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Functional Organisation of the
Mouse Superior Colliculus
Thomas Wheatcroft, Aman B. Saleem and Samuel G. Solomon*

Institute of Behavioural Neuroscience, University College London, London, United Kingdom

The superior colliculus (SC) is a highly conserved area of the mammalian midbrain
that is widely implicated in the organisation and control of behaviour. SC receives
input from a large number of brain areas, and provides outputs to a large number of
areas. The convergence and divergence of anatomical connections with different areas
and systems provides challenges for understanding how SC contributes to behaviour.
Recent work in mouse has provided large anatomical datasets, and a wealth of new
data from experiments that identify and manipulate different cells within SC, and their
inputs and outputs, during simple behaviours. These data offer an opportunity to
better understand the roles that SC plays in these behaviours. However, some of the
observations appear, at first sight, to be contradictory. Here we review this recent
work and hypothesise a simple framework which can capture the observations, that
requires only a small change to previous models. Specifically, the functional organisation
of SC can be explained by supposing that three largely distinct circuits support three
largely distinct classes of simple behaviours–arrest, turning towards, and the triggering
of escape or capture. These behaviours are hypothesised to be supported by the optic,
intermediate and deep layers, respectively.
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THE SUPERIOR COLLICULUS

The superior colliculus (SC), at the roof of the midbrain, is an evolutionarily old structure with
strong commonalities across mammals, including cat, monkey, tree shrew, rat, and mouse. SC is
highly interconnected with much of the brain, including the cerebellum, thalamus, hypothalamus,
and neocortex, and is implicated in the coordination of several “higher-level” functions including
attention and decision making. SC, however, is also an important target for sensory pathways, and
sends outputs towards the motor pools, including the brainstem and spinal cord, encouraging the
view that its major role may be to support rapid sensorimotor behaviours.

Substantial recent work in mouse has explored the contribution of SC to behaviour, and the
functional organisation of the circuits that may support these behaviours. This work has exploited
new techniques for identifying, recording, manipulating, and studying the connectivity of SC, and
areas that are connected to it. The purpose of this review is to both collate this recent work and to
synthesise it. The themes we will touch on are likely to be common across species, but a comparative
analysis is beyond our scope, and we direct the reader to excellent recent reviews (May, 2006; Basso
et al., 2021; Isa et al., 2021). Similarly, while mouse SC has been shown to also be involved in higher-
level functions, we focus on simpler behaviours because they have been the focus of most recent
work, and have proved useful in starting to link structure to function.
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Anatomical sections through mouse SC reveal horizontal
layers with distinct cellular, and histochemical organisation
(Puelles et al., 2012; Figure 1A). We will use the term
“visuosensory SC” to define the layers closest to the dorsal
surface, which comprise the “optic” layer as well as the
“supraoptic” layers dorsal to it (superficial grey and zonal layers;
Dong, 2008). Ventral to the optic layer are the “intermediate”
and then “deep” layers, which can be collectively termed the
“motor-related SC” (Dong, 2008). Recent work suggests that
the medial-lateral axis of SC can also be parcellated, into four
columns that extend across layers (Benavidez et al., 2021). These
columns are defined by the patterns of inputs and outputs and as
yet have no known histochemical correlates.

The main sensory input to “visuosensory SC” is visual. Indeed,
in mice, SC is the primary target of the retina (Ellis et al.,
2016), and this input is supplemented by extensive projections
from visual cortex. Visuosensory SC mainly represents the
contralateral visual field, with nasal-to-temporal azimuthal axis of
the visual field mapped onto the anterior-to-posterior axis of SC,
and lower-to-higher elevation axis of the visual field mapped onto
the lateral-to-medial axis of SC (Xu et al., 2011; Figures 2A,B).
For example, the anterior-lateral SC is activated by objects in
front of the animal, below the eye, and the posterior-medial SC is
activated by objects behind the animal, above the eye (e.g., Mrsic-
Flogel et al., 2005). Neurons in the “motor-related” parts of SC
can respond to visual stimuli, but also to other sensory modalities,
receiving subcortical facial somatosensory and auditory input
from the trigeminal nuclei and the inferior colliculus, respectively
(e.g., Benavidez et al., 2021). The topographic map of visual
space found in the visuosensory SC is impressively matched to
the maps of auditory (at least for the azimuthal axis) (Ito et al.,
2020) and somatosensory (Drager and Hubel, 1975) space in the
motor-related SC.

THE PROPOSED FUNCTIONAL
ORGANISATION OF SUPERIOR
COLLICULUS

As we will describe, activation of neurons in the mouse SC can
evoke varied behavioural responses. Some of these behavioural
responses are relatively simple and well described. First, some
activations cause a cessation of movement, a stoppage we will
call “arrest.” Second, some activations produce fixed rotational
movements of the eye, tongue, head or of the whole body. We
will call these egocentric rotations “turning” (Figure 2C). Third,
some activations induce more complex behaviours, such that SC
appears to provide a trigger, an impetus, or opens a gate for
actions designed to achieve a certain outcome1. In some cases,
this movement is towards an appetitive object (including prey),
and we will call these actions “capture.2” In other cases, this

1Triggered behaviours usually involve goal-directed movements and may include
turns. But unlike “turning,” activations trigger a motor action sequence that
depends on the structure of the environment, and cannot simply be explained by a
stereotypical ego-centric action.
2“Capture” has been termed “pursuit” elsewhere (e.g., Procacci and Hoy, 2019): we
choose “capture” to avoid confusion with pursuit eye-movements.

movement is towards a place of apparent refuge, an action that
we will call “escape3.”

An influential framework for understanding the functional
organisation of the rodent SC was provided by Dean et al.
(1989), synthesising a large body of work in rat. The core of
this framework was a subdivision into medial and lateral SC.
The lateral subdivision (which would approximately correspond
to the lateral two columns in mouse SC), which represents a
sensory stimulus in the lower parts of the contralateral visual
field, provided outputs that “crossed” hemispheres, and appeared
to be involved in turning and approach towards that sensory
stimulus. The medial subdivision (or medial two columns), which
represents a sensory stimulus in the upper parts of the visual
field, provided uncrossed outputs and appeared to be involved
in behaviours, including arrest or fast locomotion, that facilitate
avoidance of potential threats.

Here we ask if a modified framework for the organisation of SC
can explain new data in mouse. We hypothesise an organisational
framework where: (1) Arrest is subserved by circuitry in the optic
layer of SC; (2) Contralateral turning movements are likely to be
subserved by circuitry in the intermediate layers that span lateral
and medial SC; and (3) Deep layers of SC appear to be involved
in triggering more complex behaviours including capture (lateral
SC) and escape (medial SC) (Figure 1B). While manipulations of
SC are sufficient to generate these behaviours, SC is likely only
one part of a network of brain areas involved. Indeed, a hallmark
of SC is the fact that so many areas of the brain give input to,
or receive output from it. In the following sections, we therefore
describe evidence for the hypothesised framework from direct
manipulations of SC, from the topography of SC’s sensorimotor
function, and from SC’s anatomical connectivity.

HOW MANIPULATIONS OF SUPERIOR
COLLICULUS EFFECT BEHAVIOUR

In the following sections we review how manipulations of specific
neural populations in SC lead to distinct behaviours, and note
in advance that effects of such manipulations need to be treated
with caution (reviewed in Jazayeri and Afraz, 2017; Wolff and
Ölveczky, 2018).

Arrest
Arrest is often thought of as an avoidance response, and is called
freezing when the mouse is in a context with a potential threat.
However, arrest may also be part of more exploratory behaviours,
allowing for a pause for surveillance, or attention to the external
environment (Botta et al., 2020). Direct manipulations of SC
support the idea that the optic layer is important in arrest.
Activation (Sans-Dublanc et al., 2021) or inhibition (Xie et al.,
2021) of neurons concentrated in the optic layer induces or
impairs arrest, respectively. Other manipulations of SC that evoke
arrest have either included (Wei et al., 2015), or have focussed on
(Zingg et al., 2017), the optic layer. Manipulation of CAMK2+

3Note that escape is considered to be an action towards a target (e.g., the refuge)
rather than away from the location of a potential threat (e.g., Vale et al., 2017).
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FIGURE 1 | Organisation of superior colliculus in mouse. (A) Schematic coronal section illustrating the dorso-ventral organisation of the superior colliculus (SC) of
mouse. The optic layer is ventral to the superficial layers (which includes the superficial grey and zonal layer). Together these layers are termed the “visuosensory
SC.” Ventral to the optic layer is the intermediate and then the deep layer. Together these layers are termed “motor-related SC.” The radial grey lines indicate an
approximate division of the SC into four “columns” that extend across the layers, partitioning SC on the medial-lateral axis (Benavidez et al., 2021). (B) Proposed
functional organisation of SC. The superficial layers primarily support visual analysis; the optic layers primarily organise arrest behaviours; the motor-related SC
supports egocentric turning movements as well as the triggering of more complex behaviours, either towards objects including prey (“capture,” lateral SC) or
towards refuge (“escape,” medial SC). Turning and triggering may be primarily supported by the intermediate and deep layers, respectively.

SC neurons at the border of the optic layer and intermediate
layers can also elicit arrest behaviour (Wei et al., 2015; Cai et al.,
2022). In common with some other neurons in the optic layer,
these neurons appear to project to the lateral posterior nucleus of
the thalamus (LP) and activation of their terminals in LP evokes
arrest (Wei et al., 2015). For simplicity, we therefore include these
neurons as part of the optic layer.

Arrest behaviour is more likely to be elicited by activation of
medial SC, than lateral SC (Wei et al., 2015). This medio-lateral
asymmetry is consistent with the previously hypothesised medio-
lateral separation of function (Dean et al., 1989). Our hypothesis
predicts that the absence of arrest behaviours during activation of
lateral SC can be explained by the fact that the optic layer does not
extend into the lateral most columns of SC (Figure 1; Benavidez
et al., 2021).

Turning
It is well established that activation of the motor-related
SC in freely moving animals produces contralateral turning
movements, or biases an animal towards making them
(Stubblefield et al., 2013; Masullo et al., 2019; Cregg et al.,
2020; Essig et al., 2021). In head-fixed mice, activation of
motor-related SC biases eye movements (Zahler et al., 2021)
towards the contralateral side. Inhibiting motor-related SC does
the opposite, biasing the animal towards ipsilateral movements
(Stubblefield et al., 2013; Lee and Sabatini, 2021). We note that
when head-fixed mice rotate a ball or wheel beneath them,
most active neurons in motor-related SC prefer ipsilateral turns
(Steinmetz et al., 2019) and unilateral inhibition of motor-related
SC biases animals away from ipsilateral turns (Huda et al., 2020).
The likely explanation is that these “ipsilateral” turns require

mice to push the ball or wheel down on its ipsilateral side, a
movement associated with contralateral turning during free
behaviour (Huda et al., 2020).

The intermediate layers of SC appear to be particularly
important in turning. Activation of PITX2+ neurons in SC,
which are concentrated in the intermediate layers, evokes turning
(Masullo et al., 2019). The intermediate (but not deep layers) are
targeted by the substantia nigra pars reticulata (SNr; Lee J. et al.,
2020), and activation of SNr terminals in SC induces turning
(Villalobos and Basso, 2020). Likewise, the intermediate (but not
deep layers) project to neurons in the gigantocellular nucleus that
are important in turning (Cregg et al., 2020).

Lateral SC is known to be involved in turning, and there is
some evidence for a role of medial SC in turning. Activation of
lateral SC mostly evokes contralateral turning (Isa et al., 2020),
while inhibition of lateral SC neurons can impair instinctive
turning towards sounds (Vale et al., 2020) and other turning
behaviours (Sooksawate et al., 2013; Isa et al., 2020). Circuits
for turning may, however, include medial SC as well as lateral
SC. Activation of PITX2+ neurons in medial SC induces head
turns (Masullo et al., 2019). Activating progressively more medial
locations of SC evoked larger pitch angles of head rotation,
suggesting that medial SC is involved in making movements
towards more elevated angles (Masullo et al., 2019). Pitch
rotations of the head produced by medial SC are difficult to
measure and have only been achieved in a limited number of
experiments–more data would help strengthen the case for a role
of medial SC in turning.

Superior colliculus is primarily concerned with turning
towards the contralateral side, but activation of anterior-medial
SC can also evoke ipsiversive head turns (Isa et al., 2020),
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FIGURE 2 | Topographic organisation of SC. (A) Schematic illustrating a mouse, and the world to its left, as mapped onto a hemisphere around the mouse. The
direction of objects are defined in terms of visual angle: their azimuth (position along the nasal-temporal axis) and their elevation (position along axis from the
upper-lower field). Azimuth and elevation axes are depicted as black lines and the black disc represents an example object. (B) Schematic representation of the
mapping of the world onto different sections of SC. Top panel illustrates the position of SC in the mouse brain. Middle panel enlarges the right SC and shows how
azimuth and elevation axes of visual field are mapped onto SC. The black disc indicates the approximate location of object in panel (A) in this map. Bottom panel
illustrates the mapping of the world onto a coronal section through SC. (C) Activation of intermediate layer would evoke a turn towards the egocentric location
represented by that region of SC.

and an ipsiversive bias has been reported for some medial
SC neurons (cuneiform nucleus-projectors; Isa et al., 2020)
but not others (primary auditory cortex-recipient; Zingg et al.,
2017). Activation of inhibitory, GABAergic SC neurons can bias
animals towards contralateral movements (Essig et al., 2021;
Sans-Dublanc et al., 2021) or ipsilateral movements (Duan et al.,
2021; Hao et al., 2021); the specific movements elicited by
activating subpopulations of neurons in SC is therefore likely
to depend on both the specific projection patterns and effects
(excitatory, inhibitory) of those neurons.

Escape and Capture
Circuits in medial SC are clearly important in triggering escape
behaviours. Activation of medial, motor-related SC neurons can
evoke escape or putatively escape-related backwards walking and
fast forwards running (Zingg et al., 2017; Evans et al., 2018; Isa
et al., 2020); inhibition of medial motor-related SC impairs the

triggering of escape (Evans et al., 2018). By contrast, inhibition
of lateral SC does not affect the production or speed of escape
behaviour (Shang et al., 2019; Vale, 2020; Huang et al., 2021),
though it can affect the direction of escape (Vale et al., 2020).

Circuits in lateral motor-related SC appear more important
in triggering capture behaviours. Inhibition of lateral motor-
related SC neurons (including those projecting to subthalamus-
or substantia nigra pars compacta, SNc; Shang et al., 2019; Huang
et al., 2021) impairs capture, that is movements towards prey
(Shang et al., 2019; Huang et al., 2021; Xie et al., 2021), food or
conspecifics (Huang et al., 2021).

Escape and capture are both complex behaviours, that
involve a combination of actions, such as turns combined with
locomotion. However, activations that induce escape and capture
behaviours produce turns that appear goal directed, rather
than the stereotypical ego-centric turns that comprise “turning”
behaviours described above (Evans et al., 2018; Shang et al., 2019;
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Huang et al., 2021; Xie et al., 2021). Whether and how escape
and capture behaviours recruit circuits for “turning” is not yet
clear. Activation of PITX2+ neurons in intermediate layers of
SC induces turning without locomotion (Masullo et al., 2019),
but large-scale inhibition of PITX2+ neurons does appear to
impair capture (Xie et al., 2021). Thus, while we hypothesise that
turning is supported primarily by neurons in intermediate SC,
and triggering of capture and escape is supported primarily by
neurons in deep SC, direct manipulations of motor-related SC are
yet to reveal the relative contribution of intermediate and deep
parts of SC in these behaviours.

We hypothesise that SC plays a similar role in both capture
and escape: the output of deep layer SC triggers goal-directed
action. The specific goal of that action depends on whether that
signal arises in the lateral (e.g., prey) or medial (e.g., refuge)
subdivisions of the deep layer, because these subdivisions have
different connections to the rest of the brain, as we review below.
However, the computations performed by the lateral- and medial
parts of deep layer SC are predicted to be the same in both cases.

How Sensory And Motor Function Are
Topographically Organised in Superior
Colliculus
The major sensory inputs to SC–visual, auditory and
somatosensory–are organised into aligned topographic maps
(Drager and Hubel, 1975; Ito et al., 2020). These maps provide a
representation of the egocentric direction of an object relative to
the animal’s head: the direction of an auditory or somatosensory
stimulus is directly related to the head-centric direction of the
object that produces them; the location of an object’s image on
the retina, if eye-movements are ignored, is also a proxy for

head-centric object direction. These sensory maps are aligned
parallel to the surface of SC, orthogonal to the proposed laminar
organisation of function. The sensory maps may therefore be
important in guiding and constraining the behaviour(s) that
are elicited by sensory stimuli presented at particular directions
relative to the animal.

The alignment between sensory and motor maps in SC
is likely to be important in turning behaviours. Visuosensory
SC includes “narrow-field” cells (Gale and Murphy, 2014) that
project into topographically aligned parts of motor-related SC
and appear important in turning towards prey (Hoy et al., 2019).
Consistently, activation of motor-related SC evokes turning
towards the directions that are represented by the equivalent
location in the sensory maps (Figure 2). Activation of PITX2+
neurons at specific locations in the intermediate layers evokes
contralateral turns towards specific directions (Masullo et al.,
2019). Activation of more posterior PITX2+ neurons evokes
larger contralateral (yaw) turns, consistent with the more
temporal receptive fields found in posterior SC. Activation
of more medial PITX2+ neurons evokes larger pitch turns,
consistent with the more elevated receptive fields found in the
medial SC. Similarly, in head-fixed mice activation of more
posterior SC neurons induces more temporal eye turns (Wang
et al., 2015).

The relationship between topographic sensory maps and
other actions (escape, capture, arrest) is less clear. Activation
experiments show that motor-related medial SC is important
in escape behaviour, and visuosensory medial SC represents
the overhead visual field. If this topographic alignment were
important for escape behaviour, then escape behaviours should be
more easily elicited by stimuli in the upper visual field (cf., Dean
et al., 1989), which would include aerial, and tall ground-based

FIGURE 3 | Summary of some of the major inputs and outputs of SC. (A) Inputs. Areas are grouped by major target regions in SC. (B) Outputs. Areas are grouped
by major source regions in SC and proposed functional roles, indicated next to the group. Arrows in panels (A,B) show approximate locations of the input targets (A)
or projection sources (B). CUN, cuneiform nucleus; D-HVAs, higher visual areas (dorsal stream); DN, dentate nucleus; dPAG, dorsal PAG; FN, fastigial nucleus; Gi,
gigantocellular nucleus; IP, interposed nucleus; LDT, laterodorsal tegmental nucleus; LHA, lateral hypothalamus; LP, lateral posterior nucleus of the thalamus; LS,
lateral septal nucleus; MARN, magnocellular reticular nucleus; MDRN, medullary reticular nucleus; MOp, primary motor area; MOs, secondary motor area; PARN,
parvicellular reticular nucleus; PBG, parabigeminal nucleus; PBl, lateral parabrachial nucleus; SI, substantia innominata; SNr, substantia nigra (reticular part); VAL,
ventral anterior-lateral complex of the thalamus; V-HVAs, higher visual areas (ventral stream); VISp, primary visual area; VM, ventral medial nucleus of the thalamus;
VMHdm/c, ventromedial hypothalamic nucleus (dorsomedial/central part); VMHvl, ventromedial hypothalamic nucleus (ventrolateral part); ZIm, zona incerta (medial
part). Abbreviations are also defined in Table 6. Appropriate references can be found in the text and in Tables 1–5.
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TABLE 1 | Areas reported to be involved in the production of arrest behaviour.

ARREST

AREA References Function Anatomy

Neural activity
increases
during arrest

Activation
induces arrest

Inhibition
impairs arrest

Other roles Output from ipsilateral SC Input to ipsilateral SC

Layers and
columns of
SC

Cellular markers in SC Cellular
markers in
target area

Layers and
columns of
SC

Cellular
markers in
SC

Cellular
markers in
source area

PBG Benavidez et al., 2021 SCs (c. 1–3)

Gale and Murphy, 2018 GRP+, GAD2+ or RORB+

Montardy et al., 2021 DRD2+

Shang et al., 2018 VGLUT2+ VGLUT2+
(unilateral)

VGLUT2+
(bilateral)

Fast
locomotion

PV+

Tokuoka et al., 2020 SCs
(BILATERAL)

CHAT+

Zhang et al., 2019 VGAT+

Zingg et al., 2017 Retina- or VISp- or
AUDp-recipient

LDT Benavidez et al., 2021 SCm (c. 1–3)

Wang et al., 2019d PV+ or SOM+

Xie et al., 2021 CBLN2+

Yang et al., 2016 PV+ (unilateral) PV+ (unilateral) SOM+ in
opposing arrest

l/vlPAG Tovote et al., 2016 VGLUT2+ (bilateral) VGLUT2+
(bilateral)

Vaaga et al., 2020 CHX10+ (bilateral)

Yu et al., 2021 VGLUT2+ (bilateral)

LP Benavidez et al., 2021 SCs, SCm (c.
1–3)
(BILATERAL)

Gale and Murphy, 2014 NTSR1+

Montardy et al., 2021 DRD2 +

Shang et al., 2018 VGLUT2+ VGLUT2+
(unilateral)

VGLUT2+
(bilateral)

PV +

Wei et al., 2015 CAMK2+

Xie et al., 2021 CBLN2+

Zhou et al., 2017 SP+

Zingg et al., 2017 Retina- or VISp-recipient

VISp Liang et al., 2015 RPB4+ (bilateral) General
population

Functional measurements and anatomical connectivity with SC. For example, Shang et al. (2018) (4th line in PBG above) shows that; VGLUT2+ PBG neurons show increased activity during arrest; unilateral activation
of VGLUT2+ PBG neurons induces arrest; bilateral inhibition of VGLUT2+ PBG neurons impairs arrest. This does not imply that these functional observations would hold in all contexts, nor that VGLUT2+ PBG neurons
are the only cell type involved in arrest, nor that all VGLUT2+ PBG neurons are involved in arrest. The study also finds that PV+ SC neurons project to the PBG: though this does not imply that PV+ SC neurons are the
only PBG-projectors in the SC, or that all PV+ SC neurons project to the PBG. Finally, the study further suggests a role for the PBG in fast locomotion.
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TABLE 2 | Areas reported to be involved in the production of turning.

TURNING

AREA References Function Anatomy

Neural activity
increased
during turns

Unilateral
activation
biases turning

Unilateral
inhibition
biases turning

Other roles Output from ipsilateral SC Input to ipsilateral SC

Layers and columns
of SC

Cellular markers
in SC

Cellular
markers in
target area

Layers and
columns of
SC

Cellular
markers in
SC

Cellular
markers in
source area

HEAD OR BODY

Gi Benavidez et al., 2021 SCm (c. 3–4)
(CONTRALATERAL)

Cregg et al., 2020 CHX10+ CHX10+ SCm (c. 3–4)
(CONTRALATERAL)

Intermediate layer,
VGLUT2+

CHX10+

Duan et al., 2021 MOs-recipient

Usseglio et al., 2020 CHX10+ CHX10+

VTA Barbano et al., 2020 Escape

Benavidez et al., 2021 SCm (c. 1–4)

Hughes et al., 2019 VGAT+ VGAT+ VGAT+ Not escape

Zhang et al., 2019 Escape GAD2+ or VGAT+ TH+

Zhou et al., 2019 CAMK2+ GAD2+

PF Benavidez et al., 2021 SCm (c. 1–4)

Watson et al., 2021 General
population

VGLUT2+ VGLUT2+

STN Benavidez et al., 2021 SCm (c. 3–4)

Guillaumin et al., 2021 General
population

PITX2+ PITX2+

TONGUE OR EYE

MOs, ALM, FN Benavidez et al., 2021 SCm (c. 3–4)

Duan et al., 2021 MOs

Gao et al., 2018 FN FN FN

Guo et al., 2014 ALM

Itokazu et al., 2018 MOs MOs MOs

Masullo et al., 2019 PITX2+

VM/VAL Benavidez et al., 2021 SCm (c. 3–4)

Guo et al., 2017 General
population

Zingg et al., 2017 VM: MOp-recipient

MOp Benavidez et al., 2021 SCm (c. 3–4)

Masullo et al., 2019 PITX2+

Mayrhofer et al., 2019 MOp
Tongue-jaw
region

MOp
Tongue-jaw
region

(Continued)
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TABLE 2 | (Continued)

TURNING

AREA References Function Anatomy

Neural activity
increased
during turns

Unilateral
activation
biases turning

Unilateral
inhibition
biases turning

Other roles Output from ipsilateral SC Input to ipsilateral SC

Layers and columns
of SC

Cellular markers
in SC

Cellular
markers in
target area

Layers and
columns of
SC

Cellular
markers in
SC

Cellular
markers in
source area

D-HVAs Garrett et al., 2014 Lateral

Itokazu et al., 2018 RL, A

Odoemene et al., 2018 AM

Wang and Burkhalter,
2013

Intermediate
layers

FORELIMB

MOp Benavidez et al., 2021 SCm (c. 3–4)

Masullo et al., 2019 PITX2+

Heindorf et al., 2018 MOp Forelimb
region

Hira et al., 2015 MOp Forelimb
region

Morandell and Huber,
2017

MOp Forelimb
region

MDRNv Benavidez et al., 2021 SCm (c. 3–4)

Esposito et al., 2014 VGLUT2+
(bilateral)

SCm (c. 3–4)
(CONTRALATERAL)

VGLUT2+ VGLUT2+

Masullo et al., 2019 PITX2+

PARN, SPVO/I Benavidez et al., 2021 SCm (c. 3–4) (4 for
SPV)

SCm (c. 4)
(SPV)

Ruder et al., 2021 General
population

General
population

(bilateral)

Han et al., 2017 PARN–
oromotor

Functional measurements and anatomical connectivity with SC. Conventions as in Table 1.
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predators. Indeed, an expanding black disc on a screen (“looming
stimulus”) presented to the upper visual field usually elicits a
rapid escape to refuge when one is present (Yilmaz and Meister,
2013). Whether looming stimuli from other visual directions can
induce escape responses is less clear, but limited work suggests
that a looming stimulus in front (Zhou et al., 2019) or below
(Yilmaz and Meister, 2013; Zhou et al., 2019) a mouse does not
elicit the same rapid escape. Capture can be directed towards
stimuli in the lower visual field (Hoy et al., 2016; Vale et al., 2020),
and perhaps specific parts of the lower visual field (Hoy et al.,
2016, 2019; Michaiel et al., 2020; Holmgren et al., 2021; Johnson
et al., 2021). Whether capture behaviours can be evoked by a
stimulus presented to the upper visual field remains to be seen.
Behavioural work suggests that arrest can be induced by a visual
stimulus presented to either the upper or lower visual field (De
Franceschi et al., 2016; Procacci et al., 2020).

HOW AREAS CONNECTED TO
SUPERIOR COLLICULUS INFLUENCE
BEHAVIOUR

Connections of different parts of SC with other brain areas
provides complementary, circumstantial evidence for the
parcellation of behavioural function proposed in Figure 1B.
This evidence is summarised below and in Figure 3. Tables 1–
5 summarise the key experimental methods and results of
these studies as look-up tables, and direct the reader to
additional related work.

Visuosensory Superior Colliculus, Arrest
Connections of visuosensory SC, and the optic layer in particular,
are consistent with a role in arrest. The thalamic area LP
and pontine area laterodorsal tegmental nucleus are innervated
by the optic layer (Xie et al., 2021), and are involved in
arrest (Yang et al., 2016; Shang et al., 2018). Midbrain area
parabigeminal nucleus (PBG) has reciprocal connections with
visuosensory SC (including the optic layer; Zhang et al., 2019;
Tokuoka et al., 2020), and may be involved in the production
of arrest following escape (Shang et al., 2018). Primary visual
cortex innervates the visuosensory SC, including the optic layer,
and activation of these terminals in SC (Liang et al., 2015)
or of SC neurons post-synaptic to them (Zingg et al., 2017)
induces arrest, while inhibition of primary visual cortex impairs
arrest to light flashes (Liang et al., 2015). Interestingly, ventral
stream higher visual areas primarily project to optic layer
(Wang and Burkhalter, 2013) but whether they also have a
role in arrest is not yet known. By contrast, while inhibition
of primary auditory cortex also impairs sound-induced arrest
(Li et al., 2021), primary auditory cortex’s projection to SC
does not innervate the optic layer (Benavidez et al., 2021),
and inhibition of SC does not impair these sound-induced
arrest behaviours. The stimulus selectivity of visuosensory SC
is generally broad (e.g., Gale and Murphy, 2014; De Franceschi
and Solomon, 2018), and the sensory signals in these layers are
therefore likely able to guide many or even most behaviours.
Particular pathways through visuosensory SC may nevertheless
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TABLE 4 | Areas reported to be involved in the triggering of capture and escape.

TRIGGERING

AREA References Function Anatomy

Neural activity
increased
during
behaviour

Unilateral
activation
induces
behaviour

Bilateral
inhibition
impairs
behaviour

Other roles Output from ipsilateral SC Input to ipsilateral SC

Layers and
columns of SC

Cellular markers
in SC

Cellular
markers in
target area

Layers and
columns of
SC

Cellular
markers in
SC

Cellular
markers in
source area

CAPTURE

LHA Benavidez et al., 2021 SCm (c. 3–4)

Li Y. et al., 2018 VGAT+ VGAT+
(bilateral)

VGAT+ VGLUT2+ in
evasion

Venner et al., 2019 VGAT+

SI Benavidez et al., 2021 SCm (c. 4)

Zhu et al., 2021 THY1+ THY1+ or
CAMK2+

THY1+

l/vlPAG Yu et al., 2021 General
population

VGAT+

VISp Burgess et al., 2017 General
population

VMHvl Benavidez et al., 2021 SCm (c. 1–4)
(BILATERAL)

Lateral-
biased

Wang et al., 2019b ESR1+ Social defence

Lee et al., 2014 ESR1+ ESR1+

ZIm Ahmadlou et al., 2021 GAD2+ or
TAC1+

GAD2+ or
TAC1+

Benavidez et al., 2021 SCm (c. 4) SCm (c. 4)

Masullo et al., 2019 PITX2+

Wang et al., 2019c Defence

Xie et al., 2021 PITX2+

Zhao et al., 2019 VGAT+
(bilateral)

VGAT+

MRN Benavidez et al., 2021 SCm (c. 3–4) SCm (c. 3–4)

Inagaki et al., 2020 Thalamus-
projecting
MRN/PPN

Masullo et al., 2019 PITX2+ PITX2+

DN and IPN Benavidez et al., 2021 SCm (c. 3–4)

Dacre et al., 2021 General
population

Masullo et al., 2019 PITX2+

(Continued)
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TABLE 4 | (Continued)

TRIGGERING

AREA References Function Anatomy

Neural activity
increased
during
behaviour

Unilateral
activation
induces
behaviour

Bilateral
inhibition
impairs
behaviour

Other roles Output from ipsilateral SC Input to ipsilateral SC

Layers and
columns of SC

Cellular markers
in SC

Cellular
markers in
target area

Layers and
columns of
SC

Cellular
markers in
SC

Cellular
markers in
source area

AM and VAL Benavidez et al., 2021 SCm (c. 3–4)

Dacre et al., 2021

ESCAPE

dPAG Deng et al., 2016 General
population

CAMK2+ Interspersed
with arrest

Evans et al., 2018 VGLUT2+ VGLUT2+
(bilateral)

VGLUT2+ Medial-biased

Kunwar et al., 2015 VGLUT2+ Interspersed
with arrest

Tovote et al., 2016 VGLUT2+ Interspersed
with arrest

PBl Benavidez et al., 2021 SCm (c. 1)

Han et al., 2015 CGRP+ CGRP+ Arrest

Sun et al., 2020 VGLUT2+,
CAMK2+

LS Benavidez et al., 2021 SCm (c. 1)

Azevedo et al., 2020 NTS+

VMHdm/c Benavidez et al., 2021 SCm (c. 1–4)
(BILATERAL)

Medial-
biased

Kunwar et al., 2015 SF1+ (bilateral) Arrest

Functional measurements and anatomical connectivity with SC. Conventions as in Table 1.
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TABLE 5 | Areas providing inhibitory input to the SC.

INHIBITORY INPUTS

AREA References Function Anatomy

Neural activity
increased during
behaviour

Unilateral
activation
induces
behaviour

Bilateral
inhibition impairs
behaviour

Input to ipsilateral SC

Layers and
columns of SC

Cellular markers
in SC

Cellular markers
in source area

LGv Benavidez et al., 2021 SCm (c. 1–3)

Fratzl et al., 2021 All layers Medial-biased
VGAT+ or GAD2+
or VGLUT2+

Salay and Huberman,
2021

VGAT+ or GAD2+
or VGLUT2+

LGv (ARREST) Fratzl et al., 2021 VGAT+ activation
impairs arrest

Salay and Huberman,
2021

GAD2+ impairs and
VGLUT2+ induces
arrest

GAD2+ facilitates
and VGLUT2+
impairs arrest

LGv (ESCAPE) Fratzl et al., 2021 VGAT+ impairs
escape

VGAT+ facilitates
escape

SNr (TURNING) Benavidez et al., 2021 SCm (c. 1–4)

Hormigo et al., 2021 VGAT+ activation
induces ipsiversive
turns

VGAT+ inhibition
induces
contraversive turns

Lee K. H. et al., 2020 Intermediate layers

Liu et al., 2020 GAD2+ or PV+

Masullo et al., 2019 PITX2+

McElvain et al., 2021 PV+ or VGAT+

Functional measurements and anatomical connectivity with SC. Conventions as in Table 1.

be more important for some behaviours than others (e.g.,
Reinhard et al., 2019); whether projections from visuosensory to
motor-related SC are particularly important for arrest, remains
to be determined.

Central amygdala (CeA) is an end target of many of the
pathways that project from the optic layer of SC. LP is indirectly
connected to CeA through the basolateral amygdala (Fadok
et al., 2018), and PBG projects directly to CeA (Shang et al.,
2015). Activation of medial SC populations concentrated in
(NTSR1+) (Gale and Murphy, 2014), or including (CAMK2+)
(Wei et al., 2015), the optic layer activates CeA and induces
arrest (Sans-Dublanc et al., 2021), and manipulating CeA alters
freezing responses to visual looming stimuli (Zelikowsky et al.,
2018). CeA may promote arrest or freezing via several potential
pathways, perhaps even through its projection to periaqueductal
grey (PAG) (Tovote et al., 2015; Vaaga et al., 2020; Yu et al.,
2021).

Intermediate Layers of Superior
Colliculus, Turning
Intermediate layers of SC are likely to be particularly important
in turning. CHX10+ gigantocellular nucleus neurons, which are a
potential route through which lateral SC promotes contralateral
turning, receive input from intermediate layers (but not deep
layers) of SC (Cregg et al., 2020). Intermediate layers (but not

deep layers) are innervated by the substantia nigra pars reticulata
(Lee J. et al., 2020), and manipulation of that input induces
turning (Villalobos and Basso, 2020). Dorsal stream higher visual
areas, which may play a role in representing turn directions
(Itokazu et al., 2018; Odoemene et al., 2018), specifically target
intermediate layers (Wang and Burkhalter, 2013).

Areas involved in turning appear to preferentially connect to
lateral SC. Many of the connections of lateral SC (Benavidez et al.,
2021) are known to have a role in producing movements towards
particular egocentric directions, either of the body (including
gigantocellular nucleus; Cregg et al., 2020) or its parts (motor
cortex; fastigial nucleus of the cerebellum; motor thalamus; Guo
et al., 2014, 2017; Hira et al., 2015; Morandell and Huber, 2017;
Gao et al., 2018; Heindorf et al., 2018; Mayrhofer et al., 2019).
Lateral SC also provides output to the medullary reticular nucleus
(Esposito et al., 2014) that may be important in movements of
the forelimb contralateral to SC (Ruder et al., 2021), and to
the parvicellular reticular nucleus that may also be important
in forelimb (Ruder et al., 2021) and tongue-jaw movements
(Han et al., 2017).

While there is good evidence that lateral SC is involved in
turning movements, PITX2+ SC neurons are found in medial-
as well as lateral SC (Masullo et al., 2019), and these neurons
are known to be involved in turning. The connection pattern
of PITX2+ neurons is similar to that found for non-specific
tracing from lateral SC (Masullo et al., 2019; Xie et al., 2021).
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TABLE 6 | Acronyms and corresponding brain areas used in the text.

Acronym Definition

ALM Anterolateral motor cortex (Komiyama et al., 2010)

AM Anteromedial nucleus of the thalamus

AUDp Primary auditory area

CUN Cuneiform nucleus

D-HVAs Higher visual areas, dorsal stream: RL, A, AM (Wang and Burkhalter,
2013)

DN Dentate nucleus

dPAG Dorsal PAG (Evans et al., 2018)

FN Fastigial nucleus

Gi Gigantocellular nucleus (Cregg et al., 2020)

IC Inferior colliculus

IP Interposed nucleus

l/vlPAG Lateral/ventrolateral PAG (Han et al., 2017)

LDT Laterodorsal tegmental nucleus

LGv Ventral lateral geniculate nucleus

LHA Lateral hypothalamic area

LP Lateral posterior nucleus of the thalamus

LS Lateral septal nucleus

MARN Magnocellular reticular nucleus

MDRNv Medullary reticular nucleus, ventral part

MOp Primary motor area

MOs Secondary motor area

MRN Midbrain reticular nucleus

PAG Periaqueductal grey

PARN Parvicellular reticular nucleus

PBG Parabigeminal nucleus

PBl Lateral parabrachial nucleus (Sun et al., 2020)

PF Parafascicular nucleus

SI Substantia innominata

SCs Visuosensory SC

SCm Motor-related SC

SNr Substantia nigra, reticular part

SPVO/I Spinal nucleus of the trigeminal, oral, and interpolar parts

STN Subthalamic nucleus

VAL Ventral anterior-lateral complex of the thalamus

V-HVAs Higher visual areas, ventral stream: LM, LI, P, and POR (Wang and
Burkhalter, 2013)

VISp Primary visual area

VM Ventral medial nucleus of the thalamus

VMHdm/cVentromedial hypothalamic nucleus, dorsomedial/central part (Kunwar
et al., 2015)

VMHvl Ventromedial hypothalamic nucleus, ventrolateral part (Lee et al., 2014)

VTA Ventral tegmental area

ZIm Zona incerta, medial part (Zhao et al., 2019)

Acronyms and nomenclature are according to that used by the Allen Brain Institute,
unless otherwise indicated by an associated citation.

This suggests that while areas involved in turning have stronger
connections with lateral SC, they are also connected to medial SC.

Superior colliculus also sends projections to basal ganglia
nuclei, including ventral tegmental area (VTA; e.g., Zhang et al.,
2019; Zhou et al., 2019) and the subthalamic nucleus. Whether
these SC projections help generate specific turning actions, or

more complex behaviours, is not yet clear (Hughes et al., 2019;
Zhou et al., 2019; Barbano et al., 2020).

Deep Layers of Superior Colliculus,
Capture and Escape
Deep layers of SC are connected to areas that are thought
to be important in triggering more complex movements.
Deep lateral SC is connected to areas (Benavidez et al.,
2021) involved in triggering capture [including zona incerta,
medial part; substantia innominata; ventromedial hypothalamus,
ventrolateral part (Lee et al., 2014; Zhao et al., 2019; Zhu et al.,
2021)]; and activation of SC terminals in the zona incerta (Shang
et al., 2019; Xie et al., 2021) or substantia nigra pars compacta
(SNc; Huang et al., 2021), facilitates capture. Lateral SC also
projects to the lateral hypothalamic area (Venner et al., 2019;
Benavidez et al., 2021), also potentially involved in capture (Li
Y. et al., 2018). Lateral SC receives input from the dentate
and interposed nuclei of the cerebellum, areas which might be
involved in triggering goal-directed movements of the forelimb
(Dacre et al., 2021) and other body parts.

Deep medial SC is connected to areas involved in evoking
fast locomotion (including cuneiform nucleus and magnocellular
reticular nucleus; Capelli et al., 2017; Caggiano et al., 2018)
and triggering escape (including dorsal periaqueductal grey,
dPAG; lateral parabrachial nucleus; lateral septum; ventromedial
hypothalamus, dorsomedial/central part, VMHdm/c; Han et al.,
2015; Kunwar et al., 2015; Deng et al., 2016; Tovote et al.,
2016; Evans et al., 2018; Azevedo et al., 2020; Sun et al., 2020).
Activation of terminals of SC neurons in the PAG evokes mild
running in head-fixed mice (Wang et al., 2019a) and “wild
running or backward fleeing behaviours” in freely moving mice
(Wei et al., 2015). Some medial SC neurons project to both
cuneiform nucleus and dPAG (Isa et al., 2020).

Whether triggering of behaviour is the preserve of deep
layers, or also involves intermediate layers is not yet clear.
Capture-associated connections (zona incerta, medial part and
ventromedial hypothalamus, ventrolateral part) also contact
intermediate layers (Benavidez et al., 2021). In the case of escape,
DRD2+ and PITX2+ neurons both have patchy labelling in
intermediate layers of SC, but have different projections, and
activation of the former can trigger escape, suggesting that some
intermediate layer neurons are involved in triggering escape
(Masullo et al., 2019; Montardy et al., 2021; Xie et al., 2021).
However, deep layers of SC alone are innervated by VMHdm/c
(Benavidez et al., 2021), and dPAG also gets more input from the
deep layers of SC than intermediate layers (Evans et al., 2018).
VMHdm/c and dPAG have roles in triggering escape behaviour,
so their connection to the deep rather than intermediate SC
would suggest the deep layers are more important in triggering
these behaviours.

CONCLUSION

In summary, we propose that many of the recent observations
made while investigating of the role of mouse SC in simple
behaviours can be explained by supposing that: (1) The optic
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layer is important in arrest; (2) The intermediate layers are
important in turning; (3) The deep layers are involved in the
triggering of more complex behaviours including capture and
escape. Our hypothesis has the advantage that it predicts that
the circuitry in each of the optic, intermediate and deep layers
has a simple computational purpose. The proposed organisation
allows homogenous organisation and expression of genetic
markers within a layer, and allows homogenous circuitry and
function within each layer. That is, each layer performs a
particular computation, but the functional consequence of that
computation depends on the particular pattern of inputs and
outputs at different locations (e.g., medial or lateral) within the
layer. The proposed organisation of SC is therefore similar in
concept to the idea of columnar or “canonical” microcircuitry
thought to be important in the function of the cerebral cortex
(e.g., Miller, 2016).

Dean et al. (1989) proposed that the crossed pathway of SC
(spanning the medial-lateral axis, but concentrated in lateral
SC) was associated with contralaterally directed movements,
whilst the uncrossed pathway (concentrated in medial SC) was
associated with defensive behaviours, such as freezing, escape and
ipsilaterally directed movements. We also propose that neurons
promoting contralaterally directed movements are distributed
across the medial-lateral axis of SC, and that escape is the
preserve of medial SC, although we further hypothesise that
turning and escape are associated with the intermediate and deep
layers, respectively. The major differences between our proposed
organisation, and that of Dean et al. (1989), is that in our
organisation: arrest (including freezing) is primarily supported
by neurons in the optic layer. In addition, we propose that
equivalent circuitry within lateral and medial parts of the deep
layers supports both capture and escape–different behaviours
are triggered by medial and lateral SC because each region has
distinct pattern of connections with other brain areas.

Lamprey, fish and flies turn away from threatening stimuli,
and in lamprey and fish, this action is supported by ipsiversive
movement-promoting neurons in homologues of SC (Isa et al.,
2021). Instead, mice turn towards a refuge (when present) when
they are confronted by imminent threats (Evans et al., 2018).
Our proposal does not include a role for ipsiversive movement-
promoting neurons in mouse SC. If correct, we speculate that
this species difference may be part of a general co-option of SC’s
turning circuitry in mammals, allowing mice to turn towards
memorised, predicted or learned directions. These behaviours
may be supported by inputs from evolutionarily newer areas
in the telencephalon, including the retrosplenial and frontal
cortices, and the basal ganglia. The role of these inputs would
be to override the “turn towards stimuli” contingency normally
represented by turning circuitry in SC, including functionally
inhibiting contraversive turn-promoting neurons (c.f., Huda
et al., 2020; Duan et al., 2021; Lee and Sabatini, 2021).

There remain many missing pieces that may provide
substantial challenges to the proposed organisation. For example,
we predict that separate neurons are involved in turning and
capture, and that they are associated with the intermediate
and deep layers, respectively, but there is mixed evidence for
the laminar segregation of these neurons. In some SC targets

(zona incerta, lateral/ventrolateral PAG, VTA), different neurons
are involved in different behaviours, but whether these are
appropriately connected to relevant SC neurons is untested. We
have not considered the role of the extensive interhemispheric
connections of SC. We also predict that visual stimuli will elicit
rapid escape only if they are in the upper visual field, but there
is very little data on the influence of stimulus location on escape.
Finally, emerging work has now started to explore SC’s role in
stimulus discrimination tasks in mouse (e.g., Stubblefield et al.,
2013; Hu et al., 2019; Wang et al., 2020, 2021; Duan et al., 2021;
Essig et al., 2021; Hu and Dan, 2022). How the behaviours we have
focused on (arrest, capture, escape) contribute to these tasks is not
yet clear. Combining the formalism of classical discrimination
tasks, and the ecological relevance of the behaviours we have
generally discussed here, is likely to be a fruitful direction for
future research.

Much remains to be understood about the specific
contribution of SC to even simple behaviours. For example,
consider two potential representations provided by intermediate
layers of SC, which are likely to support turning behaviours.
In one scenario, intermediate layers represent the direction in
which behaviour should be expressed, and other brain areas are
responsible for selecting the specific behaviour that should be
produced, such as choosing between orienting the eyes, head or
tongue. Alternatively, the pattern of activity over SC neurons
might define both direction and specific behaviour produced,
similar to the action-selection model of basal ganglia function
(Friend and Kravitz, 2014). Indeed, some targets of SC appear to
be involved in specific types of turns (e.g., Takatoh et al., 2021).
Retrograde tracing experiments also suggest that different targets
of SC receive input from different SC neurons: LP-projectors
are separate from PBG-projectors (Shang et al., 2018) and
SNc-projectors (Huang et al., 2021); zona incerta-projectors
are separate from PAG-projectors, midbrain locomotor region-
projectors (Shang et al., 2019), and SNc-projectors (Huang et al.,
2021); SNc-projectors are separate from VTA-projectors (Huang
et al., 2021). Functional evidence is, however, limited, and it
remains possible that individual SC neurons are involved in
multiple aspects of turning. For example, PITX2+ SC neurons
promote orienting in freely moving mice, but eye turns in
head-fixed mice (Masullo et al., 2019).

Resolution of these outstanding questions is likely to be helped
by the development of mouse lines in which genetically defined
populations can be studied. Recent work has already provided
lines which allow the targeting of neurons in different layers,
often with different connections. Different zonal and upper
superficial grey layer neurons can be targeted using expression
of DRD1 (Montardy et al., 2021), and combinations of GAD2
and RORB (Gale and Murphy, 2018). Another population of
visuosensory neurons is labelled by GRP (Gale and Murphy,
2014). In the lower superficial grey and optic layer, neurons can
be targeted using expression of PV (Shang et al., 2015), NSTR1
(Gale and Murphy, 2014), CAMK2 (Wei et al., 2015), CBLN2
(Xie et al., 2021), SP (Zhou et al., 2017), and DRD2 (Montardy
et al., 2021). The intermediate layers can be targeted with PITX2
(Masullo et al., 2019; Xie et al., 2021) and DRD2 (Montardy
et al., 2021) expression. Cell types in the deep layers of SC, which
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have been defined on the basis of morphological and intrinsic
electrophysiological properties, currently lack equivalent genetic
markers (Bednárová et al., 2018).

Our proposal may provide a natural framework for more
general understanding of the function of SC. First, threat
imminence theory proposes that animals switch from freezing to
escape behaviour as a threat becomes more imminent (Perusini
and Fanselow, 2015). While many stimuli may elicit freezing,
only some should trigger escape. This is consistent with the
fact that neurons in optic layers respond to a broader range
of visual stimuli than do neurons in motor-related SC (Lee
K. H. et al., 2020). Second, SC is generally thought to be
important in mediating visual attention, at least in primates
(e.g., Krauzlis et al., 2013). If attention can be similarly
described in mice (Wang and Krauzlis, 2018), then optic layer
SC neurons involved in arrest (whose projections include the
thalamus) may be important in pausing other behaviours to
allow attention, and motor-related SC neurons involved in
turning may be important in directing attention to particular
locations within the visual field (Wang et al., 2020, 2021).
Third, the proposed compartmentalisation of function may help
rapid decision making (Gold and Shadlen, 2007). Activity in
each compartment could be considered evidence in favour of a
behaviour, such that behaviour is executed when accumulated
activity exceeds a threshold level. Indeed, a threshold applied

to the accumulated activity of neurons in motor-related SC
can explain triggering of escape behaviours (Evans et al., 2018).
Fourth, even these simple behaviours are context dependent–
for example animals usually choose to escape from a looming
visual stimulus (Yilmaz and Meister, 2013), but freeze if the
refuge is distant (Lecca et al., 2020) or absent (Vale et al.,
2017). Functional compartmentalisation of SC would make it
straightforward to bias simple behavioural choices and thereby
tune behaviour to context.
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