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Abstract—In the face of transition towards the decarbonisation, 

increasing penetration level of power electronic interfaced 

renewable connections such as wind farms and PV plants are 

constantly influencing the uncertainties of transmission network 

and leading to additional uncontrolled harmonic power flows. 

These potential harmonic distortion issues could result in 

significant financial losses. To address this problem, the 

estimation of harmonic propagation through transmission 

network with increasing penetration of nonlinear loads, power 

electronics based renewable generation and control devices is 

becoming increasingly important. This paper proposes a 

comprehensive framework of applying sequential artificial 

neural network (ANN) techniques to estimate individual order 

harmonic distortions and total harmonic distortions (THD) at 

unmonitored buses in large uncertain transmission networks 

based on offline measurements and simulations. This study will 

contribute to facilitate the standard compliance, reduce the 

extent of the monitor installation, accelerate the assessment of 

harmonic performance and mitigation studies, as well as 

contribute to the forecast of potential harmonic issues in large 

transmission system. 

Index Terms--ANN, harmonic estimation, power electronics, 

renewable energy source, transmission system 

I. INTRODUCTION 

Decarbonisation requires increasing penetration level and 
reliance on low carbon generation, storage and demand 
technologies, majority of which is connected to the network 
through   power electronic (PE) interface. Additionally   
flexible alternating current transmission system (FACTS) 
devices and high voltage direct current (HVDC) transmission 
lines are increasingly used to improve efficiency, flexibility 
and security of electricity supply. Such trend might result in 
increasing challenges posed by the power quality problems.  
Among those, the harmonic distortion issues, that result in 
significant financial losses to both network operators and end 
users is becoming even more pronounced. Although the 
harmonic distortions and voltage fluctuation are controlled by 
transmission system operators (TSOs) at present, the 
increased number of the future PE devices could lead to 
increase propagation of harmonics into the transmission 
system and leading to additional uncontrolled harmonic power 
flows [1, 2].  

Prediction of harmonic propagations is one of the main 
solutions to effectively anticipate and mitigate the power 
quality problems. The power system is highly dynamic in 
nature, which requires the supervising of harmonic distortions 
to be also adaptive. However, in reality, it is impossible to 
install harmonic analyzers/harmonic meters/power quality 
monitoring devices at every bus in the large transmission 
system due to the financial and technical reasons [3]. 
Therefore, it is necessary for TSOs to be able to estimate and 

evaluate the harmonic performance of unmonitored buses 
based on the available harmonic measurements at monitored 
buses, so as to control the harmonic performance in the whole 
system.  

One traditional solution to this problem is the harmonic 
state estimation (HSE) method, which utilizes the harmonic 
measurements at monitored buses and the network model to 
estimate the harmonic distortion level of other non-monitored 
locations [3-5]. Research such as [6] proposed several optimal 
monitor-placement methods for HSE. In the meantime, with 
the rapid improvement of computer science technologies and 
various computational algorithms, the ANN-based techniques 
[7] have become frequently and widely combined with HSE 
method to estimate power system harmonics. For example, for 
improving noise tolerance level [8], for improving the 
estimation precision and accelerating convergence [9-11], for 
faster and more accurate power system harmonic detection 
[12-14], for harmonic coefficients and relative phase shifts 
detection [15], for on-line tracking of harmonics [16, 17], for 
distinguishing between load contributed harmonics and 
supply harmonics [18, 19], etc.  

Nevertheless, the application of HSE in transmission 
system is still very challenging since it requires a large number 
of synchronized monitoring devices to make the system fully 
observable [3-5]. Also, the measurement functions of HSE is 
related to the specific topology of the system and the 
configuration of measurement points, which are usually 
unknown in real-world scenarios because it is difficult to track 
the real-time operational structure of the network. These 
fundamental shortcomings render it of limited practical value.  

This paper proposes a comprehensive assessment 
framework based on application of sequential ANNs to 
estimate individual order harmonic distortions and THD at 
unmonitored buses in large uncertain transmission networks 
using the offline measurements and Monte Carlo (MC) 
simulations. In Section Ⅱ, the database of harmonic 
measurements is generated by large number of MC 
simulations in a modified IEEE 68-bus NETS-NYPS test 
network. Different probabilistic distributions and data ranges 
are adopted to model different operating conditions and 
uncertainties caused by emerging power system connections 
such as wind farms, PV plants, load demands and their 
corresponding unbalanced harmonic injections. Section Ⅲ 
provides the detailed architecture of the proposed ANN model 
and the entire THD estimation methodology. A two-layer 
feed-forward ANN model with different hidden layer sizes 
and training algorisms is trained so that an appropriate ANN 
architecture can be adopted to accurately estimate the 
harmonic distortions in transmission network. Case studies 
regarding the development of the proposed ANN structure, 
start with the estimation of individual harmonics and finish 
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with the estimation of THD at every unmonitored bus in the 
network. They have been described and discussed in Section 
Ⅳ. Finally, the proposed THD estimation methodology has 
been validated against the harmonic measurements from 
different operating weeks.  

II. POWER SYSTEM MODELLING 

A. Test Network  

In order to obtain the database of harmonic measurements 
suitable for ANN training, a modified IEEE 68-bus New 
England Test System-New York Power System (NETS-
NYPS) test network (shown in Fig. 1) was simulated using 
Monte Carlo based probabilistic approach considering various 
system operation conditions caused by uncertainties [20, 21]. 
It is a 230 kV transmission system which consists of 68 buses 
in five geographical areas. Apart from the original 16 
synchronous generators (G1-G16), the model is modified to 
integrate 20 renewable energy generations, i.e., 10 wind farms 
and 10 PV plants. The wind turbines are modelled as either 
Type 3 doubly fed induction generators (DFIG) or Type 4 Full 
Converter Connected (FCC) interfaced generator, while the 
PV panels are fully modelled as the FCC type of generators. 
In this research, the penetration level of RES is set as 60%. 
There are a total of 35 loads in the system, the industrial type 
and distribution network (DN) type of loads. They are 
modelled as a combination of linear and non-linear 
components. The percentage of nonlinear components of 
industrial loads and DN loads are assumed to be 50% and 
20%, respectively.  

 
Fig. 1.  Modified IEEE 68-bus NETS-NYPS test network. 

 

The test network was modelled and simulated in the 
DigSILENT/PowerFactory environment [22, 23], where 
harmonic load flow was performed.  

B. Modelling of Uncertainties 

To address the uncertainties of this network, operating 
conditions with varying loading, PV and wind output are 
obtained from actual renewable generation profiles in one 
week in Europe in 2016 [24]. The probabilistic scaling factors 
utilised to represent the operating uncertainties of RES and 
load demand are updated every 10-min interval, in accordance 
with the time step required by standard IEEE519 [25]. The 
probabilistic output/loading scaling factors of wind, PV plans 
and loads are assumed to be sampled by following Weibull 
distribution (φ=11.1, k=2.2), Beta distribution (α=13.7, β=1.3) 
and Normal distribution (μ=1, σ=0.033), respectively [21].  

C. Modelling of Harmonic Injections 

As the major harmonic sources in transmission network, 
the PE interfaced wind farms, PV plants and non-linear load 
demands are modelled as harmonic current sources with 3-
phase unbalanced magnitudes and phase angle injections over 

multiple time intervals. For each type of harmonic sources, 
different harmonic injection spectra are utilised, covering 
different operating conditions. The magnitudes of harmonic 
injections are randomly sampled within normal distributed 
pre-defined ranges that are selected based on long–term 
measurements of the harmonic spectrum of PE interfaced 
generations [1, 20, 26]. For all types of harmonic sources, the 
harmonic angle injections are randomly sampled within a 
range of (0°, 180°), considering all 2nd-25th harmonic orders 
[26]. From the perspective of entire test network, harmonics 
injected form individual wind farm, PV plant and non-liner 
loads are obtained by multiplying the appropriate coefficient 
of harmonic spectrum sampled from the predefined harmonic 
ranges by their corresponding fundamental current. In order to 
include the uncertainties of harmonic injections, the 
probabilistic harmonic propagation simulation approach is 
conducted based on the Monte Carlo simulation technique 
where each harmonic current injection (magnitude and angle) 
of individual harmonic sources, for each of the three phases, 
are varied randomly by sampling uniform distributions 
(considering 10 or 20 random samples per period) within the 
given ranges. 

III. METHODOLOGY 

A two-layer feed-forward ANN, similar to the structure 
introduced in [27-29], is adopted to estimate the harmonic 
distortion in transmission network in this study. It is chosen as 
it is the most commonly used architecture that can potentially 
represent the non-linear relationship between the input and 
target as long as an appropriate hidden layer size is assigned.  

A. Selection of Hidden Layer Size and Training Algorithm 

The transfer functions of the hidden and output layer are 
log-sigmoid and tan-sigmoid, respectively, as suggested in 
[27-29]. Research [7] shows that the number of hidden layer 
neurons is not only related to the number of neurons in the 
input and output layer, but also related to the factors such as 
the complexity of the problem to be solved, the type of the 
transfer function, and the characteristics of the sample data. 
Therefore, a practical case study combining all these factors is 
carried out to determine an appropriate hidden layer size based 
on different calculation equations (listed in Table Ⅰ) reported 
in published papers [30-31]. As a preliminary study, this case 
only considers one-day, single-phase, single-order (5th) 
harmonic measurements. Results of the training time and 
mean square errors (MSEs) are summarised in Table Ⅰ. The 
ANN architecture was established and modified in MATLAB. 
All the trainings were performed with a processer of Intel® 
Core™ i7-4770 CPU @ 3.4GHz. 

Taking the realistic circumstances into consideration, it is 
assumed that the monitored buses (52 buses in total) are the 
buses with connected synchronous generation or RES (26 in 
total) and 35 load buses (including both industrial and DN 
types of loads). It should be note that at some buses there are 
both generators, conventional and renewable, and loads 
connected. Therefore, in this case, the harmonic 
measurements (obtained by simulating the NETS-NYPS test 
network) from these 52 monitored buses and the other 16 
unmonitored buses are set as the inputs and the targets of 
ANN, respectively. Regarding the equations list in Table Ⅰ, the 
variables n, Ni and No stand for the number of neurons in 
hidden layer, input layer (Ni=58) and output layer (No=16), 
respectively. Parameters Nt represents the number of training 
pairs, which equals to 1440 (24*6*10=1440) in this case.  
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In order to compare different ANN training algorisms, 
both Levenberg-Marquardt Backpropagation (LMBP) and 
Bayesian Regularization Backpropagation (BRBP) are 
adopted. The LMBP training algorithm generally has the 
fastest convergence for networks with hundreds of weights. 
This advantage is particularly evident when very accurate 
training is required. The BRBP training algorithm usually 
takes longer but may be better for challenging problems [7].  

TABLE I. RESULTS OF ANN TRAINING TIME AND MSE CONSIDERING 

DIFFERENT HIDDEN LAYER SIZES AND TRAINING FUNCTIONS   

Ref. Calculated hidden layer sizes 
Training 

function 
MSE  
(10-5) 

Training 

time 

[30] 𝑛 =
4𝑁𝑖2 + 3

𝑁𝑖2 − 8
≈ 4 

trainlm 14.43 38 s 

trainbr 15.07 6 s 

[32] 𝑛 =
√1 + 8𝑁𝑖 − 1

2
≈ 10 

trainlm 3.808 24 s 

trainbr 3.253 1 min 

[33] 
𝑛 = 𝑐√

𝑁𝑡

𝑁𝑖∗𝑙𝑛𝑁𝑡
 ,   𝑁𝑡/𝑁𝑖 >30 trainlm 0.916 2-10 min 

𝑛 = 𝑁𝑡/𝑁𝑖 ≈ 𝟐𝟖,  𝑁𝑡/𝑁𝑖 ≤30 trainbr 0.475 33 min 

[34] 𝑛 = √𝑁𝑖 ∗ 𝑁𝑜 ≈ 29 
trainlm 0.970 5-10 min 

trainbr 0.460 42 min 

[35] 𝑛 = log2(𝑁𝑖 + 1) − 𝑁𝑜 → null - - - 

[36] 𝑛 = 2𝑁𝑖/𝑁𝑖 + 1 → too large - - - 

[35] 𝑛 = 2𝑁𝑖 − 1 → too large - - - 

 
It can be seen from Table Ⅰ that in order to both avoid the 

overfitting problem/large MSEs during training and ensure 
sufficiently good network performance, in other words, to take 
as few hidden layer neurons as possible under the condition 
that the error is within an acceptable range, a hidden layer with 
28 neurons is chosen to be used in the following studies. It was 
also found   that compared with using the BRBP (noted by 
trainbr) as training function, using the LMBP (noted by 
trainlm) training function can speed up the training time by 
several minutes. Therefore, the training function of ANN 
training is set as trainlm in the following studies.  

B. Adopted ANN Structure 

In this study, two different neural networks, namely ANN1 
and ANN2 are adopted continuously to estimate THD values 
at unmonitored buses in the system. ANN1 is a two-layer feed-
forward neural network with 52 input-layer neurons (represent 
for 52 monitored buses), 28 hidden-layer neurons and 16 
output-layer neurons neurons (represent for 16 unmonitored 
buses). ANN2 is also a two-layer feed-forward neural 
network, but with 24 input-layer neurons (represent for 24 
individual harmonic orders), 28 hidden-layer neurons and 
single output-layer neuron (represent for THD at an 
unmonitored bus). Both ANN models are trained by LMBP 
training function. The transfer functions of the hidden and 
output layer are log-sigmoid and tan-sigmoid, respectively. 
The block diagram of entire THD estimation methodology is 
shown in Fig. 2.  

In ANN1, the harmonic measurements of each individual 
harmonic (from 2nd to 25th) at monitored buses from previous 
week are set as the input. From the same week, the 
corresponding individual order of harmonic distortions at the 
unmonitored buses are set as the target. After training this 
ANN1, there will be 24 independent black boxes (representing 

different specific harmonic orders) mapping the relationship 
between the harmonic distortions at monitored buses and 
unmonitored buses. Then, from the target week, the measured 
individual harmonic distortions at monitored buses can be fed 
into their corresponding black box as the input. By doing this, 
the required estimated harmonic distortions at unmonitored 
buses for the target week can be obtained as the outputs of 
individual black boxes. Different orders of harmonic 
distortions are trained separately by using a for loop.     

 

Fig. 2.  Block diagram of THD estimation methodology. 

In ANN2, from the perspective of individual buses, 
different orders of harmonic distortions at the same 
unmonitored bus from the previous week are reorganised and 
combined together and are considered as the input of ANN2. 
The target of ANN2 is set as the THD values on the 
corresponding unmonitored bus. After training this ANN2, 
there are n (number of unmonitored buses) independent black 
boxes mapping the relationship between all 2nd-25th harmonic 
orders and THD on this specific bus. Then, for the target week, 
the reorganised harmonic distortions of individual 
unmonitored buses, estimated by ANN1, can be fed into their 
corresponding black box as the input. Thereby, the required 
estimated THD of each unmonitored bus of the target week 
can be obtained as the output of individual black boxes. 
Different unmonitored buses are trained separately by using a 
for loop. 

The main purpose of connecting two continuous ANN 
architectures is to compress the 3-dimensional relevant 
parameters, i.e., different orders of harmonic distortions, 
different unmonitored/monitored buses and different number 
of training samples into 2-dimensional inputs which are 
suitable for the training of two ANN architectures. During the 
testing stage of the algorithm, it was found that it is inaccurate 
to simply calculate the estimated THD in voltage (THDv) 
using the equation (1). This is because generally the actual 
THD values in a power system include more than a few orders 
of harmonic distortions as well as inter-harmonic distortions. 
This is also the reason why ANN2 is applied in this study. 
Detailed discussions can be found in section Ⅳ. B. 

𝑇𝐻𝐷𝑉(%) =  
√∑ 𝑉ℎ

2∞
ℎ=2

𝑉1
                        (1) 

In this study, the absolute error (AE), defined by (2) and 
the relative error (RE), defined by (3) are utilised to evaluate 
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the estimation accuracy of the proposed ANN architecture. 𝑡𝑖 
and 𝑎𝑖 stand for the estimated value and the actual value of a 
sample 𝑖, respectively.  

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑡𝑖 − 𝑎𝑖                         (2) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑡𝑖−𝑎𝑖

𝑎𝑖
∗ 100%                   (3) 

 

IV. CASE STUDY 

A. Estimation of Individual Harmonics 

As a preliminary study, 5th, 7th, 11th, 13th harmonics are 
trained individually in this case. Taking the 5th harmonic as an 
example, Fig. 3 combines the fitted probability density 
functions (PDFs) of the absolute estimation errors at different 
unmonitored buses. As expected, this ANN architecture can 
satisfy the requirement of limiting the mean square error 
below a predetermined value, which is 10-5 in this case. The 
expected training time for individual harmonic order is less 
than 10 min.  

 
Fig. 3.  Fitted PDFs of absolute error between actual and estimated 5th 

harmonic distortion at all unmonitored buses. 
 

It can be seen that the mean values of the fitted errors at 
different buses are all concentrated at 0%, with the span of 
μ±3σ within a narrow range of ±0.005%. It should be note that 
the ‘±0.005%’ indicates that if the actual value of 5th harmonic 
distortion is 0.2%, the estimated 5th harmonic distortion will 
be located within a range of (0.195%-0.205%). Among all the 
unmonitored buses, Bus 19 is the most critical one since the 
error distribution of this bus has larger mean value and wider 
spread. Therefore, in order to compare the results of multi-
order harmonics, Bus 19 is selected as the target bus.  

 
Fig. 4.  Fitted PDFs of absolute error of 95th percentile 2nd-25th harmonics at 

Bus 19. 

In order to avoid the extreme circumstances caused by the 
uncertainties, it is a common practice to take the 95th 
percentile value of harmonics as a comparison [25]. 
Therefore, Fig. 4 shows the fitted PDFs of absolute estimation 
error of 95th percentile for 2nd-25th harmonic at Bus 19. The 
variation of 5th estimated and actual harmonic distortions 
during the day is shown in Fig. 5. 

It can be seen that the mean values of all fitted error curves 
are approximately concentrated at 0% and the errors are 
distributed within a narrow spread of ±0.01%. For a single 5th 
harmonic order, the variations of the estimated harmonic 
distortions during the day at Bus 19 are roughly following the 
same trend of their actual values. This proves that the 
proposed ANN1 structure is able to accurately predict various 
orders of harmonic distortions at unmonitored buses. 

 
Fig. 5.  Comparison of estimated and actual 5th harmonic on Bus 19. 

 

B. Estimation of THD 

As mentioned in section Ⅲ. B, this study compares two 
approaches of estimating THD at unmonitored bus.  

The first approach is to calculate THD using the equation 
(1), based on limited number of individual harmonics   
estimated by ANN1, relying on corresponding harmonic 
measurements at the monitored buses.  

The second method is to estimate THD with the help of 
artificial intelligence, i.e. using the proposed architecture of 
ANN2 (detailed in section Ⅲ. B), also based on limited 
number of monitored harmonic orders.  

According to standard EN 50160 [37], typical upper limit 
for harmonic measurements in Europe transmission system is 
50th harmonic, however if the risk of resonance at higher 
harmonics is low, the upper limit can also be the 25th 
harmonic. Therefore, only 2nd-25th harmonic are considered in 
this study. According to the fitted PDFs of absolute prediction 
errors of 95th percentile THD at all unmonitored buses, Table 
Ⅱ summarises the ranges of mean values and distributions of 
the fitted absolute errors when using different THD estimation 
methods. It can be seen that after training ANN2, the 
distribution range of THD absolute errors has been reduced by 
approximately 94% ((0.5-0.03)/0.5=0.94%), which perfectly 
enhances the accuracy. 

TABLE II. COMPARISON OF THE RANGE OF MEAN VALUES AND 

DISTRIBUTIONS OF THE FITTED PDFS OF ABSOLUTE ERRORS WHEN USING 

DIFFERENT THD ESTIMATION METHODS 

 
Mean value 
range of AE 

Distribution 
range of AE 

Method with calculated THD 0.12% - 0.18% -0.1% - 0.4% 

Method with trained THD 0% ±0.015% 
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In Fig. 6, when using different estimation approaches, the 
obtained variation curves of the estimated THD values during 
the day are combined and compared with an actual THD 
variation curve for Bus 19. When using the combined ANN 
training method (ANN1+ANN2), the corresponding MSE of 
estimated THD is 2.13*10-5, which is 100 times smaller than 
that of the case considering calculated THD. At the same time, 
it can be seen from Fig. 6 that in the time domain, the THD 
variation curve estimated by ANN1+ANN2 is sufficiently 
accurate and approximately overlapped with the actual THD 
variation curve. However, the other method tends to result in 
over estimation of THD values. 

 

Fig. 6.  Comparison of estimated 95th percentile THD during one day at Bus 

19 using different THD estimation methods. 

Therefore, the method of combining ANN1 and ANN2 
optimizes the accuracy of THD estimation at unmonitored 
buses. The absolute estimation errors have been significantly 
narrowed down. Thus, this method is recommended as a basic 
structure of THD prediction in the following studies. 

C. Validation of the Combined ANN Model 

In order to validate the general applicability of the 
proposed combined ANN structure, harmonic measurements 
from other weeks (as the target week explained in section Ⅲ. 
B) have been obtained by simulating the NETS-NYPS test 
network. In the beginning, only one-day measurements are 
considered. The absolute and relative errors of 95th percentile 
estimated THD are fitted and plotted in Fig. 7 (a) and Fig. 7 
(b), respectively.  

It can be seen that the mean values of the fitted absolute 
and relative errors are all approximately concentrated at 0%. 
According to the distribution span of the fitted absolute error, 
i.e., ±0.08%, and the distribution span of the fitted relative 
error, i.e., ±10%, if the actual THD at the unmonitored bus is 
3%, the corresponding estimated value will be within a range 
from 2.92% to 3.08%, i.e., less than 10% of the actual THD 
values. Therefore, the combined ANN model performs well 
and can be used to predict pretty accurately the harmonic 
distortion at unmonitored buses. 

V. CONCLUSIONS 

The paper demonstrated the effectiveness and the 
advantage of the use of sequential ANNs for reliable 
estimation of harmonic distortion in large transmission 
networks with uncertain, power electronics interfaced 
renewable generation. The advantage in terms of accuracy of 
estimation of THD at unmonitored buses is clearly 
demonstrated compared to more traditional approach that 
combines the use of a single ANN for estimation of individual 
harmonics and conventional formula for calculating THD at 
unmonitored buses. This preliminary probabilistic study, that 
will be followed by more rigorous and comprehensive 

accuracy assessment in the follow up paper,  demonstrates that 
efficient application of sequential ANNs can contribute to 
sufficiently accurate assessment of harmonics at unmonitored 
buses in large uncertain transmission networks and such 
facilitate  identification of potential harmonic issues, 
deployment of appropriate mitigation solutions, 
benchmarking  and standard compliance without the need for 
installation of excessive number of power quality monitors.   

 

      (a) PDF of absolute error of 95th percentile THD on unmonitored buses. 

 

       (b) PDF of relative error of 95th percentile THD on unmonitored buses. 

Fig. 7.  Fitted PDFs of absolute error and relative error of the 95th percentile 

THD on unmonitored buses. 
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