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Abstract. Data assisted reconstruction algorithms, incorporating trained neu-

ral networks, are a novel paradigm for solving inverse problems. One approach

is to first apply a classical reconstruction method and then apply a neural
network to improve its solution. Empirical evidence shows that plain two-
step methods provide high-quality reconstructions, but they lack a conver-

gence analysis as known for classical regularization methods. In this paper
we formalize the use of such two-step approaches in the context of classical

regularization theory. We propose data-consistent neural networks that can be

combined with classical regularization methods. This yields a data-driven reg-
ularization method for which we provide a convergence analysis with respect to

noise. Numerical simulations show that compared to standard two-step deep
learning methods, our approach provides better stability with respect to out of

distribution examples in the test set, while performing similarly on test data

drawn from the distribution of the training set. Our method provides a stable
solution approach to inverse problems that beneficially combines the known

nonlinear forward model with available information on the desired solution

manifold in training data.

2020 Mathematics Subject Classification. Primary: 65J20, 68T07, 65J22; Secondary: 45F05.
Key words and phrases. Deep learning, data-consistency, nonlinear inverse problems, neural

networks, regularization, convergence rates.
∗Corresponding author: Johannes Schwab.

1

http://dx.doi.org/10.3934/xx.xxxxxxx


2 YOERI E. BOINK, MARKUS HALTMEIER, SEAN HOLMAN AND JOHANNES SCHWAB

1. Introduction. In recent years there has been massive interest in new machine
learning based approaches to reconstruction in inverse problems. In this paper
we consider a class of two-step methods for ill-posed nonlinear inverse problems
which combine a known inversion technique with a second step given by a trained
deep neural net. Existent works have looked at two-step networks without data-
consistency. However our particular view is that the neural net should be designed
so that individual reconstructions remain consistent with observed data. This means
specifically that the neural net should preserve level sets of the forward operator,
at least approximately if the data are noisy, and in this case we call the neural net
data-consistent. Intuitively, data-consistent networks help us to pick a favourable
reconstruction amongst the various possible reconstructions which are all consistent
with the observed data based on a known forward model. The former is especially
important if the inverse problem is highly underdetermined and the space of possible
solutions is ’large’. Traditional regularization methods pursue a similar goal but we
believe it is natural to let this choice be informed by a set of training data containing
correct reconstructions. Because of this our approach, using data-consistent net-
works, may be considered a type of learned data-driven regularization for ill-posed
problems.

This paper contains both theoretical and numerical results on data-consistent
networks for ill-posed nonlinear inverse problems. On the theoretical side we prove
convergence, under certain hypotheses, of reconstructions obtained by data-consistent
networks to the correct solution as the noise level goes to zero. This proves that
data-consistent networks can provide a data-driven regularization method for ill-
posed problems in the standard technical sense. On the numerical side we focus
on an ill-posed problem which is highly underdetermined, meaning that there are
infinitely many solutions and the standard right inverse gives a reconstruction with
severe artifacts. In this case classical post-processing methods could invent struc-
ture, that is not present in the data. We apply data-consistent networks to the
problem of saturation as well as reconstruction from severely under-sampled and
saturated Radon transform data. We compare the results of our data-consistent
network to reconstructions using U-nets [55, 47] without data-consistency.

Background. We will now introduce the technical framework for our results. Let
(X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces1 and let F : D ⊆ X→ Y be a continuous,
possibly nonlinear, mapping. We study the stable solution of the inverse problem

Recover x ∈ D from F(x) = y , (1)

where y ∈ F(D) are exact data. Furthermore, we are especially interested in the
noisy data case where data yδ ∈ Y are given with ‖y − yδ‖ ≤ δ. An inversion
method for exact data is a right inverse G0 : F(D)→ D for F ,

∀y ∈ F(D) : FG0(y) = y . (2)

The inversion method G0 therefore recovers elements in G0F(D) = Fix(G0F), the
set of fixed points of G0F : D→ D. We are mainly interested in the case where (1)
is ill-posed, where no continuous right inverse G0 exists. If noisy data yδ ∈ Y are
given with ‖F(x)− yδ‖ ≤ δ for x ∈ G0F(D), then G0(yδ) is either not well defined
or arbitrary far away from x. In this case one has to apply regularization methods
to the data, which are stable approximations to G0.

1You can take X and Y as finite dimensional spaces Rn and Rq with the Euclidian norm if you
are not familiar with infinite dimensional Banach spaces.
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Well established regularization methods are quadratic Tikhonov regularization
[32, 77, 76] and iterative regularization [78, 75]. Both methods are designed to
approximate minimum norm solutions G0(y) ∈ arg min {‖x− x0‖ | F(x) = y} with
fixed x0 ∈ X. However, for most applications minimum norm solutions are not the
desired ones. One way to overcome this issue is by convex variational regularization
[34], where one takes

Gα(yδ) ∈ arg min

{
1

2
‖F(x)− yδ‖2 + αJ (x) | x ∈ D

}
, (3)

which approximate J -minimizing solutions G0(y) ∈ arg min {J (x) | F(x) = y}. Here
the regularization functional J : X → [0,∞] incorporates a-priori information and
acts as criterion for selecting particular solutions. There are still several chal-
lenges related to variational regularization techniques. For example, computing
J -minimizing solutions requires time consuming iterative minimization schemes.
Moreover, finding a regularization functional that well models solutions of interest
is a difficult issue. Typical choices such as total variation or the `q-norm with re-
spect to some frame enforce strong handcrafted prior assumptions that are often
not met in practical applications.

Related work. Recently, several deep learning methods to solve inverse problems
have been proposed [6]. Some approaches apply iterative methods, where operators
are replaced by neural networks [8, 49, 17, 15, 9, 16], while others aim for a fully
learned reconstruction scheme [13, 5]. Other approaches are inspired by solving the
regularized linear or nonlinear inverse problem by means of truncated Neumann
series with learned components [10, 12] or by minimizing a variational problem
incorporating a learned regularization functional [21, 79, 87]. Another popular ap-
proach for imaging problems is to use a neural network as a second step after some
initial reconstruction. Several such post processing methods have been considered
in the literature [20, 47, 15, 72]. In these two-step approaches, the reconstruction
network takes the form R = ΦG where G : Y → X maps the data to the recon-
struction space (reconstruction or backprojection layer) and Φ: X → X is a neural
network (NN) whose free parameters are adjusted to the training data. In partic-
ular, so called residual networks Φ = IdX +U, where only the residual part U is
trained [46, 47, 70, 45] show very accurate results for solving inverse problems.

In order to address the ill-posedness of linear inverse problems, regularizing net-
works of the form Rα = ΦαGα were introduced in [82, 81]. Here Gα : Y→ X defines
any regularization and Φα : X→ X are trained neural networks approximating data-
consistent networks. In the linear case these networks are named nullspace networks
because they only add parts in the kernel of F as proposed in [74, 81]. A somewhat
similar approach was proposed by Bubba et al. [86], combining model-based sparse
regularization and deep learning, so that only the part that is not in the infor-
mation of the data is learned and the remaining part is handled by a controllable
regularization method.

In this paper we extend the concept of nullspace networks and derive convergence
and convergence rates for data-consistent network families (Rα)α>0 for nonlinear
problems and provide some numerical examples. Our approach differs from learned
iterations and unrolled schemes in that the application requires only one forward
pass of a neural network and a single application of a reconstruction operator.
Therefore the proposed approach in principle does not need any iterations with
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multiple applications of the forward and adjoint operator and can allow fast appli-
cation. However, it also addresses the problem of other such two-step procedures
that they produce reconstructions that are not consistent with the data. Only by
solving this problem is it possible to achieve convergence rates for these methods.
Further the approach is very flexible since it is the combination of a neural network
with a freely selectable classical reconstruction method.

Regularizing networks for nonlinear problems. Let G0 be any right inverse of
F and (Gα)α>0 a regularization of G0, for example classical Tikhonov regularization.
Further, let (Φα)α>0 be a family of Lipschitz continuous mappings Φα : X→ X (net-
works). In this paper we show that under suitable assumptions the reconstruction
networks

Rα := ΦαGα : Y→ X , (4)

define a convergent regularization method. Additionally, we derive rates at which
the reconstruction error converges to zero as the noise level goes to zero.

A main condition for these results is that ΦαGαF converges pointwise to a net-
work of the form Φ0G0F where Φ0 : X → X is data-consistent in the sense that
FΦ0z = Fz for z ∈ G0F(D). The latter property implies that Φ0 preserves data-
consistency of G0, meaning that if G0(y) is a solution of (1), then Φ0G0(y) is a
solution of (1) too. Hence the goal of the learned mapping Φ0 is to modify solu-
tions of the inverse problem, while keeping data-consistency of the initial solution.
We prove that the family of reconstruction networks (ΦαGα)α>0 is a convergent
regularization method, and we provide convergence rates.

The benefits of (ΦαGα)α>0 over (Gα)α>0 are at least twofold. First, in the limit
α → 0, the network Φ0G0F selects solutions in Φ0G0F(D) that can be trained
to better reflect the desired image class than G0F(D). Second, for α > 0, the
networks Φα can be trained to partially undo the smoothing effect of GαF and
thereby allow for obtaining convergence rates for less regular elements than the
original regularization method (Gα)α>0. The operator Φ0G0 can be seen as a right
inverse that is learned from a suitable class of training data.

Outline. The paper is organized as follows. In section 2 we describe the regulariza-
tion of nonlinear inverse problems and we define the proposed two-step data-driven
regularization method. We introduce data-consistent networks, which allow the
definition of regularizing networks, a regularization method which approximates a
data-driven right inverse. We investigate under which assumptions these networks
generate a convergent regularization method and we give examples of how such
regularizing networks can be constructed. In section 3 we present a convergence
analysis and derive convergence rates for the proposed method. Section 4 presents
the mathematical description of the inverse problems considered in the numerical
simulations, after which the implementation is explained in detail. Results for the
simulations are shown in section 5. Additional simulation results can be found
in the appendices. The paper concludes with a short summary of the established
theory and the numerical simulations.

Glossary. To make the article easier to read, we provide a table that gives an
overview of the nomenclature of terms and their meaning.

Furthermore it is our convention to write x as the variable in the domain of the
forward mapping, i.e. x ∈ D, and to write z as the variable after some right inverse
has been applied, i.e. z ∈ G0F(D). For discretised functions and matrices, we will
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use bold capital letters instead of the caligraphic letters. Neural networks are an
exception to this; we denote both general functions between infinite-dimensional
spaces (which we also call neural networks) and the corresponding parametrized
functions on discrete spaces that are actually implemented on a computer with Φ
and U.

To increase readability, we write a composition of mappings, e.g. F and G0, as
G0F(x) instead of G0 ◦ F(x) or G0(F(x)) throughout the paper.

Nomenclature Description Definition
X reconstruction space Banach space with

norm ‖ · ‖
Y data space Banach space with

norm ‖ · ‖
F forward operator F : D ⊆ X→ Y
D domain of F D ⊆ X
δ noise level δ ≥ 0
G0 right inverse of F G0 : F(D)→ D
X0 reconstruction space with source condition X0 ⊆ G0F(D)
J regularization functional J : X→ [0,∞]
α regularization parameter α ∈ (0,∞)
α∗ parameter choice function α∗ : (0,∞) × Y →

(0,∞)
Φ0 data-consistent neural network Φ0 : X→ X s.t. F◦

Φ0 = F
(Gα)α>0 regularization of G0 Gα : Y→ X
(Φα)α>0 family of Lipschitz mappings (networks) Φα : X→ X
(Rα)α>0 regularizing networks Rα := ΦαGα
G,Gδ,Rδ reconstruction algorithm G,Gδ,Rδ : Y→ X
U generic neural network U : X→ X
P projection operator P : X→ X
P discretized projection operator P : X→ X
F discretized saturation mapping F : X→ X
F2 discretized saturation in sinogram domain F2 : Y → Y
F1 discretized Radon transform F1 : X→ Y

F†1 pseudo inverse of discr. Radon transform F†1 : Y → X
PC metric projection onto a convex set C PC : X→ C

2. Convergence of regularized data-consistent networks. Throughout the
rest of this paper, let F : D ⊆ X → Y be a continuous mapping between Banach
spaces X and Y. We study the stable solution of the inverse problem (1). In this
section we introduce the regularizing networks and present the convergence analysis.

2.1. Regularization of inverse problems. Let G0 : F(D)→ D be a right inverse
for F . If (1) is ill-posed and yδ are noisy data with ‖F(x) − yδ‖ ≤ δ, then the
reconstruction method G0(yδ) is unstable, meaning arbitrarily far away from G0F(x)
or even not defined. To obtain meaningful approximations of G0F(x), one has to
apply regularization methods defined as follows.

Definition 2.1 (Regularization method). Let (Gα)α>0 be a family of continuous
mappings Gα : Y→ X. If for all x ∈ G0F(D) there exists a parameter choice function
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α∗ : (0,∞)× Y→ (0,∞) such that

0 = lim
δ→0

sup {α∗(δ, yδ) | yδ ∈ Bδ(F(x))}

0 = lim
δ→0

sup {‖x− Gα∗(δ,yδ)(y
δ)‖ | yδ ∈ Bδ(F(x))} ,

where Bδ(F(x)) is the ball with radius δ around F(x). We call ((Gα)α>0, α
∗)

a regularization of G0. Moreover we call α∗ an admissible parameter choice and
(Gα)α>0 a regularization method for G0 at x.

Probably the best known regularization is quadratic Tikhonov regularization in
Hilbert spaces [32]. Under the assumption that F is weakly sequentially closed,
one shows that there exist solutions of (1) with minimal distance to a given point
x0 ∈ X and that

Tα,yδ(x) :=
1

2
‖F(x)− yδ‖2 +

α

2
‖x− x0‖2 for x ∈ D (5)

has at least one minimizer. We can define Gα(yδ) as any minimizer of Tα,yδ . If the
solution of (1) with minimal distance to x0 is unique and denoted by G0(y), then
((Gα)α>0, α

∗) with a parameter choice satisfying δ2/α∗ → 0 and α∗ → 0 as δ → 0 is
a regularization method for G0 [32, 77]. Research indicates that solutions with mini-
mal distance to a fixed initial guess x0 ∈ X are too simple in many applications. The
use of non-quadratic penalties has demonstrated to often give better results. Re-
cently, deep learning methods have shown outstanding performance. Here solutions
are defined by a neural network that maps the given data to a desired solution.

2.2. Data-consistent networks. The first ingredient for constructing regulariz-
ing two-step networks are data-consistent networks.

Definition 2.2 (Data-consistent network). We call Φ0 : X → X a data-consistent
network if Φ0 is Lipschitz continuous and ∀z ∈ G0F(D) : FΦ0(z) = F(z).

In data-consistent networks, if z ∈ G0F(D) is a solution of (1), then Φ0(z) is
solution of (1) too. In particular, Φ0G0 is a right inverse for F with solution set
Φ0G0F(D) = Fix(Φ0G0F). Data-consistent networks can be constructed by

Φ0(z) = Pz,0U(z) , (6)

where U : X→ X is a Lipschitz continuous trained neural network, and Pz,0 : X→ X
a Lipschitz continuous mapping with Pz,0(x) ∈ F−1({F(z)}) = {x ∈ D | F(x) =
F(z)}. The mapping Pz,0 can be seen as a generalized projection on the preimage
F−1({F(z)}). In the special case where F is a linear mapping, Φ0(z) can be chosen
as Φ0(z) = z + Pker(F)(U(z) − z), where Pker is the projection on the kernel of F
[81]. A visual comparison of data-consistent networks and standard post-processing
networks is shown in figure 1.

The key ingredient of defining data-consistent networks is the computation of
the generalized projection operator Pz,0, which guarantees that the output of the
network is projected onto a data-consistent solution. In practice for a given non-
linear operator F often there is no closed form expression of Pz,0 and therefore it
has to be approximated. For given data y = F(z) this can be done for example
by using any iterative minimization algorithm initialized at U(z) (see figure 2) to
minimize

Pz,0 ≈ arg min
x

‖F(x)−F(z)‖2. (7)
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y

G0

z = G0(y)

U

(e.g. U-net)

reconstruction: U(z)

y

G0

z = G0(y)

U

(e.g. U-net)

Pz,0

reconstruction: Φ0(z) = Pz,0U(z)

FΦ0(z) = yFU(z) 6= y

Figure 1. On the left, a standard post-processing network. The
red box illustrates that the output in general does not reproduce
the data under the forward operation F . On the right a data-
consistent network architecture. The green box illustrates that it
does reproduce the data under the forward operation F .

The minimization of this non-linear optimization can for example be computed by a
Newton type algorithm with a fixed number of iterations. Of course this would not
yield a completely data consistent solution, but nevertheless the data-discrepancy
of the solution would be improved.

For ill-posed problems we cannot expect there to be a continuous inverse, and so
we now introduce the concept of regularizing networks, which also account for the
instability of the right inverse.

Definition 2.3 (Regularizing networks). We call (Rα : Y → X)α>0 defined by
Rα := ΦαGα a family of regularizing networks if the following hold:
(R1) (Gα : Y→ X)α>0 is a regularization of G0.
(R2) (Φα : X→ X)α>0 are uniformly L-Lipschitz continuous mappings.
(R3) For some data-consistent network Φ0 : X→ X we have

∀x ∈ D : lim
α→0

ΦαGαF(x) = Φ0G0F(x) . (8)

Regularizing networks are thus made up of a classical regularization method
Gα and a subsequently applied neural network Φα. The neural network can also be
adapted to the noise level as the subscript α indicates. The network aims to improve
the initial reconstruction in a way such that the difference between the input and
the processed image in the data domain (after application of F) is controlled. For
high noise and larger α, more difference in data domain is tolerated, whereas for
zero noise the processed reconstruction should produce exactly the same data. In
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{x | F(x) = F(z)}

z := G(y)

U(z)
Φ0(z) := Pz,0(U(z))

Figure 2. The figure illustrates the solution set for given data
y and the output of the network U acting on the solution after
applying a right inverse of F . The generalized projection operator
approximated by some iterative scheme or closed form operator is
shown in green and blue respectively.

practice an important issue is to actually design networks that converge to a data-
consistent limiting network as the noise level goes to zero. Next we give examples
for a possible strategy to train such networks.

Example 2.4. Let x1, . . . , xN ∈ X be training signals, and yi = F(xi) and yδi be
the corresponding exact and noisy data, respectively. Further define the vectors
of reconstructions z := (z1, . . . , zN ) and zα := (zα1 , . . . , z

α
N ) where zi = G0(yi) and

zαi = Gα(yδi ). The weights of the neural network are denoted by θ ∈ Θ. We write
(Φθ)θ∈Θ for a neural network with given architecture, whose weights have not yet
been fixed.

� One possible simple approach is to take the networks Φα := Φ0 for all α > 0,
where Φ0 is the network obtained by minimizing the functional

∑
i ‖Φθ(zi)−

xi‖2 + r(θ), where r is some regularizer for the weights that may be used to
ensure a small Lipschitz constant. This approach is motivated by the bound
for the Lipschitz constant L(Φθ)

L(Φθ) ≤
l∏
i=1

√
λmax(ΘT

i Θi) ≤
l∏
i=1

‖Θi‖F ≤

(
1

l

l∑
i=1

‖Θi‖F

)l
,

where Θi are the weight matrices of the ith layer, λmax denotes the largest
eigenvalue and ‖·‖F denotes the Frobenius norm. Other approaches to control
the Lipschitz constant were proposed penalizing the gradient of the network
[80, 79] for projecting the matrices back to the closest matrix with feasible
Lipschitz constant after each gradient step [2]. Clearly, since Φ0 is Lipschitz
continuous and (Gα)α>0 is a regularization method, we have the desired limit
in (2.3) for all x ∈ D. If the data-consistency is incorporated in the network
architecture, then condition 2.3 is satisfied.
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� A more sophisticated approach is to choose the sequence of networks depend-
ing on the regularization parameter α. Here the networks Φα can be obtained
by minimizing

∑
i ‖Φθ(zαi ) − xi‖2 + r(θ). To enforce the data-consistency

of the limiting network Φ0 one could either choose the network architec-
ture to be data-consistent, meaning F(Φθ(x)) = F(x) for all θ ∈ Θ and
x ∈ D. Alternatively, one may take the networks increasingly data-consistent,
Φα(z) = Pz,αUα(z), where Uα : X → X are trained networks and Pz,α is a
Lipschitz continuous mapping with

Im(Pz,α) ⊆ Eα,z := {x | ‖F(x)−F(z)‖ ≤ r(α)}

and limα→0 r(α) = 0. Data-consistency is obtained in the limit. One example
for Pz,α is the metric projection on Eα,z which is a Lipschitz continuous
mapping if Eα,z is convex. Note that there are no restrictions on the particular
choice of the architecture of the networks Uα.

� Another network architecture guaranteeing data-consistency is given by

Φα(z) = Φdec (S + αT) Φenc(z) . (9)

Here Φenc and Φdec denote an encoder and decoder network respectively, S
denotes an α-independent network such that ΦdecSΦenc is data-consistent and
T denotes a network that is allowed to depend on α.

2.3. Convergence analysis. We have the following convergence result for regu-
larizing networks according to Definition 2.3.

Theorem 2.5 (Regularizing networks). Any family of regularizing networks (Rα =
ΦαGα)α>0 (see Definition 2.3) is a regularization for Φ0G0 in the sense of Definition
2.1.

Proof. Let x ∈ Φ0G0F(D), yδ ∈ Y with ‖F(x) − yδ‖ ≤ δ and set xδα := ΦαGα(yδ).
Then

‖x− xδα‖ = ‖Φ0G0F(x)− ΦαGαyδ‖

≤ ‖Φ0G0F(x)− ΦαGαF(x)‖+ ‖ΦαGαF(x)− ΦαGαyδ‖

≤ ‖ΦαGαF(x)− Φ0G0F(x)‖+ L‖GαF(x)− Gαyδ‖ .

Now if α∗(δ, yδ) is an admissible parameter choice for (Gα)α>0, then

sup {‖x−Rα∗(δ,yδ)(y
δ)‖ | yδ ∈ Bδ(F(x))} ≤ ‖Φα∗(δ,yδ)Gα∗(δ,yδ)F(x)−Φ0G0F(x)‖

+ L sup {‖Gα∗(δ,yδ)F(x)− Gα∗(δ,yδ)y
δ‖ | yδ ∈ Bδ(F(x))} . (10)

According to 2.3 in Definition 2.3, the first term converges to zero. Because of

‖Gα∗(δ,yδ)F(x)− Gα∗(δ,yδ)y
δ‖ ≤ ‖Gα∗(δ,yδ)F(x)− G0F(x)‖+ ‖G0F(x)− Gα∗(δ,yδ)y

δ‖

and the fact that (Gα)α>0 is a regularization method for G0 with parameter choice
rule α = α∗(δ, yδ), the second term converges to zero as δ → 0.

3. Convergence rates. Another important issue for regularization methods is
the rate of approximation. This means specifically that there exists a decreasing
function f : (0,∞) → (0,∞) such that limδ→0 f(δ) = 0 and ‖Rα∗(δ,yδ)(y

δ) − x‖ ≤
f(δ) uniformly for all yδ ∈ Y with ‖F(x)− yδ‖ ≤ δ.
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3.1. Reconstruction algorithms and convergence rates. In the following we
call G : Y→ X a reconstruction algorithm.

Definition 3.1 (Reconstruction error of an algorithm). Let X0 ⊆ X, δ > 0 and
G : Y→ X be a reconstruction algorithm. We call

E(G, δ,X0) = sup {‖x− G(yδ)‖ | x ∈ X0 ∧ yδ ∈ Bδ(F(x))} (11)

the reconstruction error of G over X0.

Definition 3.2 (Convergence rate of an algorithm). Let X0 ⊆ X, r ∈ (0, 1] and for
any δ > 0, let Gδ be a reconstruction algorithm. We say that (Gδ)δ>0 converges at
rate δr over X0 if E(Gδ, δ,X0) = O(δr) as δ → 0.

The concept of convergence rates in particular applies for reconstruction algo-
rithms defined by regularization methods. In general, no convergence rate over
G0F(D) is possible; they require restricting to proper subsets X0 ( G0F(D) [32,
Proposition 3.11]. Source conditions define suitable sets X0 for classical Tikhonov
regularization and related methods based on minimal norm solutions. We inves-
tigate the source conditions (transformed source sets) and convergence rates for
regularizing networks where (Gα)α>0 is given by Tikhonov regularization in Exam-
ple 3.5.

3.2. Rates for the regularizing networks. Our aim is to prove a convergence
rate for Rα∗(δ,yδ) assuming a convergence rate for Gα∗(δ,yδ). Let (ΦαGα)α>0 be a
regularizing network and α∗ a parameter choice function. For any δ > 0 we define
the reconstruction algorithms Gδ,Rδ : Y→ X and Φδ : X→ X by

Gδ(y) := Gα∗(δ,y)(y),

Φδ,y(x) := Φα∗(δ,y)(x),

Rδ(y) := Φα∗(δ,y)Gα∗(δ,y)(y),

for x ∈ X and y ∈ Y. We will derive convergence rates for regularizing networks
under the following assumptions.

Assumption 3.3 (Convergence rate conditions). Let X0 ⊆ G0F(D) satisfy the
following for some r ∈ (0, 1]
(N1) E(Gδ, δ,X0) = O(δr) as δ → 0.

(N2) sup {‖Gδ(yδ)− GδF(z)‖ | z ∈ X0 ∧ yδ ∈ Bδ(F(z))} = O(δr).
(N3) sup {‖Φδ,F(z)(z)− Φ0(z)‖ | z ∈ X0} = O(δr).

The first condition 3.3 means that (Gα∗(δ,yδ))δ>0 converges at rate δr. Condition
3.3 is a stability estimate for Gα∗(δ,yδ). Condition 3.3 is uniform approximation

assumption between Φδ,F(.) and Φ0 on X0.

Theorem 3.4 (Convergence rate for regularizing networks). Let M0 = Φ0(X0).
Under Assumption 3.3 we have E(Rδ, δ,M0) = O(δr).

Proof. Let x ∈M0, ‖F(x)− yδ‖ ≤ δ, and z ∈ X0 s.t. Φ0(z) = x. Then

‖Rδ(yδ)− x‖ ≤ ‖Rδ(yδ)−RδF(x)‖+ ‖RδF(x)− x‖

≤ L‖Gδ(yδ)− GδF(x)‖+ ‖Φ0GδF(z)− Φ0(z)‖

+ ‖RδF(x)− Φ0GδF(z)‖

≤ L‖Gδ(yδ)− GδF(x)‖+ L‖GδF(z)− z‖
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+ ‖Φδ,F(z)GδF(x)− Φ0GδF(x)‖

≤ L‖Gδ(yδ)− GδF(x)‖+ L‖GδF(z)− z‖

+ ‖Φδ,F(z)GδF(x)− Φδ,F(x)G0F(x)‖

+ ‖Φδ,F(z)G0F(x)− Φ0G0F(x)‖

+ ‖Φ0G0F(x)− Φ0GδF(x)‖

≤ L‖Gδ(yδ)− GδF(x)‖+ L‖GδF(z)− z‖

+ ‖Φδ,F(z)G0F(x)− Φ0G0F(x)‖+ 2L‖GδF(x)− G0F(x)‖.

Each of the above terms are O(δr): the first term due to the stability estimate
3.3, the second term due to 3.3, and the third term due to 3.3. For the fourth term
we use that G0F(x) = G0F(z) = G0FG0F(w) = G0F(w) = z ∈ X0 for some w ∈ D.
This implies that the fourth term is O(δr), due to 3.3 again.

In the following we give an explicit example of a classical regularization method
combined with a sequence of regularizing networks, where Assumption 3.3 is satis-
fied and therefore Theorem 3.4 can be applied.

Example 3.5 (Regularizing networks combined with Tikhonov regularization).
Given a Gâteaux differentiable forward operator F we consider (Gα)α>0 defined by
classical Tikhonov regularization (5), a data-consistent network Φ0 : X → X and a
sequence of regularizing networks (Φα : X→ X)α>0 satisfying 3.3 for r = 1/2.

Corollary 1. If we consider the set M0 := Φ0(X0) where X0 is the source set of
classical Tikhonov regularization and we assume that the networks Φδ,F(.) converge
uniformly to Φ0 on X0 at rate O(δ1/2) as δ → 0, then E(Rδ, δ,M0) = O(δ1/2)

Proof. The convergence rate condition 3.3 holds according to [32]. Since for x =
Φ0(z) ∈ M0 we have F(x) = F(z) (Definition 2.2) and because of the stability
estimate for Tikhonov regularization [32] we have

sup {‖Gδ(yδ)− GδF(x)‖ | x ∈M0 ∧ yδ ∈ Bδ(F(x))}

= sup {‖Gδ(yδ)− GδF(z)‖ | z ∈ X0 ∧ yδ ∈ Bδ(F(x))} = O(δ1/2) , (12)

which shows 3.3. Finally 3.3 holds by assumption and therefore the conditions of
Theorem 3.4 are satisfied for r = 1/2.

This shows one of the main benefits of the concept of regularizing networks,
namely transforming the smoothness class X0 on which the basic regularization
converges at a certain rate, to a different data dependent set Φ0(X0) with possibly
less regularity, while preserving the convergence rate.

4. Examples and numerical set-up. In this section we provide a mathematical
description of two general classes of nonlinear inverse problems (projection onto con-
vex sets in section 4.1 and compositions of certain mappings in section 4.3) to which
we can apply data-consistent networks, as well as specific examples of these prob-
lems that will be used for our simulation experiments. The specific examples consist
of the recovery of saturated multivariate Gaussians and image reconstruction from
saturated and sparsely sampled Radon-data. In each case, we define a nonlinear
forward mapping F and derive a right inverse G0 and data-consistent network Φ0.
We also describe the network architecture for our neural networks in section 4.5.
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Although the mathematical theory was worked out on infinite-dimensional spaces,
the discontinuity of the right inverse and the non-uniqueness of the solution are
serious problems even after discretization of the problem, which become noticeable
through unstable numerical methods without the use of regularization methods [83].

4.1. Projection onto a convex set. For the first class of nonlinear inverse prob-
lems, we suppose the forward map F := PC : D → C is a metric projection on a
closed convex set C ⊆ D, i.e.

y = PC(x) := arg min
x̄∈C

{‖x̄− x‖} . (13)

The affine normal cone to C at x is defined as

NC(x) := {x̃ ∈ D | PC(x̃) = x} .
It is easily shown that any mapping that maps x ∈ C to an element in the normal
cone NC(x) is a right inverse of PC . In particular, the projection PNC(x) : C → D,

PNC(x)(x̂) := arg min
x̃∈NC(x)∩D

{‖x̃− x̂‖} , (14)

defines a right inverse G0 of PC , since ∀x ∈ C : PCPNC(x)(x) = x. According to
Definition 2.2, a data-consistent network Φ0 satisfies that ∀z ∈ G0F(D) : FΦ0(z) =
F(z). We define

Φ0(z) := PNC(PC(z))(U(z)), (15)

so this requirement is satisfied. Here U : X→ X is any Lipschitz continuous trained
neural network (c.f. definition 2.2). See Figure 3 for a visual illustration.

C NC(PC(z))
zPC(

z)

U(z)

Φ0(z)

Figure 3. Two-dimensional visualization of the data-consistent
network for the ‘projection on convex set’ problem explained in
Section 4.1. The blue region indicates the convex set C, the green
region (that extends infinitely to the right) indicates the affine nor-
mal cone to C at PC(z). The output of the data-consistent network
is indicated by Φ0(z); it can be seen that it is obtained by taking
the input z, applying a Lipschitz continuous neural network U(z)
and projecting it to the normal cone NC at PC(z). This ensures
that PC(Φ0(z)) = PC(z), as required by the definition of a data-
consistent network.

As an example of the ‘projection on convex set’ problem, we consider the inverse
problem of recovering nonhomogeneously saturated signals in sections 4.2 and 4.4.
In applications this can occur whenever the measurement device has a limited range,
where the saturated signal can be either an image [3] or a any other measurement
as for example in acoustics [4]. Saturation is also a problem in CT reconstruction,
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where metal objects result in high-intensity artefacts in backprojection reconstruc-
tions [85] emerging from saturated signals in the measurement domain. Although
our specific inverse problem does not treat the problem of metal artefact reduction
explicitly, our numerical examples are inspired by real problems in medical imag-
ing. In section 4.2 we consider the the saturation problem on images of multivariate
Gaussians as a toy problem to investigate the advantages and disadvantages of the
proposed data-consistent methods. Although we test our method here only on very
simple images, the method is equally applicable to arbitrary images. In Section 4.3
we then study the saturation of Radon data combined with the inverse problem of
undersampled computerized tomography.

4.2. Spatially dependent saturation of multivariate Gaussians. Next we
mathematically describe the inverse problem of signal saturation which is an exam-
ple of projection onto a convex set as described in section 4.1. Formally we define
the domain D = X := `2(Ω) and we define the saturation mapping as a projection
on a convex set, as described in section 4.1. This means F(x) := PC(x), where

C :=
{
x ∈ `2(Ω) | ∀r ∈ Ω: x(r) ≤M(r)

}
where M(r) ≥ 0 is the saturation value at location r. The operator F thus takes a
signal x and cuts it off everywhere where it is greater than a given levelM . Note that
this level M does not have to be constant but can vary over the signal. The inverse
problem now consists in recovering the original data from the corrupted signal. The
corresponding right inverse for y ∈ C is defined as G0(y) = PNC(y)(y) = Id(y). The
projection defined by (13) is explicitly given by[

PC(x)
]
(r) := min {x(r),M(r)} .

Since NCPC(z) = {x | PC(x) = PC(z)}, (15) can be written pointwise as

[
Φ0(z)

]
(r) =

{
z(r) for z(r) < M(r),

max
{[

U(z)
]
(r),M(r)

}
for z(r) ≥M(r).

(16)

We consider the square domain Ω := [−1, 1] × [−1, 1]. The spatially dependent
saturation function is defined

M(r) :=

{
0.6 if ‖r‖ ≤ 1

2 ,

0 if ‖r‖ > 1
2 .

(17)

Each image in the training or test set contains one centered multivariate Gaussian
with diagonal covariance matrix, having standard deviations (σ1, σ2) independently
randomly chosen in the interval [0.24, 0.32]. All images in the training and test set
are scaled to obtain maximum values randomly chosen in the interval [0.75, 1]. Op-
posed to standard networks, one of the benefits of using a data-consistent network
is that it is more robust to distribution shifts, when evaluating on test data. For
this reason, a modified test set has been created, where the Gaussians have stan-
dard deviations in the interval [0.12, 0.20] with maximum intensities in the interval
[0.6, 0.8]. For the numerical implementation we consider the discretized domain
Ω̄ := R128×128 as discretization of Ω.

The data-consistent network Φ0(z), as described in (16), is compared with the
neural network U(z) without data-consistency. We compare reconstruction quality
for both the regular test set and modified test set. A description of the neural
network architecture and training details are provided in section 4.5.
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4.3. Composition of mappings. For the second general class of inverse prob-
lems, we consider forward mappings F : D → Y that are themselves defined as a
composition of two (possibly nonlinear) mappings:

F(x) := F2(F1(x)), where F1 : D→ E and F2 : E→ Y ,
where E is a Banach space.In section 4.4 we will consider such problems in which
F1 is the Radon transform and F2 is a saturation operator as described in section
4.2. Furthermore we impose the restriction that the mapping F2 provides a data-
consistent network that can be written as a projection

Φ
(2)
0 (z) := PS∩Im(F1)(U2(z)),

where S ⊆ E. In particular, this is true for the mapping described in Section 4.1,
when the projection on a normal cone also maps into the range of the operator
F1. The projection onto the intersection in the data-consistent network can be
implemented by an alternating projection algorithm, as explained in section 4.4. If
we assume that S ∩ Im(F1) 6= ∅, then we define a data-consistent network Φ0 for
the full mapping as

Φ0(z) = Φ
(1)
0 G

(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z) (18)

where Φ
(i)
0 and G(i)

0 are defined as the data-consistent network for Fi and the right
inverse for Fi respectively. We check the data-consistent property (Definition 2.2)
by

FΦ0(z) = F2F1Φ
(1)
0 G

(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z)

= F2F1G(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z)

= F2Φ
(2)
0 G

(2)
0 F2F1(z)

= F2G(2)
0 F2F1(z)

= F2F1(z)

= F(z),

where we used in order: the data-consistent property of Φ
(1)
0 ; the definition of a

right-inverse G(1)
0 in combination with the projection on the range of F1; the data-

consistent property of Φ
(2)
0 ; and the definition of the right-inverse G(2)

0 .
We note that this is not the only data-consistent network possible for such an

inverse problem: one could also design a network that only makes use of either

Φ
(1)
0 or Φ

(2)
0 . However, (18) provides a network that is intuitively clear: an initial

solution z is obtained by a classical regularization method, after which first a better
‘guess’ is made by applying a neural network on E, followed by a neural network
that makes a better guess on the reconstruction space D, while keeping the solutions
data-consistent throughout.

4.4. Saturation of Radon transformed human chest images. As an example
of the ‘composition of mapping’ problem explained in section 4.3, we consider the
inverse problem of reconstructing images of the human chest from saturated Radon
measurements that are heavily undersampled in the angular variable. We consider
the composition of two mappings as described in section 4.3, where F1 is a linear
mapping that acts as the Radon transform and F2 is a nonlinear saturation mapping
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as described in 4.2, that saturates the Radon signals at a constant value M . More
precisely the Radon transform for an image x is defined by

F1(x)(θ, s) =

∫
R
x(sθ + tθ⊥) dt,

for (θ, s) ∈ S1 ×R. Here θ in the unit sphere defines the projection direction and s
the signed distance to the origin of the line over which x is integrated.

Next we define our discretized setup for the numerical studies. For this from
now on, the associated discrete operators and also the corresponding domains and
codomains will be denoted with bold capital letters. In our particular sparse sam-
pling problem we assume we only have access to measurements at finitely many
points in Ω, defined by Ω := {(θk, sl) | k = 1, . . . , na and l = 1, . . . , ns}. We choose
a very small number of equidistantly sampled projection directions na = 8 and a
typical number of lines ns = 288 per direction, which is 3/2 times the number of
pixels nx = 192 per row and column of the discrete image. The domains and in the
discretized setup are then given by the finite dimensional spaces D := X = Rnx×nx ,
and Y = Rna× 3

2nx .
We now define all elements that are needed to obtain the data-consistent net-

work (18). For the first mapping F1 we consider a discretization of the undersam-
pled Radon transform, mapping an image to the projections along lines in a very
low number of equidistantly distributed directions denoted na. Since the measure-
ments contain only very few projection directions, this inverse problem is highly
underdetermined and therefore has no unique solution. Using a basis ansatz the

discrete angle Radon transform can be represented by a matrix F1 ∈ Rna· 32nx×n2
x ,

which is obtained as described in [11].As a right inverse we take the pseudo-inverse

of F1, i.e. G
(1)
0 := F†1. Since the mapping is linear, the corresponding data-

consistent network is a null-space network [81], i.e. Φ
(1)
0 (z) = z + Pker(F1)U(z),

where Pker(F1) = Id−F†1F1. The second mapping F2 is a nonlinear saturation
mapping F2 = PC , as described in 4.2, where the set Ω corresponds to the set of
lines for which a value of the Radon transform is measured and M(r) = 8 for all

r ∈ Ω is a constant clipping value. Its right inverse G
(2)
0 and the data-consistent

network Φ
(2)
0 are chosen as described in section 4.2, this time with constant sat-

uration level M = 8. Finally, for this particular choice of F2, the projection on
the intersection of convex sets reads PNC(PC(z))∩Im(F1), which can be achieved by
the ‘projection onto convex sets’ (POCS) algorithm [1]: by alternatingly perform-

ing PNC(PC(z)) and PIm(F1) = F1F
†
1, the resulting iteration converges linearly to a

point on the intersection.
Training and test images were obtained from the LoDoPaB-CT dataset [14],

which on its turn makes use of the LIDC/IDRI dataset [7]. In our work, we only
make use of the high quality CT reconstructions in the LoDoPaB-CT dataset that
we use as ‘ground truth’ for our setup. The images are scaled to 192× 192 pixels,
after which the mappings F1 and F2 are applied to obtain simulated sinograms.

After that, pseudo-inverses G
(2)
0 and G

(1)
0 are applied to obtain the input for our

data-consistent network. For this simulation experiment we have also created a
modified test set to investigate how the trained networks generalize towards slightly
modified data. For conciseness, the procedure to get from the regular test data to
the modified test data is not explained in full detail. In short, the test set consists

of images in the range of F†1 that produce sinograms that have a maximum below
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or around the saturation level. This means that the saturation mapping F2 will
not have a big effect on the unsaturated sinograms. Images in the modified test set
look very similar to the ones in the regular test set, but they often show a small
gradient at locations where the regular images show a piecewise constant structure.
Some samples from the modified test set are shown in Figure 7 and appendix B.2.

The data-consistent network Φ0(z), as described in (18), is compared with two
other networks: the first one applies a single neural network to the pseudo-inverse
reconstruction; the second one first applies a neural network in the sinogram do-
main, then applies the pseudo-inverse of the Radon-transform, followed by a neural
network in the image domain. Here the neural network in sinogram domain takes
the Radon-measurements as an image, whose size depends on the measurement
geometry. For completeness, we summarize the three networks below:

� One neural network: N1(z) = U1(z).

� Two neural networks: N2(z) = U1G
(1)
0 U2F1(z).

� Data-consistent network: Φ0(z) = Φ
(1)
0 G

(1)
0 Φ

(2)
0 G

(2)
0 F2F1(z).

We emphasize that the data-consistent networks, in terms of architecture, make use

of the same neural networks U1 and U2 as the first two networks, i.e. Φ
(1)
0 (z) =

z + Pker(F1)U1(z) and Φ
(2)
0 makes use of U2 as defined in (16). A more detailed

description of the neural network architecture and training details are provided in
section 4.5.

Ideally, the data-consistent network is trained ‘end-to-end’, meaning that both

U1 which is used in Φ
(1)
0 , and U2 which is used in Φ

(2)
0 , are trained at the same

time. However, the application of the POCS algorithm is computationally intensive,

since it requires iterative application of the mappings F1 and F†1. For this reason,

we have chosen to first train Φ
(2)
0 to output the unsaturated sinogram, then perform

the POCS algorithm and finally train Φ
(1)
0 to output the reconstructed image.

4.5. Neural network architecture and training details. In this work, the pop-
ular U-Net [55] is implemented as a neural network. By combining max-pooling and
upsampling with residual connections, U-Net has shown to be effective in restoring
or improving images that possess both small- and large-scale artefacts [47]. By us-
ing standard nonlinearities such as rectified linear units (ReLUs) and convolutions,
the network is Lipschitz continuous, which is a requirement as described in Defini-
tion 2.2. The Lipschitz constant can be controlled by weight regularization, such
as adding an L2-loss on the weights in the loss function. We stress that instead of
U-Net, any other Lipschitz continuous neural network can be chosen.

The U-Net was implemented as described in [47], although for each experiment
some parameters were chosen slightly different to obtain optimal results. For all
experiments, the network has a ‘depth’ of four, meaning four times max-pooling and
upsampling. The U-Nets in the image domain perform the regular max-pooling and
upsampling in two directions, while the U-Net in the sinogram domain performs
these only in one direction, leaving the number of angles constant at 8. This is
done because the neighboring angles in the sinogram show very little resemblance
to each other and there are only 8. The ‘width’, or the amount of convolutions at
every depth is chosen to be two. As in [47] the number of convolution channels
doubles after each max-pooling; the number of channels at the start is stated in
Table 1, since this was chosen differently for every simulation experiment. In all
experiments a residual structure that is also apparent in [47] is used. The U-Net uses
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Exp. 1 (U/Φ0): Exp. 2

(U1/Φ
(1)
0 ):

Exp. 2

(U2/Φ
(2)
0 ):

image domain image domain sinogram domain

#training samples 1024 35584 35584

#validation samples 256 3522 3522

#test samples 1024 3553 3553

depth 4 4 4

width 2 2 2

#channels in top layer 8 16 16

convolution size 3× 3 3× 3 3× 3

nonlinearity ReLU ReLU ReLU

start learning rate 10−3 10−3 10−3

final learning rate 10−4 2 · 10−4 2 · 10−4

batch size 64 32 32

#epochs 1000 25 25

Table 1. U-Net parameter details for all simulation experiments.

3×3 convolutions with biases and applied a ReLU-activation after each convolution,
except the last one. In all experiments, an L2-loss function on the difference between

output and ground truth is minimized, i.e. minθ
∑N
i ‖Uθ(zi) − xi‖2`2 for the U-

Net Uθ, or minθ
∑N
i ‖Φθ

0(zi) − xi‖2`2 for the data-consistent network Φθ
0, both

parametrized by the weights θ ∈ Θ. For optimization, the ADAM optimizer with
exponentially decaying learning rate is chosen. The learning rates and batch sizes
are stated in Table 1. Training was performed in TensorFlow, executed on a single
GTX 1080 TI GPU.

5. Numerical results. In this section, the reconstruction quality of data-consistent
networks is compared with the U-Nets that are not data-consistent. Since both, the
proposed methods investigated in this work and deep learning post-processing with
the U-net are two step approaches we decided to compare the proposed constrained
and established unconstrained networks in the numerical studies. Besides visual
comparison, the quality will be compared on the reconstructed images by means
of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) but also in
terms of data consistency, by measuring the discrepancy to the given data. For both
experiments this will be done for the regular test set as well as the modified test
set in order to investigate the capacity of the networks to deal with data outside of
the training distribution.

5.1. Spatially dependent saturation of multivariate Gaussians. Multivari-
ate Gaussians are saturated with a spatially dependent saturation function (17),
as described in section 4.2. Results for one sample from the regular test set are
shown in Figure 4. Here it can be seen that both U-Net and the data-consistent
network provide a very accurate reconstruction. This is also reflected in the PSNR
and SSIM values shown in Table 2. The pseudo-inverse reconstruction, which in
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this case is just the measurement, is not a good one, since a lot of information is
lost by applying the saturation mapping.

−1.0 −0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

(a) Ground truth

−1.0 −0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

(b) Saturated

−1.0 −0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

(c) U-Net

−1.0 −0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

(d)
Data-consistent

Figure 4. Reconstructions of a sample from the regular test set.
In the bottom the horizontal central slice is shown. Both U-Net and
data-consistent network provide an almost perfect reconstruction.

In Figure 5 the results for one sample are shown for the modified test set, which
contains smaller Gaussians with a slightly lower intensity. Both U-Net and the
data-consistent network are not perfectly able to fill in the missing information in
the small Gaussians. This can be expected, since Gaussians of this size were not
included in the training set. However, the data-consistent network does not deform
the Gaussian at the location where it is not saturated, while U-Net does this slightly;
for instance around −0.5 in the slice plot. This behaviour is also reflected in the
PSNR and SSIM values in Table 2. Interestingly, the pseudo-inverse behaves very
well if we just look at the values in the table, because the saturation mapping did
not destroy a lot of the information in the Gaussian. Visual results of three more
samples in the modified test set are shown in appendix A. It can be seen that U-Net
tends to widen the Gaussians, since it was trained on Gaussians in the training set
that were wider. Although the modified test set shows a very specific modification,
it illustrates that a data-consistent network is beneficial over using an arbitrary
neural network: by making use of the information that we have from the mapping
F, we obtain generalization capacity with respect to out of distribution examples.

PSNR SSIM

Pseudo- Data- Pseudo- Data-
inverse U-Net consistent inverse U-Net consistent

Regular set 24.2± 2.2 60.6± 2.1 66.7± 1.6 0.56± 0.08 1.00± 0.00 1.00± 0.00
Modified set 48.0± 7.8 36.9± 2.9 48.0± 4.4 0.99± 0.01 0.92± 0.03 0.97± 0.01

Table 2. Comparison of PSNR and SSIM for all reconstruction
methods.
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Figure 5. Reconstructions of a sample from the modified test
set. In the bottom the horizontal central slice is shown. Data-
consistency makes sure that intensity is only changed above the
saturation level.

5.2. Saturation of Radon transformed human chest images. For one se-
lected sample in the regular test set and one in the modified test set, all reconstruc-
tions are shown in Figures 6 and 7. These specific samples were selected because
their PSNR values for the U-Nets and the data-consistent network show a similar
relation to each other as the average PSNR values of the whole test set (c.f. Table
3).

−1 0 10

2

4

6

8

10

(a) Ground truth

−1 0 10

2

4

6

8

10

(b)
Pseudo-inverse
PSNR = 22.80

−1 0 10

2

4

6

8

10

(c) One U-Net
PSNR = 27.31

−1 0 10

2

4

6

8

10

(d) Two U-Nets
PSNR = 27.70

−1 0 10

2

4

6

8

10

(e)
Data-consistent
PSNR = 27.01

Figure 6. Reconstructions of a typical sample from the regular
test set. Top: reconstructed sinograms with all 8 angles in different
colors. Bottom: reconstructed images (grayscale from 0 to 1).

In the top of Figure 6, the inputs of the right inverse G
(1)
0 are shown. This

corresponds to the saturated sinograms in case no or only one neural network is
trained, and this corresponds to the output of the neural network in the sinogram
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domain in case two neural networks are trained. The sinogram signals are plotted
in a different color for each angle. The data-consistent network does not change the
values of the sinogram that are below the saturation level (M = 8). Interestingly,
the U-Net in the sinogram domain has learned not to do this as well to a large
extent on the regular test set, only some values just below the saturation level are
changed (for instance the purple line around −0.5), but values much lower are not
changed at all. In the bottom of Figure 6, all reconstructions for this sample are
shown. It can be seen that although PSNR values are similar, there is a clear visual
difference: the data-consistent network shows more streak artefacts that are typical
for discrete-angle Radon reconstructions, while the standard U-Nets provide over-
smoothed reconstructions. In other words there is a trade off between preserving
small structures and removing streak artifacts. Whereas the data-consistency pre-
vents the neural network from smoothing out all image details, the unconstrained
networks are superior in removing undersampling artifacts. However, since there
are no image details that are visible in one of the reconstructions and not in the
others, it can be concluded that all networks have a similar reconstruction quality
with respect to the used measures in image space. Moreover, since only 8 angles
were used in the Radon transform, only larger structures can be reconstructed.
Some extreme samples, for which the PSNR value of the data-consistent solution is
high, similar or low compared to the U-Net solutions, are shown in Appendix B.1.
However we want to emphasize that the main intention of our method is improving
image quality, but at the same time providing a solution that is compatible with the
measured data. We have the opinion that the quality of the reconstruction should
not only be measured visually but also in terms of how compatible it is to the given
data. This is also reflected in Table 3, where the quality measures in the reconstruc-
tion space are comparable, whereas the data-fidelity of the data-consistent network
is superior to the other methods on both test sets.
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Figure 7. Reconstructions of a typical sample from the modified
test set. Top: reconstructed sinograms with all 8 angles in different
colors. Bottom: reconstructed images (grayscale from 0 to 1).

In the top of Figure 7, again all sinogram reconstructions are plotted, now for
the modified test set. As the modified sinograms contain many values just below
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or around the saturation level (M = 8), this is challenging for the regular U-
Net. Indeed it can be seen that the data-consistent network does not change the
saturated sinogram much, while the U-Net on the sinogram increases the purple
line well beyond the saturation level. In the bottom of Figure 7, it can be seen that
the ground truth possesses some ‘smooth’ regions, especially in the background on
the left and right of the two dark inclusions. While both U-Nets create piecewise
constant reconstructions that completely remove this gradient, the data-consistent
network keeps these smooth regions: it generalizes better to test images that are not
found in the training set by making use of the information in the operator. More
extreme samples, where the PSNR value of the data-consistent solution is high,
similar or low compared to the U-Net solutions, are shown in Appendix B.2. The
same effect on smooth regions can be seen in these visualizations. In Table 3, it can
be seen that for all networks the quality drops when the regular test set is replaced
by the modified test set; however, this drop is only very small for the data-consistent
network and is much bigger for the regular U-Nets. Note that the pseudo-inverse
gives an increased PSNR for the modified test set, because the modified images
were constructed to lie in the range of F.

PSNR

Pseudo-
inverse

One U-Net Two U-Nets Data-consistent

Regular set 23.1± 2.3 30.5± 1.5 31.0± 1.5 30.1± 1.9
Modified set 29.1± 1.6 27.5± 1.7 28.3± 1.4 29.9± 1.2

SSIM

Pseudo-
inverse

One U-Net Two U-Nets Data-consistent

Regular set 0.50± 0.07 0.82± 0.04 0.83± 0.04 0.74± 0.07
Modified set 0.71± 0.07 0.74± 0.05 0.73± 0.05 0.75± 0.05

Data-fidelity

Pseudo-
inverse

One U-Net Two U-Nets Data-consistent

Regular set 6.1± 3.3 4.8± 1.5 3.9± 1.1 0.9± 0.4
Modified set 0.4± 0.2 11.9± 5.4 8.5± 2.8 0.6± 0.2

Table 3. Comparison of PSNR, SSIM and data-fidelity ‖F(x̃) −
F(x)‖`2 for all reconstruction methods, where x̃ is the reconstruc-
tion and x is the ground truth. Note that the data-fidelity of the
pseudo-inverse in theory should be zero since it is a right inverse of
the forward operator. The non-zero values result from numerical
instabilities in the computation of this operator

Finally in Table 3 we check the data-fidelity of the solutions from all networks by
computing ‖F(x̃)−F(x)‖`2 , where x̃ is the solution of the respective reconstruction
method and x is the ground truth. Ideally, the data-fidelity should be zero for
the pseudo-inverse and the data-consistent network. It can be seen that indeed
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the data-fidelity is much lower for these solutions than for the U-Nets, although
not completely zero. This is most likely due to numerical issues (especially for the
pseudo-inverse of the regular set) and due to the fact that we saved the images
in a 16-bit format between consecutive steps of the data-consistent network to not
overload working memory.

6. Conclusion. In this paper we introduced data-consistent networks for nonlinear
inverse problems. We presented a convergent regularization method by combining
deep neural networks that converge to a data-consistent network with classical reg-
ularization methods. With the proposed data-driven regularization methods we are
able to preserve convergence rates of classical methods over a transformed source
set, which is adapted to some data set. This yields improved reconstructions for
elements close to the training set, but at the same time data-consistent networks
make use of the information from the forward mapping F, which restricts the sup-
port of the output distribution to a physically plausible one and therefore increases
generalization capacity with respect to examples not coming from the training dis-
tribution. This is particularly useful when the physics process is understood, but
exact knowledge on real data is not available or when it is not possible to create
a training set that reflects the true underlying data distribution. We showed that
on a test set similar to the training set, our approach shows reconstruction results
comparable to a classical post-processing network, whereas for instances not rep-
resented in the training set, the loss of performance is much less present. This
demonstrates the robustness to distribution shifts of our approach.
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Appendix A. Additional results for saturated Gaussians. In this appendix,
three more samples from the modified test set of the saturated Gaussians are shown.
It can be seen in Figures 8 and 9 that U-Net tends to slightly widen the Gaussian
in some cases, since this was necessary for the wider Gaussians in the training set.
Moreover it can be seen in Figures 9 and 10 that both U-Net and the data-consistent
network sometimes fail to restore the top of the Gaussian adequately: the training
on wider Gaussians is not directly generalised for smaller Gaussians.
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Appendix B. Additional results for saturated Radon transform. In this
appendix, three additional samples from the regular and the modified test set of
human chest images are shown. The samples have been selected based on their
PSNR values: we show the samples in the test set for which the data-consistent
network yields the highest relative PSNR value (Figures 11 and 14), a similar PSNR
value (Figures 12 and 15), and the lowest relative PSNR value (Figures 13 and 16)
when compared to the U-Nets.

B.1. Regular test set.

(a) Ground truth (b)
Pseudo-inverse
PSNR = 29.01

(c) One U-Net
PSNR = 31.50

(d) Two U-Nets
PSNR = 32.29

(e)
Data-consistent
PSNR = 34.10

Figure 11. Sample for which the data-consistent PSNR value is
relatively high compared to the U-Net PSNR values (grayscale from
0 to 1).

(a) Ground truth (b)
Pseudo-inverse
PSNR = 25.33

(c) One U-Net
PSNR = 30.09

(d) Two U-Nets
PSNR = 29.94

(e)
Data-consistent
PSNR = 30.09

Figure 12. Sample for which the data-consistent PSNR value is
approximately the same as the U-Net PSNR values (grayscale from
0 to 1).
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(a) Ground truth (b)
Pseudo-inverse
PSNR = 22.87

(c) One U-Net
PSNR = 29.78

(d) Two U-Nets
PSNR = 28.36

(e)
Data-consistent
PSNR = 24.52

Figure 13. Sample for which the data-invariant PSNR value is
relatively low compared to the U-Net PSNR values (grayscale from
0 to 1).

B.2. Modified test set. The ground truth images in the modified test set contain
more regions which are non-constant, as opposed to the regular test set, which
consists of piecewise constant images. The data-consistent network is better able
to deal with these modifications in the images, as can be seen particularly well in
Figure 14: The U-Nets create a piecewise constant dark structure in the middle,
while the data-consistent network keeps it more smooth.

(a) Ground truth (b)
Pseudo-inverse
PSNR = 34.76

(c) One U-Net
PSNR = 25.96

(d) Two U-Nets
PSNR = 27.61

(e)
Data-consistent
PSNR = 33.61

Figure 14. Sample for which the data-invariant PSNR value is
relatively high compared to the U-Net PSNR values (grayscale from
0 to 1).

(a) Ground truth (b)
Pseudo-inverse
PSNR = 28.43

(c) One U-Net
PSNR = 31.50

(d) Two U-Nets
PSNR = 31.52

(e)
Data-consistent
PSNR = 31.47

Figure 15. Sample for which the data-invariant PSNR value is
approximately the same as the U-Net PSNR values (grayscale from
0 to 1).
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(a) Ground truth (b)
Pseudo-inverse
PSNR = 28.62

(c) One U-Net
PSNR = 31.05

(d) Two U-Nets
PSNR = 31.30

(e)
Data-consistent
PSNR = 30.89

Figure 16. Sample for which the data-invariant PSNR value is
relatively low compared to the U-Net PSNR values (grayscale from
0 to 1).
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