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Abstract. Osteophytes are distinctive radiographic features of osteo-
arthritis (OA) in the form of small bone spurs protruding from joints
that contribute significantly to symptoms. Identifying the genetic deter-
minants of osteophytes would improve the understanding of their biologi-
cal pathways and contributions to OA. To date, this has not been possible
due to the costs and challenges associated with manually outlining osteo-
phytes in sufficiently large datasets. Automatic systems that can segment
osteophytes would pave the way for this research and also have poten-
tial clinical applications. We propose, to the best of our knowledge, the
first work on automating pixel-wise segmentation of osteophytes in hip
dual-energy x-ray absorptiometry scans (DXAs). Based on U-Nets, we
developed an automatic system to detect and segment osteophytes at the
superior and the inferior femoral head, and the lateral acetabulum. The
system achieved sensitivity, specificity, and average Dice scores (±std) of
(0.98, 0.92, 0.71±0.19) for the superior femoral head [793 DXAs], (0.96,
0.85, 0.66±0.24) for the inferior femoral head [409 DXAs], and (0.94,
0.73, 0.64±0.24) for the lateral acetabulum [760 DXAs]. This work en-
ables large-scale genetic analyses of the role of osteophytes in OA, and
opens doors to using low-radiation DXAs for screening for radiographic
hip OA.

Keywords: Computational anatomy · U-nets · Osteophytes segmenta-
tion · Osteophytes detection · Automated osteoarthritis risk assessment.
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1 Introduction

Osteoarthritis (OA) is a degenerative disease in which bones and surround-
ing soft tissue of the affected joint deteriorate, leading to pain and loss of
function. Hip OA incidence is rising [6, 7] due to increasing aging and obesity
in populations [4, 5]. Total hip replacement (THR) is the preferred treatment
for end-stage disease which is associated with substantial care costs. For ex-
ample, in England and Wales there are 150 THRs per 100,000 of population
per year [7]. Semi-quantitative grading of hip OA can be done using Kellgren-
Lawrence (KL) [8] or Croft [9] scoring which examine the presence and severity of
radiographic characteristic features, including joint-space narrowing (JSN), os-
teophytes, subchondral scleroisis, and cysts. These criteria are inherently subjec-
tive [10], making clinical application difficult [11–13]. Although severity grading
is traditionally performed by manual inspection of standard radiographs, Yoshida
et al. [17] found that this could be performed as accurately using DXA scans.
A recent semi-automated scoring system [14] on DXA-derived radiographic hip
OA (rHOA) showed strong relationships with symptoms and was predictive of
THR. The classifier considered automated joint space measurements and semi-
automated osteophyte area calculations. Other semi-automated approaches [15,
16], incorporating osteophytes within a statistical shape model (based on man-
ually checked and corrected point positions) also showed an association with
future THR and with change in hip shape over 6-12 months. Semi-automated
scoring is time-consuming and costly. Fully automated methods would overcome
this and remove, as far as possible, the element of subjectivity.

This work is based on the U-Net architecture [26] which has been widely-
used with great success in the domain of image segmentation. A U-Net is a deep
convolutional encoder-decoder architecture with various layers at different levels
forming a U shape. In addition to the upsampling operators used to increase the
resolution on their outputs, U-Nets differ from conventional fully convolutional
neural network for having skip connections between the encoding and decoding
paths, which improves the use of context and localisation during learning [26].

Contributions: To our knowledge, this is the first work on automating
pixel-based hip osteophyte segmentation. Our system automatically detects os-
teophytes with high accuracy and segments osteophytes at the superior and the
inferior femoral head, and the lateral acetabulum. It has the following potential:
– It is an essential step towards identifying osteophytes genetic variants which

have not been explored before. Manual osteophyte detection/segmentation
for genetic studies is not feasible. That is because genetic studies need very
large-scale datasets given the low prevalence of osteophytes.

– Due to the low radiation dose and strong relationships recently-associated [14]
between DXA-derived rHOA features (JSN and osteophyte sizes) with OA
symptoms and prediction of THR, DXAs could potentially be used to screen
low risk clinical populations and assess their risk of subsequent THR. This
could help stratify patients who should be targeted with weight loss and
physiotherapy interventions. Previous research automated JSN calculations
in hip DXAs, but osteophyte segmentation has not been automated before.
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2 Related work

There are few published methods in the area of automated rHOA classification.
Some research focused on detecting rHOA (i.e. binary classification of healthy
vs. diseased) as shown in radiographs [18–20] and in CTs [20] by fine-tuning
pre-trained deep learning models. Other work [21] also used transfer learning
to evaluate multiple individual features of rHOA, including femoral osteophytes
(FOs), and acetabular osteophytes (AOs). Each of these two features were graded
as absent, mild, moderate, or severe. Lateral/medial and superior/inferior sides
were combined by picking the most severe grade for each feature. The reported
performance on two test sets was as follows: (1) sensitivity [74.6-83% for FOs,
69.9-76% for AOs], (2) specificity [91-91.1% for FOs, 76-76.4% for AOs], and (3)
F1-score(%) [82.6-87.4% for FOs, 65.1-72.1% for AOs]. Few studies considered
segmenting osteophytes in particular. The KOACAD algorithm [22] considered
only one of the regions in which knee osteophytes develop. The determined osteo-
phyte area was on the medial tibial margin and found as the medial prominence
over the smoothly extended outline of the tibia. The area under ROC curve
(AUC) for detecting OA by the osteophyte area was 0.65. Thomson et al. [23,
24] detected knee OA by first segmenting knee bones including osteophytes im-
plicitly [23] and explicitly [24] using a Random Forest Regression Voting Con-
strained Local Model [25] and then trained random forest classifiers on derived
shape and texture information to detect OA. Their system achieved an AUC of
0.85 and 0.93 for detecting knee osteophytes and OA, respectively.

3 Method

An example of a left hip DXA with no osteophytes is given in Fig. 1(a,b) with
its outline annotated with 85 points.

The areas where osteophytes develop are around point 15 (inferior femoral
head osteophytes), point 30 (superior femoral head osteophytes), and point 78
(lateral acetabulum osteophytes). A diseased hip having osteophytes on all three
sites is shown in Fig. 1(c,d).

U-Nets were trained to predict the segmentation mask for a given patch
from a radiograph. Patches were cropped around the three sites. One U-Net was
trained from scratch for each site. Our implementation has only small changes
from the original U-Net architecture [26]. We used an input image size of 128x128
pixels, outputting segmentation maps of the same size as the input image with an
osteophytes class probability at each pixel. To eliminate the effect of different hip
sizes/scales in cropping the areas of interest, points {12,39} in Figure 1(b) were
used to define a reference length. The width/height of each pixel in the reference
frame is a proportion (dp) of the reference length. By visually inspecting the
resulting patches of different dp values and ensuring a good coverage of the
area of interest, we set dp to 0.005 for the inferior femoral head, 0.006 for the
superior femoral head, and 0.01 for the acetabulum. All cropped patches were
normalised. Examples of input patches and their corresponding ground truth
masks are shown in Figure 2.
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(a) (b) (c) (d)

Fig. 1. (a,b): Example DXA of healthy hip showing the joint outline annotated with
85 points. Red points are key anatomical landmarks. Points {12,39} define a reference
length. Each pixel in the normalised cropped patches has a width/height equal to a
proportion (dp) of the reference length. (c,d): Hip DXA with features of radiographic
hip OA (blue: inferior femoral head osteophyte; red: superior femoral head osteophyte;
green: acetabular osteophyte).

Fig. 2. Top: Osteophyte sites of the diseased hip in Fig. 1(d). Middle: Input patches
to U-Nets. Bottom: their corresponding segmentation masks (ground truth).
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4 Experiments

4.1 Data

The UK Biobank (UKB) is a prospective cohort study with phenotypic and
genetic data collected on approximately 500,000 individuals from the UK, aged
between 40 and 69 years at the time of recruitment (between 2006 – 2010)[1].
High resolution iDXA (iDXA GE-Lunar, Madison, WI, USA) scans are being
collected as part of the Imaging Enhancement study [2]. As of April 2021, DXA
images were available for 42,441 participants, of which 41,160 had left hip images.
We excluded 820 left hip scans/participants due to either poor image quality,
image error or withdrawal of consent, resulting in a dataset of 40,340 participants
[mean age 63.7 years (range 44–82 years)]. Osteophytes were present in 4,013
(10 %) participants/images. Manual osteophyte markups/segmentations were
agreed by two experienced annotators (BGF & FS). The markup repeatability
was tested after > two months from the first review on a set of 500 DXAs selected
to include 20% with osteophytes. The inter-rater kappa values were between 0.80-
0.91 for the presence of osteophytes, and the concordance correlation coefficients
were between 0.87-0.92 for osteophyte size, depending on osteophyte site.

Data partitions are summarised in Table 1. Per osteophyte site, we randomly
selected negative examples to match the number of images with osteophytes to
balance the dataset. We split the data randomly into training, validation and
test sets. Manual point placements were available for all data. Automatic point
placements were available for a subset of all images; obtained fully automatically
by applying a Random Forest-based landmark detection system as described in
[14] (available from www.bone-finder.com). The training and validation sets used
the manual point placements and were balanced (i.e. positive examples (with os-
teophytes) = negative examples). The focus was on developing a fully automatic
system and we thus only included images with automatic point placements in
the test sets, leading to slightly imbalanced test sets.

Table 1. Data partitions used to train, validate, and test a U-Net for each osteophyte
site. Values are expressed as number of left hip scans/participants (OPs = osteophytes).
Some images contained multiple osteophytes and were used for more than one site.

Training Set Validation Set Test Set
Osteophyte Site (with OPs) (with OPs) (with OPs)
Inferomedial femoral head 1400 (700) 230 (115) 409 (200)
Superolateral femoral head 1700 (850) 286 (143) 793 (351)
Lateral acetabulum 3760 (1880) 400 (200) 760 (335)

4.2 Implementation details

U-Nets were trained for 15 epoches on NVIDIA Tesla V100 SXM2 16GB, with
Keras/Tensorflow implementation (Python 3.7 for GPUs). The best performing
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models on the validation sets during training were saved. The sparse categorical
cross entropy loss function was optimized with Adam [28] (default parameter val-
ues used), and weights were initialised with He normal initializer [27]. We used
dropout rate, with probability 0.3, to reduce overfitting, and zero padding to
control the shrinkage of dimension due to convolution. The training and valida-
tion datasets were augmented with seven additional samples per image including
random rotation (within ± 0.1 radians) and scaling (in the range of ±10%). No
augmentation was performed for the test sets.

4.3 Results

The performance of the trained U-Nets were evaluated for (1) osteophyte detec-
tion (i.e. osteophyte presence vs absence) in terms of sensitivity and specificity;
and (2) osteophyte segmentation by average Dice scores (±std). The results are
summarised in Table 2.

Table 2. Performance of osteophyte segmentation by U-Nets (1-4), each trained/tested
for one osteophyte site. All U-Nets (1-4) had the same architecture, and were trained/-
validated on their corresponding datasets with the same augmentation procedure. U-
Net(4) only differs in introducing random pixel displacements when augmenting the
training set.

Model Sensitivity Specificity F1-score Dice score (±std)
1 Inferior femoral head 0.96 0.85 0.91 0.66±0.24
2 Superior femoral head 0.98 0.92 0.94 0.71±0.19
3 Lateral acetabulum 0.67 0.84 0.71 0.46±0.38
4 Lateral acetabulum 0.94 0.73 0.82 0.64±0.24

Our initial results for the lateral acetabulum osteophytes (U-Net(3) in Ta-
ble 2) were poorer than the performance we achieved at the other sites. There-
fore, we investigated the reason by studying two possibilities: Firstly, could it be
underfitting due to insufficient training examples? To test this, we conducted ex-
periments with an increased number of samples in the training set (by decreasing
the size of the test set). However, the low performance pattern was persistent
even with a significantly larger training set. Secondly, could it be related to the
automatic point placements? The U-Net was trained on patches centered on the
manual placement of point 78, but tested on new images in which all points
were placed automatically. To accommodate for the differences between manual
and automatic point placements, we conducted experiments including additional
data augmentation. We augmented the training data with 19 additional samples
per image including the above described rotation and scaling augmentations as
well as random displacements of the centres (point 78) of the training patches. A
random displacement was set to be within 0.05 of the patch width/height (about
± 6 pixels) in x- and y-axes. The latter model (U-Net(4) in Table 2) yielded an
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increase in performance for the lateral acetabulum osteophytes (sensitivity=0.94,
specificity=0.73, Dice=0.64±0.24).

Fig. 3 shows the binary confusion matrices for detecting osteophytes at the
three different sites.

Inferior femoral head Superior femoral head Lateral acetabulum

Fig. 3. Performance of three U-Nets on detecting osteophytes at three specific sites. For
the lateral acetabulum, random pixel displacements were introduced when augmenting
the training set.

Examples of segmentation outputs are given in Fig. 4 for various Dice scores.

5 Discussion and Conclusion

We have developed an automatic system to detect and segment osteophytes at
three sites in hip DXAs. Our results show that the system achieves high perfor-
mance in detecting osteophytes at the superior and the inferior femoral head,
and the lateral acetabulum, outperforming related work on automatically grad-
ing hip osteophytes in standard radiographs [21]. To the best of our knowledge,
this is the first system to automate pixel-wise segmentation of hip osteophytes.

We achieved the best overall results for the superior femoral head osteophytes.
This is likely to be because of the nature of the surrounding area within the
image as there are fewer overlapping projections compared to the other two
osteophyte sites. This could have also affected the accuracy of the automated
point placement favorably.

It has been shown that the three osteophyte sites have potentially indepen-
dent relationships with hip pain, consistent with roles in partially-independent
biomechanical pathways [29]. For this reason our work considered each femoral
head osteophyte site separately as opposed to the single combined femoral head
osteophyte feature in [21].

For the acetabular osteophytes, we showed that enriching the training set
with augmented examples of random displacements from the centre of the area
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(1)

(2)

(3)

(4)
(a) (b) (c) (d) (e) (f)

Fig. 4. Examples of osteophyte segmentation results. To visualise the overlap between
true and predicted masks, the summations of true masks with two times of predicted
masks were plotted. Row (1): Input test patches to U-Nets (based on automatic point
placements). Row (2): Manual masks (ground truth). Row (3): Automatically predicted
masks. Row (4): The overlap of true and predicted mask are the brightest pixels. (a,b)
are examples of inferior femoral head osteophytes with Dice scores (0.95, 0.64). (c,d)
are examples of superior femoral head osteophytes with Dice scores (0.42, 0.83). (e,f)
are examples of lateral acetabulum osteophytes with Dice scores (0.93, 0.59).
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(point 78) improved U-Net learning in tackling point placement discrepancies,
and achieved high sensitivity (0.94), compared to 0.76 in [21], as well as an
improved Dice score (0.64).

In future work, we will explore whether such an augmentation as applied to
the acetabular osteophytes would also improve the performance for detecting
and segmenting femoral head osteophytes. In addition, we will conduct further
experiments to identify whether there is room for performance improvements for
the three sites by performing hyperparameter optimisation to find patch sizes, dp
values, and augmentation procedures. We would also like to explore fine-tuning
pre-trained U-Net models to our data and compare results.

A limitation of this work is that the system has not been replicated in an
independent dataset. Further, it would be of interest to analyse the agreement of
clinical experts with the automatically segmented osteophytes. This will provide
insight into what Dice score is needed to yield clinical relevant results.

With respect to epidemiological studies, the system can be used to automati-
cally obtain osteophyte segmentations for additional hips in UKB (e.g. right hips,
future images) as well as for other large cohort studies such as the Rotterdam
Study (RS) or the Osteoarthritis Initiative (OAI). It will also be interesting to
explore how the automatically segmented osteophyte areas are related to manual
osteophyte grading as well as clinical outcomes.
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