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Condensation in hybrid superconducting-cavity–microscopic-spins
systems with finite-bandwidth drive
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Using Keldysh field theory, we find conditions for nonequilibrium condensation in the open Tavis-Cummings
model under a direct finite-bandwidth incoherent cavity drive. Experimentally, we expect the condensation
transition to be easily accessible to hybrid superconducting systems coupled to microscopic spins, as well as
to many other incoherently driven light-matter systems. In our theoretical analysis, we explicitly incorporate
the drive’s spectral distribution into the saddle-point description. We show that the injected incoherent photons
create a drive-dependent effective coupling between spin-1/2 particles. The condensation transition arises at a
critical regime of driving which we can now accurately predict. Our results also provide important guidelines for
future quantum simulation experiments of nonequilibrium phases with hybrid devices.

DOI: 10.1103/PhysRevB.106.024502

I. INTRODUCTION

The last few decades have seen enormous advances in
experimental realization and theoretical understanding of
quantum condensation in a variety of physical systems.
They range from condensed matter models like microcav-
ity exciton-polariton systems [1,2], electron-hole plasmas of
highly excited semiconductors [3], and quantum magnets
[4]; to circuit quantum electrodynamics (CQED) devices that
demonstrate photon condensation [5], the Dicke states [6], and
dressed collective qubit states [7].

Among these, condensation in light-matter cavity QED
systems offers a path into deeper understanding of non-
equilibrium phases of matter. Here we show that this
phenomenon could be studied with an analog quantum sim-
ulation [8–11], which offers a highly promising avenue for
testing quantitative predictions of non-equilibrium quantum
theory [12]. Analog simulators can mimic the dynamics of
many-body quantum optical systems by reconstructing their
Hamiltonian under precisely controlled conditions [13–15].
In particular, we consider the much studied hybrid quantum
system consisting of a superconducting resonator coupled to
solid state spin centers [16–18] as the ideal quantum simula-
tor. Experimental realizations can include a superconducting
resonator coupled to NV− spin centers or other impuri-
ties [19–22]. Programmable signal generators and sensitive
amplifiers provide highly controllable driving and probing
in the microwave regime, even to the extent that quantum
state tomography can reconstruct the cavity states of mi-
crowave resonators [23,24]. Although CQED setups have
well-understood Hamiltonians, the question of how to achieve
condensation with these systems has not been addressed be-
fore. A key element is energy pumping (driving) which we
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focus on here. We analyze this system in the presence of an
incoherent, finite-bandwidth, typically microwave frequency
drive with a general spectral distribution.

The nonequilibrium response to incoherent drive is chal-
lenging to analyze because the drive induces interactions
between the two-level atoms. This is considered an open
problem which was previously approached with an effective
phenomenological (or Markovian) description in the system’s
equations of motion [25] or, where appropriate, with the in-
troduction of fermionic driving [2]. In the latter it was shown
that the system can access both condensation and lasing
regimes [1,26–28] which are connected by a smooth crossover
[29–31].

In contrast, here we analyze the condensation transition
based on a model with a direct photonic drive. We use Keldysh
field theory techniques [25,32] to study the consequences of
a bosonic drive and obtain the condensation phase diagram
with directly applicable predictions. Technically, our analysis
is based on the saddle-point solution of the Keldysh action
which is standard procedure for studying condensation phe-
nomena [25,33]. Note also that because the drive couples to
the cavity photon modes, population inversion of the two-level
atoms cannot occur. Hence it is physically impossible for the
system to behave as a laser.

One of the central aims of our work is to determine the pa-
rameter space and photon drive’s distribution function where
the system can access the condensation regime. We hypothe-
size that driving the cavity with Markovian noise (flat spectral
density) cannot reach the phase transition because it strongly
decoheres and thermalizes the system. Physically, Markovian
drive and decay correspond to a constant in the frequency
domain all energy modes (even those at high energies) are
driven with the same strength, which corresponds to an infinite
temperature bath [34]. Indeed, we see that the threshold for
condensation is only realistically achievable for a finite band-
width drive, a case which can be analyzed in our formalism.
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FIG. 1. Sketch of possible experimental setup uses NV− vacancy centers (spin-1/2 particles) in diamond coupled to superconducting
resonator interacting with different types of environment. Frequency profile of photonic drive characterized by photon mode number nB(ω).

In this work, we use the term “non-Markovian” driving to
mean frequency-dependent driving. We only observe spon-
taneous condensation when preferentially driving the low
frequency part of the spectrum. In the regime of condensation,
we observe that the condensation threshold is sensitive to
the width of the spectral profile of the drive. Larger widths
require higher drive strengths. Hence, extremely large spec-
tral profiles are experimentally unpractical. In fact, it was
established in earlier work [35] that condensation cannot be
achieved within the Markov approximation, which drives the
high and low energy modes with equal strength. The drive
would cause strong decoherence that impedes the formation
of the condensate [35]. Hence we cannot analyze the problem
using a Markovian master equation, which is a more appro-
priate method for quantum optical problems where energy
dependence of decay or drive are irrelevant.

II. SYSTEM AND MODEL

In this work, we use Keldysh field theory [25,32] to pre-
dict the onset of spontaneous coherence (via non-equilibrium
condensation) in many-body light-matter systems under di-
rect incoherent driving with finite bandwidth and amplitude.
Standard quantum optics techniques cannot easily treat fre-
quency dependent (non-Markovian) drive. However the field
theoretical approach offers a natural language for including
general spectral densities and exploring how this affects the
steady-state of the system.

We focus on the open Tavis-Cummings model (Fig. 1)
featuring an ensemble of spin-1/2 particles (or pseudo-spins
representing two-level atoms) which are dipole-coupled to
one quantized cavity mode. The cavity is coupled to an
incoherent photonic drive. Unlike previous Keldysh-based
theoretical studies on microcavity polariton systems [2], we
model the photonic drive as a bosonic reservoir (bath) which
feeds incoherent photons into the cavity. We derive an ex-

tension to the self-energy of the spins which arise from
fluctuations in the cavity field caused by the incoherent drive.
In addition, the theory includes a low temperature reservoir to
represent the nonradiative environment.

Note that this photonic driving generates a non-equilibrium
condensation which differs from the lasing and Dicke-type
phase transitions [36,37]. This work cannot be directly
compared with other phenomena such as lasing and super-
radiance. It is not an incremental study, but rather a new
regime for condensation in the driven-dissipative Tavis-
Cummings model which is directly relevant to CQED devices.

The nonequilibrium condensation is characterized by a
nonthermal distribution function. The structured spectral den-
sity of the drive and its statistical properties are described by a
customized distribution function. The signatures of condensa-
tion are a sudden appearance of collective phase coherence in
the spins and condensation of the cavity photons in a coherent
state (Fig. 1).

We define the Hamiltonian as Ĥ = Ĥsys + Ĥsys,bath + Ĥbath

(h̄ = 1) where

Ĥsys =
∑

α

[ε0(b†
αbα − a†

αaα ) + gα (ψb†
αaα + H.c.)]

+ ω0ψ
†ψ. (1)

Spin-up and -down states, represented using fermionic annihi-
lation operators bα and aα , respectively, are dipole-coupled to
cavity photon mode ψ with individual spin-photon coupling
is gα . We use a fermionic representation of spin-1/2 parti-
cles to facilitate a straightforward use of the field theoretical
formulation (although the action can be formulated in terms
of coherent spin states [38], it is technically difficult to treat).
For example the operation b†

αaα creates a spin-up particle with
energy ε0. The single-occupancy constraint

b†
αbα + a†

αaα = 1 (2)
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allows the fermionic representation to properly describe
a spin-1/2 particle. This eliminates the unphysical states
|vacuum〉 and b†

αa†
α|vacuum〉, leaving two possible transitions

for the ground |0〉 = a†
α|vacuum〉 = a†

αbα|1〉 and excited state
|1〉 = b†

α|vacuum〉 = b†
αaα|0〉. The constraint is maintained by

considering only states which obey this condition and bath
distribution functions as described below. For simplicity, the
spin-photon coupling is on resonance, i.e., the cavity and
atomic frequencies are both ω0, and there is no detuning in
the system, i.e., ω0 − 2ε0 = 0. The system is coupled to two
baths (reservoirs),

Ĥsys,bath =
∑
α,k

[�α,k (a†
αAk + b†

αBk + H.c.)

+ ζk (ψ†�k + H.c.)] (3)

given by Ĥbath = ∑
k ω�

k (A†
kAk + B†

kBk ) + ∑
k ω

ζ

k �
†
k �k ,

where Ak and Bk are fermionic annihilation operators and
�k are bosonic annihilation operators. The fermionic bath
modes oscillate at frequencies ω�

k and couple to the spins
with coupling constants �α,k . Similarly the bosonic modes
have frequencies ω

ζ

k and coupling constants ζk .
The photonic bath represents a continuum of external

electromagnetic modes, for example on a superconducting
transmission line in the microwave regime. We assume that
the bath modes are populated with photons in a prescribed
spectral distribution which can be realized by controllable
external sources. (We shall use the terms photonic and bosonic
interchangeably throughout.) We assume that the spectral dis-
tribution is broader than the natural linewidth of the cavity
mode and possesses random phases for different modes. Un-
der these conditions, this bosonic bath cannot impose any
definite phase coherence on the cavity but rather only drive
it incoherently. Hence, the condensation transition would be
a result of spontaneous U (1) symmetry breaking rather than
any externally imposed phase coherence.

It is important to note that under broad (Markovian) spec-
tral distributions we do not expect cavity photons to condense
due to the bath’s excessive dephasing power [35]. Given
these conditions, we expect to find condensation only for
cases with a finite bandwidth. Hence we emphasize that the
non-Markovian, frequency dependent nature of the bath is
crucial.

The fermionic baths, which are simpler to treat in field
theory than the bosonic bath, represent the microscopic en-
vironment of the spins. These baths are assumed to be cold
compared to the spin energy, hence in the absence of any
other processes would induce relaxation of the spins to the
ground state. The choice of symmetric spectral distributions
ensures that on average there are no pair-breaking events
[2], i.e., 〈b†

αbα〉 + 〈a†
αaα〉 = 1. Although mathematically we

define two fermionic species comprising the fermionic bath, in
reality this corresponds to any kind of mechanism that causes
spin relaxation and dephasing.

III. METHODOLOGY

Standard procedure of Keldysh field theory in its path-
integral formulation [2,25] enables the Keldysh action to

be derived. Because the bath fields appear in the action
at quadratic level, the functional integral over them can
be performed analytically so we simplify the action by
removing the bath degrees of freedom using Gaussian in-
tegration [2,39]. This yields an effective description in
terms of the photon field. In the non-equilibrium steady
state the two-time Green’s functions are time-translational
invariant, τ = t − t ′. This means we can Fourier trans-
form with respect to τ into the frequency representa-
tion and make some standard assumptions about the bath
properties.

Each bath couples equally to the cavity mode so that
spontaneous emission is momentum independent. The baths
contain many modes, i.e., are much larger than the system.
They therefore thermalize rapidly compared to any system
interactions, and their properties (e.g., distribution function)
are unaffected by the system behavior. Coupling strengths �k

and ζk are smooth functions of momentum k. The baths have a
dense energy spectrum, so

∑
k summations can be replaced by∫

dω� and
∫

dωζ integrals. We take the Markovian approxi-
mation (frequency independence) for the bath density of states
(Nζ (ωζ ) = Nζ and N� (ω� ) = N�) and spin-bath coupling
(ζ (ωζ ) = ζ and �(ω� ) = �).

In summary, this step introduces the cavity-photonic drive
coupling strength κ = πζ 2Nζ and cavity-dephasing bath cou-
pling strength γ = π�2N� . As there are two different species
of fermions that couple to the upper and lower states of
the spin-1/2 particle, the latter is considered a relaxation
rate that models the microscopic environment. We also in-
troduce three distribution functions: One for the photonic
drive F� (ω) and two for the dephasing baths [2] Fb/a(ω).
Here F� (ω) = 1 + 2nB(ω) where the photon occupation num-
ber nB(ω) can have any form. We discuss this later in the
calculation.

The dephasing baths’ distribution functions are

Fb/a(ω) = 1 − 2nb/a
F (ω). (4)

The occupation functions nb/a
F (ω) are externally imposed and

can be chosen to have any form relevant to a particular phys-
ical situation. We choose a thermal reservoir with nb

F and na
F

set at equal internal temperature TF but different chemical po-
tentials μ

b/a
B . The system must adhere to the single occupancy

constraint [Eq. (2)], so the chemical potential of baths A and B
are related by μa

B = −μb
B = −μB, and the occupations should

satisfy [30,40] nb
F + na

F = 1. Hence we choose

Fb/a(ω) = tanh
β

2
(ω ∓ μB) (5)

with inverse effective temperature β = 1/TF and chemical
potential μB.

In the regime where μB < 0 (μB > 0), the lower (upper)
state is more likely to be occupied in thermal equilib-
rium. The μB → ∓∞ limit corresponds to certainty that the
lower/upper state is occupied. For Fb/a to behave as a dephas-
ing bath, we choose μB < 0.

For convenience, we arrange the fermionic fields in a
Nambu vector φ = [b, a]T , with (1, 2) indices to represent the
fermionic fields under Keldysh rotation [32]. The resulting
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action is

S =
∫∫

dtdt ′
(∑

α,α′
φ̄α (t )G−1

0 (t, t ′)φα′ (t ′) + ψ̄ (t )

[
0 i∂t ′ − ω0 − iκ

i∂t ′ − ω0 + iκ 2iκF� (t − t ′)

]
ψ (t ′)

)
, (6)

where G0 is the Tavis-Cummings Green’s function. We use abbreviations λcl,q = gα√
2
ψcl,q so that we may write

G−1
0 (t, t ′) =

[
(i∂t ′σ0 − ε0σ3 − λcl (t )σ+ − λ̄cl (t )σ−)δα,α′ + iγ σ0 −(λq(t )σ+ + λ̄q(t )σ−)δα,α′ + 2iγ (Fbσ↑ + Faσ↓)

−(λq(t )σ+ + λ̄q(t )σ−)δα,α′ (i∂t ′σ0 − ε0σ3 − λcl (t )σ+ − λ̄cl (t )σ−)δα,α′ − iγ σ0

]
. (7)

The calculation up to this point has followed the same steps
as in previous work [2]. The rest of the calculation is original
work.

To introduce the effects of incoherent driving, we separate
the photon field into its coherent and incoherent parts by sub-
stituting ψ = 〈ψ〉 + δψ into the action. Gaussian integration
removes the fluctuation degrees of freedom δψ , and produces
a new action containing quartic ∼φ4 terms [41].

Hubbard-Stratonovich decoupling [33] is required to sim-
plify the quartic terms, at the expense of introducing an
auxiliary field Q(c,d )(t, t ′)α,α′ ∼ 〈φc

α (t )φ̄d
α′ (t ′)〉 which may be

expressed in matrix form,

Q =
[

Q(1,1) Q(1,2)

Q(2,1) Q(2,2)

]
. (8)

The decoupling makes the action quadratic in φ and is
analogous to the Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity. The resulting action indicates that the inco-
herent drive causes effective spin-spin interactions mediated
by photon exchange. This behavior appears in terms of the
form [41]

∼
∫∫

dt dt ′ ∑
α,α′

φ̄α (t )GR,A,K
ψ (±τ )Q(c,d )

α,α′ (τ )φα′ (t ′)

+ GR,A,K
ψ (τ )Q(c,d )

α,α′ (t, t ′)Q(d,c)
α′,α (t ′, t ).

Gψ is the cavity photon Green’s function, and R, A, K denote
the retarded, advanced, and Keldysh components, respectively
[25,32]. By definition, the retarded and advanced components
contain information about the spectral properties whereas the
Keldysh component contains statistical properties of photons.

We can show explicitly that the linear terms in Q influ-
ence the cavity’s Tavis-Cummings dynamics [41]. The Dyson
equation becomes

G−1 = G−1
0 − �, (9)

where the Tavis-Cummings part [42] is given by

G−1
0 =

[
(G−1

0 )R (G−1
0 )K

0 (G−1
0 )A

]
. (10)

The self-energy

� =
[
�(1,1) �(1,2)

�(2,1) �(2,2)

]
(11)

comes directly from the incoherent drive and contains linear
terms in Q. Note it is written in Keldysh (1, 2) and Nambu
(particle-hole, or (b, a)) space with nontrivial matrix elements

(i, j) = 1, 2, where

�
(i,i)
bb/aa(τ ) = − i

g2

4

[
GK

ψ (±τ )Q(i,i)
aa/bb(τ )α,α′

+ GR/A
ψ (±τ )Q(i, j)

aa/bb(τ )α,α′

+ GA/R
ψ (±τ )Q( j,i)

aa/bb(τ )α,α′
]
, i �= j,

�
(i, j)
bb/aa(τ ) = − i

g2

4

[
GK

ψ (±τ )Q(i, j)
aa/bb(τ )α,α′

+ GR/A
ψ (±τ )Q(i,i)

aa/bb(τ )α,α′

+ GA/R
ψ (±τ )Q( j, j)

aa/bb(τ )α,α′
]
, i �= j.

Following standard procedure, we take the narrow bandwidth
limit gα → g using the same motivations behind similar work
[43], i.e., the individual spin-photon coupling is independent
of the spin index α. Then we define the collective coupling as
g → g

√
N . For both matrices G−1

0 [Eq. (10)] and � Eq. (11)],
b and a define the particle-hole space as

D =
[

Dbb Dba

Dab Daa

]
.

The Keldysh Green’s function GK
ψ contains the statistical

properties of the cavity photons which, after Fourier trans-
forming into frequency, is

GK
ψ (ω) = −2iκF� (ω)

(ω − ω0)2 + κ2
(12)

with system-photonic bath coupling strength κ . The bath dis-
tribution function

F� (ω) = 1 + 2nB(ω) (13)

is the energy resolved occupation of (quasi-)particle modes.
Its presence in � means that the photon environment, with F�

of modes outside the cavity, now affects both the free photon
evolution and the development of spontaneous coherence. We
will now show that the saddle-point equation includes this
distribution function, a significant departure from previous
works.

By adding a spin-spin interaction that we derive separately,
we can construct an augmented action,

Saug =
∫∫

dtdt ′ ∑
α,α′

φ̄α (t )G−1
α,α′ (t − t ′)φα′ (t ′) + SQ + Sψ,

(14)

where G is the Dyson equation defined in Eq. (9) and SQ con-
tains terms quadratic in Q. Then integrating out the fermionic
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fields φ produces an effective action written in terms of the
photon and auxiliary fields,

Seff
aug = −i

∑
α

tr ln G−1
α,α + SQ + Sψ (15)

where tr traces over all parameters (Keldysh space, particle-
hole space, time, α site indices).

It is difficult to invert the G−1 matrix when the photon field
ψ (t ) has an arbitrary time dependence. Hence we take two
further simplifications: The single-frequency ansatz

ψ (t ) = ψe−iμSt (16)

and saddle-point approximation. Since we are interested in
nonequilibrium steady states, we take the only time depen-
dence of the photon field to be oscillation at a single frequency
μS . This leads to explicit time dependence within G−1. We
want to search for self-consistent solutions with a steady state,
uniform, photon field of the form ψ (t ). The μS parameter can
also be thought of as the system’s chemical potential. The
mean-field theory of the nonequilibrium system describes a
self-consistent steady state, and inverting the G−1 matrix gives
a self-consistent Dyson equation

G(ω) = G0(ω) + G0(ω) · �(ω) · G(ω). (17)

In summary, the effects of such a time dependence appear
in two places: In the time derivative terms, which lead to the
energy shifts ω0 → ω0 − μS and ε0 → ε0 − μS/2, and in a
gauge transformation of the bath functions F� (ω) → F� (ω +
μS ) and Fb/a(ω) → Fb/a(ω ± μS/2).

It is customary to assume that the dominant contribution to
the quantum partition function arises from the configurations
ψ and Q which minimize the total action. This requires taking
the functional derivative of the action with respect to ψ̄q, then
setting ψq = 0:

δSeff
aug

δψ̄q

∣∣∣∣
ψq=0

= 0. (18)

We get the saddle point equation

(ω0 − μS − iκ )〈ψ〉 = i
g

2

∑
α

tr GK
ba(τ )α, (19)

where tr traces over all parameters. Note that there always ex-
ists a solution to the saddle point equations where the quantum
part is zero, which corresponds to the purely classical limit.
Hence when ψ̄q = 0, then δSeff

aug/δψ̄cl = 0 trivially.
Similarly, varying the action with respect to Q,

δSeff
aug

δQ(c,d )
= 0 (20)

gives

Qα,α′ (τ ) = −2Gα,α′ (τ ). (21)

Hence we can redefine the auxiliary field with respect to
the Dyson equation. Substituting Q into the Dyson equa-
tion [Eq. (9)] and following causality arguments [32] inherent
to the formalism allows us to simplify the self-energy.
Hence we substitute Q(1,1) = QR, Q(1,2) = QK , Q(2,1) = 0,

and Q(2,2) = QA. We rewrite the self-energy in matrix form,

� =
[
�R �K

0 �A

]
,

where �
(1,1)
bb = �R

bb, �
(1,2)
bb = �K

bb, �
(2,1)
bb = �(2,1)

aa = 0,
�

(2,2)
bb = �A

bb, �(1,1)
aa = �R

aa, �(1,2)
aa = �K

aa, �(2,2)
aa = �A

aa.
The mean-field properties of a driven cavity are described

by a complex analog of the Gross-Pitaevskii equation in
the Bose-Einstein condensate regime or equivalently the gap
equation in the BCS regime [29]. The real part of the
self-consistent saddle-point equation [Eq. (19)] relates the
coherent field to the system’s nonlinear susceptibility, as in
the case of equilibrium condensation, while the imaginary part
reflects how the gain and decay are balanced, as in a laser. The
equation contains two unknown parameters that characterize
the system: The coherent photon field 〈ψ〉 and its common
oscillation frequency μS . The nonequilibrium Green’s func-
tion is defined as GK

ba(t − t ′)α = −i〈a†
cl (t )αbcl (t ′)α〉, where

acl = (a f + ab)/
√

2 and f and b are the forward and back-
ward branches of the Keldysh time contour [2,32].

As the name implies, the mean-field description [Eq. (19)]
should only contain details of the coherent photons, i.e., the
saddle-point approximation filters out the average field and
discards any fluctuations. In contrast, our strategy is to inte-
grate over fluctuations δψ so that the effects of incoherent
photons appear in the action via corrections to the self-energy.
Then after taking the saddle-point approximation, the pho-
tonic drive distribution function contributes at the mean field
level.

The saddle-point equation itself is complex and hence
contains two nonlinear simultaneous equations (real and
imaginary parts). It is necessary to use numerical methods
to solve for two unknowns μS and 〈ψ〉. We use numerical
solvers based on trust region techniques [41,44], a simple yet
robust method in optimization problems. For a multivalued
function Y , the goal is to search for some vector x that satisfies
the Y (x) = 0 constraint or Y (x) ≈ 0 if a defined boundary
condition is satisfied. It is necessary to locally approximate
the least-squares objective and constraint functions with some
simple functions that are easy to optimize. The trust region
algorithm uses a quadratic approximation of the objective
function, then optimizes the functions within some localized
trust region around a point x′ to obtain a candidate step y.
If y is an improvement on the previous iteration of y, the
algorithms moves closer to the center of the trust region. If
not, the approximations and trust region is adjusted.

IV. NON-EQUILIBRIUM CONDENSATION

By considering the external photon mode distribution func-
tion [Eq. (13)] with specific frequency profiles, we now show
that varying the drive parameters does indeed permit the de-
velopment of spontaneous coherence. For this work, we set
the photon occupation number nB to be a Lorentzian

nB(ω) = h
2�

[ω − (ξ − μS )]2 + �2
, (22)

centered at ξ (resonance), with a width � (drive profile width)
and amplitude h. For simplicity, all parameters are scaled
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to g = 1. As discussed above, we assume a cold fermionic
(dephasing) bath and hence we fix its internal effective tem-
perature to be TF = 0.1g. We also let ε0 = 0 with zero
detuning ω0 − 2ε0 = 0.

The following phase diagrams show the system prop-
erties such as the common oscillation frequency of cavity
photons μS , photon coherence 〈ψ〉, absolute value of polariza-
tion |〈a†b〉| =

√
(ω0 − μS )2 + κ2|ψ | (fraction of condensed

spins), and density of spin excitations ρ = 1
2

∑
α (1 + b†

αbα −
a†

αaα ). The minimum ρ = 0 corresponds to all spins in the
ground state, whereas ρ = 1 corresponds to all spins in the ex-
cited state, i.e. maximum inversion. In between, there is lasing
when ρ > 0.5, non-equilibrium condensation when ρ < 0.5,
and a smooth crossover connecting the two regimes.

Figures 2–4 show the system’s steady state observables
upon increasing the photonic drive strength h. The condensa-
tion transition occurs when polarization and 〈ψ〉 become finite
at some critical drive strength. In particular, setting chemi-
cal potential μB/g < 0 ensures that the detuning bath causes
spontaneous decay processes instead of populating the higher
energy spin state. As expected, a larger driving amplitude h is
required to reach the condensation transition when the drive is
off resonance. The transition occurs at the same critical drive
strength when ξ = ±1, indicating a symmetry in the system.
However the different values for μS/g and 〈ψ〉 suggest that
off-resonance driving affects the condensed state differently
when ξ = ±1 (Fig. 2). Decreasing the drive profile width
� increases the number of photons per mode around the ξ

frequency. This effectively allows the condensation transition
to occur at a smaller drive amplitude. We also see that larger �

increases the condensation threshold. Hence we do not expect
the system to condense in the Markovian limit (i.e., large h
and � → ∞). At some upper limit of the drive amplitude,
the numerical method fails. This possibly demonstrates that
there is a region of inaccessible parameters. It may be caused
by a numerical issue, or the system could be entering some
unknown state that displays exotic, perhaps chaotic dynamics.
Since the drive amplitude controls the level of noise, it is also
possible that the dephasing overpowers the spin-photon dipole
coupling and interrupts the condensation processes. This in-
accessible region is more obvious in a two-dimensional phase
diagram. Figure 3 uses the same parameters as in Fig. 2. Here
we sweep the drive amplitude ξ and Lorentzian detuning. The
phase diagram has an almost symmetric phase boundary along
the ξ = 0 axis. It is clear that as the drive detuning increases
and becomes more off resonance, the drive amplitude must
increase in order for the system to condense. When the system
is in a condensed state, a large detuning and strong driving
(h = 2) regime results in nontrivial differences in the system
observables when ξ = ±2. Similarly, Fig. 4 shows that as
drive profile width � increases (which decreases the number
of photons per mode around ξ = 0), the system remains in
a condensed state for larger ranges of the drive amplitude
before entering the region of inaccessible parameters. Note
also that the spin density is always ρ < 0.5. In this regime the
system is either in the condensed or normal state. The density
never reaches ρ � 0.5 which shows that the system cannot
behave as a laser. Instead as drive amplitude h increases, the
rate of increase in photon coherence 〈ψ〉, polarization, and
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(a)
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FIG. 2. System observables of driven system. Parameters
[μB, κ, γ ] = [−0.5, 0.25, 0.75]g and Lorentzian distribution nB with
[ξ, �]. Solid lines indicate drive profile width � = 10κ , dashed lines
� = 5κ . Larger � requires stronger driving (larger h) for system to
condense. Driving off-resonance ξ �= 0 also requires larger h to reach
condensation transition. Markers x on 〈ψ〉 and polarization graphs
indicate where the condensation transition occurs.

density start leveling off before the system enters the region
of inaccessible parameters. In addition to taking a Lorentzian
frequency distribution, we examined a frequency indepen-
dent or Markovian drive. We used parameters that would be
physically sensible for a system consisting of superconduct-
ing resonator coupled to solid state spin-1/2 particles. We
explored different regimes involving combinations of γ � κ

or γ > κ , and μB � 0 or μB > 0, and gradually increased
the amount of Markovian noise (drive amplitude). We found
no reliable indications of condensation. This is an expected
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FIG. 3. Driven system with Lorentzian distribution nB of external
photons, parameters [μB, κ, γ , �] = [−0.5, 0.25, 0.75, 10κ]g. Pink
lines indicate the phase boundary where condensation transition
occurs.

result, as the above phase diagrams show how increasing the
bandwidth � requires increasing the driving strength for the
system to reach the condensation transition. In Szymańska’s
work using Maxwell-Bloch equations [35], when all decay
baths are Markovian and finite, the system transitions from
condensatelike (no inversion) at zero decay to one requiring
inversion. With frequency independent driving and decay,
there must be inversion for phase transition to lasing. One
major difference is that Szymańska’s work involved driving
the spins directly by coupling to the bath modes, so strong
driving could easily produce inversion. However if instead we
drive the incoherent photons with large energies up to infinite

FIG. 4. Driven system with Lorentzian distribution nB of external
photons, parameters [μB, κ, γ , ξ ] = [−2, 0.7, 0.3, 0]g. Pink lines in-
dicate phase boundary of condensation transition.

energies, it is highly unlikely to induce population inversion
or condensation.

V. SUMMARY AND OUTLOOK

We used Keldysh path-integral field theory to study the
open Tavis-Cummings model. This allowed us to demonstrate
the possibility of condensation and spontaneous coherence
under conditions of finite-bandwidth incoherent driving with
a Lorentzian frequency profile. It is crucial to use a frequency
dependent drive biased towards the lower frequencies. By
exclusively driving the low energy modes, we create ideal
conditions for developing spontaneous coherence. The re-
sulting condensation is caused by the photonic drive which
induces an effective spin-spin coupling mediated by photons.
This phenomenon appears explicitly in the field theory and
saddle-point equation. The interactions arising from this in-
coherent drive may cause nonlinear effects that are not easily
seen in other systems. Because the phase diagrams contain
areas where there are no solutions, the obvious next step
would be to investigate the possibility of different phases in
those regimes, and to explore the influence of fluctuations
beyond the mean-field physics reported here [45].

This theory can be used directly in state-of-the-art CQED
experiments. Given the microscopic system parameters and
drive profile, quantitative predictions can be made now for
finding the nonequilibrium condensation transition, and ex-
ploring novel nonequilibrium phases with finite-bandwidth
drives. Since it is challenging to find a parameter space where
we can observe condensation, further exploration would be
extremely useful, as would understanding the behavior seen
in the phase diagrams. By applying our findings to analog
quantum simulators, this could pave the way for fundamental
research into many-body physics and powerful new techno-
logical applications.

ACKNOWLEDGMENTS

R.A. acknowledges funding from University of Surrey’s
University Research Scholarship and Overseas Research
Scholarship, and Universities New Zealand’s Edward & Is-
abel Kidson Scholarship. E.G. acknowledges support from
the European Union’s Horizon 2020 Research and Innovation
Programme under Grant No. 766714/HiTIMe, and EP-
SRC (Grants No. EP/I026231/1 and EP/L02263X/1). M.H.S.
gratefully acknowledges financial support from QuantERA
InterPol (European Union’s Horizon 2020 Research and In-
novation Programme, Grants No. 731473 and 101017733),
and EPSRC (Grants No. EP/R04399X/1, EP/K003623/2 and
EP/S019669/1). We also acknowledge useful discussions with
J. M. J. Keeling. The data underlying this work are available
without restriction. Details of the data and how to request
access are available from the University of Surrey publications
repository.

APPENDIX A: KELDYSH FIELD THEORY CALCULATION

This Appendix presents technical details related to the an-
alytical procedure. The bulk of the analysis involves Keldysh
field theory in its functional integral formulation. We use the
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Hubbard-Stratonovich transformation to simplify the action,
at the expense of introducing an auxiliary field.

The simplification ultimately allows the photon distri-
bution to enter the mean-field description. In the Keldysh
formalism, this is evident in the extension to the self-energy in
the Dyson equation. Further simplification involves assuming
that the cavity photons oscillate at a single frequency (taking
the single-frequency ansatz). The final analytical step is mean-
field analysis. This requires taking the functional derivative
with respect to the photon field to produce a complex Gross-
Pitaevskii equation, and the auxiliary field which makes it
possible to write it in terms of the Dyson equation.

1. Building a Tavis-Cummings system

After constructing the Keldysh action using standard pro-
cedures [2], we arrange the fermionic fields into a Nambu
vector φ = [b, a]T and φ = [b̄, ā]. Then the quantum partition
function is

Z = N
∫ ∑

α,k

D[φ̄α, φα, ψ̄, ψ, Āk, Ak, B̄k, Bk, �̄k, �k]eiS

(A1)
with normalization constant N , Keldysh action

S =
∫

C
dt 〈�(t )|i∂t − Ĥ |�(t )〉, (A2)

and coherent states specified by the fields in

|�(t )〉 = |φ̄α (t ), φα (t ), ψ̄ (t ), ψ (t ), Āk (t ), Ak (t ),

× B̄k (t ), Bk (t ), �̄k (t ), �k (t )〉 (A3)

on Schwinger-Keldysh contour C. In the Keldysh formalism,
the system evolves from the distant past (t = −∞) to the
distant future (t = ∞) on the forwards branch of a closed time
contour and returns along the backwards branch. For bosonic
fields, the time evolution on the two branches is written in
terms of separate fields on each branch ψ f ,b and rotated into
the classical/quantum basis via the Keldysh rotation [25,32],

ψcl/q = 1√
2

(ψ f ± ψb), (A4)

ψ̄cl/q = 1√
2

(ψ̄ f ± ψ̄b). (A5)

Similarly the fermionic fields φ are rotated into the Larkin-
Ovchinnikov basis [32]

φ(1,2) = 1√
2

(φ f ± φb), (A6)

φ̄(1,2) = 1√
2

(φ̄ f ∓ φ̄b). (A7)

Integrating out the baths generates a Keldysh action in
terms of the photon and fermion fields, S = Sφ + Sψ with

Sφ =
∫∫

dtdt ′ ∑
α,α′

φ̄α (t )G−1
0 (t, t ′)φα′ (t ′), (A8)

and Tavis-Cummings Green’s function G−1
0 .

The photon action is

Sψ =
∫∫

dtdt ′ ψ̄ (t )G−1
ψ (t, t ′)ψ (t ′) (A9)

with photon Green’s function

G−1
ψ (t, t ′) =

[
0

(
G−1

ψ

)A(
G−1

ψ

)R (
G−1

ψ

)K

]
(A10)

=
[

0 i∂t ′ − ω0 − iκ
i∂t ′ − ω0 + iκ 2iκF� (t − t ′)

]
. (A11)

As an aside: The Fourier transform [46] is defined for some
arbitrary complex function x(τ ) in time τ = t − t ′,

X (ω) =
∫ ∞

−∞
dτ eiωτ x(τ ), (A12)

x(τ ) =
∫ ∞

−∞

dω

2π
e−iωτ X (ω). (A13)

The single frequency ansatz makes it possible to invert G−1
0 .

We let ψ (t ) = ψe−iμSt , hence the photon field ψ time depen-
dence[2] occurs as oscillation at a single frequency μS . Then
using the Fourier transform gives the Tavis-Cummings terms
in frequency domain,

G0 =

⎡
⎢⎢⎢⎣

(GR
bb)0 (GR

ba)0 (GK
bb)0 (GK

ba)0

(GR
ab)0 (GR

aa)0 (GK
ab)0 (GK

aa)0

0 0 (GA
bb)0 (GA

ba)0

0 0 (GA
ab)0 (GA

aa)0

⎤
⎥⎥⎥⎦ (A14)

where

GR/A
0 (ω) = (ω ± iγ )σ0 + εσ3 + gα (ψσ+ + ψ̄σ−)

ω2 − E2
α ± 2iγω − γ 2

, (A15)

GK
bb/aa(ω)0

= −2iγ
((ω ± ε)2 + γ 2)Fb/a(ω) + g2

α|ψ f |2Fa/b(ω)

((ω − Eα )2 + γ 2)((ω + Eα )2 + γ 2)
,

(A16)

GK
ba(ω)0 = −GK

ab(ω)∗0 = −2iγ gαψ f

× (ω + ε + iγ )Fb(ω) + (ω − ε − iγ )Fa(ω)

((ω − Eα )2 + γ 2)((ω + Eα )2 + γ 2)
,

(A17)

where ε = ε0 − μS/2 and Eα = √
ε2 + g2

α|ψ f |2. (When tak-
ing the saddle-point approximation of the action S = Sφ + Sψ ,
this requires setting ψq = 0 so that ψ f = (ψcl + ψq)/

√
2 =

ψcl/
√

2, and we recover the RAK Keldysh matrix structure.)
Similarly the photon Green’s functions are

Gψ =
[

GK
ψ GR

ψ

GA
ψ 0

]
, (A18)

GR/A
ψ (ω) = 1

ω − ω0 ± iκ
, (A19)

GK
ψ (ω) = −2iκF� (ω)

(ω − ω0)2 + κ2
. (A20)

2. Addition of incoherent photon field

After integrating out the bath degrees of freedom, we sep-
arate the cavity photon field into its coherent and incoherent
parts ψ = 〈ψ〉 + δψ , where the latter component is the result
of an externally imposed optical drive.
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Again using Gaussian integration to remove the fluctuation
fields produces several terms. The analysis shows that the op-

tical driving produces effective spin-spin coupling mediated
by exchange of photons,

Sφφ = − g2

2

∫∫
dtdt ′ ∑

α,α′

((
b̄(1)

α a(1)
α + b̄(2)

α a(2)
α

)
t
GK

ψ (t, t ′)
(
ā(1)

α′ b(1)
α′ + ā(2)

α′ b(2)
α′

)
t ′

+ (
b̄(1)

α a(1)
α + b̄(2)

α a(2)
α

)
t
GR

ψ (t, t ′)
(
ā(2)

α′ b(1)
α′ + ā(1)

α′ b(2)
α′

)
t ′

+ (
b̄(1)

α a(2)
α + b̄(2)

α a(1)
α

)
t G

A
ψ (t, t ′)

(
ā(1)

α′ b(1)
α′ + ā(2)

α′ b(2)
α′

)
t ′
)
. (A21)

After reorganizing and symmetrizing the action, we use the Hubbard-Stratonovich transformation [33] to decouple the quartic
∼φ4 terms. The process introduces an additional auxiliary field Qcd (t, t ′)α,α′ ∼ 〈φc

α (t )φ̄d
α′ (t ′)〉:

Sφφ =
∫∫

dtdt ′ ∑
α,α′

g2

8
GK

ψ (t, t ′)Q(1,1)
aa (t, t ′)α,α′Q(1,1)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(1)

α (t )GK
ψ (t, t ′)Q(1,1)

aa (t, t ′)α,α′b(1)
α′ (t ′) + ā(1)

α (t )GK
ψ (t ′, t )Q(1,1)

bb (t, t ′)α,α′a(1)
α′ (t ′)

)
+ g2

8
GK

ψ (t, t ′)Q(1,2)
aa (t, t ′)α,α′Q(2,1)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(1)

α (t )GK
ψ (t, t ′)Q(1,2)

aa (t, t ′)α,α′b(2)
α′ (t ′) + ā(2)

α (t )GK
ψ (t ′, t )Q(2,1)

bb (t, t ′)α,α′a(1)
α′ (t ′)

)
+ g2

8
GK

ψ (t, t ′)Q(2,1)
aa (t, t ′)α,α′Q(1,2)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(2)

α (t )GK
ψ (t, t ′)Q(2,1)

aa (t, t ′)α,α′b(1)
α′ (t ′) + ā(1)

α (t )GK
ψ (t ′, t )Q(1,2)

bb (t, t ′)α,α′a(2)
α′ (t ′)

)
+ g2

8
GK

ψ (t, t ′)Q(2,2)
aa (t, t ′)α,α′Q(2,2)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(2)

α (t )GK
ψ (t, t ′)Q(2,2)

aa (t, t ′)α,α′b(2)
α′ (t ′) + ā(2)

α (t )GK
ψ (t ′, t )Q(2,2)

bb (t, t ′)α,α′a(2)
α′ (t ′)

)
+ g2

8
GR

ψ (t, t ′)Q(1,2)
aa (t, t ′)α,α′Q(1,1)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(1)

α (t )GR
ψ (t, t ′)Q(1,2)

aa (t, t ′)α,α′b(1)
α′ (t ′) + ā(2)

α (t )GR
ψ (t ′, t )Q(1,1)

bb (t, t ′)α,α′a(1)
α′ (t ′)

)
+ g2

8
GR

ψ (t, t ′)Q(1,1)
aa (t, t ′)α,α′Q(2,1)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(1)

α (t )GR
ψ (t, t ′)Q(1,1)

aa (t, t ′)α,α′b(2)
α′ (t ′) + ā(1)

α (t )GR
ψ (t ′, t )Q(2,1)

bb (t, t ′)α,α′a(1)
α′ (t ′)

)
+ g2

8
GR

ψ (t, t ′)Q(2,2)
aa (t, t ′)α,α′Q(1,2)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(2)

α (t )GR
ψ (t, t ′)Q(2,2)

aa (t, t ′)α,α′b(1)
α′ (t ′) + ā(2)

α (t )GR
ψ (t ′, t )Q(1,2)

bb (t, t ′)α,α′a(2)
α′ (t ′)

)
+ g2

8
GR

ψ (t, t ′)Q(2,1)
aa (t, t ′)α,α′Q(2,2)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(2)

α (t )GR
ψ (t, t ′)Q(2,1)

aa (t, t ′)α,α′b(2)
α′ (t ′) + ā(1)

α (t )GR
ψ (t ′, t )Q(2,2)

bb (t, t ′)α,α′a(2)
α′ (t ′)

)
+ g2

8
GA

ψ (t, t ′)Q(2,1)
aa (t, t ′)α,α′Q(1,1)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(1)

α (t )GA
ψ (t, t ′)Q(2,1)

aa (t, t ′)α,α′b(1)
α′ (t ′) + ā(1)

α (t )GA
ψ (t ′, t )Q(1,1)

bb (t, t ′)α,α′a(2)
α′ (t ′)

)
+ g2

8
GA

ψ (t, t ′)Q(2,2)
aa (t, t ′)α,α′Q(2,1)

bb (t ′, t )α′,α
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− i
g2

4

(
b̄(1)

α (t )GA
ψ (t, t ′)Q(2,2)

aa (t, t ′)α,α′b(2)
α′ (t ′) + ā(2)

α (t )GA
ψ (t ′, t )Q(2,1)

bb (t, t ′)α,α′a(2)
α′ (t ′)

)
+ g2

8
GA

ψ (t, t ′)Q(1,1)
aa (t, t ′)α,α′Q(1,2)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(2)

α (t )GA
ψ (t, t ′)Q(1,1)

aa (t, t ′)α,α′b(1)
α′ (t ′) + ā(1)

α (t )GA
ψ (t ′, t )Q(1,2)

bb (t, t ′)α,α′a(1)
α′ (t ′)

)
+ g2

8
GA

ψ (t, t ′)Q(1,2)
aa (t, t ′)α,α′Q(2,2)

bb (t ′, t )α′,α

− i
g2

4

(
b̄(2)

α (t )GA
ψ (t, t ′)Q(1,2)

aa (t, t ′)α,α′b(2)
α′ (t ′) + ā(2)

α (t )GA
ψ (t ′, t )Q(2,2)

bb (t, t ′)α,α′a(1)
α′ (t ′)

)
. (A22)

Taking the terms linear in Q, we can rewrite this part of Sφφ in the style of Eq. (A8), such that

Sφφ

∣∣∣∣
linear in Q

=
∫∫

dtdt ′ ∑
α,α′

φ̄α (t )�(t, t ′)φα′ (t ′). (A23)

For nonequilibrium systems in the steady state, the two-time Green’s functions are time invariant (τ = t − t ′) so self energy can
be written in matrix form,

� =

⎡
⎢⎢⎣

�
(1,1)
bb 0 �

(1,2)
bb 0

0 �(1,1)
aa 0 �(1,2)

aa

�
(2,1)
bb 0 �

(2,2)
bb 0

0 �(2,1)
aa 0 �(2,2)

aa

⎤
⎥⎥⎦ (A24)

with elements

�
(1,1)
bb (τ ) = −i

g2

4

(
GK

ψ (τ )Q(1,1)
aa (τ )α,α′ + GR

ψ (τ )Q(1,2)
aa (τ )α,α′ + GA

ψ (τ )Q(2,1)
aa (τ )α,α′

)
, (A25)

�
(1,2)
bb (τ ) = −i

g2

4

(
GK

ψ (τ )Q(1,2)
aa (τ )α,α′ + GR

ψ (τ )Q(1,1)
aa (τ )α,α′ + GA

ψ (τ )Q(2,2)
aa (τ )α,α′

)
, (A26)

�
(2,1)
bb (τ ) = −i

g2

4

(
GK

ψ (τ )Q(2,1)
aa (τ )α,α′ + GR

ψ (τ )Q(2,2)
aa (τ )α,α′ + GA

ψ (τ )Q(1,1)
aa (τ )α,α′

)
, (A27)

�
(2,2)
bb (τ ) = −i

g2

4

(
GK

ψ (τ )Q(2,2)
aa (τ )α,α′ + GR

ψ (τ )Q(2,1)
aa (τ )α,α′ + GA

ψ (τ )Q(1,2)
aa (τ )α,α′

)
, (A28)

�(1,1)
aa (τ ) = −i

g2

4

(
GK

ψ (−τ )Q(1,1)
bb (τ )α,α′ + GR

ψ (−τ )Q(2,1)
bb (τ )α,α′ + GA

ψ (−τ )Q(1,2)
bb (τ )α,α′

)
, (A29)

�(1,2)
aa (τ ) = −i

g2

4

(
GK

ψ (−τ )Q(1,2)
bb (τ )α,α′ + GR

ψ (−τ )Q(2,2)
bb (τ )α,α′ + GA

ψ (−τ )Q(1,1)
bb (τ )α,α′

)
, (A30)

�(2,1)
aa (τ ) = −i

g2

4

(
GK

ψ (−τ )Q(2,1)
bb (τ )α,α′ + GR

ψ (−τ )Q(1,1)
bb (τ )α,α′ + GA

ψ (−τ )Q(2,2)
bb (τ )α,α′

)
, (A31)

�(2,2)
aa (τ ) = −i

g2

4

(
GK

ψ (−τ )Q(2,2)
bb (τ )α,α′ + GR

ψ (−τ )Q(1,2)
bb (τ )α,α′ + GA

ψ (−τ )Q(2,1)
bb (τ )α,α′

)
. (A32)

This process shows that we make corrections to G−1 by pro-
ducing an additional self-energy. By adding an interaction that
we derive separately, we now construct an augmented action,

Saug =
∫∫

dtdt ′ ∑
α,α′

φ̄α (t )G−1
α,α′ (t − t ′)φα′ (t ′) + SQ + Sψ.

(A33)

Then integrating out the fermionic fields φ produces an effec-
tive action,

Seff
aug = −i

∑
α

tr ln G−1
α,α + SQ + Sψ, (A34)

where tr traces over all parameters.

3. Saddle-point analysis

We calculate the mean-field equation from the saddle
points of the effective action [2,32,33] taken relative to the
classical and quantum fields,

δSeff
aug

δψ̄q

∣∣∣∣
ψq=0

= 0, (A35)

δSeff
aug

δψ̄cl

∣∣∣∣
ψq=0

= 0 trivially, (A36)

δSeff
aug

δQ
= 0. (A37)
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The δSeff
aug/δψ̄q = 0 saddle-point produces

(ω0 − μS − iκ )ψ f = i
g

2

∑
α

tr GK
ba(τ )α, (A38)

where ψ f = ψcl/
√

2. The functional derivative δSeff
aug/δQ = 0

produces

Qα,α′ (τ ) = −2Gα,α′ (τ ). (A39)

Using causality arguments of retarded and advanced Green’s
functions [32] leads to

Q(1,1) = QR, (A40)

Q(1,2) = QK , (A41)

Q(2,1) = 0, (A42)

Q(2,2) = QA, (A43)

�
(1,1)
bb = �R

bb, (A44)

�
(1,2)
bb = �K

bb, (A45)

�
(2,1)
bb = �(2,1)

aa = 0, (A46)

�
(2,2)
bb = �A

bb, (A47)

�(1,1)
aa = �R

aa, (A48)

�(1,2)
aa = �K

aa, (A49)

�(2,2)
aa = �A

aa. (A50)

We take the single frequency ansatz and get a self-consistent
Dyson equation

G(ω) = G0(ω) + G0(ω) · �(ω) · G(ω). (A51)

The self-energy

� =

⎡
⎢⎢⎣

�R
bb 0 �K

bb 0
0 �R

aa 0 �K
aa

0 0 �A
bb 0

0 0 0 �A
aa

⎤
⎥⎥⎦ (A52)

in frequency is

�R
bb(ω) = i

g2

4π

(
GR

aa(ω) ◦ GK
ψ (ω)

+ GK
aa(ω) ◦ GR

ψ (ω)
)
, (A53)

�R
aa(ω) = i

g2

4π

(
GR

bb(ω) ◦ GK
ψ (−ω)

+ GK
bb(ω) ◦ GA

ψ (−ω)
)
, (A54)

�A
bb(ω) = i

g2

4π

(
GA

aa(ω) ◦ GK
ψ (ω)

+ GK
aa(ω) ◦ GA

ψ (ω)
)
, (A55)

�A
aa(ω) = i

g2

4π

(
GA

bb(ω) ◦ GK
ψ (−ω)

+ GK
bb(ω) ◦ GR

ψ (−ω)
)
, (A56)

�K
bb(ω) = i

g2

4π

(
GK

aa(ω) ◦ GK
ψ (ω)

+ GR
aa(ω) ◦ GR

ψ (ω)

+ GA
aa(ω) ◦ GA

ψ (ω)
)
, (A57)

�K
aa(ω) = i

g2

4π

(
GK

bb(ω) ◦ GK
ψ (−ω)

+ GA
bb(ω) ◦ GR

ψ (−ω)

+ GR
bb(ω) ◦ GA

ψ (−ω)
)
, (A58)

where convolutions are defined as

( f ◦ g)(ω) =
∫

dν

2π
f (ν)g(ν − ω). (A59)

Figure 5 shows examples of �R
bb and �K

aa as functions
of frequency ω. As a first approximation, we let G = G0.
Then we numerically solve the saddle-point equation using
Matlab’s fsolve function. Through the trust region algorithm
(either trust-region or trust-region-dogleg), we solve
for the following nonlinear simultaneous equations

(ω0 − μS )ψ f − �
(

i
g

2

∫
dω

2π
GK

ba(ω)α

)
= 0, (A60)

κψ f − �
(

i
g

2

∫
dω

2π
GK

ba(ω)α

)
= 0, (A61)

which gives the numerical solution to μS and ψ f . For simplic-
ity, we set g = 1, ω = 2ε0 = 0, TF = 0.1g.

APPENDIX B: NORMAL STATE SOLUTIONS

We now consider the stability of uniform condensed so-
lutions. The consideration of stability is important because
〈ψ〉 = 0 is always a solution of the gap equation, so it is
necessary to determine which of the normal and condensed
solutions is stable. Secondly, because we considered only spa-
tially homogeneous fields with a single oscillation frequency,
it is possible that neither 〈ψ〉 = 0 nor the single-frequency
ansatz is stable, suggesting more complex behavior. There
is an important difference in the interpretation of the sad-
dle point equation between the closed-time-path path-integral
formalism used here and the imaginary-time path integral in
thermal equilibrium. In the imaginary time formalism, ex-
tremizing the action corresponds to finding configurations
which extremize the free energy. Thus, stable solutions cor-
respond to a minimum of free energy, and unstable to local
maxima.

In contrast, for a classical saddle point (i.e., ψq = 0), the
action is always S = 0 and the saddle point condition corre-
sponds to configurations for which nearby paths add in phase.
Thus, in order to study stability, one must directly investigate
fluctuations about our ansatz, and determine whether such
fluctuations grow or decay. In considering the question of
stability, we discuss stability of the normal state. This shows
how the question of whether fluctuations about the nonequi-
librium steady-state grow or decay is directly related to the
instability expected in thermal equilibrium systems when the
chemical potential goes above a bosonic mode. We consider
an expansion in terms of ψ = 〈ψ〉 + δψ to second order in
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FIG. 5. Examples of self-energy � as a function of frequency ω.

δψ . To find the spectrum of fluctuations, we consider the
effective action governing fluctuations about either ψ = 〈ψ〉
or ψ = 0. Considering the effective action

Seff
aug = −i

∑
α

tr(ln G−1) + SQ + Sψ, (B1)

G−1 = G−1
0 − �, (B2)

and expanding to second order in δψ , one finds a contribution
from the effective photon action, and a contribution from
expanding the trace over fermions. Note SQ contains quadratic
terms in Q, and � contains linear terms in Q. Using bosonic
basis,

G−1 = G−1
0 − � =

[
0

(
G−1

0

)A(
G−1

0

)R (
G−1

0

)K

]
−

[
0 �A

�R �K

]
.

(B3)
Expanding to second order in δψ gives contributions from Sψ

and −i
∑

α tr(ln G−1). The latter term gives

G−1
α,α = (

Gsp
α,α

)−1 + δG−1
α , (B4)

where Gsp is the saddle-point Green’s function, which de-
pends on the value of the saddle-point field 〈ψ〉. The
contribution from fluctuations is

δG−1
α = δG−1

0;α − δ�α (B5)

= g√
2

(
(δψ̄q · σ− + δψq · σ+)σ K

1

+ (δψ̄cl · σ− + δψcl · σ+)σ K
0

) − δ�α (B6)

= g√
2

(
(δψ̄q · σ− + δψq · σ+)σ K

1

+ (δψ̄cl · σ− + δψcl · σ+)σ K
0

)
. (B7)

The full Dyson equation becomes

Gsp
α,α = Gsp

0;α,α + Gsp
0;α,α · �α,α · Gsp

α,α (B8)

and �α,α contains convolutions of Gsp
α,α and Gψ. Hence the

action can be rewritten by expanding

−i
∑

α

tr ln
(
G−1

α,α

) = −i
∑

α

tr ln
((

Gsp
α,α

)−1)
− i

∑
α

tr
(
Gsp

α,α · δG−1
α

)

+ i

2

∑
α

tr
(
Gsp

α,α · δG−1
α · Gsp

α,α · δG−1
α

)
(B9)

= −i
∑

α

tr ln
((

Gsp
α,α

)−1)
− i

∑
α

tr
(
Gsp

α,α · δG−1
0;α

)

+ i

2

∑
α

tr
(
Gsp

α,α · δG−1
0;α · Gsp

α,α · δG−1
0;α

)
,

(B10)

and only retaining diagonal site index terms and neglecting
bath-induced interaction terms between different α sites.

Now, we consider the quadratic terms in δψ with

δ� =

⎡
⎢⎢⎣

δψcl (ω)
δψ̄cl (−ω)
δψq(ω)

δψ̄q(−ω)

⎤
⎥⎥⎦ (B11)

the action for fluctuations becomes

δS f =
∫

dω

2π
δ�̄(ω)

[
0 (D−1)A

(D−1)R (D−1)K

]
δ�(ω), (B12)

where

(D−1)R,A,K =
[

KR,A,K
1 KR,A,K

2

KR,A,K
3 KR,A,K

4

]
. (B13)

In the normal state, Nambu (2 × 2) structure is redundant
so the distribution function is a diagonal constant matrix Fs =
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FIG. 6. Normal state Green’s function �(KR
1 (ω)) as a function of frequency ω with and without incoherent drive. To determine μeff, it is

necessary to find where the graph crosses the horizontal axis.

1 + ns, where ns is the occupation of (bosonic) modes. There
are also no anomalous (off-diagonal in Nambu space) contri-
butions, and so K can be simplified using Keldysh Green’s
functions symmetry relations.

Taking the difference of luminescence and absorption gets
the spectral weight

2πW (ω, p = 0) = �(
KR

1 (ω)
)

�(
KR

1 (ω, p = 0)
)2 + �(

KR
1 (ω)

)2 ,

(B14)
where

KR
1 (ω) = 1

2
(ω − ω̃0 + iκ ) + i

g2

4

∫
dω′

2π

(
GR

bb(ω′)GK
aa(ω′ − ω)

+ GK
bb(ω′)GA

aa(ω′ − ω)
)
. (B15)

If the imaginary part of KR
1 is a smooth function of ω, then

the distribution function is

Fs(ω) = −iKK
1 (ω)

2�(
KR

1 (ω)
) . (B16)

If �(KR
1 (ω)) = 0, then Fs diverges. However the spectral

weight W = 0 so that number of photons does not diverge.
Hence in order to find μeff, it is necessary to solve for

�(
KR

1 (μeff )
) = 0. (B17)

As a simple example, let G = G0. When �(KR
1 (ω)) is

sketched as a function of frequency (Fig. 6), we find where the
graph crosses the horizontal axis in order to determine μeff. As
the dephasing bath becomes stronger, the �(KR

1 (ω)) graph is
shifted upwards. This is observed as μB decreases to negative
values: Physically it means that increasingly more spins are
in the ground state. At some critical μB, the graph no longer
crosses the horizontal axis, hence μeff does not exist. This
problem also exists when we apply incoherent driving and
define KR

1 (ω) in terms of G = G0 + G0 · � · G (Fig. 6). The
graph shapes can change dramatically when the dephasing
strength increases (μB decreases), compared to the simpler
case without bosonic driving. This makes it more difficult to
determine whether μeff exists, and if it is physical.
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