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Abstract— Accurate estimation of harmonics in uncertain, 

power electronics interfaced large transmission networks 

without installation of excessive number of power quality 

monitors can significantly improve and facilitate the 

probabilistic harmonic propagation studies. Traditional 

harmonic state estimation methods have been widely studied but 

are still very challenging in practical application due to the 

requirement of a large number of synchronized monitoring 

devices and real-time operational structure of the network. 

Based on a preliminary study that demonstrates the 

effectiveness of sequential artificial neural networks (ANNs) in 

the probabilistic harmonic estimation in uncertain transmission 

networks, this paper presents further comprehensive accuracy 

assessment in terms of different types/numbers of harmonic 

measurements, different stop errors to optimise training time 

and limited numbers of installed power quality monitors due to 

realistic reasons. It has been demonstrated that the sequential 

ANNs is sufficiently accurate and applicable in estimating 

harmonics in uncertain transmission network, thus contributing 

to facilitate the identification of potential harmonic issues, 

benchmarking, standard compliance and the deployment of 

appropriate harmonic propagation and mitigation solutions. 

Keywords— ANN, harmonic estimation, renewable energy 

source, sparsely monitored transmission system, uncertainties 

I. INTRODUCTION 

Power system harmonic distortions are highly associated 

with the increasing penetration level of power electronic (PE) 

devices, e.g., renewable generations. In response to the global 

environmental-friendly policies, there are more and more PE 

interfaced devices continuously connecting into the large 

transmission system, leading to additional uncontrolled 

harmonic power flows and unexpected harmonic issues, thus 

resulting in significant financial loses to both transmission 

system operators (TSOs) and customers [1, 2].  

 Accurate estimation of harmonic propagations is one of 

the feasible options to effectively anticipate and mitigate the 

harmonic problems. As a traditional solution, the harmonic 

state estimation (HSE) method [3-5] have been widely 

studied. For example, in the area of proposing optimal 

monitor-placement methods [6] and combining with ANN-

based techniques to improve the estimation precision and 

accelerating convergence [7-10]. However, for a typical large 

transmission system which is sparsely monitored and highly 

dynamic and uncertain in nature, the HSE method is still very 

challenging in practical application since it requires adequate 

synchronized monitoring devices, specific parameters of the 

system topology at the and real-time operational structure of 

the network [3-5].   

A sequential ANNs method [11] has been proposed for 

reliable estimation of probabilistic harmonic distortions at 

unmonitored buses in large uncertain transmission networks. 

As an extension study, this paper evaluates the effectiveness 

of the sequential ANNs and presents further comprehensive 

accuracy assessment considering the effect of different types 

and length of harmonic measurements utilised for training, 

the effect of amplifying stop errors to optimise training time 

and the effect of decreasing the number of installed power 

quality monitors/monitored buses in the large transmission 

system due to the financial and technical reasons. 

The test network is modelled and simulated in the 

DigSILENT/PowerFactory environment [12], using Monte 

Carlo based probabilistic approach for  considering operating 

uncertainties caused by PE interfaced generation and non-

liner loads [13, 14].  The sequential ANNs was implemented 

in MATLAB. All the trainings are performed using a personal 

computer with   Intel® Core™ i7-4770 CPU @ 3.4GHz. 

II. METHODOLOGY 

A. Harmonic Estimation 

In this study, a sequential ANNs method, introduced in 

[11], is utilised for the estimation of harmonic distortions in 

a transmission network, where limited number of harmonic 

monitoring devices are installed and limited number of 

harmonic orders   are measured. The   method combines the 

successive application of two different two-layer feed-

forward neural networks   namely ANN1 and ANN2. Similar 

to the structure introduced in [15-17], ANN1 is a neural 

network with m input-layer neurons (m represents for the 

number of monitored buses), 28 hidden-layer neurons and n 

output-layer neurons (n represents for the number of 

unmonitored buses). ANN2 is a neural network, and with h 

input-layer neurons (h represent for the total number of 

individual harmonic orders), 28 hidden-layer neurons and 

single output-layer neuron (represents for THD at an 

unmonitored bus). Both ANN models are trained using 

Levenberg-Marquardt Backpropagation (LMBP) training 

function [18]. The transfer functions of the hidden and output 

layer are log-sigmoid and tan-sigmoid, respectively. The 

block diagram of entire THD estimation methodology is 

shown in Fig. 1.  

ANN1 aims to estimate individual harmonic distortions 

(hth order) of the target week at all unmonitored buses (the 

output) based on hth harmonic measurements at the monitored 
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buses from the same week (the input). It  has been trained 

using  the hth order of harmonic measurements of previous 

weeks at all the monitored buses, as the input and  the hth 

order harmonic measurements of previous weeks at all the 

unmonitored buses, as the target. According to the standard 

EN 50160 [19], only 2nd-25th harmonic are considered in this 

study.  

ANN2 aims to estimate THD of the target week at all 

unmonitored buses based on all individual orders of harmonic 

distortions estimated by ANN1. It has been trained using 

individual harmonic distortions of previous weeks at the nth 

unmonitored bus as the input, and the THD values of previous 

weeks at the nth unmonitored bus as the target. The advantage   

of using a sequential ANNs method to estimate THD 

compared to more traditional approach that uses individual 

harmonics and conventional formula for calculating THD at 

unmonitored buses has been clearly demonstrated in [11]. 

 
Fig. 1.  Block diagram of THD estimation methodology (adopted from [11]). 

 

When evaluating the accuracy of the probabilistic 

harmonic estimation method, the absolute error (AE), defined 

by (1) and the relative error (RE), defined by (2) are utilised. 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑡𝑖 − 𝑎𝑖                        (1) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑡𝑖−𝑎𝑖

𝑎𝑖
∗ 100%                   (2) 

where 𝑡𝑖 and 𝑎𝑖 stand for the estimated value and the actual 

value of a sample 𝑖, respectively. 

B. Test Network 

The database of harmonic measurements are obtained by 

performing harmonic load flow (HLF) in a modified IEEE 

68-bus New England Test System-New York Power System 

(NETS-NYPS) test network (shown in Fig. 2). There are 16 

synchronous generators (G1-G16), 20 renewable energy 

generations (10 wind farms and 10 PV plants) and a total of 

35 loads (industrial type and distribution network (DN) type 

of loads) integrated in this system. Individual loads are 

modelled as a combination of linear and non-linear 

components (50% for industrial load, 20% for DN type of 

loads). The penetration level of RES is set as 60%. 

C. Probablistic Modelling of Uncertainties and Harmonic 

Injections 

One-week actual renewable generation profiles in Europe 

[20] are interpreted as probabilistic scaling factors in this 

study when modelling the system uncertainties regarding 

different operating conditions, e.g., varying loads, wind and 

PV outputs. According to standard IEEE519 [21], the 

probabilistic scaling factors are updated every 10-min 

interval. For loads, wind, and PV plans, the probabilistic 

output/loading scaling factors are assumed to be sampled by 

following Normal distribution (μ=1, σ=0.033). Weibull 

distribution (φ=11.1, k=2.2) and Beta distribution (α=13.7, 

β=1.3), respectively [14].  

 
Fig. 2.  Modified IEEE 68-bus NETS-NYPS test network. 

 

In transmission network, harmonic distortions are mainly 

injected by PE interfaced wind, PV, and load demands. 

Therefore, these types of components are modelled as 3-

phase unbalanced harmonic current sources with random 

magnitudes and phase angles which are probabilistically 

sampled from different pre-defined ranges. The ranges of 

harmonic magnitude injections (Normal distributed) are 

defined based on long–term measurements [13] of the 

harmonic spectrum in terms of different types of harmonic 

sources and individual harmonic orders (2nd-25th). The range 

of harmonic phase injection is defined as (0°, 180°), 

applicable for all types of harmonic sources [1, 22].  

III. CASE STUDY 

Since the accuracy of this probabilistic harmonic 

estimation method has been validated by one-day harmonic 

measurements in a preliminary study [11], in this case, the 

time span for collecting samples has been expanded to one or 

more weeks, and the period of THD estimation has been 

extended to one week at the same time. 

Taking the realistic circumstances into consideration, it is 

assumed that in the test network, the buses that are connected 

with conventional generations, renewable generations and 

both types of loads are being monitored (52 buses in total), 

while the other buses (16 buses in total) are unmonitored. 

This means that the input layer and output layer of ANN1 has 

52 neurons and 16 neurons, respectively. At the same time, in 

ANN2, there are 24 neurons in the input layer and single 

neuron in the output layer. 

A. Accuracy Based on One-week Measurements 

In order to compare the accuracy of the sequential ANNs 

method when using different types of harmonic 

measurements, it is trained considering two cases. Case 1, 
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were weekly variation in measured harmonic distortions, 

used to train ANN model, was relatively small, i.e., the level 

of harmonic distortion during the week was stable.  Case 2, 

were weekly variation in measured harmonic distortions was 

relatively large. Then the obtained estimated THD values are 

compared against the harmonic measurements from each 

other week (mutual verification). In order to avoid the 

extreme circumstances caused by the uncertainties, it is a 

common practice to take the 95th percentile value of 

harmonics as a comparison [22]. The harmonic voltages are 

expressed as a percentage of the fundamental voltage. 

For Case 1, the probability density functions (PDFs) of 

absolute and relative errors of 95th percentile estimated THD 

are fitted and plotted in Fig. 3 (a) and Fig. 3 (b), respectively. 

It can be seen that the mean values of fitted absolute and 

relative errors at different buses are all approximately 

concentrated at 0%. According to the distribution span of the 

fitted absolute error, i.e., ±0.2%, and the distribution span of 

the fitted relative error, i.e., ±10%, this indicates that if the 

actual THD at the unmonitored bus is 3%, the corresponding 

estimated value will be within a range from 2.8% to 3.2%, 

i.e., less than 10% of the actual THD values.   

 
(a) PDFs of AEs of 95th percentile THD at unmonitored buses in Case 1. 
 

 
(b) PDFs of REs of 95th percentile THD at unmonitored buses in Case 1. 

Fig. 3.  Fitted PDFs of absolute error and relative error of the 95th percentile 
THD at unmonitored buses in Case 1. 

 

For Case 2, Fig. 4 (a) and Fig. 4 (b) show the fitted PDFs 

and Normal-fitted cumulative distribution function (CDFs) of 

absolute errors of 95th percentile estimated THD, 

respectively. Fig. 5 (a) and Fig. 5 (b) show the fitted PDFs 

and CDFs of relative errors of 95th percentile estimated THD, 

respectively. It can be seen from the CDFs that during 90% 

of time the total absolute errors are less than 0.005%, and the 

total relative errors are less than 1%.  

 
(a) PDFs of AEs of 95th percentile THD at unmonitored buses in Case 2. 

 

 
(b) CDFs of AEs of 95th percentile THD at unmonitored buses in Case 2. 

Fig. 4.  Fitted PDFs and CDFs of absolute error of the 95th percentile THD at 
unmonitored buses in Case 2. 

 

Similar to Case 1, the mean values of fitted absolute and 

relative errors are all concentrated around 0%. However, the 

range of distributions of fitted absolute errors has been 

reduced significantly, i.e., from ±0.2% to ± 0.01%. The range 

of distributions of fitted relative estimation errors also 

deceased, approximately 5 times, from about ±10% to about 

±2% of real measurements. This is because if the THD values 

are estimated based on a group of harmonic distortions 

measured when the system is stable, it is very challenging for 

the combined ANN model to predict unexpected fluctuations 

in a highly dynamic system due to the randomness and 

intermittence of RES. On the country, a group of volatile 

measurements would be able to accommodate extreme 

conditions and estimate THD values at unmonitored buses 

more accurately, regardless of various uncertain 

circumstances. 

B. Accuracy Based on Multiple-weeks Measurements 

In this case, the IEEE 68-bus NETS-NYPS test network is 

simulated again to obtain the harmonic measurements from a 

third week, which is considered as the comparison week. 

Then the combined ANN model is trained considering three 

cases, i.e., with less-variable weekly harmonic measurements 

(refer to as Case 3.1), with highly-variable weekly harmonic 

measurements (refer to as Case 3.2) and with measurement 

from both weeks (refer to as Case 3.3). Table Ⅰ summarises 

the ranges of mean values and distributions of both fitted 

absolute and relative errors at all unmonitored buses, as well 

as the mean square errors (MSEs) of estimated THD at bus 

19 (critical bus).  
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(a) PDFs of REs of 95th percentile THD at unmonitored buses in Case 2. 

 

 
(b) CDFs of REs of 95th percentile THD at unmonitored buses in Case 2. 

Fig. 5.  Fitted PDFs and CDFs of relative error of the 95th percentile THD at 

unmonitored buses in Case 2.  

 

It can be seen that for all three cases, the distributions of 

both absolute and relative errors are concentrated at 

approximately 0%, which confirms that the proposed model 

is sufficiently accurate in estimation THD at unmonitored 

buses. However, the distribution span of relative estimation 

errors and the MSEs at the critical bus tend to be smaller for 

Case 3.2 and Case 3.3 when a larger size of dataset is utilised 

to train the combined ANN model. This is because the larger 

dataset contains different operational uncertainties and is 

adequate to be compliant with a random week. However, the 

effect may not be so obvious since there are only one 

additional week considered in this case and there still exist 

random uncertainty. 

TABLE Ⅰ 

Comparison of the ranges of mean values and distributions of the fitted 

errors at all unmonitored buses and the MSEs at Bus 19. 

 Case 3.1 Case 3.2 Case 3.3 

Range of absolute mean value 0% 0% 0% 

Range of absolute distribution ±0.71% ±0.23% ±0.24% 

Range of relative mean value 0% 0% 0% 

Range of relative distribution ±67.7% ±32.6% ±26.9%  

MSEs at Bus 19 0.051 0.012 0.008 

 

Fig. 6-8 illustrate the boxplots of the estimated and actual 

THD values on different unmonitored buses for Case 3.1-3.3, 

respectively. It can be seen that on the same bus, the medians, 

width and boundaries of boxplots are coincident with that of 

the actual THD boxplots. This indicates that for various 

unmonitored buses, the distributions of the predicted THD 

values correspond to their actual values, which further proves 

the general applicability of the combined ANN structure. 

However, in Fig. 6, it can be noticed that there are some 

outliners   beyond the top of the box that are not able to be 

predicted. On the other hand, it can be seen from Fig. 7 and 

Fig. 8 that the outliners on the same unmonitored bus are 

approximately overlapped, which indicates that the extreme 

THD values can be accurately predicted. This may due to the 

fact that for Case 3.1, the measurement database used to train 

the combined ANN model is inclusive of different operation 

uncertainties and is adequate to be compliant with a random 

week, thus restraining the estimation errors. 

 
Fig. 6.  Boxplots of estimated and actual THD values for different 

unmonitored buses for Case 3.1. 
 

 
Fig. 7.  Boxplots of estimated and actual THD values for different 

unmonitored buses for Case 3.2. 
 

 
Fig. 8.  Boxplots of estimated and actual THD values for different 

unmonitored buses for Case 3.3. 

 

Therefore, when training the combined ANN model, it is 

recommended to consider highly-variable weekly/multi-

weeks harmonic measurements if possible to take the 

uncertainties and contingency of system operations into 

consideration. 
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C. Optimization of Training Time  

It has been noticed from the previous cases that with the 

increasing number of training samples, it takes longer to train 

the combined ANN model. As the main influence factor of 

training time, the training stopping error/threshold in ANN1 

is increased to 10-2 in Case 4 to speed up the training process. 

The stopping criteria for training ANN2 though remained the 

same, i.e., 10-5. After training combined ANN model, ANN1 

takes approximately 24 hours less to train than in the Case 

3.3.  

Fig. 9 plots the CDFs of absolute prediction error of the 

2nd-25th harmonics at Bus 19 of (a) Case 3.3 and (b) Case 4. 

It can be seen that during 90% of time, the total absolute 

errors of individual harmonics are less than 0.006%. When 

the stopping threshold in ANN1 is increased, the total 

absolute errors of individual harmonics during 90% of time 

are below with a range from -0.17% to 0.2%. Meanwhile, the 

span of fitted absolute errors become wider. Nonetheless, the 

estimation errors of individual harmonics are still within an 

acceptable range.  

 
(a) CDFs of AEs of the 2nd-25th harmonics at Bus 19 in Case 3.3. 
 

 
(b) CDFs of AEs of the 2nd-25th harmonics at Bus 19 in Case 4. 

 

Fig. 9.  Fitted CDFs of absolute prediction error of the 2nd-25th harmonics at 
Bus 19 in (a) Case 3.3 and (b) Case 4. 

 

Table Ⅱ summarises the ranges of mean values and 

distributions in PDFs of both fitted absolute and relative 

errors when estimating THD values at Bus 19. It can be seen 

that even though different stopping criteria were applied to 

ANN1, after training the ANN2, where the stopping threshold  

are sufficiently small, the estimated THD values on 

unmonitored buses still having the same level of accuracy. 

Therefore, it is feasible to optimise the training time of 

ANN though changing stopping errors on the condition that 

the estimated errors of individual harmonic distortions are 

within acceptable limit. The requirement for the precision of 

estimated THD values on unmonitored buses can still be 

achieved through setting appropriate stop errors during the 

training of ANN2.  

TABLE Ⅱ 
Comparison of the range of mean values and distributions of the fitted 

absolute and relative errors at Bus 19 

 Case 3.3 Case 4 Case 5 Case 6 

Mean value range of AE 0% 0% ±0.03% ±0.04%  

Distribution range of AE ±0.24% ±0.21% ±0.24% ±0.21% 

Mean value range of RE 0% 0% ±3.76% ±8.53%  

Distribution range of RE ±26.9% ±24.3% ±28.2%  ±31.11% 

 

D. Limited Number of Monitored Buses  

In order to investigate the accuracy of the estimation 

method in a sparsely monitored transmission network, 

different number and locations of monitored buses are 

assumed. For the purpose of saving the training time, the 

stopping errors of ANN1 and ANN2 are set as 10-2 and 10-5, 

respectively. In Case 5, it is assumed that there are 34 buses 

being monitored and thus the other 34 buses are to be 

estimated. Taking the realistic circumstances in to 

consideration, the selected 34 monitored buses are the buses 

where synchronous generators, RES generators and industrial 

loads are connected. In Case 6, it is assumed that there are 18   

monitored buses and thus the other 50 buses are to be 

estimated. The selected 18 monitored buses are those with   

RES generators and industrial loads connected to them. 

In the sparsely monitored transmission network, as the 

number of unmonitored buses is increasing, more time is 

required to train the combined ANN model. In this case, the 

growth of training time is approximately in line with the 

cumulative number of unmonitored buses. For each 

additional unmonitored bus, it will take approximately extra 

two hours on average to train ANN1, and approximately extra 

4.5 min on average to train ANN2.  

Fig. 10 and Fig. 11 compare the boxplots of estimated and 

actual THD values for different unmonitored buses in Case 5 

and Case 6, respectively. It can be seen that in both cases, the 

medians, width and boundaries of the estimated THD 

boxplots are coincident with that of the actual THD boxplots. 

The outliners on the same unmonitored bus are approximately 

overlapped, which indicates that the extreme THD values can 

be accurately predicted as well. The ranges of mean values 

and distributions of both fitted absolute and relative errors are 

also summarised in Table Ⅱ. When there is a smaller number 

of monitored buses, the corresponding distributions of the 

absolute and relative estimation errors are roughly the same. 

There is up to approximately 0.04% increase in the mean 

value of fitted absolute errors and up to approximately 8.53% 

increase  in the mean value of fitted relative errors, when the 

number of monitored buses drops from 34 (50% of all buses 

in the network)  to 18 (26% of all buses in the network). This 

drop in accuracy generally can be considered as an acceptable 

considering the significant reduction in monitoring.   
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Fig. 10.  Boxplots of estimated and actual THD values for different 

unmonitored buses for Case 5. 
 

 
Fig. 11.  Boxplots of estimated and actual THD values for different 

unmonitored buses for Case 6. 

 

Therefore, the minimum number of buses that need to be 

monitored so that the established harmonic distortion values 

are within an acceptable limit of 10-2 is 18 buses.  The number 

of monitored buses could be further reduced by setting 

smaller stopping errors at the expense of extended training 

time though. 

IV. CONCLUSIONS 

The paper evaluated the accuracy and effectiveness of 

using sequential ANNs for probabilistic estimation of 

harmonic distortions in sparsely monitored large 

transmission system considering the uncertainties introduced 

by increasing penetration level of power electronics 

interfaced renewable generations and nonlinear loads. The 

estimation accuracy is clearly established in terms of different 

types and length of harmonic measurements, different 

stopping thresholds/errors to optimise training time and 

limited numbers of installed power quality monitors. The 

presented accuracy assessment demonstrates that the 

proposed method is applicable and reliable tool to estimate 

harmonics under varying   circumstances in large uncertain 

and sparsely monitored transmission networks. It could   

facilitate the identification of potential harmonic issues in the 

network and be applied for benchmarking and standard 

compliance purposes as well as to inform   deployment of 

appropriate harmonic mitigation solutions. 
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