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Abstract—Facility location problems (FLPs) are one of the most
studied problem classes in supply chain management. However,
despite the high number of research outputs, complex FLPs with
large decision spaces and multi-objective formulations remain
hard to solve. In this paper we introduce a multi-objective
mathematical model for the FLP in personalised medicine, and
apply a multi-stage algorithmic approach to solve it. In this case,
the supply chain is circular and follows an on-demand and batch
specific approach where the patient is also the donor. We solve
the problem in a multi-stage manner, each stage optimising a
sub-space of the larger decision space. In each stage we free up
more decision variables to optimise, until eventually all decision
variables defining the complete problem are made available for
optimisation. A variant of the NSGA-II algorithm is used as
solution method to solve both the complete problem and the
different problem stages. Our results suggest that the multi-stage
approach is able to find better solutions when compared to an
approach that is given an equivalent number of evaluations but
optimises the complete problem at once.

Index Terms—supply chain, personalised biopharmaceuticals,
multi-objective optimisation, multi-stage algorithms

I. INTRODUCTION

Supply chain optimisation problems are continuously
extended, e.g. with new decision variables, constraints and
objectives, to simulate the increasing complexity of challenges
faced by businesses. Case studies of supply chain management,
such as facility location, scheduling, or inventory management,
often have complex variants, multi-echelon formulations, and
usually involve large decision spaces, conflicting objectives
and uncertainty. Even with our current computational resources
and algorithmic knowledge, most of them remain hard to solve
using existing exact methods [11].

One such example of complex real-world supply chain is
the case of personalised biopharmaceuticals based on genes
or human cells, referred to as Advanced Therapy Medicinal
Products (ATMPs) [28]. These treatments are considered to
be one of the most important developments in medicine with
promising results in treating and even curing rare, progressive,
and degenerative diseases; examples include last stage cancers
[15], Parkinson, Alzeheimer, or muscular atrophy [13]. While
the clinical developments of ATMPs are impressive, their

commercialisation has turned out to be difficult [18]. The
optimisation of existing pharmaceutical and healthcare supply
chains are already considered challenging and constitute a topic
of continuous research [25]. The ATMPs bring to these supply
chains an extra level of difficulty with stricter bottlenecks,
such as low global demand, limited shelf-life, and complex
manufacturing. There is thus a need for new mathematical
optimisation models that account for these additional challenges
in order to design cost and time efficient delivery networks.

A personalised ATMP corresponds to only one patient. This
means that part of the product’s starting material are the
patient’s cells, which are then processed and later returned
to the same patient. Each patient’s cells constitute an ATMP
order. For processing, the cells are transported from the hospital
to an independent manufacturing facility (MF). Each MF
has a manufacturing mode which is directly responsible for
the duration and success rate of the ATMP process [19].
Between the hospital and the MF, there can be an intermediary
cryopreservation facility (CF). The CF freezes the living cells
to ensure that they remain viable until arriving at the MF. The
construction and operation of a CF extends the shelf-life based
range of hospitals that are covered by an MF but increases the
cost of the supply chain.

The above network follows a centralised configuration which
has so far turned out to be sub-optimal for personalised products
[4]. Building an MF is expensive and the delivery between
hospitals, MFs, and CFs adds to the patient’s waiting time.
Hence, a network that is integrated (or semi-decentralised),
comprising of both independent MFs and CFs, but also the
possibility to integrate smaller units able to manufacture or
freeze the cells at some hospitals could be a more cost-effective
alternative.

When choosing the location of the different facilities, the
decision maker looks at obtaining a low cost and low waiting
time for the patient, while supplying as many hospitals
as possible. Nonetheless, solving multi-objective problems
with large decision spaces and a high number of decision
variables remains difficult. A sacrifice on either the quality of
the solutions, the computational resources, or both becomes
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necessary. We thus propose in this paper a multi-stage approach
for solving the above problem. Our multi-stage approach
divides the decision space, and fixes the number of variables
that need to be optimised at a time. For simplicity, we only
apply a 3-stage process. In the first stage, we reduce the problem
to the classic uncapacitated facility location problem (FLP)
[1], optimising only the location of MFs. Starting from one
non-dominated solution obtained in Stage 1, in the second
stage we optimise the manufacturing modes and the location
of CFs. Finally, in the third stage we optimise the hospitals
level of integration.

The rest of the paper is organised as follows. The vein-to-vein
supply chain of ATMPs, together with the mathematical model
are presented in Section II. A brief literature review of relevant
studies is presented in Section III. The stages break-down of
the problem and the algorithms are explained in Section IV.
The case study data and the experimental results are presented
in Sections V and VI. The paper concludes in Section VII with
an overall discussion and recommendations for future research.

II. PROBLEM DEFINITION

We model the design of an ATMP supply chain as a
multi-objective FLP. We are given the fixed locations of the
hospitals (i ∈ I) that we wish to supply and the candidate
locations for placing either MFs or CFs (j ∈ J). The supply
chain has two types of deliveries: fresh and frozen. In the fresh
route, living cells are collected at a hospital i, transported to
an MF located in j where the ATMP is manufactured and then
delivered back to the same hospital i. The travel time from
hospital to MF must be lower than the shelf-life of the living
cells, denoted as a known constant θ. In the frozen route, the
living cells are first transported to a CF, then to an MF and
back to the same hospital. The travel time between hospital
and the CF must be no more than 24 hours, which is typically
shorter than the shelf-life, which ensures that the cells are
of high-quality before cryopreservation. Once cryopreserved,
there is no limitation in the travel time between CF and MF.

The above model corresponds to a centralised scenario,
where MF and CF are independent facilities shared by multiple
hospitals. In an integrated scenario, we may build an integrated
manufacturing or cryopreservation unit at particular hospitals.
If a hospital has an integrated MF, then no transportation
takes place. If a hospital has an integrated CF, then cells are
transported frozen to an independent MF and the shelf-life is
irrelevant. The possible configurations of the ATMP supply
chain from the point of view of a hospital are shown in Fig. 1.

Manufacturing an ATMP is a lengthy and complex process.
There are different production modes available that differ in the
level of automation and represent a trade-off between cost and
success rate. Generally, a high cost lowers the manufacturing
time but increases the probability that the order is defective.
If the order is defective, then the manufacturing process has
failed and the entire supply chain, starting from cells collection
at the hospital, is restarted.

The main decisions in the above model are: what type of
facility (MF or CF or none) should be open in each candidate

location, what type of integrated facility should be built at
each hospital (manufacturing, cryopreservation or none) and
the production mode used for each independent or integrated
MF built.

The main objectives are: (1) the maximisation of the
coverage, that is, the number of hospitals whose demand can
be processed because the hospital is within the range of a
MF or CF, or the hospital has an integrated unit for either
manufacturing or cryopreservation; (2) the minimisation of the
average waiting time, defined as the time from cell collection
at a hospital to the delivery of the manufactured product at the
same hospital, taking into account the expected additional time
incurred due to the failures; and (3) the minimisation of the
total supply chain cost, which is calculated as the total cost
of construction of MFs, CFs, and integrated units at hospitals,
where all costs depend on the location chosen and, in addition,
the cost of constructing, an MF depends on its production
mode.

Following the above description, we model the design of
an ATMP supply chain as a multi-objective integer non-linear
optimisation problem. We are given the fixed locations of the
hospitals (i ∈ I) that we wish to supply and the candidate
locations for placing either MFs or CFs (j ∈ J). The decision
variables are given by:
Decision Variables

hM
i , hC

i 1 if an integrated manufacturing or cryopreservation
unit is built at hospital i ∈ I , 0 otherwise.

xM
j , xC

j 1 if a MF or CF is open at location j ∈ J , 0
otherwise.

mlk 1 if the MF at location l ∈ I ∪ J uses production
mode k ∈ K, 0 otherwise.

yM
ij ,yC

ij 1 if the demand of hospital i is processed by the
MF or CF at location j 0 otherwise.

For simplicity, we also define the following helper variables
that tells us whether the demand of hospital i is processed by
any MF and any CF (zM

i and zC
i , respectively):

zM
i =

∑
j∈J

yM
ij zC

i =
∑
j∈J

yC
ij (1)

The objectives are given by:
Objective 2. The number of hospitals whose demand can be
processed corresponds to those hospitals that have an integrated
manufacturing unit or are assigned to some MF. We assume
that the entire demand of a hospital will be fully covered once
any of the previous requirements are met. For consistency with
other objectives, we convert this objective to minimisation and
measure it as the ratio of uncovered hospitals.

min 1−
∑

i∈I h
M
i + zM

i

|I|
(2)

Objective 3. The average waiting time is calculated by dividing
the total delivery time by the number of hospitals that are
covered. For simplicity, we do not consider in this work the
time associated with collection, production and administration.
The travel time between locations is given by dll′ , l, l′ ∈ I ∪J .



Fig. 1: Centralised and integrated supply chain configuration for personalised ATMPs. If a hospital has an integrated
cryopreservation, then the route followed is the same as for fresh transportation for hospitals with no integration.

min
TotalTime∑
i∈I h

M
i + zM

i

(3)

where TotalTime is the total delivery time:

TotalTtime =
∑
i∈I

(1− hM
i )

∑
j∈J

yM
ij

[
dji + (1 + FRj)

·
(
(1− zC

i )dij + zC
i

∑
j′∈J

yC
ij′(dij′ + dj′j)

)]
(4)

where there is a delivery time only if the hospital i does not
have an integrated manufacturing unit (hM

i = 0). Otherwise,
the trip is divided in two legs. In the first leg, the manufactured
product always has to travel back from the MF located at
j assigned to hospital i (dji). In the second leg, either the
hospital is not assigned to an independent CF and the order
has to travel from the hospital to its assigned MF (dij); or the
order has to travel to the CF located at j′ (dij′ ) and from there
to the MF located at j (dj′j). The second delivery leg has to
be repeated if manufacturing fails, thus we multiply it by a
failure rate FRj given by:

FRj =
∑
k∈K

rkmjk (5)

where rk is the failure rate associated to production mode
k ∈ K and
Objective 6. The total supply chain cost is given by:

min
∑
i∈I

(hC
i c

C
i +

∑
k∈K

cM
ikmik)+

∑
j∈J

(xC
j c

C
j +

∑
k∈K

cM
jkmjk) (6)

where cM
ik and cC

i are, respectively, the construction cost of an
integrated manufacturing and cryopreservation unit at hospital
i. Similarly, cM

jk and cC
j are, respectively, the construction cost

for an independent MF and CF at location j. Construction costs
of manufacturing facilities depend on the production mode k

employed. In line with objective 3, we do not consider here
the production and delivery costs for simplicity.

Constraints: Constraints 7 and 8 allow only one facility type
to be open at each location i or j.

hC
i + hM

i ≤ 1 ∀i ∈ I (7) xM
j + xC

j ≤ 1 ∀j ∈ J (8)

Constraint 9 enforces that hospitals cannot be covered by
both an independent and an integrated MF nor by both an
independent and an integrated CF. In addition, due to the
definitions of zM

i and zC
i (Eq. 1), it also enforces that a hospital

cannot be assigned to more than one MF and CF.

hM
i + zM

i ≤ 1, hC
i + zC

i ≤ 1 ∀i ∈ I (9)

The following constraint ensures that if a hospital at location i
is allocated to a CF, it must be allocated to an MF:

zC
i ≤ zM

i ∀i ∈ I (10)

Constraint 11 does not allow assigning a hospital i to a
facility type at location j if there is no such facility type at
that location:

yM
ij ≤ xM

j , yC
ij ≤ xC

j ∀i ∈ I, ∀j ∈ J (11)

The following constraint enforces the shelf-life limits
according to the fresh or frozen routes:∑
j∈J

yM
ijdij ≤ zC

i (24 hours)+(1−zC
i )θ+hC

i ·T ∀i ∈ I (12)

where θ is shelf-life of the cells when fresh and T is a very
large time that effectively disregards the limit if the hospital
has an integrated cryopreservation unit.

Finally, the following constraints enforce that each MF either
only has one production mode or none, depending on whether



there is an MF at location j, and similarly for integrated
manufacturing units at hospital i:

xM
j =

∑
k∈K

mjk ∀j ∈ J, hM
i =

∑
k∈K

mik ∀i ∈ I (13)

III. RELATED WORK

If an FLP can be formulated using mixed-integer linear
programming, a popular stage-wise solution method applied to
instances with many variables is the Benders Decomposition
(BD) [24]. This algorithm is based on a series of linearizations
and constraint relaxations, by dividing the original problem into
two synchronised sub-problems. A modified version of the BD
has been used to solve to optimality large-scale single-objective
uncapacitated FLPs [12] or covering location problems [7].
Nevertheless, a BD approach requires that the sub-problem is
a linear problem, which is not always achievable.

To the best of our knowledge, the integrated ATMP supply
chain model described above constitutes a new FLP variant.
However, there are various expansions of the FLP that meet
some of the characteristics presented by ATMPs [2]. We believe
that the closest FLP class is the multi-level FLPs (MLFLPs)
(also known in the literature as multi-echelon, multi-stage or
multi-layer [23]), a sub-category of hierarchical FLPs. With
few exceptions, most of the solution methods developed in
the past years for variants of the MLFLPs are heuristics. For
single-objective MLFLPs, a composite approach has been used
to individually calculate the optimal location of facilities in
each level, which was later used in genetic [17, 20] or local
search algorithms [21].

While a series of divide-and-conquer algorithms were used
for variations of the MLFLP, most of them created the
sub-problems by individually optimising the facilities at each
level [23]. This approach was feasible as the allocation in
MLFLPs is usually done sequentially, each customer having to
visit at least one facility at each level. In the integrated ATMP
supply chain, (independent or integrated) CFs are optional and
only activated as helpers for MFs. As a result, there is an
inter-dependency between MFs (with different manufacturing
modes) and CFs. In the classical MLFLP, the different facility
types have a separate cost or time, that is independent of the
actions at previous or later stages.

IV. METHODOLOGY

To solve the proposed mathematical model, we use the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [8],
which is a well-known multi-objective evolutionary algorithm
(MOEA) using elitism, non-dominated sorting and crowding
distance to preserve good solutions in the following generations.
The algorithm has been successfully applied to a range of
supply chain management problems in facility [5, 27] and hub
location [9, 10] problems, and generally found to be a robust
approach for multi-objective optimisation.

A. Solution Methodology

1) Solution representation: Each solution is represented as
two integer vectors, one for candidate locations of length |J |

Candidate locations vector Hospitals integration vector

0 no facility is open no integration
1 CF open hospital with CF integration x
2 MF is manual MM open hospital with MF with manual MM integration
3 MF is semi-automatic MM open hospital with MF with semi-automatic MM integration
4 MF is it automatic MM open hospital with MF with automatic MM integration

Note: MM stands for manufacturing mode

TABLE I: Integers representation for the candidate
locations and hospitals solution vector.

and one for hospitals integration of length |I|. Each integer
can take a value between [0, 4] as shown in Table I. For the
production modes, we consider the three levels of automation
described by Lopes et al. [19], namely, manual, semi-automatic,
and automatic. The implications of each of them on the failure
rate are described later in Section V.

The above does not apply to stage 1. In this stage, there is
a binary vector used to declare whether an MF with manual
(default) production mode is open at a particular location. The
cryopreservation, manufacturing modes, and integration levels
are subsequently added in stages 2 and 3.

2) Population initialisation: The way the initial population
is created depends on the problem stage. For stage 1, a random
initialisation is used to open MFs at random locations. For
all subsequent stages, a solution from the non-dominated
set at the last generation of the previous stage is chosen
randomly and only the remaining facilities are optimised.
Namely, in stage 2, based on a good solution with MFs, random
manufacturing modes will be allocated to the available MFs
and additional CFs are added at random free locations until
the population limit is reached. No additional MFs are allowed
to be inserted. Similarly, in stage 3, the CFs and the MFs with
their corresponding manufacturing modes are fixed and new
solutions are created by adding different levels of integration
to hospitals.

Purposely, each facility type was given an equal probability
of being added to an initial solution and no constraint restricting
an upper bound on the number of facilities was implemented.

3) Crossover and mutation: The crossover applied here is
a variant of uniform crossover [26]. Uniform crossover creates
children solutions from a pair of parents, by switching their
indices between them with a given probability. Our uniform
crossover differs from the original formulation by restricting
the switch only if one of the 2 indices is 0 (i.e., there is no
facility open in that location). A graphical representation of the
above on a toy example is presented in Figure 2. We preferred
this approach as the operators used only apply to MFs and
hence an exchange of nonzero values would not change the
location or type of facility, but only the manufacturing mode.

The mutation operator randomly selects one position j of
the locations vector and either opens an MF (xM

j = 1) with
probability 0.3, removes it (xM

j = 0) with probability 0.3 or
moves the facility to an adjacent location with probability 0.4.

The results shown were obtained over 20 independent
algorithmic executions for the proposed NSGA-II, on the
complete problem and the composite sub-problems as defined
in Section IV, with a population size of 100. Each stage was



Fig. 2: Example of crossover operator on a sample of 8
indices. The mask dictates whether a switch can happen
(Mask = 1) or not (Mask = 0).

ran for 500 generations thus running for the complete problem
required 1500 generations to match the number of solution
evaluations.

V. CASE STUDY

To test the proposed model, we chose a case study of a
cell-based gene ATMP with market approval. Kymriah is a
personalised therapy used in the treatment of adults with B-cell
non-Hodgkin lymphomas and children and young adults up to
25 years old with B-cell acute lymphoblastic leukaemia [6].
Following these two designations, we estimated the global
demand using data from the Institute for Health Metrics and
Evaluation [14]. We then distributed the overall demand to
hospitals that can accept patients for cell and gene therapies.
For a hospital to be eligible for ATMP treatments, it needs to
have FACT accreditation. The geographical distribution of the
FACT hospitals globally are shown in Table II.

Adult patients Paediatric patients

Asia 5 1
Europe 16 0

Oceania 11 6
North America 124 83
South America 2 1

TOTAL 157 92

TABLE II: Number of hospitals that accept adult and
paediatric patients for personalised ATMPs with breakdown
by continent.

One of the main limitations with the above approach is that
we assumed each hospital would accept an equal number of
patients. This is not always true in real-life, and future research
could focus on identifying reliable ways in which the demand of
personalised medicine can be allocated to hospitals. The main
uncertainties in doing so are the continuous approvals of FACT
hospitals, and the expansion or cease of biopharmaceutical
designation (i.e., intention of use for a particular diseases). The
later can happen either geographically, for example, a therapy
can get approval to deliver their product in a new country, or
clinically when the product gets market approval to expand
their target patients.

Our instance has 1000 candidate locations (J) and 216
hospitals (I), which gives a search space of 51216 solutions
when considering the various facility types in Table I. The
failure rates corresponding to each production mode are
represented as a range with random probability for each
manufacturing. For a manual production mode, between 5% and
10% of the entire demand allocated to that facility will fail and,
consequently, will need to be re-produced. For semi-automatic
the range is between 3% and 10% and for automatic it is
between 1% and 5% [19].

Finally, the transportation time between any two locations
was estimated using the Euclidean distance and dividing it
by a constant average speed. If a more precise estimation is
available, it would not require changes to our mathematical
model nor our proposed algorithm.

VI. RESULTS

The non-dominated solutions generated by NSGA-II over
the 20 runs are presented in Figures 3 and 4. The three axes in
the plot correspond to the time, cost, and coverage objectives.
Throughout this section, solutions discovered for the different
sub-problems will be shown using the following colour scheme:

for the complete problem, for stage 1, for stage 2 and
for stage 3.
When running the algorithm on the complete problem

(Fig. 3), the distribution of the set with non-dominated solutions
is directed towards solutions with high coverage, which also
lead to a high cost and a relatively low average waiting time.
The low time likely indicates a high number of MFs and
hospitals with integrated manufacturing in the solutions, and
an ineffectiveness in rapidly reducing the cost by adding CFs.
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Fig. 3: Non-dominated solutions obtained from NSGA-II
for the complete problem

The algorithm finds a better approximation of the Pareto front
when the problem is solved in stages (Figure 4). Particularly
it finds solutions that have a lower coverage overall, which,
given the low cost and slightly increased waiting time, have



a higher number of CFs compared to anything found in the
complete version. Nevertheless, there are still patterns possibly
unidentified. For example, a very low delivery time can be
obtained by having a high level of hospitals with manufacturing
integration. While these solutions would lead to a high cost,
they should not be dominated. One explanation for NSGA-II
not finding such solutions could be the still considerably large
search space associated with the problem in stages 2 and 3.
While the progress between stages 1 and 2 is evident, the
progress in stage 3 is not considerable.
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Fig. 4: Non-dominated solutions obtained from NSGA-II
over the three stages.

For a fair comparison between complete and staged solution
approaches, we have labelled and combined the non-dominated
solutions identified after the last stage (i.e., stage 3) and when
solving the complete problem at once. Figure 5 shows this
set after applying non-dominated sorting to it. As previously
mentioned, optimising the complete problem starts with an
advantage in terms of the waiting time objective by placing
a high number of facilities in the initial population. These
solutions are not dominated throughout the generations or by
running the algorithm in stages. While the staged approach
also has an equal probability for each facility type to be added,
by not optimising certain facilities in some stages, the overall
number of facilities in the initial population at each stage is
always smaller.

To evaluate the performance of the NSGA-II on the different
problem setups, we used the relative hypervolume (HV). The
HV is a popular metric used in multiobjective optimisation to
indicate the quality of the solutions obtained by an algorithm.
It computes the hypervolume of the objective space weakly
dominated by a set of solutions up to a common reference point
that is worse than any solution under comparison. Higher HV
values correspond to better approximations of the Pareto front.
It provides a measure of both closeness to the Pareto front, good
distribution and spread. The relative HV is reported in relation
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Fig. 5: Non-dominated solutions for NSGA-II between the
Pareto front approximation of the last stage and the one
of the complete problem

to the HV of a high-quality Pareto front approximation obtained
by merging all solutions ever obtained by any approach in any
run. We set the reference point 10% higher than the nadir point
of this Pareto front approximation.

The descriptive statistics for the relative HV are shown in
Table III. In line with the results shown in the previous figures,
the HV suggests that the NSGA-II is able to converge faster
and find a better approximation when dividing the decision
space and solving the problem in stages. However, the HV
points towards a lack of progress between stage 2 and stage 3.
This is an expected outcome and is a direct result of the lack
of operators, like crossover and mutation on the solution vector
for the integrated hospitals.

Minimum Mean ± SD Median Maximum

Integral 0.20 0.34 ± 0.06 0.33 0.68
Stage 1 0.31 0.63 ± 0.16 0.7 0.81
Stage 2 0.64 0.82 ± 0.01 0.82 0.82
Stage 3 0.22 0.82 ± 0.02 0.82 0.82

TABLE III: Relative hypervolume statistics for the NSGA-II
on the complete problem and the 3 stages.

VII. DISCUSSION AND CONCLUSION

Supply chain management optimisation has been attracting
increased attention in the recent years in the context of
pandemic disruptions [22]. In particular, the healthcare supply
chains were affected by the change in demand (i.e., increased
demand for emergencies and lower demand for optional
treatments), borders closure, and lockdowns [16]. Real-world
instances of problems such as FLP are becoming more
complex to account for inter-dependencies like disruptions
and allocations, or a high level of personalisation of products,
as in the case of ATMPs.



In this paper we proposed a new mathematical
formulation for the integrated supply chain of personalised
biopharmaceuticals and have solved the problem using a
multi-stage approach. The results obtained from dividing the
problem into multiple stages were superior to the results
obtained by running the same algorithms on the complete
problem. Moreover, having multiple stages allows the decision
maker to change or conclude the optimisation process at
key moments, such as when a good enough solution was
obtained. In the same way, having a clearer understanding
of how the decision space evolves over evaluations, can
potentially be useful in modelling uncertainty and time-window
classifications.

Several limitations pointing towards directions for future
research have been highlighted throughout the paper. The
ATMP supply chain has a number of particularities that have
not been extensively researched. Such cases involve the demand
allocation of patients to hospitals, especially for the countries
that do not have a FACT authorised medical center, or the
implementation of a public ATMP network able to manufacture
and deliver multiple products.

Future research could also look at including the patient’s
health conditions and prioritisation strategies in allocating
the demand to manufacture. We assumed that the MFs are
uncapacitated and can accept any demand level that is allocated
to them. This is rarely the case and should capacity constraints
be enforced on multiple products supply chain, a fair allocation
of patients with a higher risk or higher chance of having the
cells damaged through freezing could be prioritised directly
to an MF, rather than transported through CFs. Similarly, the
patients allocation could be prioritised to a hospital that has a
level of integration with low failure risk.

Additional experiments should also be conducted to explore
the behaviour of the problem. To generate the initial
populations, we only used one solution chosen at random.
It is, however, worth investigating to which extent different
initialisations can impact the optimisation process. To increase
the role of the decision maker and potentially lead to better
solutions towards different parts of the Pareto front, different
approaches can be applied. For example, one might decide
to choose the n solutions based on the number of MFs, their
geographic location, the value of the objectives, or the HV
contribution. In the same way, different initialisations of the
additional facilities can be applied depending on the stage. In
a previous work dealing with a simpler formulation of the
problem a greedy approach to the coverage has been found to
be superior when initially placing CF facilities [3].

The 3 stages of the problem were chosen by following the
importance of each facility in the network. Nevertheless, other
combinations of variables or a different number of stages could
improve the results. In the ATMP case the MFs have the highest
cost and replacing MFs by CFs lowers the cost by increasing
the delivery time. However, the integration levels for hospitals
optimised in stage 3 does not have a strong enough impact on
the overall objectives as each hospital can process only its own
demand. Hence, the progress between stages 2 and 3 is not as

substantial as the one between stages 1 and 2. A division of
the problem in more stages with smaller decision spaces could
mitigate this and allow the algorithm to further improve the
solutions obtained in the last stage.
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