
JOURNAL OF LATEX CLASS FILES 1

When Sparse Neural Network Meets Label Noise
Learning: A Multi-Stage Learning Framework

Runqing Jiang, Yan Yan, Member, IEEE, Jing-Hao Xue, Biao Wang, and Hanzi Wang, Senior Member, IEEE

Abstract—Recent methods in network pruning have indicated

that a dense neural network involves a sparse sub-network (called

a winning ticket), which can achieve similar test accuracy to

its dense counterpart with much fewer network parameters.

Generally, these methods search for the winning tickets on well-

labeled data. Unfortunately, in many real-world applications,

the training data are unavoidably contaminated with noisy

labels, thereby leading to performance deterioration of these

methods. To address the above problem, we propose a novel Two-

Stream Sample Selection Network (TS
3
-Net), which consists of

a sparse sub-network and a dense sub-network, to effectively

identify the winning ticket with noisy labels. The training of

TS
3
-Net contains an iterative procedure that switches between

training both sub-networks and pruning the smallest-magnitude

weights of the sparse sub-network. In particular, we develop a

multi-stage learning framework including a warm-up stage, a

semi-supervised alternate learning stage, and a label refinement

stage, to progressively train the two sub-networks. In this way,

the classification capability of the sparse sub-network can be

gradually improved at a high sparsity level. Extensive experi-

mental results on both synthetic and real-world noisy dataset-

s (including MNIST, CIFAR-10, CIFAR-100, ANIMAL-10N,

Clothing1M, and WebVision) demonstrate that our proposed

method achieves state-of-the-art performance with very small

memory consumption for label noise learning. Code is available

at https://github.com/Runqing-forMost/TS3-Net/tree/master.

Index Terms—Deep Learning, network pruning, label noise

learning, image classification.

I. INTRODUCTION

R
ECENT advances in deep learning have demonstrated the
great potential of Deep Neural Networks (DNN) in a va-

riety of computer vision tasks, such as image classification [1],
[2], object detection [3], [4], and so on. Nevertheless, many of
them depend heavily on complex DNN models, which usually
involve large memory consumption and high computational
cost. The heavy resource burden of these methods severely
inhibits their adoption in real-world applications, especially
embedding systems and devices demanding small memory
usage and low inference latency.

In order to reduce both memory storage and computational
cost, considerable efforts [5]–[9] have been made to compress
and accelerate DNN models without greatly sacrificing the
final performance. Among these efforts, the network pruning

R. Jiang, Y. Yan, H. Wang are with the Fujian Key Laboratory of
Sensing and Computing for Smart City, School of Informatics, Xiamen
University, Xiamen 361005, China (e-mail: jiangrunqing@stu.xmu.edu.cn;
yanyan@xmu.edu.cn; hanzi.wang@xmu.edu.cn).

J.-H. Xue is with the Department of Statistical Science, University College
London, London WC1E 6BT, UK (e-mail: jinghao.xue@ucl.ac.uk).

B. Wang is with the Zhejiang Lab, Hanzhou 311100, China (e-mail:
wangbiao@zhejianglab.com).

0.0

20.0

40.0

60.0

80.0

100.0

 0 20 40 60 80 100 120

(a)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

pruned network

dense network
0.0

20.0

40.0

60.0

80.0

100.0

 0 20 40 60 80 100 120

(b)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

0% noise

20% noise

40% noise

Fig. 1: (a) Test accuracy curves of the dense network vs. the
pruned network with 78.4% sparsity on the CIFAR-10 dataset.
(b) Test accuracy curves of the pruned network under different
levels of symmetric label noise. All the networks are based on
an eight-layer CNN models. LTH is used for network pruning.

technique [10], [11], which can significantly reduce the model
size without greatly compromising accuracy, has currently
attracted increasing attention from both academia and industry.
Recent works [12], [13] have indicated that pruning DNN
models at initialization can lead similar benefits to both train-
ing and inference. For example, the Lottery Ticket Hypothesis
(LTH) [12] reveals that a randomly-initialized dense neural
network contains a sparse sub-network whose architecture
plays an important role in the accuracy and training efficiency
of the original network. In particular, when the sparse sub-
network is trained in isolation, it can achieve competitive
performance to the original dense neural network. Note that
conventional network pruning methods are often trained on
well-labeled data to obtain pruned DNN models (i.e., sparse
DNN models).

It is commonly acknowledged that the availability of large-
scale well-labeled data is of great importance to ensure the
good performance of DNN models. Unfortunately, in many
real-world scenarios, collecting large-scale data with clean
labels is practically challenging, which unavoidably results in
noisy labels [14], [15]. Some studies [16], [17] have shown
that traditional DNN models are very sensitive to label noise
and easily suffer from overfitting, leading to poor general-
ization. To handle the above problem, Label Noise Learning
(LNL) methods have been proposed to learn robust DNN
models with excellent generalization capability from noisy
labeled data. Some methods develop robust loss functions
(such as Symmetric Cross Entropy (SCE) [18]) to alleviate the
overfitting problem, while other methods (such as Co-teaching
[19] and Co-teaching+ [20]) explicitly remove potentially
noisy labeled samples to achieve robustness.

The aforementioned LNL methods are often based on dense

Page 5 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 2

DNN models (such as ResNet [21] and VGG-Net [22]).
Few of them are concerned with robust learning on sparse
DNN models. As shown in Fig. 1(a), we can see that the
performances of the dense network and the pruned network are
similar when they are trained on the clean dataset. However,
as shown in Fig. 1(b), the performance of the pruned network
significantly drops when it is trained on noisy labeled data.
In other words, simply training network pruning methods
with label noise cannot guarantee to obtain a robust sparse
DNN model. Therefore, how to effectively combine label noise
learning with network pruning merits further investigation.

In this paper, we propose a novel robust learning method
called Two-Stream Sample Selection Network (TS3-Net), con-
sisting of a sparse sub-network and a dense sub-network, to
search for a winning ticket given noisy labeled data. Generally,
the whole training process of TS3-Net involves an iterative
procedure that alternates between training both sub-networks
and pruning the smallest-magnitude weights of the sparse
sub-network. In particular, we develop a multi-stage learning
framework to train both sub-networks in a progressive way.
Our framework contains three closely related stages: a warm-
up stage, a semi-supervised alternate learning stage, and a label
refinement stage. Therefore, we are able to fully exploit the
whole training data to improve the classification capability of
the sparse sub-network under the label noise condition.

In summary, our main contributions are given as follows:
• We propose a novel TS3-Net to effectively identify the

winning ticket in the case of label noise. Thus, a sparse
sub-network with small memory consumption can be
obtained when trained on noisy labeled data. To the best
of our knowledge, we are the first to learn a robust sparse
DNN model from the data corrupted with label noise.

• We develop a multi-stage learning framework to train the
sparse sub-network and the dense sub-network progres-
sively. By tightly combining the three stages in a unified
framework, the sparse sub-network can gradually improve
its classification capability at a high sparsity level during
label noise learning.

• We evaluate our proposed method on both synthetic and
real-world noisy datasets (including MNIST, CIFAR-10,
CIFAR-100, ANIMAL-10N, Clothing1M, and WebVi-
sion) with different network architectures and different
levels of sparsity. Without any whistles and bells, our
method performs favorably against several state-of-the-
art LNL methods with low memory usage for the image
classification task. This clearly demonstrates that our
method is able to achieve great generalization capability
when dealing with label noise.

The rest of this paper is organized as follows. First, we
briefly review the related work in Sec. II. Then, we present the
details of our proposed method in Sec. III. Next, we evaluate
the performance of our proposed method and compare it with
several state-of-the-art LNL methods in Sec. IV. Finally, we
conclude our work and discuss the future work in Sec. V.

II. RELATED WORK

In this section, we briefly review the related work, including
network pruning and label noise learning.

A. Network Pruning

Network pruning, which performs model compression by
removing redundant parameters and structures from DNN
models, has been widely studied in recent years. A variety of
network pruning methods [10], [23], [24] have been developed
to reduce a large number of network parameters without
greatly influencing the performance. Generally, the gain on the
inference efficiency of these methods depends on the special
hardware support.

Recently, Frankle and Carbin [12] develop the Lottery Tick-
et Hypothesis (LTH). LTH states that a randomly-initialized
and over-parameterized (dense) neural network contains a
sparse sub-network (called a winning ticket), which can reach
the similar test accuracy to the original network with almost
the same number of iterations when trained in isolation. Hence,
the time-consuming training process of a dense neural network
can be avoided to a large extent since one just needs to
find a good sparse sub-network and then trains it separately.
Although it is not a trivial task to obtain such a sub-network,
training a sparse sub-network is much easier than training
a dense neural network with millions of parameters. Later,
Frankle et al. [13] extend the application of LTH to a larger
and deeper neural network by introducing the concept of “late
resetting”. Malach et al. [25] give theoretical evidence to
prove the strong LTH. Girish et al. [26] incorporate LTH into
various object recognition tasks. Chen et al. [27] study LTH
for supervised and self-supervised pre-training in different
computer vision models.

The above methods identify the winning tickets on large-
scale training data with clean labels. Unfortunately, in many
real-world applications, the training data are often contaminat-
ed with noisy labels since labeling large-scale data is labor-
intensive and time-consuming. In this paper, we are concerned
with the problem of searching for the winning tickets from data
involving label noise.

B. Label Noise Learning

According to [17], state-of-the-art LNL methods can be
roughly divided into: label transition matrix estimation, robust
losses, sample weighting, sample selection, meta-learning, and
combined methods. In this paper, we mainly review robust
losses and sample selection.
Robust Losses. Several efforts have been dedicated to design-
ing noise-robust loss functions, whose goal is to minimize
the classification risk for unseen clean data when learning
with label noise. Wang et al. [18] propose a Symmetric
Cross Entropy (SCE) loss to alleviate the influence of noisy
labeled samples by adding a noise-tolerant term to the cross-
entropy loss. Zhou et al. [28] develop a class of asymmetric
loss functions to combat label noise. Ma et al. [29] point
out that existing robust loss functions easily suffer from the
underfitting problem. Hence, they further propose a mutual
boosted framework called Active Passive Loss (APL), which
can create new loss functions with theoretically guaranteed
robustness.
Sample Selection. To alleviate the negative influence of noisy
labeled samples on model training, many methods [14], [19],

Page 6 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 3

[20], [30] leverage sample selection that involves selecting
clean samples from a noisy training dataset. Jiang et al.

[30] propose MentorNet which employs a pre-trained teacher
network to supervise the training of a student network. Han
et al. [19] propose the Co-teaching method to simultaneously
train two networks, where each network selects the small-loss
samples and feeds them into its peer network for updating the
parameters. Later, they extend Co-teaching to Co-teaching+
[20], which updates the networks by only using the small-
loss samples from disagreement data (i.e., the samples giving
different predictions from two networks). Different from Co-
teaching+, Wei et al. [14] propose a robust learning paradigm
called JoCoR to minimize the diversity of two networks. Jo-
SRC [31] introduces the Jensen-Shannon divergence, which
measures the likelihood of a sample being clean, to select
clean samples globally.

Traditional sample selection methods explicitly reduce the
risk of error accumulation from noisy labeled samples by
removing these samples. Although the labels of noisy labeled
samples are not reliable, these samples themselves are still
informative and can be helpful for training. More recent works
(such as DivideMix [32] and SELF [33]) make use of semi-
supervised learning by considering the selected clean samples
as labeled data and other samples as unlabeled data.

Most existing sample selection methods work on the dense
DNN models. The high complexity of dense DNN models
limits their applications demanding real-time response or in-
teraction. In this paper, we design an effective sample selection
method, which is able to learn a sparse DNN model from noisy
training data.

III. METHODOLOGY

In this section, we first give an overview of the proposed
method in Sec. III-A. Then, we illustrate our developed multi-
stage learning framework in detail in Sec. III-B. Finally, we
summarize the overall training of our method, and present
some discussions in Sec. III-C and Sec. III-D, respectively.

A. Overview

In this paper, we develop a novel Two-Stream Sample Se-
lection Network (TS3-Net) to identify the winning ticket under
label noise. The network architecture of TS3-Net consists of
a sparse sub-network (denoted as S) and a dense sub-network
(denoted as D).

We follow the principle of the Iterative Magnitude Pruning
(IMP) strategy [12] to train TS3-Net, where we sparsify S at
discrete time intervals with an increasing sparsity level during
training. Generally, the training process involves the following
iterative steps. First, S and D are trained to obtain network
parameters. Second, a fixed fraction of network parameters of
S is pruned with the smallest-magnitude weights. Third, the
remaining parameters of S and D are reset to their original
initializations. After the above iterative steps, a sparse sub-
network (i.e., a winning ticket) is finally obtained and thus
can be easily retrained for robust classification.

In particular, in the first step, we develop a multi-stage
learning framework to train both sub-networks in a progressive

way. More specifically, this framework contains three stages:
(1) a warm-up stage, (2) a semi-supervised alternate learning
stage, and (3) a label refinement stage. An illustration of the
developed learning framework is given in Fig. 2.

In the first stage of warm-up, both S and D learn some
preliminary knowledge from the whole training data without
overfitting to noisy labeled samples. In the second stage, each
sub-network teaches its peer sub-network by semi-supervised
alternate learning. Given a batch of samples, each sub-network
identifies the small-loss samples and noisy labeled ones (which
are viewed as labeled samples and unlabeled ones, respective-
ly). Based on this, each sub-network is updated by leveraging
the samples from its peer sub-network in a semi-supervised
learning manner, where a cross-entropy loss is optimized
over labeled samples and an entropy loss is minimized over
unlabeled samples. In the third stage of label refinement, some
noisy labeled samples, whose maximum prediction results are
larger than a given threshold, are assigned with pseudo-labels
by relabeling. These relabeled samples and small-loss ones are
then jointly used to update S , where D is fixed. In this way,
the classification performance of S is further boosted. In the
end, with these three stages, our proposed learning framework
enables S to effectively learn from the data corrupted with
label noise by gradually enhancing its classification capability.

B. Multi-Stage Learning Framework

Suppose that we have a training dataset T = {(xi,yi)}
N
i=1

for a C-class classification problem, where xi denotes the i-
th training image, yi 2 {0, 1}C represents its corresponding
label vector (an one-hot vector), and N is the total number of
training samples. In real-world applications, the image labels
are often corrupted by noise.

Generally, training the sparse sub-network by only using
the standard cross-entropy loss easily suffers from the over-
fitting problem under label noise, and thus leads to poor
generalization [19]. Meanwhile, traditional sample selection
methods [14], [19], [20], [30] often consider the small-loss
samples, and thus neglect noisy labeled samples which can
also provide valuable information for classification. Moreover,
the classification ability of S is weakened at a higher sparsity
level. To address the above problems, we propose a multi-
stage learning framework to progressively train the two sub-
networks, thus guiding our model to gradually learn the
knowledge from noisy labeled training samples.
Warm-Up Stage. Recent studies on the memorization effects
[34] show that the DNN model is prone to first memorize the
training data with easy and clean samples, and then focus on
noisy labeled samples. Motivated by this observation, similar
to [35], we first adopt a warm-up stage, which precedes the
more sophisticated stages, to perform fully-supervised learning
on the whole noisy dataset at the beginning of training.

Mathematically, given a batch of samples B, we use the
cross-entropy loss as the supervision to minimize the distri-
bution gap between prediction results and ground-truth labels
for both S and D. The cross-entropy loss can be defined as

Lce(f⇥k ,B) = � 1

n

nX

i=1

yT
i log(f⇥k

(xi)), k 2 {S,D} (1)

Page 7 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 4

Cat
Dog

Decision boundary

After Warm-Up After Semi-Supervised Alternate Learning After Label Refinement

Mini-batch

Mini-batch

Warm-Up

Mini-batch

Mini-batch

Mini-batch

Semi-Supervised Alternate Learning

Relabel

Label Refinement

Multi-Stage Learning Framework

 


 










ce

ent
LR
joint














+ SA
jointce

ce
 ce

ent
SA
joint+




  







Fig. 2: Overview of the proposed multi-stage learning framework. In the upper panel, we show the training process of three
stages. S and D denote the sparse sub-network and the dense sub-network, respectively. BS and BD represent the labeled
samples selected by S and D, respectively. B̃S and B̃D represent the unlabeled samples selected by S and D, respectively.
B̃0
S denotes the samples which are relabeled by S . In the lower panel, we show the decision boundary of S obtained from

three stages. We take the two-class classification (cat and dog) as an example, where the crosses and circles in green represent
samples with correct labels, and those in red represent samples with noisy labels. The classification ability of S is gradually
enhanced, thereby refining the decision boundary after each stage.

where n denotes the number of samples in a batch; k indicates
the sub-network (S or D) to be trained; yi is the ground-truth
label of the sample xi 2 B; f⇥k

(xi) represents the output of
one sub-network with the network parameters ⇥k given the
input xi.

At this stage, the classification loss of easy and clean
samples tends to decrease more than that of noisy labeled
ones as iterations proceed [36], [37]. Therefore, both S and
D can learn simple knowledge from easy and clean samples
due to the memorization effects, and thus both sub-networks
has the basic classification ability after this stage.
Semi-Supervised Alternate Learning Stage. Memorization
effects show that the cross-entropy loss gradually memorizes
all the samples, including clean and noisy labeled samples.
This usually results in overfitting of the model to noisy labeled
samples and seriously affects the generalization ability of the
trained model. Hence, we adopt the warm-up stage as the
initial training stage, and further develop a semi-supervised
alternate learning stage.

During this stage, each sub-network views its small-loss
samples and noisy labeled ones from a batch as labeled
training samples and unlabeled ones, respectively, and then
teaches its peer sub-network with these samples to update the
network parameters in an alternate way. The two sub-networks
capture the information from different views, alleviating the
confirmation bias and benefiting sample selection. By taking
advantage of semi-supervised alternate learning to train each
sub-network, we are able to not only exploit the entire batch
data for training, but also address the negative influence caused
by bad “memorization” of noisy labels.

Semi-supervised learning is a powerful paradigm that lever-
ages both labeled and unlabeled data for training. It often
jointly optimizes two objective functions: a supervised loss
over labeled data and an unsupervised loss over unlabeled data
(or both labeled and unlabeled data). For the supervised loss,
the classical cross-entropy can be used. For the unsupervised
loss, to train the model with good generalization ability, a com-
mon assumption is that the decision boundary of a classifier
should avoid intersecting high-density regions of the marginal
data distribution [38]. To achieve this, one straightforward
way is to encourage the classifier to give highly confident
predictions (i.e., low-entropy) on unlabeled data. This can be
explicitly done by minimizing the entropy loss of the model
over unlabeled data [39].

More specifically, we first divide B into a clean sample set
Bk (k 2 {S,D}) and a noisy labeled sample set B̃k (k 2
{S,D}). In this paper, the small-loss criterion [19] is used
to select clean samples (also called small-loss samples) from
each sub-network. Mathematically, Bk is formulated as

Bk = argminB0:|B0|�(1�✏)|B|Lce(f⇥k ,B0), k 2 {S,D} , (2)

where ✏ represents the noise rate in the training set; |B0| and
|B| denote the sizes of B0 and B, respectively. Accordingly,
B̃k is defined by set subtraction as B̃k = B � Bk.

On the one hand, to overcome the problem of accumulated
errors caused by the confirmation bias, we select the labeled
samples provided by the peer sub-network, as done in [14],
[19], [20]. Formally, Bk (viewed as labeled training samples)
selected by each sub-network is employed to compute the clas-
sification loss of its peer sub-network. Thus, the classification

Page 8 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 5

loss of each sub-network can be defined as

Lce(f⇥k ,Bk0) = � 1

|Bk0 |

|Bk0 |X

i=1

yl
i
T log(f⇥k

(xl
i)), k 2 {S,D} ,

(3)

where k0 indicates the peer sub-network of k, that is, k0 = D
(or S), if k = S (or D); Bk0 denotes the clean sample set
selected by k0; |Bk0 | is the size of batch Bk0 ; yl

i indicates the
ground-truth label of xl

i 2 Bk0 .
On the other hand, B̃k (viewed as unlabeled training sam-

ples) selected by each sub-network is used to calculate the
entropy loss of its peer sub-network. The entropy loss is
defined as

Lent(f⇥k , B̃k0) = � 1

|B̃k0 |

|B̃k0 |X

i=1

f⇥k
(xu

i)
T log(f⇥k

(xu
i)),

k 2 {S,D} ,
(4)

where |B̃k0 | is the size of batch B̃k0 and xu
i 2 B̃k0 denotes the

i-th sample in B̃k0 .
By minimizing the entropy loss, we are able to reduce

the uncertainty of model prediction and force the decision
boundary to pass through the sparse regions of the marginal
data distribution. It is worth noting that the entropy loss
only uses the outputs of the model (without relying on the
label information), which can effectively alleviate the risk of
overfitting to noisy labeled samples.

Therefore, for the batch B, the joint loss to train each sub-
network in this stage is formulated as follows:

LSA
joint(f⇥k ,B) = Lce(f⇥k ,Bk0) + �Lent(f⇥k , B̃k0),

k 2 {S,D}
(5)

where � 2 [0, 1] is a parameter to balance the two losses.
Based on the above joint loss, the semi-supervised alternate

learning stage involves the following steps. First, we fix D
and only update S according to LSA

joint(f⇥S ,B). Then, we
fix S and only update D according to LSA

joint(f⇥D ,B). Next,
D and S are alternately trained several times. During this
stage, each sub-network treats all the batch samples as useful
knowledge, and teaches its peer network with these samples in
a semi-supervised learning manner. Consequently, the learning
capability of S and D is further improved. In this way, we
are able to relabel some noisy labeled samples with high
confidence according to the output of S , thereby facilitating
the training in the next stage.

It is worth pointing that both TS3-Net and DivideMix
[32] leverage semi-supervised learning on the full training
data. However, they are significantly different. First, TS3-Net
applies entropy minimization for unlabeled samples, while
DivideMix adopts the MixMatch method for unlabeled sam-
ples. That is, TS3-Net and DivideMix work on different semi-
supervised learning techniques. Second, TS3-Net performs
alternate learning between a sparse sub-network and a dense
sub-network, and thus offers two distinguished views for
addressing noisy labels during the semi-supervised alternate

learning stage. On the contrary, DivideMix trains two sub-
networks having the same network architectures by a joint
learning framework. Third, TS3-Net involves a multi-stage
learning framework. In particular, the semi-supervised alter-
nate learning stage makes the model more confident for unla-
beled samples. Such a manner greatly benefits the training of
the subsequent label refinement stage. In contrast, DivideMix
directly assigns soft pseudo-labels to noisy labeled samples by
using model predictions during the whole training process.
Label Refinement Stage. During the semi-supervised alter-
nate learning stage, both dense and sparse sub-networks learn
and communicate the knowledge from each other from a
different perspective, enhancing the robustness of both sub-
networks against label noise. As a result, the sparse sub-
network S is able to predict more reliable results. However,
the noisy labeled samples are treated as unlabeled samples in
this stage, which may still limit the classification ability of S .
Therefore, we adopt a label refinement stage, where we fix D
and only update S . Especially, we select noisy labeled samples
given by S and relabel some of them according to prediction
confidence. Then, the clean and relabeled samples are jointly
used to train S , further improving its classification ability.

More specifically, the batch B is first divided into BS and
B̃S according to the small-loss criterion by S (as defined
in Eq. (2)). To fully leverage the information in unlabeled
samples, the output predicted by S is used to update the labels
of training samples in B̃S by

ỹr
i (j) =⇧[j = argmax

c
f c
⇥S (x

r
i)] if max

c
f c
⇥S (x

r
i) � ⌧,

(6)
where ỹr

i (j) denotes the j-th element in ỹr
i that represents

the pseudo-label vector of xr
i after relabeling and f c

⇥S (x
r
i)

denotes the c-th element in f⇥S (x
r
i); the indicator function

⇧{·} takes on the value 1 if its argument is true, and 0
otherwise; the threshold ⌧ is a hyperparameter to determine
whether a sample should be relabeled. By relabeling, more
samples with less label noise can be obtained. Therefore, the
labels of the whole training set are refined gradually, thus
enhancing the classification capability of S .

Finally, we employ both clean samples and relabeled ones
to calculate the classification loss. For convenience, we use
B̃0
S to represent the relabeled sample set, where the maximum

predicted output of each sample is greater than ⌧ . The joint
loss in this stage is formulated as

LLR
joint(f⇥S ,B) = Lce(f⇥S ,BS) + �Lce(f⇥S , B̃0

S), (7)

where � 2 [0, 1] is a parameter to balance the two losses.
Assigning pseudo-labels to unlabeled samples is a widely-

used technique in semi-supervised/unsupervised learning
methods (such as NoisyStudent [40], LUDA [41], PL [42],
and FixMatch [43]). However, these methods are intrinsically
different from ours. First, NoisyStudent and LUDA directly
assign pseudo-labels to unlabeled samples via model predic-
tions without considering the sample confidence. In contrast,
FixMatch and our method refine the labels only for the
samples with high confidence by using a threshold. Moreover,
NoisyStudent, LUDA, PL, and FixMatch do not work on
label noise learning, while our method is specifically designed

Page 9 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 6

Algorithm 1: Multi-Stage Learning Framework
Input: A training dataset T ; a sparse sub-network S; a

dense sub-network D; total training epochs E;
training epochs for the first stage E1 and the second
stage E2.

1 for loop 1 to E do

2 Shuffle T into M mini-batches;
3 if loop  E1 then

4 //warm-up stage
5 for b 1 to M do

6 Fetch the b-th mini-batch B from T ;
7 Calculate Lce(f⇥S ,B) and Lce(f⇥D ,B)

according to Eq. (1);
8 Update ⇥S and ⇥D by Stochastic Gradient

Descent (SGD);
9 end

10 end

11 else if E1 + 1  loop  E1 + E2 then

12 //semi-supervised alternate learning stage
13 for b 1 to M do

14 Fetch the b-th mini-batch B from T ;
15 Fix D and Calculate LSA

joint(f⇥S ,B) according
to Eq. (5);

16 Update ⇥S by SGD;
17 end

18 for b 1 to M do

19 Fetch the b-th mini-batch B from T ;
20 Fix S and Calculate LSA

joint(f⇥D ,B) according
to Eq. (5);

21 Update ⇥D by SGD;
22 end

23 end

24 else

25 //label refinement stage
26 for b 1 to M do

27 Fetch the b-th mini-batch B from T ;
28 Get BS according to Eq. (2);
29 Get B̃0

S according to Eq. (6);
30 Calculate LLR

joint(f⇥S ,B) according to Eq. (7);
31 Update ⇥S by SGD;
32 end

33 end

34 end

Output: A sparse sub-network S and a dense sub-network
D.

for addressing label noise. Finally, NoisyStudent, LUDA, and
PL rely on the model predictions by self-training. On the
contrary, in our method, by minimizing the entropy in the
semi-supervised alternate learning stage, the model prediction
is prone to give a peaked probability distribution (the peak
corresponds to a certain class with a high probability). This
can improve the confidence about unlabeled samples, helpful
to the training in the label refinement stage.

The training process of our multi-stage learning framework
is given in Algorithm 1. Although the warm-up stage and
the label refinement stage share some similarities to existing
methods [35], [40]–[42], we would like to highlight that the
three stages are tightly combined and jointly optimized in our
integrated network. The warm-up stage enables the sparse and
dense sub-networks to learn the basic classification ability. The
semi-supervised alternate learning stage further enhances the
learning capacity of both sub-networks, which is advantageous
to label refinement in the third stage. Hence, a sparse DNN

Algorithm 2: Overall Training of TS3-Net
Input: A pruning factor pf ; the number of pruning times R.

1 Randomly initialize the two sub-networks S and D;
2 for r 1 to R do

3 Train S and D by Algorithm 1;
4 Prune the pf of parameters of S with a mask according

to smallest-magnitude weights;
5 Reset the weights of the remaining portions of S and D

to their initial values;
6 end

7 Retrain S and D by Algorithm 1 to obtain the final sparse
model;

Output: A sparse sub-network S.

model can be effectively trained in a progressive manner.

C. Overall Training

The overall training of TS3-Net is summarized in Algorithm
2. First, S and D, which have the same network architectures,
are initialized with different network parameters. Second, S
and D are trained based on the proposed multi-stage learning
framework. Third, S is pruned according to its smallest-
magnitude weights. Fourth, the remaining network parameters
of S and D are reset to their initial values. The above second
to fourth steps are iteratively performed for several rounds
to identify the winning ticket. Finally, the winning ticket is
retrained to obtain a robust sparse sub-network.

D. Differences from Conventional LNL Methods with Two

Sub-Networks

Conventional LNL methods (such as Co-teaching [19], Co-
teaching+ [20], JoCoR [14], and DivideMix [32]) also train
two sub-networks. However, the differences between these
methods and our proposed method are significant.

First, Co-teaching, Co-teaching+, JoCoR, and DivideMix do
not work on model compression and acceleration. Unlike the
above methods, our method is able to obtain a very lightweight
network (i.e., the winning ticket) from noisy labeled training
data. Second, Co-teaching, Co-teaching+, and JoCoR do not
leverage the noisy labeled sample set during training. Although
the labels of noisy labeled samples are noisy, these samples in-
volve useful information for training. Therefore, different from
these methods, DivideMix and our method view the samples in
the noisy labeled sample set as unlabeled ones and train each
sub-network in a semi-supervised learning setting. Third, the
two sub-networks used in Co-teaching, Co-teaching+, JoCoR,
and DivideMix have the same network architectures during
training. In other words, they have similar learning capability.
Hence, the two sub-networks are often simultaneously and
jointly learned to improve both performances. However, in our
setting of combining network pruning and label noise learning,
the learning capability of S is generally weaker than that of
D due to the network pruning. The joint learning of S and D
may increase the training difficulty. To alleviate this problem,
we leverage alternate learning between S and D in the second
stage. The weak learner (i.e., S) learns from the strong learner
(i.e, D) first and then the strong learner learns from the weak
learner in turn. Thus, the performances of S and D can be
gradually improved.

Page 10 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 7

IV. EXPERIMENTS

In this section, we perform extensive experiments to evalu-
ate the superiority of our proposed method on both synthetic
and real-world noisy datasets. First, we introduce several
popular datasets and implementation details in Sec. IV-A.
Then, we compare our proposed method with several state-
of-the-art LNL methods in Sec. IV-B. Finally, we give further
evaluation and discussions in Sec. IV-C.

A. Datasets and Implementation Details

1) Datasets: To validate the effectiveness of our method,
we perform the image classification task on six benchmark
datasets: MNIST [44], CIFAR-10 [45], CIFAR-100 [45],
ANIMAL-10N [46], Clothing1M [47], and WebVision [48].

MNIST is a handwritten digit dataset which contains 10
classes with 50,000 training images and 10,000 test images.
The size of each image in MNIST is 28 ⇥ 28. CIFAR-10
and CIFAR-100 are comprised of RGB images with the size
of 32 ⇥ 32, corresponding to 10 classes and 100 classes,
respectively. Both of them contain 50, 000 images for training
and 10, 000 images for testing. ANIMAL-10N is a real-world
noisy dataset consisting of human-labeled online images for
10 confusing animals, where the noisy labels are naturally
generated by human labeling errors. It provides 50, 000 images
for training and 5, 000 images for testing, where the size of
each image is 64 ⇥ 64. Clothing1M and WebVision are two
large-scale real-world noisy datasets. Clothing1M consists of
around 1 million training data and about 10,000 clean test data,
which are collected from online shopping websites. WebVision
includes about 2.4 million training samples obtained from the
web using 1,000 concepts in ImageNet ILSVRC12. Following
[32], we adopt the first 50 classes of the Google image subset
for training and testing.

Our goal is to identify the winning ticket under label noise.
Since MNIST, CIFAR-10, and CIFAR-100 are clean, we add
the synthetic label noise to the dataset according to a transition
matrix T = {Tij}, where Tij denotes the probability of
flipping a ground-truth label i to a corrupted label j. Following
the settings in Co-teaching [19], we use two representative
noise structures. (1) Symmetric noise, where each sample is
independently assigned to a uniformly random label instead
of its true label in the training set. In this case, Tij = ✏

C�1
for j 6= i, where C is the number of classes and ✏ denotes
the noise rate. (2) Asymmetric noise, where samples in one
class are assigned to the label of a similar class in the training
set. In this case, Tij = ✏ for a particular class j (j 6= i) and
Tij = 0 otherwise. To evaluate our method, we select the
noise rate ✏ 2 {20%, 40%} for symmetric noise and ✏ = 20%
for asymmetric noise. For ANIMAL-10N, Clothing1M, and
WebVision, we set ✏ = 8%, 38.5%, and 20.0%, respectively,
since the noise rates in these datasets are around 8%, 38.5%,
and 20.0%, as suggested by [16].

2) Implementation Details: We take S and D with the same
architectures but different initializations at the beginning of the
training process. Note that the scales of different datasets vary.
Following [18], [19], we use simple backbones for small-scale
datasets (such as MNIST and CIFAR-10), while we adopt

more sophisticated backbones for large-scale datasets (such
as Clothing1M and WebVision). Concretely, we use a three-
layer Multi-Layer Perception (MLP) [12] for MNIST. We
use an eight-layer Convolutional Neural Network (CNN) [18]
for CIFAR-10. We adopt VGG-16 [22] for CIFAR-100. We
employ VGG-19 [22] for ANIMAL-10N. Besides, we adopt
ResNet-18 [21] for Clothing1M. Following [32], Inception-
ResNet-v2 [49] is used for WebVision.

We implement all the methods via PyTorch and conduct
all the experiments on NVIDIA RTX 3080 GPU. We use the
SGD optimizer with momentum 0.9 for all the datasets. The
total number of training epochs E is set to 120 for CIFAR-
10, CIFAR-100, ANIMAL-10N, 40 for MNIST, and 100 for
Clothing1M and WebVision. The batch size is set to 256 for
all the datasets except for Clothing1M and WebVision. For
Clothing1M and WebVision, the batch size is set to 32. For all
the datasets except for MNIST, the numbers of training epochs
E1 and E2 for the warm-up stage and the semi-supervised
alternate learning stage are set to 20 and 60, respectively. For
MNIST, E1 and E2 are set to 10 and 20, respectively.

For MNIST, we use a constant learning rate (e.g., 1.0).
For CIFAR-10, CIFAR-100, and ANIMAL-10N, the initial
learning rate is set to 0.10 and decayed to 0.01 after 40
epochs. For Clothing1M and WebVision, the initial learning
rate is set to 0.02 and decayed to 0.002 after 60 epochs. The
parameter � in Eq. (5), the threshold ⌧ in Eq. (6) and the
parameter � in Eq. (7) are empirically set to 0.50, 0.70 and
0.50, respectively, for all the datasets. For network pruning,
we use IMP to prune the sparse sub-network with a pruning
factor pf 2 {0.3, 0.4, 0.5, 0.6}. The number of pruning times
R is set to 1, 2, or 3. The sparsity level of the network is
computed as 1 � (1 � pf)R. Therefore, 12 levels of sparsity
(i.e., 30%, 40%, 50%, 51%, 60%, 64%, 65.7%, 75%, 78.4%,
84%, 87.5%, and 93.6%) are obtained.

To measure the performance, we use the test accuracy as
well as the number of parameters (Params) to evaluate the
accuracy and memory consumption, respectively.

B. Comparisons with State-of-the-Art LNL Methods

In this subsection, we compare our proposed method with
several state-of-the-art LNL methods on both synthetic and
real-world noisy datasets.
Competing Methods. We compare our proposed TS3-Net
method with several state-of-the-art LNL methods (including
SCE [18], MAE [50], APL [29], ITLM [51], Co-teaching
[19], JoCoR [14], SELFIE [46], DivideMix [32], MentorNet
[30], F-correction [52], D2L [53], Decoupling [54], and a
baseline method) under different types of label noise. For
MentorNet, F-correction, D2L, and Decoupling, we directly
cite the results reported in [55]. For SCE, MAE, APL, ITLM,
Co-teaching, JoCoR and DivideMix, we report their results by
running the source codes provided by their respective authors
to train the models. We report the results obtained by APL
with a combination of NCE and MAE, and those obtained
by DivideMix without model ensemble. When evaluating on
a dataset, we use the same backbones for all the competing
methods. The baseline method refers to the method that trains

Page 11 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 8

TABLE I: Test Accuracy (%) and the number of parameters obtained by different methods on MNIST.

Method Symmetric-20% Symmetric-40% Asymmetric-20% Params (M)

Baseline 90.16 84.82 92.21 ⇡ 0.28
SCE (2019) 97.54 96.77 97.05 ⇡ 0.28
APL (2020) 96.88 95.76 96.90 ⇡ 0.28
MAE (2016) 91.95 88.93 92.48 ⇡ 0.28
ITLM (2019) 95.60 94.91 95.68 ⇡ 0.28
Co-teaching (2018) 96.37 95.49 97.00 ⇡ 0.28
JoCoR (2020) 98.06 96.81 96.99 ⇡ 0.28
DivideMix (2020) 96.21 95.37 96.07 ⇡ 0.28
TS3-Net (dense) 97.84 97.02 97.54 ⇡ 0.28
TS3-Net 97.30 97.11 97.28 ⇡ 0.04

TABLE II: Test Accuracy (%) and the number of parameters obtained by different methods on CIFAR-10.

Method Symmetric-20% Symmetric-40% Asymmetric-20% Params (M)

Baseline 83.58 78.67 84.32 ⇡ 0.52
SCE (2019) 87.17 84.31 85.05 ⇡ 0.52
APL (2020) 86.77 84.13 85.90 ⇡ 0.52
MAE (2016) 86.13 82.21 84.77 ⇡ 0.52
ITLM (2019) 85.58 84.49 87.12 ⇡ 0.52
Co-teaching (2018) 86.85 84.95 86.35 ⇡ 0.52
JoCoR (2020) 85.73 82.21 82.11 ⇡ 0.52
DivideMix (2020) 88.41 86.11 88.66 ⇡ 0.52
TS3-Net (dense) 88.52 85.52 88.79 ⇡ 0.52
TS3-Net 88.28 86.54 88.67 ⇡ 0.07

TABLE III: Test Accuracy (%) and the number of parameters obtained by different methods on CIFAR-100.

Method Symmetric-20% Symmetric-40% Asymmetric-20% Params (M)

Baseline 56.76 43.13 55.18 ⇡ 138.36
SCE (2019) 57.25 43.88 57.50 ⇡ 138.36
APL (2020) 53.47 44.62 56.67 ⇡ 138.36
ITLM (2019) 59.27 57.37 61.99 ⇡ 138.36
Co-teaching (2018) 63.17 59.24 63.22 ⇡ 138.36
DivideMix (2020) 65.28 60.91 65.37 ⇡ 138.36
TS3-Net (dense) 65.60 61.09 64.02 ⇡ 138.36
TS3-Net 66.87 60.99 65.96 ⇡ 17.30

the neural network by using the standard cross-entropy loss.
Moreover, we also evaluate the performance of the trained
dense sub-network D (denoted as TS3-Net (dense)) in our
method. In this subsection, we set pf = 0.5 and R = 3 (the
sparsity level is 87.5%) for MNIST, CIFAR-10, CIFAR-100,
and ANIMAL-10N, while we set pf = 0.4 and R = 3 (the
sparsity level is 78.4%) for Clothing1M and WebVision.

Results on MNIST We report the test accuracy obtained by
all the competing methods on MNIST, as shown in Table I.
We can see that all the LNL methods perform better than the
baseline method. This shows the effectiveness of label noise
learning. For the Symmetric-20% case, SCE, JoCoR, TS3-Net
(dense) and TS3-Net obtain better test accuracy than the other
methods. SCE leverages a robust term to learn with label noise,
while JoCoR selects the small-loss samples with a joint loss to
update the two networks. TS3-Net takes advantage of a multi-
stage learning framework to update S and D. In this case,
although JoCoR performs slightly better than TS3-Net, the
network parameters of TS3-Net (about 0.04M) are much fewer
than those of JoCoR (about 0.28M). For the Asymmetric-20%
and Symmetric-40% cases, our proposed TS3-Net (dense) and
TS3-Net obtain better performance than the other competing
methods. Compared with TS3-Net (dense), TS3-Net achieves

similar performance with greatly fewer network parameters.
Results on CIFAR-10 Table II shows the test accuracy on
CIFAR-10. We use an eight-layer CNN model which contains
about 0.52M parameters as the backbone. For the Symmetric-
20% case, TS3-Net (dense) performs better than the other
competing methods. For the Symmetric-40% case, DivideMix
performs better than TS3-Net (dense) while TS3-Net gives
the best performance among all the competing methods. The
sparse model is beneficial to alleviate the overfitting problem
due to label noise by removing redundant parameters, leading
to better generalization capability. Note that SCE, APL, and
MAE cannot effectively deal with severe label noise and they
achieve low test accuracy for the Symmetric-40% case. JoCoR,
Co-teaching, and ITLM are representative sample selection
based methods, which only use the small-loss samples to
update model parameters. However, such a way may limit
the generalization capability of these methods. Hence, their
performance is inferior to that of TS3-Net.
Results on CIFAR-100 The comparison results on CIFAR-
100 are shown in Table III. We use VGG-16 as the backbone
which contains about 138.86M parameters. As shown in
Table III, the performance of APL declines, which may be
mainly due to the bad memorization of noisy samples. The

Page 12 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 9

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

 0 20 40 60 80 100 120

(a)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

Baseline

SCE

APL

Co-teaching

TS3-Net
20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

 0 20 40 60 80 100 120

(b)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

Baseline

SCE

APL

Co-teaching

TS3-Net

Fig. 3: Test accuracy vs. training epochs under Symmetric-
40% label noise on (a) CIFAR-10 and (b) CIFAR-100.

TABLE IV: Test Accuracy (%) and the number of parameters
obtained by different methods on ANIMAL-10N.

Method Accuracy Params (M)

Baseline 78.20 ⇡ 143.67
SCE (2019) 76.82 ⇡ 143.67
APL (2020) 76.94 ⇡ 143.67
ITLM (2019) 78.80 ⇡ 143.67
Co-teaching (2018) 79.10 ⇡ 143.67
DivideMix (2020) 79.98 ⇡ 143.67
SELFIE (2019) 81.80 ⇡ 143.67
TS3-Net (dense) 80.38 ⇡ 143.67
TS3-Net 81.36 ⇡ 17.96

TABLE V: Test Accuracy (%) and the number of parameters
obtained by different methods on Clothing1M. “Best” and
“Last” represent the trained model at the epoch (when the
validation accuracy is optimal) and at the end of training
epochs, respectively.

Method Best Last Params (M)

Baseline 69.20 66.49 ⇡ 11.69
DivideMix (2020) 71.88 71.61 ⇡ 11.69
JoCoR (2020) 70.30 69.79 ⇡ 11.69
Co-teaching (2018) 69.21 68.51 ⇡ 11.69
TS3-Net (dense) 71.15 71.07 ⇡ 11.69
TS3-Net 72.20 72.09 ⇡ 2.53

performance of SCE is affected when the number of classes is
large, as validated in [16]. For the hard Symmetric-40% case,
ITLM performs poorly since it may not effectively select clean
samples and thus overfits some noisy labeled samples during
training. For all the types of label noise, TS3-Net outperforms
Co-teaching and ITLM by a moderate margin. Compared with
TS3-Net (dense), TS3-Net gives similar/better results. This
demonstrates the effectiveness of our method.

We also plot the curves of test accuracy vs. the number of
training epochs obtained by our method and several competing
methods in Fig. 3. Our method outperforms the other compet-
ing methods, which shows the superiority of our method.
Results on ANIMAL-10N In this section, we compare our
proposed TS3-Net with several methods on a real-world noisy
dataset ANIMAL-10N, as shown in Table IV. All the com-
peting methods are based on VGG-19, which contains about
143.67M parameters. The baseline method outperforms SCE
and APL on this dataset because the noise rate is small (about
8%). SELFIE obtains the best test accuracy (81.80%) among
all the methods. However, it is based on a dense network and

TABLE VI: The top-1, top-5 accuracy (%), and the number
of parameters obtained by different methods on WebVision
(mini). The accuracy is reported on both the WebVision
validation set and the ImageNet ILSVRC12 validation set.

Test dataset WebVision ILSVRC12 -

Accuracy (%) top-1 top-5 top-1 top-5 Params (M)

F-correction (2017) 61.12 82.68 57.36 82.36 54.38
Decoupling (2017) 62.54 84.74 58.26 82.26 54.38
D2L (2018) 62.68 84.00 57.80 81.36 54.38
MentorNet (2018) 63.00 81.40 57.80 79.92 54.38
Co-teaching (2018) 63.58 85.20 61.48 84.70 54.38
Iterative-CV (2019) 65.24 85.34 61.60 84.98 54.38
DivideMix (2020) 75.70 90.01 73.18 89.11 54.38

TS3-Net (dense) 74.60 90.68 71.08 90.31 54.38
TS3-Net 73.48 90.92 70.27 90.46 11.75

TABLE VII: The details of seven variants in TS3-Net

Method warm-up alternate refine entropy

TS3-Net (warm) X
TS3-Net (semi) X X
TS3-Net (warm+semi) X X X
TS3-Net (warm+refine) X X
TS3-Net (semi+refine) X X X
TS3-Net (warm+alter) X X
TS3-Net X X X X

“warm-up”, “alternate”, and “refine” represent the warm-up stage, the semi-
supervised alternate learning stage without using the entropy loss and the label
refinement stage. “entropy” represents that the entropy loss is used.

uses multiple restart operations, which are time-consuming.
Compared with SELFIE, TS3-Net achieves comparable perfor-
mance (81.36%) with only about 1/8 of network parameters.
TS3-Net outperforms TS3-Net (dense) by about 1%, which
indicates that the winning ticket identified by TS3-Net has
good generalization capability on the real-world noisy dataset.
Results on Clothing1M We compare our TS3-Net with sev-
eral state-of-the-art LNL methods on Clothing1M, as shown
in Table V. All the competing methods are based on ResNet-
18 which contains about 11.69M parameters. We can observe
that TS3-Net consistently outperforms the other competing
methods. Compared with TS3-Net (dense), TS3-Net achieves
higher accuracy with around only 1/5 of network parameters.
This further indicates the effectiveness of TS3-Net on the
large-scale real-world dataset with a high noise rate (38.5%).
Results on WebVision We show the results on WebVision
in Table VI. For the top-1 accuracy, TS3-Net consistently
outperforms other methods except for DivideMix. But TS3-Net
requires only about 1/5 of network parameters compared with
DivideMix. Moreover, TS3-Net obtains the best top-5 accura-
cy. This is because an effective multi-stage learning framework
is designed by explicitly considering the differences between
the sparse sub-network and the dense sub-network.

C. Further Evaluation and Discussions

1) Ablation Studies: In TS3-Net, a multi-stage learning
framework, consisting of a warm-up stage, a semi-supervised
alternate learning stage, and a label refinement stage, is
developed to train S and D. To evaluate the effectiveness
of each stage, we conduct ablation studies on MNIST under

Page 13 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 10

TABLE VIII: Test accuracy (%) obtained by different variants at different levels of sparsity on MNIST and CIFAR-100.

Dataset Method Sparsity (%)
0 30 40 50 51 60 64 65.7 75 78.4 84 87.5 93.6

MNIST

TS3-Net (warm) 84.82 77.07 80.15 81.57 76.67 86.19 87.65 82.10 86.92 86.44 86.36 92.29 92.09
TS3-Net (semi) 95.97 96.10 95.58 96.23 95.99 95.86 95.90 96.29 95.61 95.60 95.93 95.81 96.20
TS3-Net (warm+semi) 96.77 96.37 96.10 96.42 96.61 96.33 96.18 96.41 96.47 96.01 96.38 96.87 96.55
TS3-Net (warm+refine) 96.60 96.72 96.53 96.51 96.82 96.58 96.50 96.83 96.48 96.64 96.49 96.27 96.25
TS3-Net (semi+refine) 96.56 96.53 96.48 96.41 96.39 96.38 96.43 96.38 96.67 96.41 96.58 96.58 96.38
TS3-Net (warm+alter) 96.20 96.23 96.19 96.48 95.59 96.36 95.99 96.45 95.63 96.07 96.18 96.97 96.31
TS3-Net 97.02 96.76 97.20 96.84 97.01 97.08 97.00 96.95 97.14 97.13 97.01 97.11 96.77

CIFAR-100

TS3-Net (warm) 56.76 57.07 56.88 56.46 56.21 59.98 57.04 56.91 56.54 56.13 56.31 56.32 54.18
TS3-Net (semi) 61.31 62.13 61.37 61.34 63.09 62.03 63.01 64.07 62.17 63.50 63.88 61.92 62.70
TS3-Net (warm+semi) 64.47 64.85 64.34 64.66 64.73 64.77 64.90 65.39 65.57 64.85 64.90 65.87 65.00
TS3-Net (warm+refine) 63.62 63.41 63.71 62.90 63.33 63.48 64.00 64.47 64.25 64.11 63.99 65.01 65.00
TS3-Net (semi+refine) 61.98 59.90 61.01 62.17 61.29 62.84 63.67 64.43 62.86 64.25 64.06 61.91 63.69
TS3-Net (warm+alter) 63.69 63.97 64.12 63.77 63.64 63.56 63.89 63.78 64.47 64.16 64.90 63.77 64.09
TS3-Net 65.60 65.78 65.98 65.10 65.34 65.41 65.49 66.25 66.56 65.99 66.17 66.87 66.78

TABLE IX: Accuracy (%) for the different values of �, ⌧ , �, E1, E2 under C1: CIFAR-10 under Symmetric-40% label noise
and C2: CIFAR-100 under Symmetric-40% label noise.

(a) Influence of �.

� C1 C2

0.00 84.96 58.67
0.50 86.54 60.99

0.70 86.21 60.88
1.00 85.42 59.94

(b) Influence of ⌧ .

⌧ C1 C2

0.00 85.69 60.27
0.30 86.33 60.65
0.50 86.38 60.71
0.70 86.54 60.99

(c) Influence of �.

� C1 C2

0.00 85.45 60.18
0.10 86.44 60.91
0.50 86.54 60.99

1.00 85.79 60.78

(d) Influence of E1.

E1 C1 C2

10 86.11 60.87
15 86.32 60.63
20 86.54 60.99

30 85.68 60.27

(e) Influence of E2.

E2 C1 C2

30 85.78 60.38
45 86.49 61.01
60 86.54 60.99
80 86.32 61.35

Symmetric-40% label noise and CIFAR-100 under Symmetric-
20% label noise.

Specifically, we evaluate several variants of TS3-Net, in-
cluding TS3-Net based on only the warm-up stage (denoted as
TS3-Net (warm)), TS3-Net based on only the semi-supervised
alternate learning stage (denoted as TS3-Net (semi)), TS3-Net
based on the warm-up and semi-supervised alternate learning
stages (denoted as TS3-Net (warm+semi)), TS3-Net based on
the warm-up and label refinement stages (denoted as TS3-
Net (warm+refine)), TS3-Net based on the semi-supervised
alternate learning and label refinement stages (denoted as TS3-
Net (semi+refine)), and TS3-Net based on the warm-up and
alternate learning stages (denoted as TS3-Net (warm+alter),
where the entropy loss is not employed). The details of these
variants are shown in Table VII. Moreover, TS3-Net based on
the three stages is also evaluated. In all ablation studies, we
select 13 levels of sparsity (including 0.00% sparsity, where
the pruning factor is set to 0.0) for evaluation. The comparison
results are given in Table VIII.

From Table VIII, we can observe the following patterns.
First, among all the variants, TS3-Net (warm) achieves the
worst performance at different levels of sparsity on two
datasets. This is due to the fact that TS3-Net (warm) gradually
overfits noisy labels during the training. Meanwhile, compared
with TS3-Net (warm+semi), TS3-Net (semi) gives worse per-
formance. TS3-Net (semi+refine), which does not employ the
warm-up stage, achieves lower accuracy than TS3-Net. These
results verify the necessity of the warm-up stage. Second, TS3-
Net (warm+semi) achieves better performance than TS3-Net
(warm) and TS3-Net gives higher test accuracy than TS3-Net
(warm+refine). The above results show the importance of the
semi-supervised alternate learning stage. Third, TS3-Net (war-

m+semi) obtains higher accuracy than TS3-Net (warm+alter).
Therefore, the semi-supervised learning manner is helpful to
improve the performance by exploiting all the batch samples
during training. Finally, TS3-Net gives better results than TS3-
Net (warm+semi). This clearly shows the effectiveness of the
label refinement stage. In summary, from the ablation studies
on two datasets, the effectiveness of each stage in the multi-
stage learning framework is validated.

2) Parameter Sensitivity Analysis: In this subsection, we
illustrate the influence of several key parameters (including
the parameters �, ⌧ , and � in Eq. (5), Eq. (6), and Eq. (7),
respectively; the training epochs E1 and E2 for the first stage
and the second stage, respectively; the noise rate ✏) of TS3-Net
on the final performance. We set pf = 0.5 and R = 3. Thus,
the sparsity level is 87.5%. CIFAR-10 under Symmetric-40%
label noise and CIFAR-100 under Symmetric-40% label noise
are used. The results are given in Table IX.
Influence of �, ⌧ , and �. We first fix ⌧ = 0.70 and � = 0.50,
and vary the value of � from 0.00 to 1.00. The results are listed
in Table IX(a). From Table IX(a), we can see that, when � is
set to 0.00, which indicates that TS3-Net is trained without
using the unlabeled samples in the semi-supervised alternate
learning stage, TS3-Net gives the worst performance. TS3-Net
gives the top accuracy when � = 0.50. Next, we fix � = 0.50
and � = 0.50 and vary the value of ⌧ from 0.00 to 0.70. As
shown in Table IX(b), TS3-Net achieves the best performance
when ⌧ = 0.70 and achieves the worst performance when
⌧ = 0.00. Then, we fix � = 0.50 and ⌧ = 0.70 to investigate
the influence of �. From Table IX(c), we observe that the
performance gap between � = 0.10 and � = 0.50 is marginal
and TS3-Net obtains the worst performance when � = 0.00
(indicating that all unlabeled samples are used in the label

Page 14 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 11

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

(a)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Sparsity (%)

TS3-Net with GMMs

TS3-Net
40.0

45.0

50.0

55.0

60.0

65.0

70.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

(b)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Sparsity (%)

TS3-Net with GMMs

TS3-Net

Fig. 4: Test accuracy vs. sparsity levels under Symmetric-40%
label noise on (a) CIFAR-10 and (b) CIFAR-100.

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

 0 20 40 60 80 100 120

(a)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

TS3-Net with co-teaching

TS3-Net
20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

 0 20 40 60 80 100 120

(b)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

TS3-Net with co-teaching

TS3-Net

Fig. 5: Test accuracy vs. training epochs under Symmetric-
40% label noise on (a) CIFAR-10 and (b) CIFAR-100.

refinement stage). For all our experiments, we fix � = 0.50,
⌧ = 0.70, and � = 0.50, respectively.
Influence of E1 and E2. The influences of E1 and E2 are
shown in Table IX(d) and Table IX(e), respectively. Specifi-
cally, we first fix E2 = 60 and vary the value of E1 from 10 to
30. From Table IX(d), we can observe that TS3-Net obtains the
best performance when E1 = 20 and the worst performance
when E1 = 30. This can be due to the overfitting caused by a
large number of warm-up epochs. Then, we fix the E1 = 20
and vary the value of E2 from 30 to 80. From Table IX(e), we
see that E2 = 60 achieves the best results for CIFAR-10 while
E2 = 80 obtains the highest accuracy for CIFAR-100. It can
be ascribed to the fact that CIFAR-100 contains more classes
than CIFAR-10 and thus our method requires more epochs to
learn for the semi-supervised alternate learning stage before
label refinement.
Influence of unknown ✏. In this paper, we empirically set
the value of the noise rate ✏ for each dataset. Unfortunately,
✏ is unknown in some real-world applications. Thus, we also
validate the performance of TS3-Net without giving the accu-
rate noise rate. Specifically, as done in [32], we select clean
samples from noisy data by fitting Gaussian Mixture Models
(GMMs) to the loss of training examples, where the clean
posterior probability is set to 0.50. We perform experiments
on CIFAR-10 under Symmetric-40% label noise and CIFAR-
100 under Symmetric-40% label noise at five levels of sparsity.

As shown in Fig. 4, we evaluate the performance obtained
by TS3-Net with the accurate noise rate and TS3-Net with
GMMs. Compared with TS3-Net with the accurate noise rate,
the performance of TS3-Net with GMMs slightly decreases.
This demonstrates that TS3-Net works well when GMMs are
employed to select clean and noisy labeled samples.

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

 0 20 40 60 80 100 120

(a)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

dense sub-network

sparse sub-network
40.0

50.0

60.0

70.0

80.0

90.0

100.0

 0 20 40 60 80 100 120

(b)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Training Epochs

dense sub-network

sparse sub-network

Fig. 6: Test accuracy vs. training epochs under (a) Symmetric-
40% label noise and (b) clean data on CIFAR-10.

3) Effectiveness of Two-Stream Architecture: Our TS3-Net
involves a sparse sub-network and a dense sub-network. In
TS3-Net, we gradually prune the dense sub-network to ob-
tain the sparse sub-network. During semi-supervised alternate
learning, the dense sub-network and the sparse sub-network
are updated alternately with the guidance of each other. To
show the effectiveness of our two-stream architecture, we
further evaluate some variants of our method: 1) our TS3-
Net with one sparse sub-network (denote as sparse). That
is, the dense sub-network is first trained by the multi-stage
learning framework (alternate learning is not used since only
one sub-network is considered) and then a sparse sub-network
is obtained from the trained dense sub-network by IMP; 2) our
TS3-Net with two sparse sub-networks initialized differently
during the training (denoted as sparse+sparse); 3) our TS3-Net
with co-teaching, where alternate learning is replaced with co-
teaching (denoted as dense+sparse (co-teaching)); and 4) our
TS3-Net. We evaluate our method with the different orders of
alternate learning of S and D. CIFAR-10 under Symmetric-
40% label noise and CIFAR-100 under Symmetric-40% label
noise are used. The results are given in Table X.

We have the following observations. First, in comparison
to the methods with the two-stream architecture, the sparse
method achieves worse performance. This shows the advantage
of maintaining the two-stream architecture, which helps to
alleviate the confirmation bias of sample selection. Second, our
method with the dense and sparse sub-networks gives better
performance than that with two sparse sub-networks. This can
be ascribed to the superior learning capability of the dense sub-
network to select clean samples in the second stage. Third,
our methods under the different orders of alternate learning
achieve basically the same accuracy. The order of alternate
learning is not critical since S and D are trained in iterations.
Fourth, our method with alternate learning outperforms that
with co-teaching. That is, the joint learning of S and D
decreases the model accuracy.

Fig. 5 further illustrates the test accuracy vs. training
epochs, respectively obtained by TS3-Net with co-teaching
and TS3-Net. As training proceeds, TS3-Net obtains higher test
accuracy than TS3-Net with co-teaching. This may be ascribed
to less error accumulation introduced by alternating learning.

Moreover, we compare the learning capability of sparse sub-
network with that of dense sub-network, as shown in Fig. 6.
Specifically, we apply the small-loss criterion (or the standard
cross-entropy loss) to separately train the sparse sub-network

Page 15 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 12

TABLE X: Test Accuracy (%) of different architecture designs.

Architecture Design CIFAR-10 CIFAR-100

sparse 85.21 58.01
sparse+sparse 85.89 59.76
dense+sparse (co-teaching) 84.39 58.68
TS3-Net1 86.54 60.61

TS3-Net2 86.71 60.28
1: S is trained before D during alternate learning; 2: D is trained
before S during alternate learning.

and the dense sub-network with noisy (or clean) supervision.
The sparsity level is set to 93.6%. Clearly, the dense sub-
network gives higher test accuracy than the sparse sub-network
under both label noise and clean conditions. This validates the
stronger learning capability of the dense sub-network.

4) Effectiveness of Multi-stage Learning Framework: Now
we evaluate the effectiveness of multi-stage learning frame-
work on synthetic and real-world noisy datasets. In particular,
we replace the multi-stage learning framework (denoted as
MSL) in TS3-Net with five state-of-the-art LNL methods (in-
cluding SCE [18], MAE [50], APL [29], ITLM [51], and Co-
teaching [19]) and evaluate their corresponding performance.
We re-implement these methods according to the source codes
provided by their respective authors. Co-teaching and MSL
train both S and D while the other methods only train S .
MNIST, CIFAR-10, CIFAR-100, and ANIMAL-10N are used
for evaluation.
Results on MNIST Fig. 7 shows the test accuracy obtained by
all the competing methods using a three-layer MLP. We can
see that MSL outperforms the other state-of-the-art methods
in most cases. Among all the methods, MAE is a robust loss
based method, which easily suffers from underfitting. The
performance of MAE significantly drops with the increasing
levels of sparsity. This can be ascribed to the inferior learning
capability of S when only MAE is used for training, lead-
ing to poor generalization. Compared with MAE, APL and
SCE achieve better performance. This is because they use a
convex combination consisting of an underfitting term and an
overfitting term to balance the overfitting and underfitting. For
the hard Symmetric-40% case, ITLM performs poorly since it
unavoidably overfits some noisy labeled samples. Compared
with Co-teaching, our MSL achieves better results due to the
fact that MSL progressively enhances the learning capability
of S and D.
Results on CIFAR-10 The comparison results on CIFAR-10
are reported in Fig. 8. For the Asymmetric-20% case, ITLM
gives better performance than robust loss based methods (such
as SCE and MAE). This is because that ITLM leverages clean
samples to calculate the cross-entropy loss, which can alleviate
the influence of noisy labels during the training of S . For the
Symmetric-40% case, Co-teaching gives the best performance
among all the competing methods, except for MSL that selects
more reliable samples by using two sub-networks.
Results on CIFAR-100 The comparison results on CIFAR-
100 are shown in Fig. 9 for the Symmetric-20%, Symmetric-
40%, and Asymmetric-20% cases, respectively. The CIFAR-
100 dataset contains 100 classes and is more challenging
than CIFAR-10. Hence, the test accuracy of most competing
methods is less than 70%. For the Symmetric-20% case, MSL

70.0

72.0

74.0

76.0

78.0

80.0

82.0

84.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

Co-teaching

MSL

Fig. 10: Test accuracy obtained by different methods at dif-
ferent levels of sparsity on ANIMAL-10N.

Fig. 11: The label precision during the semi-supervised al-
ternate learning stage on (a) CIFAR-10 and (b) CIFAR-100,
respectively. The pseudo-label accuracy during the label refine-
ment stage on (c) CIFAR-10 and (d) CIFAR-100, respectively.

obtains significantly better test accuracy than the ITLM and
Co-teaching methods (about 6% and 2% improvements in av-
erage). For the Asymmetric-20% case, MSL still outperforms
the other competing methods. The performance of both SCE
and APL for the Symmetric-40% case is significantly worse
(about 15% and 10% decreases in average) than that for the
Symmetric-20% case. This is because that the overfitting term
in these methods dominates the overall training under severe
noise conditions. Such a way is determinant to alleviate the
influence of label noise. Among all the methods, MSL achieves
the best results under different label noise conditions and
different levels of sparsity.
Results on ANIMAL-10N The comparison results on the
ANIMAL-10N dataset are given in Fig. 10. We can see that
APL consistently outperforms SCE at all the levels of sparsity.
Moreover, our proposed MSL outperforms the other competing
methods at different levels of sparsity. ITLM, Co-teaching,
and MSL achieve better results than APL. This shows the
importance of sample selection in the real-world noisy dataset.

5) Visualization: In this subsection, we first visualize the
label precision obtained by the sparse sub-network S during
the semi-supervised alternate learning stage and the pseudo-
label accuracy obtained by S during the label refinement stage
in Fig. 11. CIFAR-10 under Symmetric-20% and Symmetric-
40% label noise, and CIFAR-100 under Symmetric-20% and
Symmetric-40% label noise are used for evaluation.

As shown in Figs. 11(a) and 11(b), the label precision ob-
tained by S is constantly improved during the semi-supervised

Page 16 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 13

88.0

90.0

92.0

94.0

96.0

98.0

100.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(a)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

MAE

Co-teaching

MSL 84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(b)
T

e
st

 A
c
c
u

ra
c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

MAE

Co-teaching

MSL 84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(c)

T
e
st

 A
c
c
u

ra
c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

MAE

Co-teaching

MSL

Fig. 7: Test accuracy obtained by our method and several state-of-the-art LNL methods at different levels of sparsity under
three label noise conditions, including (a) Symmetric-20%, (b) Symmetric-40% and (c) Asymmetric-20%, on MINIST.

80.0

82.0

84.0

86.0

88.0

90.0

92.0

94.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(a)

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

MAE

Co-teaching

MSL 65.0

70.0

75.0

80.0

85.0

90.0

95.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(b)

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

MAE

Co-teaching

MSL

80.0

82.0

84.0

86.0

88.0

90.0

92.0

94.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(c)

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

MAE

Co-teaching

MSL

Fig. 8: Test accuracy obtained by our method and several state-of-the-art LNL methods at different levels of sparsity under
three label noise conditions, including (a) Symmetric-20%, (b) Symmetric-40% and (c) Asymmetric-20%, on CIFAR-10.

40.0

45.0

50.0

55.0

60.0

65.0

70.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(a)

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

Co-teaching

MSL

35.0

40.0

45.0

50.0

55.0

60.0

65.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(b)

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

Co-teaching

MSL

50.0

55.0

60.0

65.0

70.0

30.0 40.0 50.0 60.0 70.0 80.0 90.0

(c)

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Sparsity (%)

SCE

APL

ITLM

Co-teaching

MSL

Fig. 9: Test accuracy obtained by our method and several state-of-the-art LNL methods at different levels of sparsity under
three label noise conditions, including (a) Symmetric-20%, (b) Symmetric-40% and (c) Asymmetric-20%, on CIFAR-100.

alternate learning stage. The improved label quality can facil-
itate the training of S , resulting in the enhanced classification
capability of S . As shown in Figs. 11(c) and 11(d), the
pseudo-label accuracy obtained by S keeps stable during the
label refinement stage. This shows the effectiveness of our
relabeling strategy.

6) Robustness against Different Network Architectures:

Here, we report the performance of our proposed TS3-Net
based on different network architectures (i.e., eight-layer CNN,
ResNet-18, and VGG-16) as backbones. We evaluate TS3-Net
under the Symmetric-40% noise condition on CIFAR-10. The
results are shown in Table XI. The TS3-Net (warm) method
is also given for a comparison.

TS3-Net based on VGG-16 gives better results than that
based on the other two network architectures, even at a very
high sparsity level (i.e., 93.6%). Compared with the TS3-Net
(warm), TS3-Net achieves much higher accuracy on three net-
work architectures. Among these networks, VGG-16 has the
largest number of parameters while the eight-layer CNN has
the smallest number of parameters. However, TS3-Net based
on the eight-layer CNN still obtains comparable performance
to that based on VGG-16. Overall, the above experimental
results demonstrate the robustness of the proposed TS3-Net
against different network architectures.

7) Winning Ticket Visualization: To further investigate the
superiority of TS3-Net, we visualize the distribution of ini-

Page 17 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 14

TABLE XI: Accuracy (%) with three network architectures at different levels of sparsity under Symmetric-40% label noise on
CIFAR-10. The architecture of the dense sub-network and its corresponding number of parameters are also given.

Network & Params (M) Method Sparsity%
30 40 50 51 60 64 65.7 75 78.4 84 87.5 93.6

eight-layer CNN (⇡ 0.52) TS3-Net (warm) 78.01 77.32 78.58 78.75 77.34 78.66 79.39 79.56 79.49 78.21 80.52 80.02
TS3-Net 85.96 86.03 86.68 86.18 86.75 86.14 86.68 86.28 86.71 86.51 86.08 85.51

ResNet-18 (⇡ 11.69) TS3-Net (warm) 78.91 79.50 80.76 80.57 81.08 81.35 81.55 81.04 80.20 82.35 81.56 82.2
TS3-Net 85.78 85.99 86.04 86.67 86.43 86.55 85.90 85.78 85.67 85.65 85.33 84.78

VGG-16 (⇡ 138.36) TS3-Net (warm) 60.05 64.47 62.72 61.75 62.25 59.72 59.51 61.38 61.87 62.26 63.13 59.62
TS3-Net 87.62 86.90 87.11 87.51 87.23 87.52 88.08 87.73 88.09 88.12 88.62 88.65

Fig. 12: (a)-(c) respectively denote the distributions of initialized weights of the winning tickets obtained by TS3-Net at three
levels of sparsity (i.e., 60%, 84%, and 93.6%) under Symmetric-20% noise on MNIST. The red, green and blue lines show the
distributions for the first hidden layer, second hidden layer, and output layer of the three-layer MLP architecture, respectively.

tialized weights of the winning ticket obtained by TS3-Net on
MNIST. Fig. 12 shows the distributions at three different levels
of sparsity (i.e., three columns) in the case of Symmetric-
20% label noise. We can see that the bimodal distributions are
present across all layers for initialized weights of the winning
ticket, as validated in [12]. Moreover, the distributions are
similar at each sparsity level. Hence, TS3-Net can effectively
search for the winning tickets under the label noise condition.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel TS3-Net, consisting
of a sparse sub-network and a dense sub-network, to effec-
tively identify the winning ticket under label noise. Based
on our developed multi-stage learning framework, TS3-Net
is able to learn a sparse sub-network that has extremely low
memory usage and good classification capability, when it is
trained on noisy labeled data. Extensive experimental results
on synthetic and real-world noisy benchmark datasets have
shown the effectiveness of our method in comparison with
several state-of-the-art LNL methods.

Currently, our method works in the closed-set settings,
where only in-distribution label noise is considered. In the
future, we will extend our method to the more challenging
out-of-distribution label noise.

REFERENCES

[1] Y. Wang, Z.-P. Bian, J. Hou, and L.-P. Chau, “Convolutional neural
networks with dynamic regularization,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 32, no. 5, pp. 2299–2304, 2020.
[2] P. Tang, X. Wang, B. Shi, X. Bai, W. Liu, and Z. Tu, “Deep fishernet for

image classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 7, pp. 2244–2250, 2018.

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.

IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[4] Y. Chen, Y. Cao, H. Hu, and L. Wang, “Memory enhanced global-local
aggregation for video object detection,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2020, pp. 10 337–10 346.
[5] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning

for efficient convolutional neural networks,” in Proc. AAAI Conf. Art.

Intell., vol. 32, no. 1, 2018, pp. 6797–6804.
[6] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep

neural networks,” 2015, arXiv:1507.06149. [Online]. Available: http-

s://arxiv.org/abs/1507.06149.
[7] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy

of pruning for model compression,” 2017, arXiv:1710.01878. [Online].

Available: https://arxiv.org/abs/1710.01878.
[8] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional

neural networks for mobile devices,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., 2016, pp. 4820–4828.
[9] Z. Yang, M. Moczulski, M. Denil, N. De Freitas, A. Smola, L. Song,

and Z. Wang, “Deep fried convnets,” in Proc. IEEE Int. Conf. Comput.

Vis., 2015, pp. 1476–1483.
[10] S.-K. Yeom, P. Seegerer, S. Lapuschkin, A. Binder, S. Wiedemann, K.-

R. Müller, and W. Samek, “Pruning by explaining: A novel criterion
for deep neural network pruning,” Pattern Recognit., vol. 115, pp. 1–14,
2021.

[11] C. Kaplan and A. Bulbul, “Goal driven network pruning for object
recognition,” Pattern Recognit., vol. 110, pp. 1–11, 2021.

[12] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” 2018, arXiv:1803.03635. [Online].

Available: https://arxiv.org/abs/1803.03635.
[13] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Stabilizing the

lottery ticket hypothesis,” 2019, arXiv:1903.01611. [Online]. Available:

https://arxiv.org/abs/1903.01611.
[14] H. Wei, L. Feng, X. Chen, and B. An, “Combating noisy labels by

agreement: A joint training method with co-regularization,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 13 726–13 735.
[15] B. Frénay and M. Verleysen, “Classification in the presence of label

noise: a survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 5,
pp. 845–869, 2013.

[16] H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee, “Learning from noisy
labels with deep neural networks: A survey,” 2020, arXiv:2007.08199.

[Online]. Available: https://arxiv.org/abs/2007.08199.
[17] F. R. Cordeiro and G. Carneiro, “A survey on deep learning with

noisy labels: How to train your model when you cannot trust on the
annotations?” in SIBGRAPI Conf. Graph., Patterns Images, 2020, pp.
9–16.

Page 18 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

JOURNAL OF LATEX CLASS FILES 15

[18] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, “Symmetric
cross entropy for robust learning with noisy labels,” in Proc. IEEE Int.

Conf. Comput. Vis., 2019, pp. 322–330.
[19] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and

M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 8536–8546.

[20] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama, “How does
disagreement help generalization against label corruption?” in Proc. Int.

Conf. Mach. Learn., 2019, pp. 7164–7173.
[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].

Available: https://arxiv.org/abs/1409.1556.
[23] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

Proc. Adv. Neural Inf. Process. Syst., 1990, pp. 598–605.
[24] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and

general network pruning,” in Proc. IEEE. Int. Conf. Neural. Networks.,
1993, pp. 293–299.

[25] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, “Proving
the lottery ticket hypothesis: Pruning is all you need,” in Proc. Int. Conf.

Mach. Learn., 2020, pp. 6682–6691.
[26] S. Girish, S. R. Maiya, K. Gupta, H. Chen, L. Davis, and A. Shrivasta-

va, “The lottery ticket hypothesis for object recognition,” 2020, arX-

iv:2012.04643. [Online]. Available: https://arxiv.org/abs/2012.04643,
2020.

[27] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and Z. Wang,
“The lottery tickets hypothesis for supervised and self-supervised pre-
training in computer vision models,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., 2021, pp. 16 306–16 316.
[28] X. Zhou, X. Liu, J. Jiang, X. Gao, and X. Ji, “Asymmetric loss functions

for learning with noisy labels,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 12846–12856.

[29] X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, and J. Bailey,
“Normalized loss functions for deep learning with noisy labels,” in Proc.

Int. Conf. Mach. Learn., 2020, pp. 6543–6553.
[30] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “MentorNet:

Learning data-driven curriculum for very deep neural networks on
corrupted labels,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 2304–
2313.

[31] Y. Yao, Z. Sun, C. Zhang, F. Shen, Q. Wu, J. Zhang, and Z. Tang,
“Jo-SRC: A contrastive approach for combating noisy labels,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., 2021, pp. 5192–5201.
[32] J. Li, R. Socher, and S. C. Hoi, “DivideMix: Learning with noisy labels

as semi-supervised learning,” in Int. Conf. Learn. Represent., 2019.
[33] T. Nguyen, C. Mummadi, T. Ngo, L. Beggel, and T. Brox, “SELF:

learning to filter noisy labels with self-ensembling,” in Int. Conf. Learn.

Represent., 2020.
[34] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,

T. Maharaj, A. Fischer, A. C. Courville, Y. Bengio, and S. Lacoste-
Julien, “A closer look at memorization in deep networks,” in Proc. Int.

Conf. Mach. Learn., vol. 70, 2017, pp. 233–242.
[35] Y. Wang, R. Huang, G. Huang, S. Song, and C. Wu, “Collaborative

learning with corrupted labels,” Neural Netw., vol. 125, pp. 205–213,
2020.

[36] S. Cicek, A. Fawzi, and S. Soatto, “SaaS: Speed as a supervisor for
semi-supervised learning,” in Proc. Eur. Conf. Comput. Vis., 2018, pp.
149–163.

[37] S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda, “Early-
learning regularization prevents memorization of noisy labels,” Proc.

Adv. Neural Inf. Process. Syst., vol. 33, pp. 1–26, 2020.
[38] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliv-

er, and C. Raffel, “MixMatch: A holistic approach to semi-
supervised learning,” 2019, arXiv:1905.02249. [Online]. Available: http-

s://arxiv.org/abs/1905.02249.
[39] Y. Grandvalet, Y. Bengio et al., “Semi-supervised learning by entropy

minimization.” CAP, vol. 367, pp. 281–296, 2005.
[40] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy

student improves imagenet classification,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit, 2020, pp. 10 687–10 698.
[41] Y. Wang, J. Hou, X. Hou, and L.-P. Chau, “A self-training approach for

point-supervised object detection and counting in crowds,” IEEE Trans.

Image Process., vol. 30, pp. 2876–2887, 2021.

[42] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges

in representation learning, ICML, vol. 3, no. 2, 2013, pp. 2–7.
[43] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk,

A. Kurakin, H. Zhang, and C. Raffel, “FixMatch: Simplifying semi-
supervised learning with consistency and confidence,” 2020, arX-

iv:2001.07685. [Online]. Available: https://arxiv.org/abs/2001.07685.
[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[45] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” pp. 1–60, 2009.

[46] H. Song, M. Kim, and J.-G. Lee, “SELFIE: Refurbishing unclean
samples for robust deep learning,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 5907–5915.

[47] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from
massive noisy labeled data for image classification,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2015, pp. 2691–2699.
[48] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool, “We-

bvision database: Visual learning and understanding from web da-
ta,” arXiv preprint arXiv:1708.02862. [Online]. Available: http-

s://arxiv.org/abs/1708.02862, 2017.
[49] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,

inception-resnet and the impact of residual connections on learning,” in
Proc. AAAI Conf. Art. Intell, 2017.

[50] A. Ghosh, H. Kumar, and P. Sastry, “Robust loss functions under label
noise for deep neural networks,” in Proc. AAAI Conf. Art. Intell., vol. 31,
no. 1, pp. 1919–1925.

[51] Y. Shen and S. Sanghavi, “Learning with bad training data via iterative
trimmed loss minimization,” in Proc. Int. Conf. Mach. Learn., 2019, pp.
5739–5748.

[52] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction approach,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1944–
1952.

[53] X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. Erfani, S. Xia, S. Wijewick-
rema, and J. Bailey, “Dimensionality-driven learning with noisy labels,”
in Proc. Int. Conf. Mach. Learn., 2018, pp. 3355–3364.

[54] E. Malach and S. Shalev-Shwartz, “Decoupling” when to update” from”
how to update”,” arXiv preprint arXiv:1706.02613. [Online]. Available:

https://arxiv.org/abs/1706.02613, 2017.
[55] P. Chen, B. B. Liao, G. Chen, and S. Zhang, “Understanding and

utilizing deep neural networks trained with noisy labels,” in Proc. Int.

Conf. Mach. Learn., 2019, pp. 1062–1070.
[56] L. Van der Maaten and G. Hinton, “Visualizing data using T-SNE.” J.

Machine Learning Res, vol. 9, no. 11, 2008.

Page 19 of 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

