantage of the
aggregated global word-word co-occurrence statistics instead of only local context
window methods (such as skip-gram).

To achieve these goals, the first step is to build a co-occurrence matrix. GloVe
also takes local context into account by computing the co-occurrence matrix using a
fixed window size. Once the co-occurrence matrix is built, the principle of GloVe is
to predict the co-occurrence ratios between two words in a context. Let X refer to
the co-occurrence matrix and Xij refer to the i, jth element in X, which is equal to the
number of times word j appears in the context of word i. Let Xi = ∑k Xik be the total
number of words that have appeared in the context of i. The relation between the
ratios is defined as follows:

F(wi, wj, w̃k) ≈
Pij

Pjk
(3.24)

where Pij refers to the probability of the word j appearing in the context of i, and

can be computed as Pij = number of times j appeared in context of i
number of words that appeared in context of i =

Xij
Xi

, F is some un-

known function that takes the embeddings for the words i, k, j as input, and w ∈ Rd

are word vectors and w̃ ∈ Rd are context word vectors, with d the vector dimension-
ality.

GloVe has been used for different applications such as finding relations between
words like synonyms, company-product relations, zip codes and cities, etc. It has
been also used as a word representation model to detect psychological distress in
adults through transcriptions of clinical interviews (Correia et al., 2016).

3.5.2 FastText

FastText is a neural networks -based model for vector representation of words, where
each word is represented as a bag of characters n-grams (Bojanowski et al., 2017).
The model is created by Facebook’s AI Research1, and has been introduced in 2016.
The model architecture is based on the skip-gram model (Mikolov et al., 2013e),
and it is considered as an unsupervised method for learning word representations
while taking into account morphology. The morphology is modeled by consid-
ering subword units, and representing words by a sum of its character n-grams.
More formally, given a dictionary of n-grams of size G and a word w, let denote by
Gw ⊂ {1, . . . , G} the set of n-grams appearing in w. A vector representation zg is as-
sociated to each n-gram g. The word w is then represented by the sum of the vector
representations of its n-grams. The scoring function is thus defined as follows:

score(w, wOutput) = ∑
g∈Gw

zT
g vwOutput (3.25)

where wOutput is a word context and vwOutput is its vector representation. This
model accordingly shares representations across words, which allows to learn reli-
able representation for rare words. Instead of explicitly using word order, it uses
a bag of n-grams to maintain efficiency without losing on accuracy. It then uses a
hashing trick (Joulin et al., 2016) to maintain fast and memory efficient mapping of
the n-grams into integers in 1 to K. The Fowler-Noll-Vo hashing function2 has been

1https://ai.facebook.com/research/
2www.isthe.com/chongo/tech/comp/fnv/

https://ai.facebook.com/research/
www.isthe.com/chongo/tech/comp/fnv/
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used to hash character sequences by setting K to 2× 106. Eventually, a word w is
represented by its index in the word dictionary G and the set of hashed n-grams it
contains.

FastText has been mainly used for text classification. In fact, it has been defined
as a fast text classifier (Joulin et al., 2016) used for sentiment analysis (Joulin et al.,
2016; Kula et al., 2020) and tag prediction tasks (Joulin et al., 2016). Although it uses
shallow neural networks, the obtained results in term of accuracy are on par with
deep learning methods, while being much faster (Joulin et al., 2016).

3.5.3 BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers,
is a transformer-based language representation model, developed by Google
and published in 2019 (Devlin et al., 2019). Unlike previous models such as
word2vec (Mikolov et al., 2013e) and GloVe (Pennington et al., 2014a) that gener-
ate a single word embedding representation for each word in the vocabulary, BERT
provides a contextualised embedding by taking into account the context for each oc-
currence of a given word. This contextualised embedding is reached by pre-training
deep bidirectional representations from unlabeled text by jointly conditioning on
both left and right context in all layers. Consequently, the pre-trained BERT model
can be fine-tuned with just one additional output layer to build state-of-the-art mod-
els for a wide range of natural language understanding tasks, such as question an-
swering and language inference, without substantial task-specific architecture mod-
ifications (Devlin et al., 2019).

3.5.4 Discussion

Together with word2vec (Mikolov et al., 2013e), the word embedding techniques
described in Section 3.5 – namely GloVe (Pennington et al., 2014a), FastText (Bo-
janowski et al., 2017) and BERT (Devlin et al., 2019) – aim to provide vector repre-
sentations for words in order to promote automatic knowledge extraction from un-
structured text. This is useful for different NLP tasks such as semantic text analogy,
word-sense disambiguation, sentiment analysis, etc. Considering that this thesis will
tackle the semantic text analogy within the scientific language, therefore any word
embedding technique could be applied. However, word2vec (Mikolov et al., 2013e)
is chosen to be applied in this thesis for the following reasons:

• Word2vec is the long standing word embedding technique in the area.

• Word2vec has performed better in most cases in the comparative study con-
ducted by Wang et al. (Wang et al., 2019).

• With a computing-related language – a language that corresponds to a dataset
collected at the German Research Center for Artificial Intelligence (DFKI) –
word2vec has performed better than FastText in a comparative study per-
formed by Amin et al. (Amin et al., 2018). In other hand, FastText tends to per-
form better with morphology-related tasks and vocabularies with unknown
and rare words such as social media language, while word2vec performs bet-
ter with semantic tasks, which is the case of the task this thesis gets into.

• BERT provides different vector representations (embeddings) for a single
word. These different embeddings for a single scientific keyword do not help
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to track the semantic change in similarities between pairs of keywords over
time. Consequently, BERT does not help with the aim of this thesis. Further-
more, it has been proven that transformer-based models (BERT) (Devlin et al.,
2019) without fine-tuning are usually less useful than plain word2vec (Peters
et al., 2019), which is the case of scientific language that does not need a lot of
fine-tuning.

• The recently emerging related work (J. He and Chen, 2018; Vahe et al., 2019)
that attempted to explore word embeddings within the scientific language
have used word2vec to represent the scientific text, which helps to maintain
comparative studies if applicable.

Relying on the reasons stated above, word2vec is used in this thesis to represent the
scientific language, and its SG neural network architecture is adopted as it consis-
tently proved to be experimentally better than CBOW architecture (Mikolov et al.,
2013b).

3.6 Summary

This chapter, in the first place, stated the history of word embeddings. In the sec-
ond place, it presented the foundations of word embeddings. More specifically, it
described vector space semantics including the principles of vector space models
and the different similarity measures used in the literature. It also presented the
most common distributional semantic models, in addition to machine learning. In
the third place, the chapter extensively described the two word2vec models – contin-
uous bag-of-words model and skip-gram model, in addition to the used computation
techniques hierarchical softmax and negative sampling. In the fourth place, this
chapter summarised research work on temporal word embeddings. This is justified
by the fact that temporal word embeddings will be leveraged in the approaches be-
ing described in the next chapters. Finally, in the fifth place, the chapter described
other word embedding techniques found in the literature and justifies the choice of
word2vec in this thesis.

In this thesis, word2vec is used as a word embedding technique to treat and anal-
yse scientific text. Despite their popularity in overwhelming state of the art perfor-
mance in semantic similarity and analogy tasks, word embeddings are still treated
as black boxes and uniformly use the hyper-parameters without a methodological
setting. From this perspective and aiming to provide precise semantic analogies,
which are crucial to maintain an accurate computational history of science, the next
chapter will address word embedding hyper-parametrisation for domain-specific
use, namely the scientific domain. By proposing the stability of k-nearest neighbors of
word vectors, this thesis aims to methodologically set the hyper-parameters suitable
for scientific text.
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Chapter 4

Tuning Word2vec
Hyper-parameters using k-NN
Stability

“I don’t think you can write novels on
the road. You need a certain stability.”

— Leonard Cohen. (1934–2016)

In the previous chapter, word embeddings have been described, namely
word2vec – the word embedding technique used throughout this thesis. It has been
mentioned in Chapter 2 that word embeddings have been recently used for the rep-
resentation of scientific text; they enable the generation of semantic analogies. Con-
sidering that the semantic analogies are important in the scientific text and their
accuracy directly impacts the way the computational history of science is done,
the stability of the hyper-parameters of word embeddings is then crucial to be set.
This chapter presents the attempt of this thesis to tackle the challenge of word2vec
hyper-parametrisation. It describes the proposed methodological approach for tun-
ing word2vec hyper-parameters by using what is coined in this thesis the stability
of k-nearest neighbors of word vectors. The proposed approach is applied to scien-
tific corpora and more specifically computer science corpora with machine learn-
ing adopted as a case study. The proposed approach is tested on a dataset created
from the NIPS1 publications, and evaluated with a curated Association for Comput-
ing Machinery (ACM) hierarchy and Wikipedia machine learning outline as gold
standards. Both quantitative and qualitative analyses indicate that the proposed ap-
proach not only reliably captures interesting patterns like “unsupervised_learning
(which is a category of machine learning) is to kmeans (k-means, which is a specific tech-
nique of machine learning) as supervised_learning (which is a category of machine learn-
ing) is to knn (k-nearest neighbours or k-NN, which is a specific technique of machine
learning)”2, but also captures the analogical hierarchy structure of machine learn-
ing and consistently outperforms the 61% sate-of-the-art embeddings on syntactic
accuracy with 68%.

This chapter is organised as follows. Section 4.1 introduces the research context.
Section 4.2 presents the proposed methodology and how the stability of k-nearest
neighbors is used to optimise word2vec hyper-parameters. Section 4.3 describes the

1Conference on Neural Information Processing Systems
2The keywords ‘unsupervised_learning”, “kmeans”, ‘supervised_learning” and “knn” are spelled

here exactly as they are spelled in the dataset, and as they are learned by word2vec.
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NIPS dataset, the analogy dataset created from ACM hierarchy and Wikipedia as
gold standards, presents and discusses the results. Finally, the chapter concludes
by a summary in Setion 4.4. The work described in this chapter has been published
in (Dridi et al., 2018).

4.1 Research Context

The motivation in this chapter is to deeply understand the embedding behavior
within scientific corpora, which is quite different to other corpora in terms of word
distributions and contexts. For instance, the term “learning” appears in the context of
education in newspapers corpora; however, “learning” appears in a completely dif-
ferent context within computer science. Therefore, word embeddings for scientific
text are worth investigating.

There have been some efforts to integrate word embeddings in the scientific do-
main (Heffernan and Teufel, 2018b; Lu et al., 2018b; Shu Zhao et al., 2018b); however,
these efforts do not study learning the hyper-parameters suitable for a scientific text,
and instead use either arbitrary or default settings (Mikolov’s settings (Mikolov et
al., 2013e)).

This thesis aims to fill this gap. Hypothesising that by devising an approach
for setting hyper-parameters of word embeddings in the scientific domain, this
study adds a deep understanding of the sensitivity of embeddings to hyper-
parametrisation. To make the point, this work proposes to use the stability of k-nearest
neighbors of word vectors as a measure to set the hyper-parameters – mainly vector
dimensionality and context size – of word vector embeddings; moreover, it proposes
using common-sense knowledge from the ACM hierarchy3 and Wikipedia outline of
machine learning4. As a result, this work adds breadth to the debate on the strengths
of using word embeddings for knowledge extraction from scientific text. According
to the literature, the proposed work represents the first attempt to methodically set
word embeddings hyper-parameters in a scientific domain.

4.2 Methodology

This study focuses on word2vec hyper-parameter optimisation applied to scientific
publications, i.e., how to tune the hyper-parameters that have the largest impact in
the prediction performance and what are the adoptable techniques to test the po-
tential of word embeddings for identifying relationships from unstructured scien-
tific text. Accordingly, the k-NN algorithmic stability is adopted to investigate the
marginal importance of hyper-parameters of skip-gram architecture in a scientific
setting. This allows us to identify three hyper-parameters, namely vocabulary sub-
sampling, vector dimensionality and context size, which can significantly affect the em-
bedding performance. In this study, the popular variant of word2vec architecture:
skip-gram is used as it is consistently yielded superior results comparing to CBOW
architecture (Mikolov et al., 2013e).

3https://dl.acm.org/ccs/ccs_flat.cfm
4https://en.wikipedia.org/wiki/Outline_of_machine_learning

https://dl.acm.org/ccs/ccs_flat.cfm
https://en.wikipedia.org/wiki/Outline_of_machine_learning
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4.2.1 The Skip-gram Model
Previous results reported in the literature have shown that skip-gram (Mikolov et
al., 2013e) model does not only produce useful word representations, but it is also
efficient to train. For this reason, this thesis focuses on it to build the embeddings
for scientific text in this study. As described in Section 3.3.1 in Chapter 3, the main
idea of skip-gram is to predict the context c given a word w. Note that the context is
a window around w of maximum size L. More formally, each word w ∈W and each
context c ∈ C are represented as vectors −→w ∈ Rd and −→c ∈ Rd, respectively, where
W = {w1, · · · , wV} is the words vocabulary, C is the context vocabulary, and d is the
embedding dimensionality. Recall that the vectors parameters are latent and need to
be learned by maximising a function of products −→w · −→c .

More specifically, given the word sequence W resulted from the scientific cor-
pus, the objective of skip-gram model is to maximise the average log probability:
L(W) = 1

V ∑V
i=1 ∑−l≤c≤l,c 6=0 logProb(wi+c|wi) where l is the context size of a target

word. Skip-gram formulates the probability Prob(wc|wi) using a softmax function
as follows: Prob(wc|wi) = exp(−→wc·−→wi )

∑wi∈W exp(−→wc·−→wi )
where −→wi and −→wc are, respectively, the

vector representations of target word wi and context word wc, and W is the word
vocabulary. In order to make the model efficient for learning, the hierarchical soft-
max and negative sampling techniques are used following Mikolov et al. (Mikolov
et al., 2013e).

Word embedding vectors learned with skip-gram can be used for computing
word similarities. The similarity of two words wi and wj can simply be measured
with the inner product of their word vectors, namely similarity(wi, wj) = −→wi · −→wj .
Recall that cosine distance is the measure used to calculate the similarity between
embedding vectors −→wi and −→wj as following:

similarity(wi, wj) = cosineDistance(−→wi ,
−→wj) =

−→wi · −→wj

‖−→wi‖ · ‖−→wj‖
(4.1)

As discussed in Section 4.1, this chapter aims to evaluate the representation ca-
pability of word embeddings within scientific text using word similarities as a pivot
to stabilise the embedding hyper-parameters.

Skip-gram model uses a target word w to predict the surrounding window of
context words. It weights nearby context words more heavily than more distant
context words (Mikolov et al., 2013e; Mikolov et al., 2013c). Results of word2vec
training are sensitive to parametrisation. To this end, the aim of hyper-parameter
optimisation is to find a tuple of hyper-parameters that yields an optimal model
minimising the loss function for negative samples (w, c̄), where c̄ does not nec-
essarily appear in the context of w. This loss function L is defined as follows:
L = −log(σ(−→w · −→c )) − ∑n

k=1 log(σ(−−→w · −→̄ck )) where σ is the sigmoid function.
For each pair (w, c), the skip-gram model forms n negative pairs (w, c̄k)k∈{1,··· ,n} by
sampling words that are more frequent than some threshold θ with a probability:
Prob(c) = f req(c)−θ

f req(c) −
√

θ
f req(c) where f req(c) represents the frequency of the word c.

Word2vec has different hyper-parameters, but sub-sampling that automatically
affects the corpus size, vector dimensionality and context window are described by the
developers of word2vec (Mikolov et al., 2013e; Mikolov et al., 2013c) as the most
important ones for achieving good results. Consequently, this study focuses on these
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hyper-parameters to produce a distributed representation of words in scientific text
and evaluate the quality of embeddings in a domain-specific vocabulary.

Sub-sampling: Vocabulary Size

It has been proven in the literature (Mikolov et al., 2013e; Mikolov et al., 2013c;
Pennington et al., 2014b) that word2vec embedding quality increases as the corpus
size increases. This is expected as longer corpus typically produce better statistics.
Following on from this premise, the aim is to investigate the role of vocabulary size
in generating accurate embeddings for scientific text.

Unlike previous work that intuitively increments the vocabulary size by com-
bining corpus, in this thesis, it is proposed to use the same corpus trained in two
different ways that led to different vocabulary sizes. First, word2vec is trained with
unigrams. Second, the model is trained with bigrams by using word2phrase – defined
by Mikolov et al. (Mikolov et al., 2013c) – that learns phrases by progressively joining
adjacent pairs of words with an ‘_’ character. Additionally, the frequent words are
sub-sampled on two steps, which result into two different vocabulary sizes. Firstly,
all stop words and highly frequent academic words appearing in all publications
are removed. Secondly, the vocabulary is restricted to words that occur at least 10
times in the scientific corpus. According to Mikolov et al. (Mikolov et al., 2013e),
this sampling has proven to work well in practice. It accelerates learning and signif-
icantly improves the accuracy of the learnt embedding vectors, as it will be shown
in Section 4.3.

Vector Dimensionality and Context Window

The optimisation of vector dimensionality and context window parameters is supposed
to be very crucial to achieve accurate results. The quality of embeddings increases
with higher dimensionality under the assumption that it increases together with the
amount of training data. But after reaching some point, the marginal gain will di-
minish (Mikolov et al., 2013e).

The window size hyper-parameter corresponds to the span of words in the
text that is taken into account, backwards and forwards when iterating through
the words during model training. Similarly to the vector dimensionality hyper-
parameter, the larger window size results in more topicality. Nevertheless, after a
certain point, the marginal gain decreases.

Due to the sensitivity of these hyper-parameters and since hyper- parametrisa-
tion is generally known to be data and task dependent (Hutter et al., 2014), optimal
hyper-parameter setting is expected to be different for scientific text. Thus, this thesis
proposes to study the marginal importance of word2vec hyper-parameters defined
above using the stability of k-nearest neighbors of word vectors based on word similar-
ities computed with cosine distance (Equation (4.1)) between embedding vectors.

k-NN Stability for Word2vec Hyper-parametrisation

Stability is an important aspect of a learning algorithm. It has been widely used
in clustering problems (Rinaldo et al., 2012) to assess the quality of a clustering al-
gorithm. Also, it has been applied in high-dimensional regression (Nicolai Mein-
shausen and Peter Buhlmann, 2010) for training parameter selection. Analogously
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and considering that word embeddings present high-dimensional word representa-
tions that led to word clusters, the k-nearest neighbors is proposed to tune the hyper-
parameters of word2vec. k-NN is used to cluster similar words based on their cosine
similarities.

The basic idea of word embedding stability is the following: embedding quality
inevitably depends on tuning hyper-parameters defined previously, namely vector
dimensionality and context window. If accurate values of the tuning hyper-parameters
are chosen, then it is expected that the k similar words to a target word w from
different embeddings should be similar. Specifically, it is proposed to fix one hyper-
parameter, tune the second one by trying different values and training the model
for each value. After each training, word similarities are computed and k-nearest
neighbors words are defined. The k-NN stability, denoted in this thesis by ω, is
defined as a simple overlap rate of similar words resulted from two embeddings
with different settings.

ω =
Sw

Eh
∩ Sw

Eh′

k
∗ 100 (4.2)

where SEh and SEh′ are two sets of similar words to a target word w resulted, respec-
tively, from two embeddings Eh and Eh′ with different hyper-parameter values. k is
the number of nearest neighbors to w given by the cosine similarity. In this study,
different values of k have been tested; k ∈ {5, 10, 15, 20}, and the stability ω has
been computed accordingly. With the settings (k = 15) and (k = 20), the stability
was low. This is justified by the fact that the values 15 and 20 were giving more
neighbors, which enables the appearance of arbitrary unrelated topics. However,
for the setting k = 5, the stability was very high because the returned nearest neigh-
bors words/keywords were syntactically related to the given word/keyword; this
is indeed the way word2vec is working. The syntactically related keywords/words
refer to plurals, verbs, etc. In this thesis, k is then set to 10 because (i) it was quali-
tatively found that 10 deemed high enough not to go out of the boundaries, and (ii)
the stability results were the best with k = 10.

4.2.2 Scientific Linguistic Regularities and Analogies

Word2vec embeddings gain their success from their ability to capture syntactic and
semantic language regularities. Surprisingly, they characterise each relationship by
a relation-specific vector offset (Mikolov et al., 2013a). For example, the famous
analogy “king is to queen as man is to woman” is encoded in the vector space by the
vector arithmetic “king - man + woman = queen”. More specifically, the word analogy
task aims at answering the question “man is to woman as king is to — ?” given the two
pairs of words that share a relation (“man:woman”, “king:queen”), where the identity
of the fourth word (“queen”) is hidden.

Motivated by this ability of word2vec to identify relationships and capture analo-
gies in textual data without any prior domain knowledge, this ability is evaluated
in a domain-specific corpus, namely, scientific publications. The aim is to assess as
to what extent word2vec is able to correctly answer analogical questions in scientific
text given the complexity of scientific language comparing to natural language.

The scientific word analogy adopted is to query for scientific regularities cap-
tured in the vector model through simple vector subtraction and addition. More
formally, given two pairs of words (a : a′) and (b : b′), the aim is to answer the ques-
tion ( a is to a’ as b is to —?). Thus, the vector of the hidden word b′ will be the vector
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(a′ − a + b), suggesting that the analogy question can be solved by optimising:

arg max
b′∈W

(similarity(b′, a′ − a + b)) (4.3)

where W is the vocabulary and similarity is the cosine similarity measure defined in
Equation (4.1).

This task is challenging for scientific language as no gold standard is available
to evaluate the efficacy of word2vec in identifying linguistic regularities on unstruc-
tured scientific text, unlike existing work that use either the gold standard defined
by Mikolov et al. (Mikolov et al., 2013a) for general natural language tasks or pre-
defined ontologies like NDF-RT ontology5 for medical domain. To overcome this
problem, it is proposed in this thesis to manually curate relationships related to ma-
chine learning research area from the ACM hierarchy and the Wikipedia machine learning
outline, and define a test set of analogy questions as semantic questions following the
relation described above. The semantic questions are formed based on the hierar-
chical tree structure of both the ACM and Wikipedia outline that led to different
“Parent-Children” relationships. For example, “supervised_learning” and “unsuper-
vised_learning” are considered two parents for the two children “classification” and
“clustering”, respectively. Accordingly, the analogical question should be “classifica-
tion is to supervised_learning as clustering is to —?”. To correctly answer the question,
the model should identify the missing term with a correspondence counted as a cor-
rect match by finding the word “unsupervised_learning” whose vector representation
is closest to the vector (“supervised_learning” - “classification” + “clustering”) accord-
ing to the cosine similarity. Recall that for the specificity and complexity of scientific
language and respecting the interchangeability of scientific terms, instead of using
the exact correspondence as the correct match, it is proposed to adopt an approxi-
mate correspondence that considers an answer as correct if it belongs to the 10 near-
est words given by cosine similarity in order to guarantee the applicability of the
generated embeddings in scientific text. This is applied only for semantic questions.
However, for syntactic questions, it is proposed to adopt an exact correspondence. For
example, the syntactic question “classifier is to classifiers as forest is to —?” is consid-
ered correctly answered if and only if the word “forests” is the closest to the vector
(“classifiers” - “classifier” + “forest”) according to the cosine similarity.

In addition to the semantic questions manually curated from ACM and Wikipedia,
syntactic questions – which are typically analogies about verb tenses/forms and sin-
gular/plural forms of nouns – are defined, in order to test the ability of word2vec to
capture the syntactic regularities of scientific language.

4.3 Experimental Evaluation

This section describes the machine learning dataset used in the experiments, and
presents the obtained results of the proposed methodological approach to tune the
hyper-parameters of word2vec. Both quantitative and qualitative analyses are de-
tailed.

5National Drug File -Reference Terminology



4.3. Experimental Evaluation 65

4.3.1 NIPS Dataset: Description and Vocabulary Setup

To evaluate word embeddings for scientific language, a subset of 2, 789 papers in the
area of machine learning is used. It has been published in the NIPS between 2012
and 2017. The dataset is publicly available on Kaggle6 and contains information
about papers, authors and the relation papers-authors. The papers database – that
defines six features for each paper: the id, the title, the event type, i.e., poster, oral or
spotlight presentation, the PDF name, the abstract and the paper text – is used.

The dataset needs to be pre-processed before being used for training the embed-
ding model, since word2vec is very sensitive to vocabulary granularities like punc-
tuation, lowercase, stop words, etc., which have a direct impact on the quality of
generated word embeddings. After removing all punctuation and lower-casing the
corpus, the pre-processing has the following steps:

i The remove of stop words from the vocabulary using Stanford NLP stop word
list7 enriched by a list of 170 academic stop words that was defined from com-
mon academic vocabulary like “introduction, abstract, conclusion, table, etc.”

ii The construction of bag of keywords, where keywords are either unigrams, or
bigrams extracted with word2phrase. Word2phrase is a word2vec package tool
that compoundifies n-grams in a text corpus based on a minimum and a max-
imum frequency (Mikolov et al., 2013d). To compute n-grams, word2phrase has
to be ran (n− 1) times successively. In this case, it was ran only one time as a
vocabulary of 1-grams (unigrams) and 2-grams (bigrams) is only needed. The
minimum frequency (min_count parameter) is set to 10 in order to remove the
infrequent words and reduce the model size. Recall that 10 is the by-default
value set by (Mikolov et al., 2013d) for the minimum frequency. The min_count
parameter could be set as a parameter to explore and tuned with different val-
ues. However, it does not represent one of the parameters that have impact on
the embedding outcomes. For this reason, in this thesis and in the literature
in general, this parameter is set to a threshold; all words with total frequency
lower than it are ignored. Generally, 10 sounds an acceptable threshold to con-
sider with scientific corpora, as such a keyword that appears less than 10 times
in scientific corpora of a certain time period does not represent an important
keyword to consider for the analysis. The two settings resulted into different
vocabulary sizes |Wunigrams| = 35k, |Wbigrams| = 96.7k and |Wdownsampled| = 57k.
The latter (|Wdownsampled|) corresponds to the vocabulary that discards the less
frequent words (that appear less than 10 times) in order to accelerate learning.

4.3.2 Word2vec Training Details: Hyper-parameters Optimisation

As described in Section 4.2, k-NN stability was used to optimise the word2vec hyper-
parameters, namely, vector dimensionality and context window size.

Vector Dimensionality

k-NN stability ω, with k = 5, was used to evaluate the influence of the vector dimen-
sionality hyper-parameter using vector models generated with 20, 30, 50, 100, 150,

6https://www.kaggle.com/benhamner/nips-papers/data
7github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/

stopwords.txt

https://www.kaggle.com/benhamner/nips-papers/data
github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt
github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt
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200, 300 and 500 dimensions, skip-gram architecture and three different vocabulary
sizes as described in Section 4.3.1.

Table 4.1 shows the results of k-NN stability ω values depending on the vector
length and vocabulary size. Word2vec model was initially learned with 20-vector di-
mension. This trained model was used as a seed setting to start computing ω. More
specifically, k-NN stability ω at 30-vector dimension was computed based on the 20-
vector dimension following Equation (4.3) and ,respectively, each ω value is com-
puted based on the results generated by the previous dimensionality setting. The
reported results correspond to the stability average of the top 100 frequent words
(unigrams and bigrams) in the vocabulary.

It has been clearly seen from the three vocabulary sizes that the stability increases
considerably as the dimensionality increases. But after reaching some point, it di-
minishes or becomes slightly invariant. For instance, for the unigram vocabulary, k-
NN stability reached 67% with 100-dimension vector performing good results com-
paring to 30 and 50 dimensions. However, it remains basically steady with a slight
increase of 1% at 200-dimension. This increase is not remarkable enough to consider
200-dimension better than 100-dimension since a higher dimension of the vectors
implies a bigger size of the resulting vector model and more training time. Then, it
is noticed that the stability decreases with larger dimensions (300 and 500). Conse-
quently, these results suggest that 100-dimension vector yielded better stability with
unigrams vocabulary.

Similarly, bigrams vocabulary shows a substantial improvement in k-NN stability
from 30-dimension to 200-dimension with 68%. Then, it increases slightly with 300
and 500 dimensions with a 1% gain. Hence, for this vocabulary, the optimal dimen-
sionality value can be fixed to 200. Interestingly, the stability results of the unigram
vocabulary and the bigram vocabulary confirm the hypothesis that vector dimension-
ality and the amount of training data should be increased together to have better
results. As a matter of fact, 100 has shown to be the better vector length for unigram
vocabulary of 35k size, while 200 is better for bigram vocabulary of 96.7k size. On the

TABLE 4.1: k-NN stability ω for vector dimensionality optimisation

D30 D50 D100 D150 D200 D300 D500
unigrams 42% 53% 67% 67% 68% 66% 65%
bigrams 51% 47% 56% 64% 68% 70% 71%

downsampled bigrams 58% 61% 65% 73% 81% n/a n/a

other hand, by looking at the stability values at high dimensions (300 and 500), it
is noticed that the stability for the bigrams vocabulary is higher than that for the uni-
grams vocabulary. This is comprehensibly justified by three facts: (i) this confirms the
hypothesis that word2vec model quality increases as corpus size increases (Miñarro-
Giménez et al., 2015), (ii) this proves that n-gram enhanced skip-gram model per-
formed better than regular skip-gram based only on unigrams, (iii) this confirms the
specificity of scientific language and mainly the Computer Science area that contains
an important number of bigrams like “machine-learning”, “artificial-intelligence”, etc.

Based on these findings, mainly (i) and (ii), the 300 and 500 dimensions were
ignored for training the down-sampled vocabulary, which is resulted from down-
sampling the bigram vocabulary as the vocabulary size is smaller (57k). It is worthy
to note that this down-sampling improved the training speed and most importantly
made the k-NN stability values more important with 81% at 200-dimension while it
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was 68% with bigram vocabulary at the same dimension. This was expected as down-
sampling makes the word representations significantly more accurate (Mikolov et
al., 2013c).

Overall, the k-NN stability results obtained through vector dimensionality opti-
misation show that bigram enhanced skip-gram model performs better with scien-
tific language, 200 is the optimal vector length for the used dataset and the down-
sampled bigram vocabulary significantly outperforms the two other vocabularies in
term of k-NN stability and computation time. Note that for all word2vec training
rounds with different vocabularies and different vector dimensionalities, the hyper-
parameter window context was set to 5, the default window size value provided by
gensim8.

Window Context

Similarly to the setting followed to optimise vector dimensionality, k-NN stabil-
ity was adopted to find the optimal window size for the used scientific corpus in
this study. Building on previous results, the trained vocabulary used is the down-
sampled vocabulary and the vector dimensionality is 200. Word2vec embeddings were
generated with skip-gram model and 7 different window sizes ranging from 2 to 8.
Word2vec was initially trained with a context window of size 2 as a starting point.
Then k-NN stability ω was computed, respectively, based on the previous embed-
ding results. Figure 4.1 presents the values of ω that vary context window size. It
is clearly seen from the figure that the optimal window size is 6 with a stability of
70% for the used scientific corpus. The obtained results confirm the fact that larger
window size results in more topicality and accordingly better accuracy of word rep-
resentations. However, the marginal gain decreases after a certain point.

Overall, the findings show that the combination of 200-vector dimension with
context window of size 6 and down-sampled bigram vocabulary proved to be the
best configuration of skip-gram word2vec model. Additionally, the proposed k-NN
stability – based on word similarity as embedding properties, that is adopted in this
study to optimise the word2vec hyper-parameters for scientific text – confirms all
hypotheses related to word embeddings supported in the literature and even goes
beyond them by giving a standard way to be sure about the stability of results.

4.3.3 Analogy Evaluation

As described in Section 4.2.2, the word analogy task attempts to query for scientific
regularities captured in the embedding model – trained with the previously opti-
mised hyper-parameters – through simple vector subtraction and addition.

The created analogy dataset contains 1991 analogical questions, divided into
1871 semantic questions and 120 syntactic questions. The semantic questions were
manually curated from ACM hierarchy (406 questions) and Wikipedia outline of
machine learning (1465 question). The number of relationships generated from
Wikipedia are by far greater than the ACM counterpart. This justified by the fact
that ACM is more coarse-grained as it covers all the computer science area, while
the Wikipedia outline is a fine-grained hierarchy generated specifically for machine
learning with very detailed algorithms and applications of the area. All questions
that contain words that do not exist in the vocabulary were removed from the anal-
ogy dataset in order to fairly evaluate embedding analogies. This resulted into 1573

8https://radimrehurek.com/gensim/

https://radimrehurek.com/gensim/
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FIGURE 4.1: k-NN stability ω for context window size optimisation

questions (322 ACM questions and 1251 Wikipedia questions). Similarly to seman-
tic questions, syntactic questions were a manually generated subset that is created
from the scientific text using typical analogies about verb tenses/forms and singu-
lar/plural forms of nouns, in order to test the ability of word2vec to capture the
syntactic regularities of scientific language. The number of questions is relatively
small due to the aim to only preliminary test the word2vec ability to cover syntactic
scientific regularities that do not differ from natural language, while the semantic
questions do. That is why more attention was given to these latter. The created
analogy dataset is available online for more reproducibility and any further use by
researchers9.

To evaluate the embeddings in capturing linguistic regularities and analogies,
both quantitative and qualitative analyses were performed.

Quantitative Analysis

In this analysis, the proposed bigram-enhanced word2vec model – trained with
the hyper-parameters experimentally tuned – is empirically evaluated . The goal
of these experiments is two-fold. First, it aimed to evaluate whether the hyper-
parametrisation method of word2vec is useful for resulting embeddings able to
cover linguistic regularities and analogies within scientific text. Second, it aimed to
assess whether word embeddings are worth using in domain-specific vocabularies
such as the scientific vocabulary.

9https://github.com/AmnaKRDB/Machine-Learning-Analogies

https://github.com/AmnaKRDB/Machine-Learning-Analogies
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To do so, the accuracy of word embeddings has been computed to answer the se-
mantic and syntactic questions following the methodology detailed in Section 4.2.2.
For semantic questions, 50 out of 322 ACM questions were correctly answered with
an accuracy of 15.52% while 75 Wikipedia questions were correct out of a subset
of 413 questions from the 1251 questions in the dataset, with an accuracy of 18%.
The difference in accuracy between ACM and Wikipedia questions was expected as
Wikipedia relationships were more detailed and covered machine learning names
of algorithms and applications that widely occur in the vocabulary, while ACM was
more coarse-grained. However, the accuracy of both of them is very low. This can
be explained by three different reasons. First, the used corpus size is relatively small
with only 57k words while it has been shown that word2vec quality increases as cor-
pus size increases. For instance, Mikolov et al. (Mikolov et al., 2013c) trained their
model on a corpus of 1B words and obtained a semantic accuracy of 61%. Second,
the used NIPS dataset is about very recent publications (between 2012 and 2017).
So that, the vocabulary is more probably about recent topics and accordingly recent
machine learning vocabulary, i.e., names of algorithms and applications might gain
more frequencies in the text than the old ones, which in turn would highly affect
the word representations, at the time when ACM hierarchy or Wikipedia outline are
time-independent and contain generic machine learning vocabulary. Third, the sci-
entific language is complex and does not contain explicit and accurate relationships
as natural languages does. For instance, “accuracy” and “error rate” in the machine
learning literature are used in similar contexts, despite having opposite semantics.

For all these reasons, the semantic accuracy of word embedding within the used
scientific corpus is considered modest. But, it is promising as it is interpretable and
improvable on one hand. On the other hand, it reveals challenges about scientific
word embedding. More specifically, it is worth investigating the convergence and
divergence of some machine learning algorithms and applications over time, which
consistently affects the word representations. Interestingly, it is challenging to find a
suitable way to train and evaluate word embeddings in such dynamic vocabularies.

For syntactic questions, the accuracy across the defined 120 questions has been
computed. Interestingly, 82 questions out of 120 have been found correctly answered
with an accuracy of 68%. This result is interesting despite the small size of the vocab-
ulary. It outperforms the syntactic accuracy of Mikolov et al. (Mikolov et al., 2013c),
which reached 61% with 1B vocabulary and 300-dimension vector.

Qualitative Analysis

The learned embeddings revealed interesting patterns in machine learning vocab-
ulary through relation-specific vector offsets. For instance, it captured different se-
mantic relationships mapping machine learning techniques and related algorithms
such as r1:“unsupervised_learning (which is a category of machine learning) is to kmeans
(k-means, which is a specific technique of machine learning) as supervised_learning (which is
a category of machine learning) is to knn (k-nearest neighbours or k-NN, which is a specific
technique of machine learning)”, and r2:“classification (which is a technique of supervised
learning) is to knn (k-nearest neighbours or k-NN, which is a specific technique of supervised
learning) as regression (which is a technique of supervised learning) is to linear_regression
(which is a specific technique of supervised learning)”. These patterns are illustrated by
plotting word vector representations with t-distributed stochastic neighbor embedding
(t-SNE) (Maaten and Hinton, 2008) as a qualitative way to evaluate the embeddings
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following Yao et al. (Yao et al., 2018b). Figure 4.2(a) and Figure 4.2(b) show the t-SNE
representations of r1 and r2, respectively.

(a) r1 vector offset

(b) r2 vector offset

FIGURE 4.2: Vector offsets examples of machine learning semantic
relationships

In addition to the t-SNE visualisation used to qualitatively evaluate the accuracy
of the embeddings to detect interesting patterns in the scientific text, the capabil-
ity of the proposed model is proposed to be evaluated in this thesis to capture the
hierarchy structure “Parent-Children”. To do so, similarities between every word
“parent” and the corresponding words “children” have been computed and com-
pared. The model is considered accurate if the distances are approximately equal.
For instance, the distances between the parent “supervised_learning” and its children
{“classification”, “regression”, “ranking”, “cost_sensitive”} are approximately equal
with slight differences as presented here, respectively, (0.369; 0.241; 0.173; 0.223)
similarly to the parent “unsupervised_learning” and its children {“clustering”, “di-
mensionality_reduction”, “topic_modeling”, “anomaly_detection”, “mixture_modeling”,
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“source_separation”} with approximately similar distances (0.259; 0.307; 0.237; 0.145;
0.145; 0.135; 0.253).

Similarly, the same reasoning to compare the average distances between “Parent-
Children” has been followed. The model is accurate if the average distance between
every parent and its children is similar to others parents’ average distances. With re-
spect to the example above, the average distance of the parents “supervised_learning”
and “unsupervised_learning” with their corresponding children has been computed.
And interestingly, it has been found that the averages distances are, respectively,
equal to 0.25 and 0.22, which proves the accuracy of the embedding to detect granu-
larities of scientific text, not only the semantic relationships but also the hierarchical
structure.

4.4 Summary

In the computational history of science, semantic analogies are of crucial. Knowing
that word embeddings are able to detect such analogies and being aware that the
accuracy of the detected analogies is highly dependant to the hyper-parameters of
word embeddings, it is then primordial to effectively tune these hyper-parameters.
Despite their popularity in overwhelming state-of-the-art performance in seman-
tic similarity and analogy tasks, word embeddings are still treated as black boxes
and uniformly use the hyper-parameters without a methodological setting. From
this perspective, this chapter addressed word embedding hyper-parametrisation for
domain-specific use, namely the scientific domain. By proposing the stability of
k-nearest neighbors of word vectors, the proposed approach was able to method-
ologically set the hyper-parameters suitable for scientific text. The method has been
validated quantitatively and qualitatively on semantic and syntactic analogies cu-
rated from ACM and Wikipedia as gold standards and has proved its effectiveness.

The major contributions of this chapter are listed as follows:

• The stability of k-nearest neighbors of word vectors has been proposed as an
objective to measure while learning word2vec hyper-parameters.

• The standard skip-gram model has been enhanced by bigrams using
word2phrase – that attempts to learn phrases by progressively joining adjacent
pairs of words with a ‘_’ character – as a method for corpus augmentation.

• An analogy dataset for machine learning has been created by manually curating
ACM hierarchy and Wikipedia outline of machine learning.

• The approach has been evaluated quantitatively and qualitatively on the NIPS
dataset. The embedding detected interesting semantic relations in machine
learning such as “unsupervised_learning (which is a category of machine learning)
is to kmeans (k-means, which is a specific technique of machine learning) as super-
vised_learning (which is a category of machine learning) is to knn (k-nearest neigh-
bours or k-NN, which is a specific technique of machine learning)”. The obtained
results are therefore both promising and insightful.

In this chapter, the hyper-parameters of word2vec suitable for scientific text have
been methodologically set, and their effectiveness to detect semantic similarities and
syntactic analogies related to scientific language has been proven. In the next chap-
ters, the set hyper-parameters will be applied to train word embeddings in a tem-
poral setting aiming to perform the computational history of science in the area of
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machine learning by detecting emerging scientific trends and tracking the dynamics
of scientific keywords.



73

Chapter 5

Hist2Vec: Detecting The
Converging Keywords

“Neither a wise man nor a brave man
lies down on the tracks of history to
wait for the train of the future to run
over him.”

— Dwight D. Eisenhower. (1890–1969)

The previous chapter has investigated the impact of word2vec hyper-parameters
on the accuracy of the generated analogies in scientific text. A methodological ap-
proach has been proposed to tune the hyper-parameters of word2vec in scientific
corpora from the domain of machine learning. This is an important step toward per-
forming accurate computational history of science. In this chapter, the computa-
tional history of science concerns the detection of converging keywords that may lead
to scientific trends. To this end, word2vec is tuned with the hyper-parameters set
in the previous chapter to conduct a fine-grained content analysis of publications
from the NIPS conference. This analysis uses Hist2Vec, a temporal word embedding
approach that represent words with low-dimensional vectors computed by neural
networks. The qualitative and quantitative study reported in this chapter reveals
the evolution of the prominent machine learning keywords; this evolution supports
the popularity of current research topics in the field.

This chapter is organised as follows. Section 5.1 details Hist2Vec methodology
and how word embeddings are used to detect converging scientific keywords in the
area of machine learning. Section 5.2 describes the evaluation process, presents and
discusses the obtained results. Finally, Section 5.3 summarises the chapter. The work
described in this chapter has been published in (Dridi et al., 2019a).

5.1 Hist2Vec

This chapter introduces Hist2Vec – a computational history approach that tracks the
rise or the evolution of scientific keywords by detecting the converging keywords in the
area of machine learning. Accordingly, a temporal word embedding technique, namely
word2vec (Mikolov et al., 2013d), is adopted to learn word vectors in a temporal
fashion, in order to capture words that get geometrically closer, and hence reveal
converging keywords. The skip-gram neural network architecture of word2vec is
used as it consistently performed better than the continuous bag of words (CBOW)
architecture (Mikolov et al., 2013a).
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5.1.1 Skip-gram Model

To learn high-quality distributed vector representations, the skip-gram (SG) neural
network model was introduced by Mikolov et al. (Mikolov et al., 2013b); SG can
successfully capture both the semantic and the syntactic word regularities (Mikolov
et al., 2013b). The skip-gram model is thoroughly detailed in Chapter 3, Section 3.3.1.

Notation

Let consider the corpora of the NIPS publications collected across time (1987-2015).
Formally, P = (P1, . . . , PT), where each Pt|t=1,...,T is the corpus of all publications in
the tth timespan, and V = (word1, . . . , wordN) is the vocabulary that consists of N
words present in the corpora P at any point in time; thus, it is likely for some
wordi ∈ V to not appear at all in some Pt. V comprises both emerging and dying
words as they typically occur in scientific corpora.

Given this time-tagged scientific corpora, the goal is to find a dense, low-
dimensional vector representation uwordi(t) ∈ Rd, d� |V| for each word wordi ∈ V
and each timespan t = 1, . . . , T; d is the dimensionality of the word vectors.

In the previous chapter, it has been shown that the optimal hyperparameters val-
ues are 200 and 6, respectively, for vector dimensionality d and the context window,
for the NIPS corpora used in this thesis. Therefore, the skip-gram model is tuned
with these hyperparameters in this work. Although the NIPS corpus used in the
previous chapter is a smaller corpus (the 6 recent years of the NIPS publications at
the time of the experiments) comparing to the one used in this chapter, the optimal
hyperparameters values remain valid because (i) the number of years of publications
at every timespan (5 years) in this chapter is roughly the same as the corpus in the
previous chapter, and (ii) the word2vec model is trained at every timespan.

5.1.2 Temporal Skip-gram Model

To track the dynamism of skip-gram embeddings and measure the accelerations of
potential emerging keywords, it is proposed to create a similarity matrix Mij(t) of
size |V′| × |V′|, V′ ⊂ V, for each timespan t that corresponds to the distance met-
ric between two words. Note that V′ represent the set of frequent keywords. All
distances between two words wordi (wi) and wordj (wj) are calculated by the cosine
similarity between embedding vectors uwi and uwj as defined in Equation 4.1, which
is redefined in this Chapter by Equation 5.1. Recall that Mij(t) is a symmetric matrix.

sim(wi, wj) = cosine(uwi , uwj) =
uwi · uwj

‖uwi‖ · ‖uwj‖
(5.1)

Then, an acceleration matrix Aij of size |V′′| × |V′′|, V′′ = V′t ∩V′t+1, is generated.
It corresponds to the acceleration between two words wi and wj from t to t + 1.
The acceleration between two words wi and wj acceleration (wi, wj) is defined by
Equation 5.2 as follows.

acceleration(wi, wj) = sim(wi, wj)
t+1 − sim(wi, wj)

t (5.2)

Two keywords are defined as converging keywords if their acceleration over two
timespans t and t + 1 is greater than a defined threshold θ. θ is set to the acceleration
average over T, θ = 1

T ∑T
t=1

1
|V′′| ∑i,j acceleration(wi, wj), wi and wj are belonging V ′′.
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Table 5.1 summarises the notation used in this chapter.

TABLE 5.1: Table of notations

wi, wj, wv ith, jth and vth words in the vocabulary
V the overall vocabulary

|V|, |V ′|, |V ′′| the sizes of the vocabularies V, V’ and V”
nbv the set of neighboring words of word wv.

uwj , uwv , uwi associated word vectors of wj, wv and wi.
p(wj | wv) the hierarchical softmax of uwj and uwv

T the total number of timespans
t a specific timespan
Pt corpus of all publications in the tth timespan

uw(t) word vector representation of word w at t
d the embedding dimension

U(t) embedding matrix of all words of size v× d
Mij(t) the similarity matrix

V ′ the vocabulary of top-k frequent words in V
Aij the acceleration matrix
V ′′ the intersection of top-k words in t and t + 1
θ the average acceleration rate over T

5.2 Experiments

To analyse the computational history in the domain of machine learning, the pro-
posed approach Hist2Vec is evaluated on a time-stamped text corpora extracted from
the NIPS publications. The experiments demonstrate that the proposed approach
finds acceleration between trending keywords over time. This allows to track the
evolving scientific discovery in the field by following temporal embeddings. The
temporal embeddings are used to define the acceleration of various keywords over
subsequent timespans in order to detect the fast converging keywords and subse-
quently the emerging trends.

5.2.1 NIPS Dataset and Preprocessing

The dataset used in this analysis is a set of 5, 991 papers published between 1987 and
2015. The data set was first preprocessed. Data preprocessing consists of two steps
as described in Section 4.3.1.

To study the temporal evolution of the trends in machine learning by tracking
the converging scientific keywords, the NIPS publications between 1987 and 2015
have been divided into six 5-years timespans; however, the last timespan is 4-years
long. Therefore, the skip-gram embeddings of the year t′ contain a snapshot of the
interactions between keywords in the timespan (t′ − 4, t′). For instance, an embed-
ding of the year 2005 describes how the embeddings of keywords developed in the
years 2001 to 2005. The length of the timespan is based on the study performed by
Hoonlor et al. (Hoonlor et al., 2013) on evolving computer science research. Their
investigation showed that the average length of the evolutionary chain is 4.5 years.
This choice was also tested successfully by Salatino et al. (Salatino et al., 2017). The
statistics of the dataset are given in Table 5.2.
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Table 5.2 shows a positive trend in the evolution of the number of papers per
5-years over the 1987-2015 study period. The average 5-annual growth rate is 22%,
rising to 29.71% in the timespan 2007-2011.

TABLE 5.2: Statistics of the NIPS dataset (1987 – 2015)

Timespan ] Papers ]Words ]Vocabulary

From 1987 to 1991 5, 71 859, 293 10, 823
From 1992 to 1996 729 1, 096, 455 12, 651
From 1997 to 2001 800 1, 301, 492 13, 471
From 2002 to 2006 1023 2, 020, 697 16, 493
From 2007 to 2011 1327 3, 243, 526 21, 074
From 2012 to 2015 1541 4, 002, 513 24, 299

5.2.2 Results and Discussion

The use of temporal word embeddings has been evaluated on the content analysis
of machine learning scientific publications and their impact on the evolution of the
main streams of machine learning keywords. To do so, the NIPS publications pub-
lished between 1987 and 2015 and divided into six 5-years timespans, have been
used.

The goal of these experiments is two-fold.

1. Evaluate whether the training data with temporal word embedding represen-
tations derived from word2vec skip-gram model (where word is not only a
unigram, but can also be a bigram) is useful for tracking trends by detecting
the converging keywords for the machine learning domain.

2. Study the concordance between the trend analysis method, and the citation-
based analysis method, commonly used in the literature.

To generate temporal embeddings, the first step was a text analysis step. For
each timespan t, a corpus Pt of all publications published during this time period
is created. Then, after removing stop words, term frequency statistics have been
performed on unique words of the vocabulary based on two types of bag-of-words:
unigrams and bigrams, in order to study the evolving keywords over time based on
their frequencies. Early findings (Lieberman et al., 2007) illustrated that word fre-
quency itself is correlated with the success of the keywords historically. The relation
between dynamism and frequency change has been explored in order to gain in-
sights into emerging keywords in the area of machine learning.

By examining the 20 most frequent unigrams and bigrams from the NIPS pub-
lications over the six timespans covering a total of 28 years, it was clear that the
frequencies of n-grams evolve considerably over time. Interestingly, it was found
that the frequencies of some words (unigrams and bigrams) increase by approx-
imately the same rate in specific timespans. For example, it was found that the
frequencies of “neural” and “learning” rose simultaneously between the timespan
(1987-1991) and the timespan (1992-1996); this indicates that learning in this time
period primarily relied on neural computation. Interestingly, this observation is
justified by bigrams. For instance, it has been noticed increasing frequencies of
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“neural-networks”, “reinforcement-learning” and “machine-learning” in the next times-
pans (1997-2001) and (2007-2011).

It seems that as the word usage increases together, these words merge and be-
come emerging keywords. To test the effectiveness of this observation, and assum-
ing that “deep-learning” is the emerging trend or keyword in the area of machine learn-
ing in the last few years while the dataset is limited to only 2015 publications, the
attempt was to investigate an intriguing prediction based on the obtained frequen-
cies. Considering that “deep learning” is learning based on neural computation, the
frequencies of “learning”, “neural” and “deep” have been tracked over time. Recall
that “deep” and “deep learning” do not appear on top-100 words in all timespans. It
has been noticed that suddenly the frequency of “deep” had a jump in the times-
pan (2012-2015) that presents the period of emergence of deep learning. Figure 5.1
shows how “deep learning” as neural learning appears over this 28-year period. The
frequency of “deep” remained steady, basically null (equal to 19 on the timespan
1997-2001) until 2005, where it started to rise slightly. Then, it rose dramatically to
2913 in the timespan 2012-2015. In this last time period, the frequencies of the three
unigrams rose in a parallel way, which justifies their concordance.

Qualitative Results

The results of the analysis performed for this thesis have shown that the proposed
approach Hist2Vec results in understandable word embedding trajectories on the
NIPS corpora. The converging keywords that accelerate significantly to get close
over time can be automatically detected .

Figure 5.2 shows t-SNE representations of the six timespans considering bag-
of-unigrams (see Appendix A for better visualisation, where the t-SNE representa-
tions are resized), while Figure 5.3 shows t-SNE representations (see Appendix B) of
the last timespans considering bag-of-bigrams. t-SNE takes the 200 dimensions via
word2vec vectors, then reduces them down to 2-dimensional (x,y) coordinate pairs.
The idea is to keep similar words close together on the plane, while maximising
the distance between dissimilar words (words are unigrams or bigrams). The 2 D t-
SNE projection of each unigram’s and bigram’s temporal embedding across time has
been plotted. For visualisation purposes, only the top-100 and top-20 most frequent
unigrams and bigrams have been plotted with t-SNE representations, respectively.

Two unigrams of interest in the t-SNE representations have been picked related
to unigrams: “neural” and “learning”. In all visualisations, the embeddings illus-
trate significant acceleration between the two unigrams. As a matter of fact, their
similarity (cosine similarity) is increasing over time. For instance, it increased from
0.0657 in the second timespan (1992-1992) to 0.2235 in the fifth timespan (2007-2011).
Table 5.3 shows an increase of 70% in similarity, which suggests that learning was in-
creasingly based on neural computation/networks and consequently the combination
of these unigrams could lead to emerging keywords.

TABLE 5.3: Temporal similarity between “neural” and “learning”

87-91 92-96 97-01 02-06 07-11 12-15

0.1657 0.0657 0.09650 0.1806 0.2235 0.1994



78 Chapter 5. Hist2Vec

FIGURE 5.1: Frequencies of “deep”, “neural” and “learning” over
time

Knowing that the unigram “deep” is used together with the semantics of neural
computation/networks and considering that “deep” is not represented in top-100 fre-
quent unigrams, the similarity between “deep” and “learning” has been computed
to verify if “deep” and “neural” get similarly close to “learning” over time. Table 5.4
shows that like “neural”, “deep” gets close to “learning” chronologically; in fact, it gets
even closer to “learning” with a similarity consistently higher than that of “neural”
over all the timespans. These findings from the temporal embeddings agree with the
statistics previously calculated on term frequencies and support the effectiveness of
the proposed approach.

TABLE 5.4: Temporal similarity between “deep” and “learning”

87-91 92-96 97-01 02-06 07-11 12-15

0.2285 0.1914 0.1286 0.1885 0.2569 0.2458
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FIGURE 5.2: t-SNE of top 100 unigrams of all timespansthe overlap-
ping keywords – horizontally from left to right, and then vertically from top
to bottom – are as follows: in 5.2(a): {“distributed, parallel”, “probability,
distribution”, “initial, random”}, in 5.2(b): {“problem, task”, “distribution,
probability”, “unit, layer”}, in 5.2(c): {“theorem, bound”, “analysis, indepen-
dant”, “simple, similar”}, in 5.2(e): {“optimization, normalization”, “dataset,
images”, “prediction, classification”, “posterior, distribution”}, and in 5.2(f):
{“training, testing”, “model, architecture”, “prediction, classification”, “min,

max”, “problem, task”, “performance, accuracy”, “large, small”}



80 Chapter 5. Hist2Vec

Figure 5.3 shows t-SNE representations of the last four timespans considering
bag-of-bigrams. The 2 D t-SNE projection of each bigram’s temporal embedding has
been plotted across time. For visualisation purposes, only the t-SNE representations
of top-20 most frequent bigrams have been plotted.
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FIGURE 5.3: t-SNE of top 20 bigrams of the four timespans between
1997 and 2015

For consistency purpose, t-SNE visualisations for bigrams has been analysed
by choosing bigrams similar to the unigrams of interest. The bigrams of interest
are: “neural-networks”, “neural-computation”, “reinforcement-learning” and “machine-
learning”. As only the top-20 bigrams have been plotted, not all the selected bigrams
appear in all visualisations. Hence, the focus was only on visualisations of the last
four timespans as they mostly contain the bigrams of interest. In Figure 5.3(a) (third
timespan: 1997-2001), it is shown the bigram “reinforcement-learning” and its neigh-
borhood derived from “neural”. i.e. “neural-network”, “neural-networks” and “neural-
computation”. This is: (i) semantically significant as “reinforcement-learning” by defi-
nition is called neuro-dynamic programming and needs incremental “neural networks”;
and (ii) proved by similarity as the latter reaches its peak by 0.9998 during this time
period. Likewise, the similarity between “machine-learning” and “neural-networks”
peaks at almost the same value of 0.9997 while “machine-learning” is not represented
in the figure that shows only the 20 most frequent bigrams. This also indicates that
“reinforcement-learning” was used as “machine-learning” during this time period; in
fact, the similarity between “reinforcement-learning” and “machine-learning” is equal
to 0.9994.

One timespan later (2002-2006) (Figure 5.3(b)), “machine-learning” appears and
its similarity to “neural-networks” drops significantly to 0.8686. This shows that “ma-
chine learning” started to flourish towards the end of 1990s as an independent topic
while “reinforcement learning” remained linked to “neural computation/networks”.
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In the fifth timespan (2007-2011) (Figure 5.3(c)) “neural-networks/computation”
does not appear in the top-20 frequent bigrams. However, this timespan highlights
the re-approximation between “machine learning” and “reinforcement learning” that
incorporates “neural networks”. This is insightful as it shows how “machine learning”
is increasingly related to “neural networks/computation”.

The last timespan (2012-2015) (Figure 5.3(d)) also shows that “machine learning” is
geometrically very close to “neural networks” that re-appeared, while “reinforcement
learning” disappeared from the top-20 bigrams. This shows that possibly “machine
learning” increasingly implies “neural networks” just as “reinforcement learning” did
earlier.

Based on the findings of bigrams embedding and knowing that “deep-learning”
was the emerging keyword in the last few years, computed the similarity between
“machine-learning” and “deep-learning” has been computed and it has been found
that it is equal to 0.8716 while “deep-learning” does not exist in previous timespan-
vocabularies. Consequently, it can be assumed that “deep-learning” is the key-
word that emerged from the convergence between “machine-learning” and “neural-
networks”.

The qualitative and quantitative analyses on both unigrams and bigrams show
that the learned temporal embeddings reveal interesting patterns in the similarity
between potentially emerging keywords over time. To prove that, similarity matrices
have been created as described in Section 5.1.2 for the top-20 frequent and over-
lapped bigrams and only a couple of unigrams {“neural”, “learning”} in order to be
consistent to the unigrams and bigrams of interest previously picked. The similarity
matrices contain the cosine similarity between the embedding vectors of every pair
of keywords.

After creating the similarity matrices, the acceleration matrix has been generated
as described in Section 5.1.2. The average acceleration θ has been computed, which
corresponds to the average over all the selected keywords. θ was negative and equal
to −0.0656. Overall, almost all accelerations are negative but some of them were
speeding up. For instance, the couple of bigrams {“neural-networks”, “reinforcement-
learning”} have an acceleration of −0.011, which is much greater than the average
θ. Interestingly, it has been found that the acceleration of the couple of bigrams
{“neural-networks”, “machine-learning”} is positive and equal to 0.0094. Respectively,
the acceleration of the couple of unigrams {“neural”, “learning”} is positive and has
a value of 0.02. Both of them have an acceleration much greater than the average
θ. These findings support the previous ones and show that neural-based learning
was speeding up over time. Similar to previous investigations about the emergence
of “deep learning”, the acceleration of two unigrams {“deep”, “learning”} and two bi-
grams {“neural-network”, “deep-learning”} has been computed. Their values are, re-
spectively, 0.0034 and 0.1649, showing a substantial speed up over the average θ.

Quantitative Results

In order to test its effectiveness in detecting emerging keywords in the area of ma-
chine learning, Hist2Vec has been validated with the citation counting approach,
which is widely used in the literature and provides a snapshot of a fast-growing
field. The objective is to check the extent to which citation analysis supports the
findings of Hist2Vec. To do so, academic citations have been retrieved of all the NIPS
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publications in the used dataset (1987 to 2015) using the Public or Perish software 1

that uses Google Scholar 2 to obtain the raw citations.
For consistency purpose, the citation counts of publications was tracked with

previously selected frequent keywords (the keywords of interest already picked in
the qualitative analysis) over time such that in each timespan the citation counts of
the publications that used the picked keywords in their titles have been considered;
assuming that the title plays a pivotal role in communicating research.

A comparison has been performed between the acceleration of citation counts of
publications mentioning the keywords of interest in their titles with the acceleration
of similarities of these pairs of keywords over all timespans. Spearman’s correlation
coefficient ρ has been used to measure the strength and direction of association be-
tween these two variables. ρ is defined by Equation 5.3 as follows:

ρ =
∑s(xs − x̄)(ys − ȳ)√

∑s(xs − x̄)2 ∑s(ys − ȳ)2
(5.3)

where s is the paired score (citation_count, similarity), x and y correspond to the
citations counts and similarity values, x̄ and ȳ correspond, respectively, to the mean
of citations counts and the mean of similarity values.

Spearman’s correlation coefficient has been computed for all the pairs of picked
keywords. Interestingly, it has been found that 100% of cases have a positive corre-
lation with an average of 0.422. 67% of these correlations are strong with ρ coeffi-
cient greater than 0.6. Figure 5.4(a) and Figure 5.4(b) show the relationships between

(a) ML – NN (b) NN – DL

FIGURE 5.4: Spearman’s coefficient plot of (ML – NN) and (NN – DL)

the citation counts and the similarities of the keywords of interest “machine-learning
– neural-networks (ML – NN)” and “neural-networks – deep-learning (NN – DL)”, re-
spectively. Figure 5.4(a) has Spearman’s correlation coefficient ρ equal to 0.2. If
the last point was not considered, where the similarity between “machine-learning”
and “neural-networks” dropped in the timespan (2002-2006), ρ coefficient is much
higher and equal to 0.9. This observation could be justified by the fact that “ma-
chine learning” started to flourish towards the end of 1990s as an independent topic,
which justifies the decrease in its similarity with “neural-networks”. Overall, this
new finding confirms the previous findings stating that learning was correlated to
neural networks over time. Figure 5.4(b) has ρ coefficient equal to 0.654. This result

1https://harzing.com/resources/publish-or-perish
2https://scholar.google.com/

https://harzing.com/resources/publish-or-perish
https://scholar.google.com/
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perfectly matches with the previous findings, where the citation count was slightly
small in the first four timespans. Then, suddenly it rose dramatically to reach 3, 223
in the last timespan (2012-2015). A significant rise of these citation counts is clearly
seen, which goes with the increase in the similarity and the acceleration previously
detailed, and shows that “learning” was increasingly relying on “neural networks”.
The emerging keyword “deep-learning” goes in parallel with the keywords of inter-
est “neural-networks” and “machine-learning” and dramatically increased in the last
timespan, which supports the assumption that “deep-learning” is now the trend.

These findings resulting from citation counts support the effectiveness of the ap-
proach based on temporal word embeddings in detecting emerging keywords in the
domain of machine learning.

5.3 Summary

In this chapter, Hist2Vec has been offered to perform a computational history of sci-
ence through the detection of converging keywords that may lead to new scientific
keywords/trends. Hist2Vec has been applied to the NIPS publications to produce
insights about the field of machine learning and track the evolution of new trends.

This work addressed this challenge in an innovative way by bringing together
qualitative and quantitative analyses of the NIPS publications during the time pe-
riod 1987-2015. Both analyses drilled into the paper content by computing and vi-
sualising temporal keyword embeddings over six 5-years timespans. The similarity
between keywords has been explored by computing the similarity between the em-
bedding vectors in order to create a similarity matrix of frequent keywords. Then,
based on this matrix an acceleration matrix has been created, which reports the ac-
celeration between pairs of keywords over time in order to capture the converging
keywords that may result in a trending keyword. The results were able to detect
that “deep-learning” was the convergence between “machine-learning” and “neural-
networks”. Hist2Vec has been validated against citation count analysis, and its effec-
tiveness has been demonstrated.

In this chapter, the approach Hist2Vec detected the converging keywords that may
result in trending keywords by computing the acceleration of similarities between
keywords over successive timespans. In the next chapter, the rankings of similari-
ties will be adopted and the ascents in ranking over different timespans will be com-
puted to detect the contextualising keywords – the keywords to start to occur together
in the same context – that may lead to trending keywords. In addition, instead of
fixed timespans, the history impact will be explored by adopting both incremental
and sliding timespans.
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Chapter 6

Leap2Trend: Detecting the
Contextualising Keywords

“I’m an inventor. I became interested
in long-term trends because an
invention has to make sense in the
world in which it is finished, not the
world in which it is started.”

— Ray Kurzweil. (1948—)

In the previous chapter, the computational history of science has been performed
by detecting scientific trends, which have been defined as the converging keywords
over time. To this end, Hist2Vec has been proposed to track the similarity acceler-
ation between pairs of keywords over successive timespans. This chapter contin-
ues with the detection of emerging scientific trends. However, it follows a different
path to find them. Going beyond the accelerating similarities of pairs of keywords
that lead to converging keywords, this chapter studies the dynamics of similari-
ties between pairs of keywords, their rankings and respective uprankings (ascents)
over time in order to detect the contextualising keywords. This chapter introduces
Leap2Trend, a novel approach to early detection of research trends. Leap2Trend relies
on temporal word embeddings (word2vec). Leap2Trend is applied to two scientific
corpora, where machine learning is applied, and it is evaluated against two gold
standards Google Trends hits and Google Scholar citations.

This chapter is organised as follows. Section 6.1 introduces Leap2Trend and de-
tails its different stages. Section 6.2 describes the used datasets, presents the gold
standards, reports and discusses the experimental results. Finally, Section 6.3 sum-
marises the chapter. The work described in this chapter has been published in (Dridi
et al., 2019b).

6.1 Leap2Trend

This chapter presents Leap2Trend, which is a novel approach for an effective and
early detection of emerging scientific trends; defined in this chapter as contextualis-
ing keywords. Leap2Trend follows a fine-grained content analysis approach that digs
into textual content of research papers and grasps semantics by applying temporal a
word embedding technique, namely word2vec (Mikolov et al., 2013d). Accordingly,
temporal word embeddings are adopted. Leap2Trend learns these temporal embed-
dings and tracks the dynamics of pairs of keywords over time in order to capture
the fast contextualising keywords, which could led to emerging scientific trends.
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The workflow of Leap2Trend is depicted in Figure 6.1 and it follows four stages:

i Data preprocessing. This stage is conducted to preprocess and clean up data
taking into account the specificity of scientific language. It leads to a bag of
keywords, where a keyword is either a unigram or a bigram.

ii Word embeddings. In this stage, word2vec embedding model is applied with
its skip-gram architecture (Mikolov et al., 2013e) to learn the distributed vector
representations of keywords over time. This stage is repeated for each corpus
Pt, t = {1, . . . , T} that corresponds to the corpus of all research papers in the
tth timespan.

iii Similarity computation. After generating the vector representation of key-
words, a similarity matrix is created. It corresponds to the cosine similarity be-
tween embedding vectors of pairs of keywords. Respectively to the previous
stage, this stage is also repeated at each timespan t = {1, . . . , T}.

iv Post-processing. First, this stage takes as input the previously computed simi-
larity matrix and returns a ranking matrix at each timespan t. Then, after defin-
ing all ranking matrices corresponding to the T timespans, the identification of
pairs of keywords with ascents in their ranking over time is performed. This
step is called rank ascent identification, which represents the key of the identifi-
cation of emerging scientific keywords/trends.

In the next sections, the functionalities of these stages are detailed.

FIGURE 6.1: Workflow of Leap2Trend

6.1.1 Data Preprocessing

This section describes the data preprocessing stages, which are performed following
both language and time levels.
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Language-based Preprocessing

In order to learn high-quality distributed vector representations of keywords in the
scientific text, the first step consists to clean data and take into consideration the
specificity of scientific language. For instance, bigrams are commonly used in the
scientific language such as “machine learning” and “artificial intelligence” in the com-
puter science area or “transfer learning” and “breast cancer” in the bioinformatics area.
To do so, two steps are followed as described in Section 4.3.1.

Time-based Preprocessing

After performing a language-based data preprocessing stage, a time-based data pro-
cessing step is done. It aims to divide the scientific corpora P into T timespans de-
noted by P = (P1, . . . , PT), where each Pt, t = {1, . . . , T} is the corpus of all research
papers in the tth timespan. This step is important to fulfill the temporality of the task
of scientific trend detection and track the evolving keywords over time. To this end,
a dynamic data integration of corpora is adopted rather than using static time win-
dows. The time-based preprocessing stage has two different temporal paradigms:
incremental windows and sliding windows.

Incremental Windows. Each window or timespan t represents a sequence of time
stamped corpora Pt, t = {1, . . . , T} gradually created following a 1-year an-
nual basis. Therefore, the corpus of the window t′1≤t′≤t will contain the aggre-
gated corpora of the timespan (1, t′) as illustrated in Figure 6.2. For instance, if
the scientific corpora dated from 2000 to 2018, the corpus of the window 2008
will contain all corpora between 2000 and 2008. The corpus of the last window
T contains all corpora from window 1 to window T.

The choice of the incremental paradigm is based on the normal flow of scien-
tific venues such as conferences and journals, which are annually publishing
new papers. 1-year window length is adopted for the corpus increment in or-
der to keep the study as fine-grained as possible by following a tight track of
keywords movement and trend emergence.

FIGURE 6.2: Incremental windows

Sliding windows Each window t represents a sequence of three time stamped cor-
pora. The corpus of the window t will contain the corpora of the timespan
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(t− 1, t + 1) as shown in Figure 6.3. For instance, the corpus of the window
2008 will contain the corpora between 2007 and 2009.

The choice of the timespan length is based on the study performed by Ander-
son et al. (Ashton et al., 2012) on evolving scientific topics. Their investigations
showed that the interval of three years was successful to track the flow of sci-
entific corpora.

FIGURE 6.3: Sliding windows

6.1.2 Word Embeddings

This study introduces a temporal word embedding approach based that tracks
emerging scientific keywords at an early stage by detecting the contextualising key-
words that capture the evolution and the movement of pairs of keywords over time.
Accordingly, a temporal word embedding technique is adopted to learn word vec-
tors in a temporal fashion. To do so, the skip-gram architecture of word2vec model
is used as it consistently proved to be experimentally better than CBOW architec-
ture (Mikolov et al., 2013b).

Skip-gram Model

Skip-gram model has been introduced by Mikolov et al. (Mikolov et al., 2013b) for
learning high-quality distributed vector representations. The main idea of skip-gram
is to predict the context given a word wi. Note that the context is a window around
wi of maximum size L that represents the span of words in the text, which is taken
into account both backwards and forwards when iterating through the words during
model training. Skip-gram model is detailed in Chapter 3, Section 3.3.1.

Notation. Let consider corpora of research papers collected across time. Formally,
it is denoted by P = (P1, P2, . . . , PT) the corpora, where each Pt is the corpus of
all papers in the tth timespan. Denote V = (w1, w2 . . . , wV) the vocabulary that
consists of V words present in the corpora P. It is possible that some wi ∈ V
not appear at all in some Pt. This comprises emerging keywords and dying
keywords that are typical for scientific corpora. Let Vt denote the vocabulary
that corresponds to Pt and |Vt| denote the corresponding vocabulary size used
in training word embeddings at the tth timespan.
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Given this time-tagged scientific corpora, the goal is to find a dense, low-
dimensional vector representation ut

wi
∈ RN, N � Vt for each word wi ∈ Vt at

each timespan t = {1, . . . , T}. N is the dimensionality of word vectors that cor-
responds to the length of the vector representations of words. Let W denote
the matrix of size Vt ×N that represents the input to hidden layer connections
with each row representing a vocabulary word wi,i=1,...,Vt , and W ′ the matrix of
size N×Vt that describes the connections from the hidden layer to the output
layer with each column of W ′ representing a word wi from Vt.

Model. Given the vocabulary of size Vt at timespan t, word embedding vectors of
size N are learned. The skip-gram model learns to predict one context word wj
(output) using one target word (input) wi at a time as following:

• The input word wi and the output word wj are one-hot encoded into bi-
nary vectors x and y of size Vt.

• The multiplication of the binary vector x and the word embedding matrix
W of size Vt ×N gives the embedding vector of the input word wi; the
i-th row of the matrix W .

• The hidden layer represents the resulting embedding vector of dimension
N.

• The multiplication of the hidden layer and the word context matrix W ′ of
size N×Vt produces the output one-hot encoded vector y.

• The final output layer applies softmax function (Mikolov et al., 2013d) to
compute the probability of predicting the output word wO given the input
word wI, and therefore:

p(wO|wI) =
exp(v′TwO

vwI )

∑W
w=1 exp(v′TwvwI )

(6.1)

where vw and v′w are the input and output vector representations of w
that correspond to x and y in this case, and W is the number of words in
the vocabulary that corresponds to Vt in this case.

• The output context matrix W ′ encodes the meanings of words as context.

Temporal Word Embeddings

In order to study the dynamics of the skip-gram model and track the movement of
potential emerging keywords; defined in this chapter as contextualising keywords,
it is proposed to learn word embeddings in a temporal fashion. To do so, the skip-
gram model is trained on the data resulting from the time-based preprocessing stage
described in Section 6.1.1. Therefore, two training paradigms are proposed with
respect to the generated corpora, namely incremental embedding for the incremental
windows and sliding embedding for the sliding windows.

Incremental embedding. The incremental embedding goes through the corpora P
to update word embeddings incrementally with the annual basis corpus aug-
mentation. To do so, two different embeddings are proposed. The first em-
bedding aims to retrain the skip-gram model from scratch and perform a fresh
model termed as fresh embedding in this thesis. The second embedding, termed
as updated embedding, reads the training data word by word to incrementally
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update the word frequency distribution and the noise distribution while per-
forming stochastic gradient descent (Kaji and Kobayashi, 2017). Figure 6.4 il-
lustrates the proposed incremental embedding model.

FIGURE 6.4: The incremental embedding model

Sliding embedding. At every timespan t, the sliding embedding considers as input
the corpora in the window (t− 1, t + 1) and trains skip-gram model after cre-
ating a new vocabulary Vt ⊆ V corresponding to the actual window. V may
therefore vary as the window is progressing over time.

After selecting the first three corpora in the window starting from t− 1 as men-
tioned in Section 6.1.1, the next corpora is selected from the window starting
from t. The process is repeated iteratively until all Pt corpora are trained.

6.1.3 Similarity Computation

At this stage, Leap2Trend creates a similarity matrix Mt
i,j of |v| × |v|, v ⊆ V for each

timespan t, respectively, for both temporal training paradigms of skip-gram model
(incremental and sliding). Note that |v| is the number of the most frequent keywords
used in the similarity computation across all corpora. It is worth noting that the same
keywords have been used over all timespans. The similarity matrix Mt

i,j corresponds
to the similarity metric between two keywords belonging to v. All distances between
two keywords wi and wj are calculated using cosine similarity between embedding
vectors uwi and uwj as defined by Equation 6.2. Recall that Mi,j

t is a symmetric matrix.

similarity(wi, wj) = cosine(uwi , uwj) =
uwi · uwj

‖uwi‖‖uwj‖
(6.2)

For efficiency purposes, the entries of the similarity matrix Mij
t correspond only

to a subset of keywords that represent top-k keywords. More details on the selection
of keywords will be provided in Section 6.2.

6.1.4 Post-processing

After computing all similarity matrices corresponding to all T timespans, Leap2Trend
proceeds with the ranking of the similarities of pairs of keywords in each matrix.
The resulting ranked matrices are then used to identify the pairs of keywords hav-
ing significant ascents in their ranking over time. These keywords are defined as
contextualising keywords and they are potentially considered as emerging trends
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due to their frequency of co-occurrence in the same context. This step is termed as
rank ascent identification.

Ranking

Given a similarity matrix Mt
i,j of size |v| × |v|v⊆V ; that corresponds to the similarity

values of a set v of keywords at a timespan t, the aim is to rank this matrix in or-
der to define the set of contextualising keywords, which correspond to the pairs of
keywords that start to frequently co-occur in the same context at this time period.

The ranking of Mt
i,j is defined as the ranking of its entries that correspond to the

similarities of pairs of keywords. To speed up the rank calculation and consider-
ing that Mt

i,j is an symmetric matrix, only the upper triangular part of the matrix
is considered, which corresponds to the similarity values above the main diagonal.
Hence, ranking the matrix Mt

i,j corresponds to the ranking of the upper triangular
part. Algorithm 1 highlights the steps of the ranking process.

Algorithm 1: Ranking Similarity Matrix

input : similarity matrix Mt
i,j

output: ranked M′′i,j
t

1 rank← 0;
2 M′i,j

t ← sort(Mi,j
t);

3 for i← 1 to length(M′i,j
t) do

4 for j← 1 to length(M′i,j
t) do

5 temp← M′[i][j];
6 for i′ ← 1 to length(M′i,j

t) do
7 for j′ ← 1 to length(M′i,j

t) do
8 if (M′[i′][j′] == temp) then
9 M′′[i′][j′]← rank + 1;

10 rank← rank + 1;
11 j′ ← length(M′i,j

t);
12 end
13 end
14 end
15 end
16 end

Rank Ascent Identification

The stage of rank ascent identification is defined as the strategy used to find the pairs of
keywords (wi, wj) whose rankings maximise the ascent from timespan t to timespan
(t + 1).

To pick these pairs of keywords, a matrix Mt,t+1
ranki,j

of size |v| × (T − 1) is created;
it stores the difference in ranking of the pairs of keywords between two subsequent
timespans t and (t + 1). Each entry δt,t+1 of Mt,t+1

ranki,j
is defined by Equation 6.3 as

follows:
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δt,t+1 = Mt,t+1
rank [i][j] = M′′[i][j]t −M′′[i][j]t+1 (6.3)

where M′′i,j
t and M′′i,j

t+1 correspond to the ranked matrices returned by Algo-
rithm 1, respectively, for timespans t and (t + 1).

If δ is positive, this means that the ranking of the pairs of keywords (wi, wj) is
ascending (i.e., a jump or a leap, as will be formally defined in this section). Other-
wise, if δ is negative, then it corresponds to a fall. This work only focuses on ascents
(jumps and leaps) as the aim is to forecast the fast emerging keywords over time.
Therefore, the stage of rank ascent identification is reduced to the identification of
pairs keywords having ascent in their ranking over time.

Since the ranking ascents have different magnitudes with a minimum of 1, dif-
ferent thresholds for δ are defined in order to study the impact on higher ranking as-
cents on the identification of emerging keywords. When δ exceeds a certain thresh-
old `, it is defined as a leap. Formally, Leap2Trend approach defines the different
categories of ranking dynamics as following:

δ =


leap, if δ ≥ θ

jump, if 0 < δ ≤ θ

f all, otherwise
(6.4)

Algorithm 2 presents the pseudo-code of the identification of pairs of contex-
tualising keywords, defined as (wi, wj)

∗ that may lead to fast emerging keywords.

Algorithm 2: Rank Ascent Identification

input : Ranked matrices M′′i,j
t, M′′i,j

t+1, threshold θ

output: contextualising keywords(wi, wj)
∗

1 for t← 1 to T do
2 for i← 1 to length(M′′i,j

t) do
3 for j← 1 to length(M′′i,j

t) do
4 for i′ ← 1 to length(M′′i,j

t+1) do
5 for j′ ← 1 to length(M′′i,j

t+1) do
6 Mrank[i][j]← M′′t[i][j]−M′′t+1[i′][j′];
7 end
8 end
9 end

10 end
11 end
12 for i← 1 to length(Mrank) do
13 for j← 1 to T − 1 do
14 δ = Mrank[i][j]−Mrank[i + 1][j + 1];
15 if (δ > 0 & δ ≤ θ) then
16 return (wi, wj)

∗;
17 end
18 end
19 end
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6.2 Experimental Study

This section presents an evaluation of Leap2Trend on the task of tracking and de-
tecting contextualising keywords that may lead to emerging research trends. To this
end, two datasets related to two research areas: machine learning and bioinformatics
were selected. Then, the obtained results of the proposed approach were evaluated
on two gold standards: Google Trends hits and Google Scholar citations.

6.2.1 Datasets

The two corpora represent, respectively, 30 years of the NIPS conference papers and
15 years of Medical Image and Computer Assisted Intervention (MICCAI) confer-
ence papers.

NIPS Dataset

The NIPS corpora consist of the full text of 7, 241 papers published in Neural In-
formation Processing Systems conference between 1987 and 2017. The dataset is
described in Section 4.3.1.

MICCAI Dataset

The MICCAI corpora consist of 15 years of Medical Image and Computer Assisted
Intervention proceedings from 2004 to 2018 with a total of 3, 844 papers. MICCAI is
a top conference in the area of bioinformatics. The proceedings were crawled from
Springer website1 under PDF format. Afterward, the text was extracted using the
package “pdftools”2 provided by R.

6.2.2 Gold Standards

To evaluate the effectiveness of Leap2Trend in forecasting research trends; defined as
contextualising keywords, it is needed to find a set of trends determined a priori to
be correct; known as gold standard. In the context of this study, this thesis proposes
to use both Google Trends hits3 and Google Scholar citations4 as gold standards.

Google Trends has been chosen because it displays search trends data on Google;
Google is considered the first place to start for researchers to find background on the
research topic5. However, Google Scholar has been used to collect the raw citations
of publications.

Google Trends Hits

Google Trends analyses the popularity of search queries in Google Search6 across
various regions and languages and it compares the search volume of different
queries over time7.

1https://www.springer.com/
2https://cran.r-project.org/web/packages/pdftools/pdftools.pdf
3https://trends.google.com/
4https://scholar.google.com
5library.royalroads.ca/infoquest-tutorials/internet-searching/

google-vs-google-scholar-which-one-do-i-use
6https://www.google.com/
7https://en.wikipedia.org/wiki/Google_Trends

https://www.springer.com/
https://cran.r-project.org/web/packages/pdftools/pdftools.pdf
https://trends.google.com/
https://scholar.google.com
library.royalroads.ca/infoquest-tutorials/internet-searching/google-vs-google-scholar-which-one-do-i-use
library.royalroads.ca/infoquest-tutorials/internet-searching/google-vs-google-scholar-which-one-do-i-use
https://www.google.com/
https://en.wikipedia.org/wiki/Google_Trends
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Due to its ability to track various words and phrases that are typed into Google’s
search-box over time, it has been found that Google Trends aligns with Leap2Trend
that tracks the co-occurrence of pairs of scientific keywords over time, which may
lead to emerging trends. To this end, the following methodology is proposed to
compare the results of Leap2Trend with Google Trends hits:

1. For each pair of keywords studied by Leap2Trend, the results from Google
Trends were downloaded. These results report the Google query volumes of
this pair of keywords. Recall that the keywords are typed as they are in the
interface of Google Trends without quotations for more than one-word key-
words. The API pytrends8 was used. This API downloads data in form of csv
files recording the number of queries of this pair of keywords on a monthly ba-
sis. For convenience, the number of queries of Google Trends will be referred
as Google Trends hits. The parameter ’timeframe’ of pytrends is set to (2004-2017)
and (2004-2018) for the NIPS and MICCAI corpora, respectively, respecting the
time-frame of both corpora as described in Section 6.2.1. The start date 2004 is
justified by the start of Google Trends service. For this reason, the NIPS set of
publications before 2004 were ignored when the proposed approach has been
evaluated. For the parameter ’geo’ that refers to the region of search, It was set
to the by-default parameter, which returns worldwide results. Recall that the
retrieval time of Google Trends data was November and December 2018.

2. To be consistent to the results provided by Leap2Trend on yearly basis, the
Google Trends hits have been aggregated in the csv files by summing up the
hits of each 12 months together.

3. Referring to Section 6.1.4, the ascents (jumps and leaps) in ranking over time of
each pair of keywords were defined. For each ascent, the Google Trends hits
have been tracked 3 years ahead and the slope of the linear regression of these
hits has been computed. The aim behind this computation is to check if the
jump in ranking captured by Leap2Trend indicates a positive slope and conse-
quently defines this pair of keywords as contextualising keywords. This could
show the predictive power of the proposed approach in forecasting trends. The
choice of 3 years as a duration is justified in Section 6.1.1 and the slope mhits of
the linear regression of Google Trends hits is defined as follows:

mhits =
∑4

i=1(xi − x̄)(yi − ȳ)

∑4
i=1(xi − x̄)2

(6.5)

where x and y correspond, respectively, to the year of hits and the number of
hits, x̄ and ȳ represent, respectively, their means. The number 4 corresponds
to the number of years to consider starting from the year of the ascent and 3
years ahead.

Google Scholar Citations

Google Scholar, in January 2018, was considered the world’s largest academic search
engine, with roughly 389 million documents indexed including articles, citations
and patents (Gusenbauer, 2018).

8https://github.com/GeneralMills/pytrends

https://github.com/GeneralMills/pytrends
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Due to its ability to calculate and display the citation counts of scientific publi-
cations and its wide coverage of article published in English with an estimate of 100
million9, Google Scholar is used to extract the raw citations of the NIPS and MICCAI
publications used in this evaluation. To do so, the software Public or Perish10 is used,
which uses Google Scholar to obtain the raw citations.

The evaluation methodology of Leap2Trend against this gold standard has two
steps:

1. For each pair of keywords studied by Leap2Trend, the set of all publications
mentioning these keywords in their titles were selected and the total number
of their citation counts returned by Google Scholar was computed; assuming
that the title plays a pivotal role in communicating research.

2. The ascents of these pairs of keywords with the citation counts over timespans
were computed. A good result of Leap2Trend corresponds to a positive corre-
lation between the ascents and the citations, i.e., when the jump increases, the
citation count increases and vice versa.

6.2.3 Evaluation Metrics

The performance of Leap2Trend results is assessed against the two gold standards
defined above by means of ascent accuracy, ascent recall and ascent precision. The goal
in this evaluation is to answer the following two questions:

i How accurate is Leap2Trend in detecting contextualising keywords, and accord-
ingly in predicting future trends at an early stage?

ii How precise is Leap2Trend in following the flow of Google Trends hits and
citation counts?

Ascent Accuracy and Recall

Ascent Accuracy. The ascent accuracy (accuracy) evaluates the prediction power of
Leap2Trend in detecting contextualising keywords at an early stage by tracking
the ascents in ranking of pairs of keywords that will eventually lead to emerg-
ing trends. Therefore, the accuracy is defined as the fraction of the number of
ascents+ – defined as the ascents that successfully led to positive slopes in the
linear regression of Google Trends hits – with the number of ascents returned
by Leap2Trend as expressed in Equation 6.6.

accuracy =
|{ascents+} ∩ {ascents}|

|{ascents}| (6.6)

Ascent Recall. The ascent recall (recall) attests the number of ascents in the gold
standard that were successfully detected by Leap2Trend. Therefore, the recall
is defined as the fraction of the number of ascents returned by Leap2Trend with
the number of ascents+ that successfully led to positive slopes in the linear
regression of Google Trends hits, as expressed in Equation 6.7.

recall =
|{ascents+} ∩ {ascents}|

|{ascents+}| (6.7)

9https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093949
10https://harzing.com/resources/publish-or-perish

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093949
https://harzing.com/resources/publish-or-perish
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Ascent Precision

Two measures of ascent precision are defined to evaluate the results of Leap2Trend.
The first measure PGT evaluates the obtained results against Google Trends hits,
while the second measure PGS evaluates the results against Google Scholar citations.
Both of them refer to how close are Leap2Trend ascents to Google Trends hits or ci-
tation counts. Close means how the ascents are positively correlated with the hits
or the citations. Therefore, each of these two precision measures is formally de-
fined as the fraction of the number of (wi, wj)

corr+ – the pairs of keywords having
positive correlations with the hits or citations – with the total number of pairs of
keywords formed from the vocabulary v, v ⊆ V as defined in Section 6.1.3. Equa-
tion 6.8 expresses the ascent precision (precision), where precision refers to PGT or PGS
with respect to the used gold standard.

precision =
|{(wi, wj)

corr+}|
|{(wi, wj)}|

; i, j ∈ |v| (6.8)

To measure the correlation between the ascents and the hits or the citations, the
Spearman’s correlation coefficient ρ is used. ρ computes the strength and the direction
of association between the ascents and any of the hits or citations as follows:

ρ =
∑s(xs − x̄)(ys − ȳ)√

∑s(xs − x̄)2 ∑s(ys − ȳ)2
(6.9)

where s is the paired score (ascent, GoogleTrendHit) or (ascent, citation_counts), x
corresponds to the hits or to the citation counts and y corresponds to the ascents, x̄
corresponds, respectively, to the mean of hits or the mean of citations counts and ȳ
corresponds to the mean of ascents.

6.2.4 Results

For each of the used datasets, namely the NIPS and MICCAI, three series of exper-
iments were ran within Leap2Trend approach following the three temporal embed-
ding paradigms described in Section 6.1.2. Then, the obtained results were evaluated
against the two gold standards: Google Trends hits and Google Scholar citations de-
fined in Section 6.2.2.

For both datasets, the selection of the keywords of interest to be studied in this
research is firstly done. To do so, the first step consists the selection of the top 100
frequent bigrams extracted from the titles of the publications. Bigrams were used
rather than unigrams because of their frequent use in scientific corpora especially
in machine learning and bioinformatics; the two research areas this chapter studies.
The selection of these keywords from the titles is justified by the fact that the title of a
scientific paper is mostly self-explanatory reflecting the work being reported; hence
it possibly contains the important keywords of interest in any research area. From
these 100 bigrams, only the bigrams whose combination provides available informa-
tion from Google Trends were kept in order to fairly evaluate Leap2Trend against the
gold standard. The combination of pairs of bigrams does not necessarily mean that
the two bigrams appear together in the same paper title or the same Google query.
In this thesis, the combination of these pairs of bigrams is based on their frequencies,
and the availability of related information from Google Trends. This restricted the
keywords of interest to only 20 bigrams. This number has been also supported by
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Google Hot Trends11 that displays the 20 hot and fastest rising search terms at a time.
Similarly, the aim is to early detect the fastest rising trends in the field of study. The
number of these emerging trends could not be high as the tracking of the evolution
is on yearly basis. For instance, a study performed by Hoonlor et al. (Hoonlor et al.,
2013) on evolving computer science research showed that the average length of the
evolutionary chain is 4.5 years with few new topics. This has been also proved by
a study conducted by Asooja et al. (Asooja et al., 2016) on the domain of Natural
Language Processing, Information Retrieval, and Semantic Web. They detected only
two new topics in a period of 6 years from 2008 to 2014. Recall that the same set of
pairs of keywords is used for all timespans in order to keep tracking their similari-
ties/dissimilarities over time. It is very likely that this approach prevents to include
new keywords/topics that may appear when time progresses. But, the main goal is
to provide a prove of concept for the proposed approach Leap2Trend and proves its
ability to early detect emerging trends.

After preprocessing both the NIPS and MICCAI corpora, the skip-gram model is
trained at every timespan with the embedding dimension N = 200 and the context
window = 6. The choice of these hyperparameters is supported by the previous
findings (Dridi et al., 2018) detailed in Chapter 4 that showed that these hyperpa-
rameters are optimal within scientific corpora. Recall that word2vec package of the
open source Gensim Python Library12 has been used to implement the word vector
representations. Gensim was ran on Windows Intel core i7 platform that supports
Python and NumPy. For the incremental windows, two trainings were performed.
The first training follows an updated embedding as described in Section 6.1.2 while
the second training created a fresh trained model by re-training it from scratch. The
code of these two trainings is publicly available here13. For the sliding windows, the
model was trained at every timespan, because the sliding paradigm results in new
vocabulary forgetting one year vocabulary and adding one year ahead vocabulary
as shown in Figure 6.3.

After each training at a timespan t, a similarity matrix Mt
i,j is created as described

in Section 6.1.3 that corresponds to the 20 keywords of interest extracted from the
titles of the publications as described above. At every timespan t, the similarity
values of Mt

i,j were ranked and then Mt,t+1
ranki,j

was created; it stores the difference in
ranking of the pairs of keywords between two subsequent timespans t and (t + 1).
For each pair of keywords, all ascents were picked; those corresponding to a positive
δ calculated following Equation 6.3.

Leap2Trend vs Google Trends Hits

For each ascent, the slope of the linear regression of Google Trends hits is computed
as expressed in Equation 6.5. In order to avoid bias, the ascent picked at 2005 were
ignored, because it corresponds to the ascent in ranking of the pair of keywords be-
tween 2004 and 2005 while δ at 2004 is set to 0 (2004 is the starting year of analysis
and corresponds to the starting year of Google Trends). After the selection of all as-
cents related to all studied pairs of keywords, the related accuracy is computed as
described in Equation 6.6. This accuracy corresponds to any ascent. Then, differ-
ent thresholds for δ were set: {5, 10, 20, 30} defining leaps with various magnitudes.

11https://en.wikipedia.org/wiki/Google_Trends
12https://radimrehurek.com/gensim/models/word2vec.html
13https://github.com/AmnaKRDB/Leap2Trend

https://en.wikipedia.org/wiki/Google_Trends
https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/AmnaKRDB/Leap2Trend
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The choice of these thresholds was based on the overall obtained values of δ on both
datasets after the three training paradigms. For this reason, some of these thresh-
olds may not be found on some results such as the thresholds 20 and 30 in the fresh
embedding of the MICCAI dataset as shown in Figure 6.6.

FIGURE 6.5: Accuracy results of Leap2Trend based on the NIPS with
respect to the three embedding paradigms and different thresholds of

δ, δ > 0 in all cases

FIGURE 6.6: Accuracy results of Leap2Trend based on the MICCAI
with respect to the three embedding paradigms and different thresh-

olds of δ, δ > 0 in all cases

Figure 6.5 and Figure 6.6 show accuracy measures of Leap2Trend with the three
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embedding paradigms: fresh embedding, updated embedding and sliding embedding, and
with different thresholds of δ applied to the NIPS and MICCAI datasets. According
to these accuracy results computed based of Google Trends hits as gold standard,
Leap2Trend shows promising findings in forecasting research trends in different do-
mains. For instance, the accuracy is above 63% in all different settings of the fresh
embedding and it exceeds 80% in some cases.

The overall results shown in Figure 6.5 and Figure 6.6 reveal that the best accu-
racy is given when experimenting (i) with the fresh embedding and (ii) with high
leaps. (i) could be justified by the fact that the ideal approach for incremental em-
bedding would be to retrain the model from scratch including new vocabulary in the
training corpus (Kaji and Kobayashi, 2017). That is because the incremental training
of word embeddings may drift words learned from later batches arbitrary far from
words in earlier batches that are not re-presented. This observation is supported
by the obtained results on both the NIPS and MICCAI datasets, where the updated
embedding performed the worst in all settings. (ii) highlights the importance of the
magnitude of ascents; when the ascent increases, the accuracy increases accordingly.
The substantial improvement in accuracy from any δ to a greater threshold under-
lines the ability of Leap2Trend to accurately detect contextualising keywords at a very
early stage by paying attention to the ascents in ranking of pair of keywords over
time.

To validate the observation on the importance of the magnitude of the ascents,
the average of slopes ∆mhits is computed at every threshold δ. The average slope
∆mhits corresponds to the fraction of the sum of the slopes mhits with the number of
detected ascents |{ascents}| and it is expressed by Equation 6.10 as follows:

∆mhits =
∑|{ascents}|

i=1 mhits

|{ascents}| (6.10)

Figure 6.7 and Figure 6.8 illustrate the obtained results of average slopes on the
NIPS and MICCAI datasets, respectively. Similar to the previous results of accuracy,
the fresh embedding performs the best in both datasets. For instance, the average
of slopes ∆mhits gradually increases with the increase of ascents. However, for the
sliding embedding related to the MICCAI dataset, a decrease in ∆mhits is noticed
starting from the threshold δ ≥ 10. This is justified by the rarity of picked ascents
with higher magnitude. As a matter of fact, this decrease goes in parallel with the
accuracy that drops to 50% with δ ≥ 20 as shown in Figure 6.6. In reality, this
50% represents 4 positive slopes over 8 detected ascents with more than 20 ascents.
Therefore, both the average of slopes and the accuracy are highly sensitive to the
magnitude of ascents.

For the updated embedding, the obtained average of slopes is the worst. This
supports the previous obtained results on accuracy and confirms the assumption
that the ideal approach for incremental embedding would be to retrain the model
from scratch. But, it is worth mentioning that the updated embedding is more ef-
ficient than the fresh embedding. This is obvious as retraining the model comes at
cost in time.

For overall experimental results on the NIPS and MICCAI datasets, Leap2Trend
shows a great potential to early detect contextualising keywords leading to emerg-
ing research trends, both quantitatively (accuracy) and qualitatively (average slope).
Leap2Trend achieves this by tracking ascents and setting different thresholds that are
used as indicators to detect the contextualising keywords.
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FIGURE 6.7: Average slope results of Leap2Trend based on the NIPS
dataset with respect to the three embedding paradigms and different

thresholds of δ, δ > 0 in all cases

FIGURE 6.8: Average slope results of Leap2Trend based on the MIC-
CAI with respect to the three embedding paradigms and different

thresholds of δ, δ > 0 in all cases

As a proof of evidence, Leap2Trend, applied to the NIPS dataset with the fresh
embedding, detects an ascent of δ = 11 of the pair of keywords (“neural_network –
machine_learning”) between 2012 and 2013 as shown in Figure 6.10(a). This ascent
is highly significant as this pair of keywords reflects that machine learning is highly
relying on neural networks during this time period. This is insightful as it shows that
Leap2Trend is able to detect the frequent co-occurrence of these pairs of keywords in
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the same context, which may lead to the hybridisation of these two keywords. In
fact, the average of slope ∆mhits, which is equal to 76.9 supports this assumption.
The strength of this slope is clearly shown in Figure 6.10(a) as the number of Google
Trends hits passes from 86 in the year when the ascent happened to 329 after 3 years.
Similarly, Leap2Trend, applied to the MICCAI with the fresh embedding, detects an
ascent of δ = 10 of the pair of keywords (“lung_cancer – breast_cancer”) between
2009 and 2010. This ascent was insightful as the statistics on medical research in
2010 showed that lung cancer was the most second commonly diagnosed cancer in
the UK after breast cancer14. This could justify why Leap2Trend detected the ascent of
these two keywords as they co-occur together. This observation is then supported by
the average of slope ∆mhits, which is equal to 40.1 and shows an increase in Google
Trends hits in Figure 6.8.

Overall, the accuracy results on the NIPS and MICCAI datasets show a great
potential of the proposed approach Leap2Trend to detect research trends early. It is
also important to reveal how many of the ascents presented in the gold data were
detected by Leap2Trend. To do so, the recall is computed as defined in Equation 6.7.
A relevant ascent, named as ascent+, is defined as an ascent approved by a posi-
tive slope of the Google Trends hits looking three years ahead. Figure 6.9 shows
recall measures of Leap2Trend with the three embedding paradigms applied to the
NIPS and MICCAI datasets. The overall results show promising findings in early
recalling research trends. For instance, the recall is above 50% in all settings on the
NIPS dataset, and it reaches and exceeds 40% on the MICCAI dataset. Leap2Trend
reveals then a great potential to recall trends ahead in time. The obtained recall
results on both datasets align with the accuracy results on the impact of every em-
bedding setting. As a matter of fact, the fresh embedding performs the best with the
NIPS dataset with 57.79% while the sliding embedding performs the best with the
MICCAI dataset with 43.83% for the same reasons detailed for the accuracy. Excep-
tionally for recall with the MICCAI, the two embedding settings (fresh and updated)
perform similarly with 39.72%. This could be justified by the size of corpora as the
MICCAI has small corpora with more likely few new keywords, which makes the
incremental embedding less sensitive to the followed paradigm whether it is fresh
or updated.

After testing the effectiveness of Leap2Trend in early predicting research trends
using accuracy, the closeness of Leap2Trend ascents to Google Trends hits is tested
by performing a fine-grained analysis. This fine-grained analysis aims to check to
what extent the ascents of Leap2Trend are correlated with Google Trends hits. To do
so, the Spearman’s correlation coefficient (Equation 6.9) is computed to every pair
of keywords. Afterward, the precision PGT is measured following Equation 6.8. Fig-
ure 6.11 illustrates the obtained precision results on the NIPS and MICCAI datasets
with the three embedding paradigms.

Interestingly, these results indicate that the sliding embedding in both datasets
performs significantly better than the incremental embedding (the fresh embedding
and the updated embedding) with a precision of 88.88% and 61.53% for the NIPS
and MICCAI datasets, respectively. This could be justified by the fact that the slid-
ing window of 3 years length could perfectly match the keywords published in the
papers with the keywords used in Google Search unlike the incremental window
that keeps the old vocabulary. This affects the similarity of keywords and conse-
quently affects their ranking and hence their ascents. For the updated embedding,

14https://www.bci.qmul.ac.uk/en/our-research/lung-cancer

https://www.bci.qmul.ac.uk/en/our-research/lung-cancer
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FIGURE 6.9: Recall results of Leap2Trend based on the NIPS and MIC-
CAI datasets against Google Trends hits

(a) NIPS Example (b) MICCAI Example

FIGURE 6.10: The linear regression of jumps and Google Trends
hits related to two pairs of keywords from the NIPS and MICCAI

datasetsa=

a=For visualisation purpose, the values of jumps were multiplied by 10 in order to clearly
display the jumps with respect to the Google Trends hits

the precision results confirm those previously obtained with accuracy; it performs
worst with all measures of effectiveness. Overall, the PGT results support the accu-
racy ones and show that the proposed approach Leap2Trend is able to early forecast
trends matching Google Trends hits. For instance, the Spearman’s correlation co-
efficient shows a strong correlation between Leap2Trend ascents and Google Trends
hits for the sliding embedding with 65% and 55% of ρ values greater than 0.6 for,
respectively, the NIPS and MICCAI datasets.

For all the settings and measures, Leap2Trend performs better on the NIPS dataset
than the MICCAI dataset. This could be justified by two reasons. The first reason
refers to the size of corpora; the NIPS corpora is much bigger than the MICCAI
corpora and it has been proved in the literature (Mikolov et al., 2013d; Mikolov et
al., 2013b) that word embedding quality increases as the corpus size increases. The
second reason may refer to the popularity and the strength of the conference. For
instance, the NIPS conference is more than 30 years old while the MICCAI is only 21
years old. The prestige of the conference contributes to its strength and rapidity in
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FIGURE 6.11: Precision of Leap2Trend based on the NIPS and MIC-
CAI datasets against Google Trends hits

developing new research topics.

Leap2Trend vs Google Scholar Citations

In order to support Leap2Trend findings obtained against the gold standard Google
Trends hits, a new validation of Leap2Trend results is performed with the citation
counting approach, which is widely used in the literature and provides a snapshot of
a fast-growing field. To do so, academic citations from Google Scholar were retrieved
for all the NIPS and MICCAI publications as described in Section 6.2.2. Then, the
ascents of all studied pairs of keywords, from NIPS and MICCAI datasets over the
three embedding paradigms, were compared with citation counts.

Similar to the obtained results performed with Google Trends hits, Spearman’s
correlation coefficient (Equation 6.9) was used to measure the correlation between
the ascents and the citation counts. Afterward, the precision PGS of Leap2Trend re-
sults on the NIPS and MICCAI datasets was computed following Equation 6.8.

Figure 6.12 demonstrates the obtained precision results on the NIPS and MICCAI
datasets with the three embedding paradigms. According to these results, the two
incremental embeddings outperform the sliding embedding in both datasets with a
precision that reaches 90% with the fresh embedding applied to the NIPS dataset.
These results are meaningful because the incremental embedding keeps the history
of publications, which affects the similarity of keywords and consequently affects
their ascents. This perfectly matches the citation counting approach that takes time
to progress and reveal trends. However, the sliding embedding refers to only 3
years publications with a forgotten one year publications and an added new one
year publications. This window size is not enough to reflect the citation counts that
need time to evolve.

Overall, Leap2Trend precision results against Google Scholar citations support
the previous results on Google Trends hits as well as accuracy, and they show the
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FIGURE 6.12: Precision of Leap2Trend based on the NIPS and MIC-
CAI datasets against Google Scholar citations

effectiveness of the proposed approach Leap2Trend to detect emerging trends with
promising findings.

6.3 Summary

In this chapter, the computational history of science has been performed through the
detection of contextualising keywords that may lead to new scientific trends. For this
end, Leap2Trend has been proposed. It is a new approach for early detection of re-
search trends. Leap2Trend has harnessed word embedding techniques to dig into the
paper content and track the dynamics of similarities between pairs of keywords. To
do so, Leap2Trend trained temporal embeddings following two temporal paradigms:
incremental and sliding. Then, after each training, it created a similarity matrix that
stores the similarities of pairs of keywords of interest. Afterward, it ranked the en-
tries of this matrix and computed the ascents in ranking over different timespans.
Finally, for each picked ascent, Leap2Trend performed different evaluations against
Google Trends hits and Google Scholar citations in order to test if the detected ascent of
the pair of keywords refers to a new emerging trend. The obtained results showed
the effectiveness of Leap2Trend to early detect emerging keywords.

The major contributions of this chapter are listed as follows:

1. Introducing Leap2Trend, a new framework for the detection of new research
trends at a very early stage by tracking the contextualising keywords.

2. Leveraging temporal word embedding techniques, namely
word2vec (Mikolov et al., 2013d) for fine-grained content analysis of sci-
entific corpora.

3. Applying Leap2Trend to real-world datasets in two research areas: machine
learning and bioinformatics, which could give insights about the validity and
the generalisability of the proposed approach.

4. Validating the approach using Google Trends hits and Google Scholar citations
as gold standards.
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This chapter has followed the first path to perform the computational history of
science, which is devoted to the detection of new scientific trends. However, the new
scientific trends in this chapter are defined as the contextualising keywords that start
to frequently co-occur together in the same context. To detect these contextualising
keywords, the dynamics of similarities between pairs of keywords have been tracked
by adopting the rankings of similarities and computing the ascents in ranking over
different timespans. In the next chapter, the second path to perform the computa-
tional history of science will be followed, which is devoted to tracking the dynamism
of scientific keywords by studying the evolvement of their semantic neighbourhood
over time.
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Chapter 7

Vec2Dynamics: Tracking The
Dynamism of Scientific Keywords

“The test of our progress is not
whether I add more to the abundance
of those who have much, it is whether
I provide enough for those who have
little.”

— Franklin D. Roosevelt. (1882–1945)

In the previous two chapters, the computational history of science has been per-
formed by tracking the emerging scientific trends, which were defined as converging
keywords and contextualising keywords. This was done by computing the similarities
between selected pairs of keywords and tracking the changing in similarity over
time. In this chapter, the computational history of science goes beyond the tracking
of emerging scientific keywords. But, it concerns tracking the evolvement of their se-
mantic neighbourhood over time, which gives a more generic view on the dynamics
of science including emerging, dying, recurrent and persistent keywords. This chap-
ter introduces Vec2Dynamics, a temporal word embedding approach that reports the
stability of k-nearest neighbors (k-NN) of scientific keywords over time; the stability
indicates whether the keywords are taking new neighborhood due to evolution of
scientific literature. To evaluate how Vec2Dynamics models such relationships in the
domain of machine learning, scientific corpora from the papers published in the Neu-
ral Information Processing Systems (NIPS) conference between 1987 and 2016 have
been used. The descriptive analysis performed in this chapter verifies the efficacy of
the proposed approach. In fact, a generally good consistency between the obtained
results and the machine learning timeline1 was detected.

The rest of this chapter is organised as follows. Section 7.1 details the
Vec2Dynamics approach and its different stages. Section 7.2 describes the evalua-
tion of the proposed approach, presents and discusses the obtained results. Finally,
Section 7.3 summarises the chapter. The work described in this chapter is submitted
to machine learning journal.

7.1 Vec2Dynamics

In order to understand and uncover the dynamics of scientific literature,
Vec2Dynamics is proposed – a fine-grained content analysis approach that relies on

1https://en.wikipedia.org/wiki/Timeline_of_machine_learning

https://en.wikipedia.org/wiki/Timeline_of_machine_learning
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temporal word embeddings to delve into the content of research papers.
First, Vec2Dynamics digs into the textual content by applying word2vec embed-

dings (Mikolov et al., 2013d). Then, it grasps dynamic change in interest and popu-
larity of research topics by iteratively applying k-NN stability to the keywords/topics
of interest over time and accordingly capturing the recurrent, non-recurrent, persistent
and emerging keywords. Formal definitions of these types of keywords are given
later in this section. The general architecture of Vec2Dynamics is first described and
then the functionalities of its different stages are detailed.

7.1.1 Vec2Dynamics Architecture

The architecture of Vec2Dynamics is depicted in Figure 7.1. The whole model can be
divided into four different stages.

FIGURE 7.1: Workflow of Vec2Dynamics

i Data preprocessing. At this stage, the textual content of research papers is
preprocessed and cleaned up taking into account the specificity of scientific
language. For instance, the frequent use of bigrams in scientific language is
considered such as “information system”, and “artificial intelligence”, and a bag of
keywords is constructed, where keywords are either unigrams or bigrams. Data
preprocessing consists then of two steps: (a) the removal of stop words; and (b)
the construction of bag of words, where words are either unigrams or bigrams.
More details on the data preprocessing stage are given in Section 4.3.1.

ii Word embedding. At this stage, the skip-gram architecture of
word2vec (Mikolov et al., 2013d) is adopted to learn word vectors over
time. This stage is repeated for each corpus Pt,t=1,...,T that corresponds to the
corpus of all research papers in the tth timespan. More details will be given in
Section 7.1.2.
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iii Similarity computation. After generating the vector representation of key-
words, cosine similarity between embedding vectors is applied to find the k-
nearest neighbors of each keyword. Recall that cosine similarity between two
keywords wi and wj refers to the cosine measure between embedding vectors
uwi and uwj as follows:

similarity(wi, wj) = cosine(uwi , uwj) =
uwi · uwj

‖uwi‖ · ‖uwj‖
(7.1)

As with the previous stage, this stage of similarity computation is also repeated
at each timespan t.

iv Stability computation. At this stage, the stability of k-NN of each keyword
of interest is studied over time in order to track the dynamics of the scien-
tific literature. To do so, a stability measure is defined (Equation 7.2), which
could be computed between the sets of k-NN keywords over two subsequent
timespans t and (t + 1). Based on the obtained stability values, four types of
keywords/topics are defined: recurrent, non recurrent, persistent and emerging
keywords. More details will be given in Section 7.1.3.

7.1.2 Temporal Word Embeddings

Vec2Dynamics relies on a central stage of word embeddings that learns word vec-
tors in a temporal fashion in order to track the dynamics of scientific literature over
time. To this end, the skip-gram architecture of word2vec (Mikolov et al., 2013d)
is adopted, which aims to predict the context given a word wi. Note that the con-
text is the span of words within a certain range before and after the current word
wi (Mikolov et al., 2013e).

Notation

Let consider corpora of research papers collected across time. Formally, let
P = (P1, P2, . . . , PT) represents the used corpora, where each Pt is the corpus of all
papers in the tth timespan, and V = (w1, w2 . . . , wV) the vocabulary that consists
of V words present in P. It is possible that some wi ∈ V do not appear at all in
some Pt. This happens because new keywords emerge while some old keywords
die; something that is typical of scientific corpora. Let Vt denote the vocabulary
that corresponds to Pt and |Vt| denote the corresponding vocabulary size used in
training word embeddings at the tth timespan.

Given this time-tagged scientific corpora, the goal is to find a dense, low-
dimensional vector representation ut

wi
∈ RN, N � Vt for each word wi ∈ Vt at each

timespan t = {1, . . . , T}. N is the dimensionality of word vectors that corresponds to
the length of the vector representations of words.

Skip-gram Model

The architecture of the skip-gram model is detailed in Chapter 3, Section 3.3.1. To
tune the hyperparameters of skip-gram model, the approach of k-NN embedding sta-
bility detailed in Chapter 4 is followed. This approach showed that the optimal
hyperparameters are, respectively, 200 and 6 for vector dimensionality N and the
context window for scientific corpora.
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7.1.3 k-NN Stability

After learning temporal word embeddings on the scientific corpora, Vec2Dynamics
uses the stability of k-nearest neighbors (k-NN) of word vectors as the objective to mea-
sure while tracking the dynamics of research keywords/topics. The k-NN keywords
of a target keyword wi correspond to the k keywords similar to wi. Recall that cosine
similarity is used to calculate the similarity between two keywords wi and wj.

Notation

Let St−1
wi

and St
wi

denote, respectively, the sets of k-NN of the keyword wi over two
successive timespans (t− 1) and t. Ψt

wi
denotes the k-NN stability of wi at the times-

pan t as the logarithmic ratio of (a) the intersection between the two sets St−1
wi

and
St

wi
to (b) the difference between them. Formally, Ψt

wi
is defined as follows:

Ψt
wi

= logk
( |St

wi
∩ St−1

wi
|

0.5× |St
wi
	 St−1

wi |
)

(7.2)

Recall that the two sets St−1
wi

and St
wi

are equal and their differences are symmetric
as |St−1

wi
| = |St

wi
| = k, which justifies the multiplication by 0.5 in the denominator.

The k-NN stability Ψt
wi

ranges from −1 to +1. −1 (corresponding to logk(
1
k ))

refers to the case, where no intersection exists between St−1
wi

and St
wi

(|St
wi
∩ St−1

wi
| = 0)

in order to prevent the indeterminate case, where the numerator is null. On the other
hand, +1 (corresponding to logk(k)) refers to the case, where the denominator is null;
when a fusion of the two sets St−1

wi
and St

wi
is found, to prevent the indeterminate

case. More formally, the stability Ψt
wi

is defined as follows:

Ψt
wi

=


logk(

1
k ), if St

wi
∩ St−1

wi
= ∅

logk(k), if St
wi

= St−1
wi

= k
Equation 7.2, otherwise

(7.3)

After computing Ψt
wi

corresponding to each keyword of interest wi over all times-
pans T, the average of stability Ψt of n selected keywords of interest is computed,
where n ≤ |Vt| at a timespan t as follows:

Ψt =
∑n

i=1 Ψt
wi

n
(7.4)

Interpretation

The computation of k-NN stability is based on the dynamism of the keywords ap-
pearing and disappearing in St−1

wi
and St

wi
. Four types of keywords can be defined

based on their dynamism: recurrent keywords, non-recurrent keywords, persistent key-
words, emerging keywords and dying keywords.

Definition 1 (Recurrent keyword) A word wj is called recurrent if it appears recurrently
in the k-NN subsequent sets St

wi
and Str

wi , tr ≥ 2.

Definition 2 (Non-Recurrent keyword) Contrary to recurrent keyword, a non-recurrent
keyword does not appear in the k-NN subsequent sets; it appears in St

wi
, but never appears

in Str
wi , tr ≥ 2.
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Definition 3 (Persistent keyword) A word wj is persistent if it appears in St
wi

and at least
in St+1

wi
.

Definition 4 (Emerging keyword) A word wj is called emerging if it appears in the k-NN
set St+1

wi
\ St

wi
.

Definition 5 (Dying keyword) A word wj is called dying if it it appears in the k-NN set
St

wi
\ St+1

wi
.

These definitions are used to provide a fine-grained analysis of the main streams
of keywords based on their appearance/disappearance and frequency of appear-
ance. This helps to fully understand the evolution of scientific keywords over time.

7.2 Experiments

To track the dynamics of the scientific literature in the domain of machine learning,
the proposed approach Vec2Dynamics is evaluated on a time-stamped text corpora
extracted from the NIPS conference proceedings. The experiments in this chapter
demonstrate that the proposed approach delves into the content of research papers
and provides a deep descriptive analysis of the literature of machine learning over
29 years by following temporal embeddings and analysing the resulting dynamic
k-NN keywords over time.

7.2.1 NIPS Dataset

The dataset used in this analysis represents 29 years of the NIPS conference papers
published between 1987 and 2016, with a total of 6562 papers. The dataset was first
preprocessed following the steps described in Section 7.1.1. Then, in order to study
the dynamics of the scientific literature of machine learning by tracking the k-NN
of keywords/topics over time, the NIPS publications between 1987 and 2016 are
divided into ten 3-year timespans. The length of the timespan is based on the study
performed by Anderson et al. (Ashton et al., 2012) on evolving scientific topics. Their
investigations showed that the interval of three years was successful to track the flow
of scientific corpora. The statistics of the dataset are given in Table 7.1.

TABLE 7.1: Statistics of the NIPS dataset (1987 – 2016)

timespan ]Papers ]Words ]Vocabulary

From 1987 to 1989 288 16, 273 9147
From 1990 to 1992 417 465, 169 169, 728
From 1993 to 1995 453 914, 871 1, 669, 54
From 1996 to 1998 456 1, 387, 070 173, 341
From 1999 to 2001 499 1, 943, 821 197, 845
From 2002 to 2004 615 2, 716, 271 264, 241
From 2005 to 2007 631 3, 595, 398 292, 681
From 2008 to 2010 807 4, 847, 535 379, 086
From 2011 to 2013 1037 6, 501, 435 480, 440
From 2014 to 2016 1386 8, 732, 443 610, 383
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Table 7.1 shows a positive trend in the evolution of the number of papers per 3-
years over the 1987–2016 study period. The average 3-annual growth rate is around
20%, exceeding 33% in the timespan 2014–2016. The findings revealed that there is
a potential or possible emerging research keywords/topics within the new evolving
papers. This could be justified by the constant growth rate of unique words that
reaches 29.52% in the timespan 2008–2010, with an average rate of 17.98% overall,
excluding the first timespan 1987–1989, where the vocabulary size was very small
and may bias the result.

7.2.2 Results and Discussion

Vec2Dynamics is evaluated on tracking the dynamics of machine learning literature.
To do so, temporal word embeddings are leveraged to trace the evolution of the
main streams of machine learning keywords. To this end, the NIPS publications –
published between 1987 and 2016 and divided into ten 3-years timespans – have
been used.

For each timespan t, a corpus Pt of all publications published during this time pe-
riod is created. Then, after preprocessing as described in Section 7.2.1, the skip-gram
model of word2vec is trained at every t with the embedding dimension N = 200 and
the context window = 6. The choice of these hyperparameters is supported by the
previous findings detailed in Chapter 4 that showed that these hyperparameters are
optimal within the NIPS corpora.

After each training at timespan t, the similarities of keywords of interest are com-
puted following Equation 7.1. The keywords of interest correspond to the top 100
bigrams extracted from the titles of the publications (Dridi et al., 2019b). From these
100 bigrams, only the bigrams that appeared in the highest two levels of the Com-
puter Science Ontology (CSO)2 (Osborne and Motta, 2012) were kept . This is jus-
tified by the aim to keep the keywords as generic as possible reflecting the topics
rather than the fine-grained sub-topics and detailed techniques that the ontology
illustrates. This restricted the keywords of interest to only 20 bigrams.

At every timespan t and for each keyword of interest w∗i ∈ Vt, the k-NN were
selected based on cosine similarity. In this study, k is set to 10. This choice is moti-
vated by the study performed by Hall et al. (Hall et al., 2008), on the history trends
in computational linguistics. Their investigation showed that the set of 10 words was
successful to represent each topic.

To select the 10-NN, two steps were followed: first, the top 300 similar keywords
returned by cosine similarity were taken, and then from these 300 keywords the
ones that belong to the first or the second level of the CSO were filtered out, aiming
to keep the keywords as generic as possible reflecting the topics rather than the fine-
grained sub-topics. This aim justifies the choice of 300 neighboring keywords at the
beginning. Indeed, this value was chosen experimentally; different k values in the
interval {50, 100, 200, 300}were taken. Among these values, only 300 guaranteed the
existence of at least 10 nearest neighbors keywords belonging to CSO. Recall that the
choice of k values was limited by the satisfaction of a similarity threshold to fulfill in
order to keep the keywords as close as possible. The choice of this threshold, which
is 0.37, was based on the work done by Orkphol and Yung (Orkphol and Yang, 2019)
on cosine similarity threshold with word2vec.

2http://skm.kmi.open.ac.uk/cso/

http://skm.kmi.open.ac.uk/cso/
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After defining the k-NN of each keyword of interest w∗i at every timespan t, the
k-NN stability was computed. It corresponds to the logarithmic ratio of (a) the in-
tersection between the two sets of 10-NN of w∗i over two subsequent timespans to
(b) the symmetric difference between them as given per Equation 7.2. Therefore, the
k-NN stability of w∗i at a timespan t corresponds to the output of Equation 7.2 with
the two sets of k-NN of w∗i at t and (t− 1) as inputs. For instance, the k-NN stability
of w∗i at the timespan 2002–2004 describes how the k-NN of w∗i changed between the
timespan 1999–2001 and the timespan 2002–2004.

Table 7.2 shows the k-NN stability of the top 20 bigrams studied in this chapter,
as well as the average stability per timespan as defined in Equation 7.4. The table
does not show the results related to the first two timespans 1987–1989 and 1990–
1992 because (i) the first window does not contain the studied keywords of interest,
given that the vocabulary size is too small, which justifies the difficulty to build bi-
grams; (ii) the second window refers to the window (t− 1) that is used to measure
the stability at the timespan 1993–1995. The overall results reveal that the k-NN sta-
bility was mostly negative. For instance, the average stability ranges from −0.24 to
−0.531 (which is not surprisingly) tracing the amount of disruption in the field of
machine learning. The lowest stability was detected in the time period 1996–1998.
This suggests that the field may have been more innovative and receptive of new
topics/keywords at the time. This is indeed supported by the timeline of machine
learning3 that shows an interesting amount of achievements and discoveries in the
field during the period of 1995 until 1998 such as the discovery of Random Forest
Algorithm (Ho, 1995), Support Vector Machine (Cortes and Vapnik, 1995), Long-Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the achievement of
IBM Deep Blue in the world champion at chess (Campbell et al., 2002). However, the
highest stability was shown in the timespan 2014–2016. At that time, it seemed that
the field has reached a certain maturity, which makes the k-NN stability high. To see
if this was in fact the case, the k-NN of all keywords of interest were analysed at this
time period. Interestingly, it was found that 70% of keywords share one of the fol-
lowing nearest neighbors keywords {“neural_network”, “deep_learning”, “big_data”}.
The shift toward big data analytics and deep learning is well known in the field in the
last years of the analysis. For instance, all discoveries in this period are founded
on deep neural networks and applied to big data such as Google Brain (2012) (Le et al.,
2012), AlexNet (2012) (Krizhevsky et al., 2012), DeepFace (2014) (Taigman et al., 2014),
ResNet (2015) (K. He et al., 2015) and U-Net (2015) (Olaf et al., 2015).

For better interpretation of the rise and decline of k-NN stability over time, Fig 7.2
illustrates the average of k-NN stability over eight timespans. The sharp increase in
stability is readily apparent in the last timespan as discussed above. On the other
hand, it can be seen the decrease in stability in the period 1996–1998 and then in the
period 2008–2010. The former is interpreted previously. However, the later refers to
a timespan that represented an important time frame for ImageNet (Deng et al., 2009)
that was the catalyst for the AI boom of the 21st century. This may justify the decline
in stability at that time.

Regarding the time period from 1999 until 2007, Fig 7.2 shows a steady k-NN
stability. This suggests that the field was stable at that time; it was broadly exploring
and applying what has been discovered in the disrupted period 1993–1995. This sug-
gestion is confirmed by machine learning timeline that does not report any topics or
discoveries having been prominent at that time except the release of Torch (Collobert

3https://en.wikipedia.org/wiki/Timeline_of_machine_learning

https://en.wikipedia.org/wiki/Timeline_of_machine_learning
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FIGURE 7.2: k-NN average stability over time

et al., 2002), which is actually a software library for machine learning; it is indeed a
tool and does not have anything to do with new topics.

For overall results on the NIPS publications, Vec2Dynamics shows promising
findings in tracking the dynamics of machine learning literature. As a proof of evi-
dence, Vec2Dynamics, applied to the keyword of interest “machine_learning”, detects
interesting patterns as shown in Fig 7.3 – Fig 7.9. Each figure depicts the Venn dia-
gram of two subsequent sets of k-NN keywords of the keyword “machine_learning”.
As these figures show, “machine learning” seems to have been stabilised significantly
over time. For instance, the overlap of the two sets St−1

machine_learning and St
machine_learning

has increased gradually to pass from only one keyword between the sets of the time
periods 1996–1998 and 1999–2001 (Figure 7.4) to six keywords between the sets of
the time periods 2008–2010 and 2011–2013 (Figure 7.8).

In addition, the fine-grained analysis of the main streams of keywords reveals
the different types of keywords based on their appearance/disappearance and their
frequency of appearance in the subsequent sets of k-NN. For instance, in the case
of “machine_learning”, the keywords “computer_vision”, “bioninformatics”, “robotics”
and “economics” for example are recurrent as they appeared recurrently in more than
four timespans. However, the keyword “html” is non-recurrent because it appeared
only in two timespans and then disappeared. On the other hand, “nlp” is consid-
ered an emerging keyword in the timespan 2002–2004 due to its first appearance.
This is insightful because the field of natural language processing has seen a signifi-
cant progress after the vast quantities of text flooding the World Wide Web in the
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FIGURE 7.3: Venn Diagram of “machine_learning” in the timespan
1996-1998

FIGURE 7.4: Venn Diagram of “machine_learning” in the timespan
1999-2001

FIGURE 7.5: Venn Diagram of “machine_learning” in the timespan
2002-2004
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FIGURE 7.6: Venn Diagram of “machine_learning” in the timespan
2005-2007

FIGURE 7.7: Venn Diagram of “machine_learning” in the timespan
2008-2010

FIGURE 7.8: Venn Diagram of “machine_learning” in the timespan
2011-2013
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FIGURE 7.9: Venn Diagram of “machine_learning” in the timespan
2014-2016

late 1990s, notably by information extraction and automatic summarising (Inderjeet,
1999). However, the keyword “mathematics” is considered a dying keyword as it com-
pletely disappeared after the time period 1996–1998. This could be justified by the
fact that early machine learning approaches and algorithms were developed based
on mathematical foundations such as Bayes’ theorem, Markov chains, Least Squares,
etc; that is why early machine learning researchers have extensively investigated
mathematics in their literature comparing to the present ones that focus more on the
applications.

Overall, Vec2Dynamics shows a great potential to track and explore the dynamics
of machine learning keywords over time. Both numerical and visual analyses show
the effectiveness of the proposed approach to trace the history of machine learning
literature exactly as machine learning timeline does.

7.3 Summary

This chapter represents the second path that this thesis follows to perform the com-
putational history of science by tracking the dynamism of scientific keywords over
time. Vec2Dynamics has been then proposed, a new temporal word embedding ap-
proach to analyse and explore the dynamics of the scientific keywords. To this end,
Vec2Dynamics followed an innovative way by leveraging word2vec embeddings to
delve into the paper content and track the dynamics of k-nearest neighbors (k-NN)
keywords of a keyword of interest. To do so, the proposed approach trained tempo-
ral embeddings over ten 3-years timespans. Then, after each training, it computed
the similarities between pairs of keywords of interest and accordingly it defined the
k-NN keywords of each keyword of interest. Afterward, it computed the stability of
k-NN over every two subsequent timespans.

Vec2Dynamics has been applied to the area of machine learning, and it has shown
both numerical and visual evidences to track the dynamism of scientific keywords.
A research area with growing k-NN stability is likely to subsequently gain matu-
rity, while the contrary is also true; it refers to an emerging area with new topics
becoming more prominent.
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Chapter 8

Conclusion and Future Directions

"I write the last line, and then I write
the line before that. I find myself
writing backwards for a while, until I
have a solid sense of how that ending
sounds and feels. You have to know
what your voice sounds like at the end
of the story, because it tells you how to
sound when you begin. "

— John Irving (1942 –)

This chapter summarises the contributions of this dissertation and also gives fu-
ture directions of the current work.

This dissertation focuses on the task of computational history of science, which is
performed by tracking the dynamics of science and detecting the emerging scientific
trends. To address this task, temporal word embeddings have been used and ap-
plied to scientific literature to closely and automatically track the change in pairwise
associations between pairs of scientific keywords over time. While there has been
some work in recent years on the computational history of science and trend analy-
sis, this thesis offers a new solution that differs from the existing research in several
ways. First, unlike existing approaches that have focused on one of the two tasks of
the computational history of science – which are the tracking of the dynamics of sci-
ence and the detection of emerging scientific trends – this thesis has performed both
of them adopting a variety of heuristics analysing the pairwise associations between
pairs of scientific keywords, offering consequently a comprehensive overview of the
history of science. Second, for the detection of emerging trends, this thesis has dif-
ferentiated between converging keywords and contextualising keywords as two types of
research trends. The converging keywords refer to the pairs of keywords that con-
verge over time leading to the synthesis of a new scientific keyword. This new scien-
tific keyword may represent a sub-field in the area, and accordingly represent a new
trend. For example, “deep learning” is the converging keyword between the pairs of
keywords “machine learning” and “neural networks”. In this respect, “deep learning” is
a sub-field in the area of “machine learning”. However, the contextualising keywords
represent the pairs of keywords that frequently co-occur in the same context over
time. They may refer to an hybridisation of tools or techniques in the area. A no-
table example of contextualising keywords is “ensemble learning” and “deep learning”,
where “deep learning” is highly used in “ensemble learning” as a classifier. Third, most
of the current approaches rely mainly on citation counting from papers, which have
been published, and consequently find clues to topic evolvement (Zehra and Umut,
2018). While citation counts are used as indicators of emerging research topics, they
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can take months or even years to reveal research trends. Also, they fail to dig into
the paper content. Therefore, there is a need to shift from citation-based approaches
to more fast yet accurate approaches for computational history of science that drill
into the content of scholarly publications.

Following this trend, some work (Ashton et al., 2012; Bakarov et al., 2018; Li et al.,
2019; Paul and Girju, 2009; Salatino et al., 2017) emerged and explored natural lan-
guage processing techniques, namely topic models, to forecast the emergence of new
research topics. While topic models intend to extract semantics by capturing docu-
ment level associations between words, they fail to detect pairwise associations of
keywords. This is a considerable limitation since emerging topics usually start first
by an increasing closeness of keywords that may lead to a merge. This closeness
is generally semantic rather than linguistic. For instance, the research topic “deep
learning” resulted from the merge between the two keywords/topics “machine learn-
ing” and “neural networks”. Similarly, “bioinformatics” is the keyword that emerged
from the convergence between “biology” and “information engineering”. Recently, the
emerging research topic “federated learning” resulted from the merge between “ma-
chine learning” and “decentralised data”. This thesis makes the assumption that emerg-
ing trends are defined as a pair of fast conversing keywords. However, this is not
always the case. Some emerging keywords could potentially be new terms that ap-
pear as a result other than merging existing terms. This is generally the case of names
of tools, techniques or programming languages.

This thesis has overcome these deficiencies by proposing a fine-grained study of
the associations between pairs of keywords. This study has focused on the change in
pairwise associations between keywords over time to early detect emerging trends
and closely track the dynamics of science. The next section describes the contribu-
tions that this thesis brings to the field and gives an overview of the dissertation.

8.1 Overview and Contributions

Over the past few years, the computational history of science – as a part of big schol-
arly data analysis (Feng et al., 2017) – has grown into a scientific research area that
is increasingly being applied in different domains such as business, biomedical, and
computing. The serge in interest is due to (i) the explosion of publicly available data
on scholarly networks and digital libraries, and (ii) the importance of the study of
scientific literature, which is continuously evolving. In fact, the recent literature is
rich in dealing with the enigmatic question of the dynamics of science.

This dissertation has explored three main directions for tracking the dynamics of
science and detecting the emerging scientific trends as summarised in Table 8.1.

1. This thesis has explored word2vec (Mikolov et al., 2013e) as one of the word
embedding techniques that can be applied to represent the scientific lan-
guage. A methodological approach has been proposed to study the hyper-
parametrisation of word embeddings and deeply understand the embedding
behavior within scientific corpora (Stage 1). This methodology, detailed in
Chapter 4, has been published in (Dridi et al., 2018).

2. Based on the outcomes of Stage 1, the second stage (Stage 2) has concerned
learning word embeddings across time and using their outputs to propose
three different approaches that perform the computational history of science
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following two paths: (1) detecting the emerging scientific trends and (2) track-
ing the dynamics of science. Hist2Vec and Leap2Trend are proposed to detect the
emerging scientific trends while Vec2Dynamics is proposed to track the dynam-
ics of scientific keywords. All of these approaches study the change in pairwise
associations between pairs of scientific keywords over time following different
methodologies. These approaches have been accordingly described in Chap-
ter 5 and published as (Dridi et al., 2019a), Chapter 6 and published as (Dridi
et al., 2019b), and Chapter 7, respectively.

3. In the third stage (Stage 3), this thesis has provided standards to validate the
results of the proposed approaches in Stage 2. In particular:

(a) An analogy dataset for machine learning – the application area of the pro-
posed approaches – has been created by manually curating ACM hierar-
chy and Wikipedia outline of machine learning. This analogy dataset is
made publicly available for research at https://github.com/AmnaKRDB/
Machine-Learning-Analogies.

(b) Because of the absence of standards for research trends, both Google Trends
hits and Google Scholar citations have been proposed as gold standards.
The details of the creation and the usage of these gold standards were
given in Chapter 6. The code has been made publicly available for re-
search at https://github.com/AmnaKRDB/Leap2Trend.

(c) The citation analysis has been used as a competitor with the proposed ap-
proaches to conduct a comparative study. Different strategies have been
followed for the comparative study. The obtained results were promis-
ing. For instance, Spearman’s positive correlation was 100% as described
in Chapter 5. In addition, the precision reached 90% as given in Chapter 6.

(d) A qualitative analysis has been adopted for a better analysis of the ob-
tained results. Both visual and descriptive analyses have been performed
in Chapters 5 and 7.

Stages Contributions Features

Stage 1 abc
abc
abc

A methodological approach for
tuning word embedding hyper-
parameters abc

k-NN embedding stabil-
ity (Dridi et al., 2018) abc
abc

Stage 2 abc
abc
abc
abc
abc

Learning temporal word embed-
dings and the usage of their outputs
to perform a computational history
of science by detecting the emerging
scientific trends and tracking the
dynamics of science. abc

• Hist2Vec – Detection
of converging key-
words (Dridi et al.,
2019a)

• Leap2Trend – Detec-
tion of contextualis-
ing keywords (Dridi
et al., 2019b)

• Vec2Dynamics
– Tracking the
dynamism of key-
words

https://github.com/AmnaKRDB/Machine-Learning-Analogies
https://github.com/AmnaKRDB/Machine-Learning-Analogies
https://github.com/AmnaKRDB/Leap2Trend
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Stage 3 abc
abc
abc
abc
abc
abc
abc
abc
abc
abc

Provide standards to validate the
results abc
abc
abc
abc
abc
abc
abc
abc
abc

• Creation of scientific
analogy datasets

• Google Trends /
Google Scholar

• Comparative study
with citation analy-
sis

• Descriptive analysis

• Visual analysis

TABLE 8.1: An overview of the contributions

8.2 Answers to Research Questions

In the following, we show how this thesis answers the research questions stated in
Chapter 1, Section 1.4.

1. Research Question 1: How to represent the scientific text with natural lan-
guage processing techniques that help to reveal the semantics and the dynam-
ics of words over time?

To answer this question, three sub-questions have been answered:

• Are word embeddings – as a natural language processing technique –
(namely word2vec (Mikolov et al., 2013e)) able to detect semantic and syn-
tactic analogies in scientific language?
Outcome: Affirmative: Yes, word2vec is able to detect semantic and syn-
tactic analogies in scientific language. A rigorous evaluation has been
conducted on an analogy dataset for machine learning created from ACM
hierarchy and Wikipedia outline of machine learning. The embeddings
generated from the scientific corpora were able to detect interesting se-
mantic relations in machine learning such as “unsupervised_learning (which
is a technique of machine learning) is to kmeans (k-means, which is a specific
technique of machine learning) as supervised_learning (which is a technique of
machine learning) is to knn (k-nearest neighbours or k-NN, which is a specific
technique of machine learning)”1. On the other hand, for syntactic analo-
gies, 68% accuracy has been reached, performing higher syntactic accu-
racy than Mikolov’s et al. (Mikolov et al., 2013c), which is 61%. More de-
tails were given in Chapter 4. In this thesis, word2vec has been chosen as
a word embedding technique to represent the scientific language. How-
ever, any word embedding technique can be applied, and the proposed
methodological approach for tuning the hyper-parameters can be used as
the methodology is generalisable and can work irrespective of any word
embedding technique.

1The keywords ‘unsupervised_learning”, “kmeans”, ‘supervised_learning” and “knn” are spelled
here exactly as they are spelled in the dataset, and as they are learned by word2vec.
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• How word embedding hyper-parameters can be tuned?
Outcome: This thesis has proposed a methodological approach based on
k-NN stability to tune the hyper-parameters of word2vec. This proposed
methodology was detailed in Chapter 4.

• How to find/create analogy datasets as gold standard to validate the abil-
ity of word embeddings to detect semantic analogies from scientific text?
Outcome: In case of absence of gold standards analogy datasets, the
creation of new ones is a must. In this thesis, as machine learn-
ing is the application domain of the proposed approaches, a ma-
chine learning analogy dataset has been created from ACM hierarchy
and Wikipedia outline of machine learning. This analogy dataset is
made publicly available for research at https://github.com/AmnaKRDB/
Machine-Learning-Analogies.

Outcomes of Research Question 1: This thesis has proposed to use word
embeddings, namely word2vec (Mikolov et al., 2013e), as a natural language
processing technique to represent the scientific text. Word2vec embeddings
have been validated with an analogy dataset for machine learning created
from ACM hierarchy and Wikipedia outline of machine learning, and it has
proved its ability to detect interesting semantic and syntactic relations within
the scientific language. To guarantee the accuracy of the obtained semantic
and syntactic analogies, this thesis has proposed a methodological approach
to tune word2vec hyper-parameters, which have a direct impact on the gener-
ated analogies. This methodology is based on k-NN stability (Chapter 4).

2. Research Question 2: How to explore the vector representation of words in
order to study the semantic shifts of scientific keywords, and consequently
perform the computational history of science?

To answer this question, the following sub-questions have been answered:

• How to detect the semantic shifts of scientific keywords over time?
Outcome: In order to track the semantic shifts of scientific keywords over
time, this thesis has adopted two ways. The first way concerns the study
of the similarities between pairs of keywords in order to detect their con-
vergence over time (Chapter 5). However, the second way studies the
frequent co-occurrence of pairs of keywords in the same context (Chap-
ter 6).

• How to perform the computational history of science?
Outcome: In this thesis, the computational history of science was per-
formed by following two paths. The first path detects the emerging scien-
tific trends, which are defined in this thesis as converging keywords (Chap-
ter 5) and contextualising keywords (Chapter 6). However, the second path
tracks the dynamics of scientific keywords by studying the evolvement of
their neighborhood over time (Chapter 7).

• How to represent the temporal dimension in an effective way to perform
the computational history of science?
Outcome: The representation of the history is very important for the
computational history of science. In this thesis, two different temporal

https://github.com/AmnaKRDB/Machine-Learning-Analogies
https://github.com/AmnaKRDB/Machine-Learning-Analogies
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paradigms have been followed to represent the history (the temporal di-
mension): (i) a static paradigm ( fixed windows of time (timespans)), and
(ii) a dynamic paradigm: incremental and sliding windows of time. The
static paradigm has been followed in Chapter 5 and Chapter 7. The length
of the time windows was based on different research done on evolving
scientific topics (Ashton et al., 2012) and more precisely on evolving Com-
puter Science research (Hoonlor et al., 2013). However, in Chapter 6, the
dynamic paradigm has been followed. Both incremental and sliding win-
dows have been used. The choice of the incremental paradigm is based
on the normal flow of scientific venues such as conferences and journals,
which are annually publishing new papers. However, the choice of the
sliding paradigm – that forgets one year vocabulary and adds one year
ahead vocabulary – was motivated by the fact to keep the vocabulary as
fresh as possible forgetting the old one.

Outcomes of Research Question 2: This thesis has studied the semantic shifts
of scientific keywords over time by studying: (i) the pairwise similarities be-
tween keywords in order to detect the converging keywords (Chapter 5), and (ii)
the frequent co-occurrence of pairs of keywords in the same context in order to
detect the contextualising keywords (Chapter 6). Both the converging keywords
and the contextualising keywords represent the scientific trends that this thesis
defines and detects, following accordingly the first path towards the compu-
tational history of science that this thesis defines. However, the second path
refers to the tracking of the dynamism of scientific keywords over time by
studying the evolvement of their neighborhood (Chapter 7). In order to effec-
tively perform the computational history of science, the temporal dimension
has been represented in both static and dynamic ways in order to study the
impact of the history on the evolvement of science.

3. Research Question 3: How to evaluate the detected emerging trends and vali-
date the obtained results on the dynamics of science?

To answer this question, the following five sub-questions have been answered:

• How to find/define gold standards related to the application areas that
help to define scientific trends?
Outcome: Trend analysis requires gold standards to validate the out-
comes of the proposed approaches. Due to the absence of standards on
research trends, this thesis has proposed Google Trends hits as gold stan-
dard. Due to its ability to track the popularity of pairs of various words
and phrases that are typed into Google’s search-box over time, it has been
found that Google Trends aligns with Leap2Trend that tracks the close-
ness and the contextualisation of pairs of scientific keywords over time
towards new trends. More details on how Google Trends hits have been
used were given in Chapter 6.

• Which standard validation measures can be used to assess the effective-
ness of the obtained results?
Outcome: Three standard validation measures have been used to assess
the effectiveness of the detected trends, which are precision, recall and ac-
curacy. All of them have been defined to answer the following two ques-
tions: (i) How accurate is the proposed approach in predicting future
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trends at an early stage? (ii) How precise is the proposed approach in
following the flow of Google Trends hits and citation counts?
A fine-grained methodology has been followed to define these measures
in an appropriate way that aligns with the features of the proposed ap-
proach (Leap2Trend). This methodology has been fully described in Sec-
tion 6.2, in Chapter 6.

• How to conduct comparative studies with existing approaches?
Outcome: The two proposed approaches for trend analysis Hist2Vec
and Leap2Trend have been validated with the citation counting approach,
which is widely used in the literature and provides a snapshot of a fast-
growing field. The objective is to check the extent to which citation anal-
ysis supports the findings of the two proposed approaches. To this end,
Spearman’s correlation coefficient has been proposed to measure the strength
and direction of association between two variables that vary from one ap-
proach to another. For Hist2Vec, these two variables are (a) the accelera-
tion of citation counts of publications mentioning the keywords of interest
in their titles and (b) the acceleration of similarities of these keywords.
However, for Leap2Trend, these two variables represent (a) the ascents
that represent the uprankings of pairs of keywords detected by the ap-
proach and (b) any of the hits or citations returned by Google Trends hits
or Google Scholar citations. More details were given in Chapter 5 and 6,
respectively.

• Which standards can be defined for descriptive analysis, where norma-
tive analyses are not suitable for the analysis of the computational history
of science?
Outcome: This thesis has proposed to use the machine learning timeline2 as
standard for descriptive analysis. A generally good consistency between
the obtained results and the machine learning timeline has been found.
More details on this analysis were given in Chapter 7.

• How visual analyses can be used as qualitative analyses to highlight the
semantic shifts of scientific keywords over time?
Outcome: Both t-SNE representations and Venn diagrams have been used in
this thesis for qualitative analyses to highlight the semantic shifts of scien-
tific keywords over time. For instance, t-SNE representations have been
used in Chapter 5 with Hist2Vec to visualise the acceleration of similar-
ities between pairs of keywords that may lead to converging keywords.
However, Venn diagrams have been used in Chapter 7 with Vec2Dynamics
to show the evolvement of the semantic neighborhood of scientific key-
words over time.

Outcomes of Research Question 3: Based on the task of the computational
history of science (trend analysis or tracking the dynamics of science), the the-
sis has performed an adequate methodology to validate the obtained results.
For instance, this thesis has addressed the challenge of lack of gold standards
to evaluate the outcomes of trend analysis by building a gold standard relying
on Google Trends hits. Chapter 6 has detailed how Google Trends hits align
with the proposed approach Leap2Trend that tracks the closeness and the con-
textualisation of pairs of scientific keywords over time towards new trends.

2https://en.wikipedia.org/wiki/Timeline_of_machine_learning

https://en.wikipedia.org/wiki/Timeline_of_machine_learning
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Three standard validation measures have been used to assess the effectiveness
of the detected trends, which are precision, recall and accuracy. On the other
hand, in order to conduct comparative studies with existing approaches, the
citation counting approach has been proposed. To this end, Spearman’s cor-
relation coefficient has been used to measure the strength and direction of as-
sociation between the outcomes of (a) the two proposed approaches Hist2Vec
(Chapter 5) and Leap2Trend (Chapter 6), and (b) the citation counts. However,
on the other side, in order to evaluate the outcomes of the task of tracking the
dynamics of science, both descriptive and visual analyses have been proposed.
For the descriptive analyses, the machine learning timeline has been proposed
as a standard (Chapter 7). However, for the visual analyses, both t-SNE rep-
resentations (Chapter 5) and Venn diagrams (Chapter 7) have been used to
highlight the semantic shifts of scientific keywords over time.

8.3 Future Work

There are many potential directions for future work to extend the current work in
both the technical side; word embedding hyper-parametrisation, and the application
side; the computational history of science. Some research directions from the current
status of this work are sketched in the following:

• Word2vec hyper-parametrisation. This thesis has addressed word2vec hyper-
parametrisation by only focusing on two hyper-parameters, which are vector
dimensionality and window context. It would be interesting to assess the effects
of other hyper-parameters and investigate more settings for word2vec within
the scientific area.

• Other word embedding techniques. This thesis has used word2vec as a word
embedding technique to represent the scientific corpora. It would be inter-
esting to try different word embedding techniques for scientific language and
compare their outputs with word2vec.

• Other corpora and application areas. In this thesis, the proposed approaches
of the computational history of science have been applied to only the areas of
machine learning and bioinformatics, and for machine learning only the NIPS
corpora has been used. Further machine learning corpora could be used in
the future to test the proposed methods. On the other hand, further research
could usefully generalise these approaches on different research areas such as
physics, biology or medicine, where it would be interesting to see whether a novel
treatment or a certain combination of drugs for cancer is beginning to rise, as
an example.

• Other linguistic resources. In this thesis, the proposed approaches of the com-
putational history of science have been applied to only the scientific language
resources, and English language. Further research could usefully generalise
these approaches on different languages and different linguistic resources such
as press, history or forensics. For example, for forensics, it would be interesting to
see whether possible to predict crimes before they happen, as social scientists
have long believed that historical crime trends often influence future patterns.
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• More robust gold standard. In this thesis, Google Trends have been used as
a gold standard to define trends. However, Google Trends does not cover the
years before 2004, and only provides a relative search value and does not pro-
vide an exact search volume. It is suggested in future studies to consider more
big scholarly data resources to fill in this gap, and provide a more robust gold
standard that could be adopted to further study the task of detecting emerging
scientific trends.

• More settings of the proposed approaches. For instance, the current version
of the proposed approach Leap2Trend only focuses on hits in ranking to study
the dynamics of research topics. This indicator may not be enough to fully
understand the dynamics of science. It is thus recommended that further re-
search be undertaken to investigate falls in ranking and study their impact to
show the outdated research topics.

• More linguistic analysis. In this thesis, only unigrams and bigrams have been
considered to generate the scientific vocabulary. More combinations might
be explored in future work. For example, trigrams could be considered due
to their significant appearance in the scientific language, such as “social graph
analysis”, “support vector machines”, “etc”.

• Different machine learning techniques. This thesis has used k-NN to study
the dynamics of keywords over time. Further research might explore how dif-
ferent clustering techniques (e.g., Chameleon (Karypis and Kumar, 1999)) could
perform with tracking the dynamism of keywords between different clusters
over time in the scientific corpora.

• Explore social media. This thesis was only limited to features related to re-
search papers such as keywords and citations. However, nowadays different
resources are available to enrich the set of known features such as social me-
dia. This is useful as it gives insights to investigate different resources that
exist outside the realm of research papers, such as online media and social net-
works to detect emerging trends. This is motivated by the fact that scientists
and researchers are increasingly using social media to discover new research
opportunities, discuss research with colleagues and disseminate research in-
formation, which allows to track public attention and public recognition of
emerging topics.
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Appendix A

t-SNE Visualisations of Unigrams

In the following the t-SNE representations of the top 100 unigrams are shown (FIG-
URE A.1 – FIGURE A.6).
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Appendix B

t-SNE Visualisations of Bigrams

In the following the t-SNE representations of the top 20 bigrams are shown (Fig-
ure B.1 – Figure B.4).
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