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Abstract: Holographic entanglement entropy was recently recast in terms of Riemannian
flows or ‘bit threads’. We consider the Lorentzian analog to reformulate the ‘complex-
ity=volume’ conjecture using Lorentzian flows — timelike vector fields whose minimum
flux through a boundary subregion is equal to the volume of the homologous maximal
bulk Cauchy slice. By the nesting of Lorentzian flows, holographic complexity is shown
to obey a number of properties. Particularly, the rate of complexity is bounded below by
conditional complexity, describing a multi-step optimization with intermediate and final
target states. We provide multiple explicit geometric realizations of Lorentzian flows in
AdS backgrounds, including their time-dependence and behavior near the singularity in a
black hole interior. Conceptually, discretized flows are interpreted as Lorentzian threads or
‘gatelines’. Upon selecting a reference state, complexity thence counts the minimum number
of gatelines needed to prepare a target state described by a tensor network discretizing the
maximal volume slice, matching its quantum information theoretic definition. We point
out that suboptimal tensor networks are important to fully characterize the state, leading
us to propose a refined notion of complexity as an ensemble average. The bulk symplectic
potential provides a specific ‘canonical’ thread configuration characterizing perturbations
around arbitrary CFT states. Consistency of this solution requires the bulk satisfy the
linearized Einstein’s equations, which are shown to be equivalent to the holographic first
law of complexity, thereby advocating for a principle of ‘spacetime complexity’. Lastly, we
argue Lorentzian threads provide a notion of emergent time. This article is an expanded
and detailed version of [1], including several new results.
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1 Introduction and summary

1.1 The big picture

Spacetime physics and quantum information are fundamentally intertwined. The sharpest
realization of the interplay between information and gravity is perhaps best captured by
the Ryu-Takayanagi (RT) formula [2],1 relating the area of minimal surfaces in a (d+ 1)-
dimensional (bulk) curved spacetime to the entanglement entropy of a state of a quantum
field theory living on the d-dimensional (boundary) spacetime,

S(A) = 1
4GN

min
m∼A

area(m(A)) . (1.1)

This statement is most precisely formulated in the context of the AdSd+1/CFTd correspon-
dence, where S(A) is the entanglement entropy of a CFT state confined to a boundary
region A, and m(A) is the minimal codimension-2 bulk surface that is homologous to A.
The RT formula can be seen as a generalization of the Bekenstein-Hawking entropy-area
relation [8, 9].2 It satisfies all known properties of the von Neumann entropy [14], and can be
used to construct other important information theoretic quantities, including (holographic)
mutual information and Renyí entropy [15], each of which have dual geometric descriptions
akin to (1.1).

Recently, the entropy-area prescription (1.1) was reformulated in terms of flows or
holographic ‘bit threads’ [16], in which the right hand side is replaced by the maximum

1The RT formula has been generalized in a number of ways, including a covariant formulation [3]; for
CFTs dual to higher derivative bulk theories of gravity [4, 5], and when 1/N quantum corrections are
included [6, 7].

2When the minimal area surface is a black hole horizon, the thermodynamic black hole entropy can be
understood as the entanglement entropy of a CFT state called the thermofield double state [10]. Conversely,
in the CFT vacuum, entanglement entropy can be shown to be equivalent, via conformal mapping, to
the thermal entropy of an hyperbolic black hole [11]. A proof of (1.1) for general states follows from a
generalization of the Gibbons-Hawking derivation of black hole entropy [12, 13].
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flux of a divergenceless, norm-bounded (Riemannian) vector field v through the boundary
region A,

S(A) = max
v∈F

∫
A
v , F ≡

{
v | ∇ · v = 0 , |v| ≤ 1

4GN

}
. (1.2)

The equivalence between the two prescriptions follows as a consequence of the continuous
version of the max flow-min cut theorem, a well known principle in network theory, where
the ‘min cut’ is the minimal surface m(A). This reformulation was proven using convex
optimization techniques in [17], and has been generalized and applied in a number of
ways [18–31]. Not only does the flow reformulation (1.2) of holographic entanglement
entropy have certain technical advantages over the area based picture, it clarifies some
conceptual issues surrounding the RT formula (1.1). In particular, since the flows are
defined everywhere in the bulk, the global character of (1.1) is manifestly captured by the
reformulation (1.2), such that the bits encoding the microstate of A do not localize on
m(A), but rather are carried by threads v.3 Therefore, a thread emanating from boundary
region A which does not return is interpreted as a channel carrying a single independent
(qu)bit of information encoding the microstate of A such that the maximum number of
such threads gives the entanglement entropy S(A), which may be distilled as Bell pairs.
Similarly, an entangled pair of bits between two boundary regions A and B is represented
by a thread connecting A and B. The bit thread reformulation (1.2), moreover, has led to
further insights into toy models of holography, in which spacetime is constructed by tensor
networks [32–40].

Collectively then, statements about gravity can be reinterpreted as relationships between
information-theoretic quantities. In particular, gravitational field equations are dual to
the first law of entanglement [41–44] for which the RT formula (1.1) is a fundamental
input. In this way, bulk spacetime dynamics arise from entanglement. Moreover, the bulk
spacetime metric itself may be reconstructed solely from boundary entanglement [45–60].
Thus, in its deepest form, the RT prescription suggests spacetime connectivity emerges
from entanglement [61–65], succinctly summarized by the slogan ‘entanglement=geometry’.

It has recently been suggested, however, that entanglement entropy alone is insufficient
to describe all aspects of bulk gravitational physics [66, 67]. In particular, the late time
growth of the Einstein-Rosen bridge inside eternal black holes is not captured by entangle-
ment, but is seemingly instead characterized by complexity. By complexity, one typically
means the state complexity, which, in an ordinary quantum mechanical setting, refers to the
smallest number of unitary operators (gates) needed to obtain a particular final state from a
given initial state within a particular margin of error. While the definition of state complexity
in a field theory is still an active area of investigation (cf. [68–77]), it is natural to ask what
is the geometric dual of this boundary field theory quantity. Broadly, two proposals have
emerged: ‘complexity=volume’ (CV) [67, 78–80] and ‘complexity=action’ (CA) [81–83].

More precisely, the CV conjecture says the complexity C of the boundary CFT state
restricted to Cauchy slice σA delimiting a boundary region A (such that ∂A = σA is dual

3If the bits encoding A lived on m(A), then the bits would seemingly jump with the minimal area surface
whenever the entropy undergoes a phase transition under continuous deformations of the region A (e.g. two
disjoint intervals separated by a tunable distance x). Bit threads resolve this confusion.
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to the volume of an extremal codimension-1 bulk hypersurface Σ homologous to A (for an
illustration, see figure 2)

CV (σA) = 1
GN`

max
Σ∼A

Vol(Σ(A)) . (1.3)

Here the homology condition Σ ∼ A is simply that the endpoints of Σ are identified with
the boundary Cauchy slices σA = ∂A, and ` is some undetermined bulk length scale, e.g.,
the AdS curvature or the radius of the black hole.4 Alternatively, the CA conjecture equates
the complexity with the gravitational action I evaluated over a specific bulk region known
as the Wheeler-De Witt (WDW) patch:

CI(σA) = IWDW
π~

. (1.4)

Formally, the WDW patch is the domain of dependence of any bulk Cauchy surface that
asymptotically approaches the boundary time slice.

While the CV and CA proposals are independent, they share many of the same
qualitative features, though not all [85–90]. Notably, in both proposals, the complexity
grows linearly in time at a rate characterized by the mass and other thermodynamic
potentials of the black hole; the response of either complexity to perturbations follows a
‘switchback effect’, and the complexity of formation of large charged, static and symmetric
black holes is proportional to the black hole entropy.

Given their similar geometric character, it is natural to compare the CV proposal (1.3)
to the RT prescription (1.1). On the one hand, boundary entanglement entropy S(A) is
found via a minimization procedure over bulk codimension-2 surfaces, while the boundary
complexity C(σA) arises from a maximization procedure over bulk codimension-1 surfaces.
In light of the reformulation of the RT relation in the language of bit threads (1.2), where
the area of the min cut m(A) is replaced with a flow of maximum flux through A, one
may suspect the CV proposal for holographic complexity (1.3) likewise has a flow based
interpretation. Indeed, as first shown in [17] a Lorentzian analog of the max flow-min cut
theorem exists, where the Riemannian flows are replaced by Lorentzian flows such that
the minimum flux through a boundary region A is equal to the maximum cut of a surface
homologous to A.

In this article, we use this ‘min flow-max cut principle’ [17] to reformulate the CV
conjecture of holographic complexity in terms of Lorentzian flows and explore some of their
properties and implications. Precisely, we propose to compute C(σA) as the minimum flux
of a divergenceless, norm-bounded, time-like vector field v through the boundary region A

C(σA) = min
v∈F

∫
A
v , F ≡

{
v | ∇ · v = 0 , |v| ≥ 1

GN`

}
, (1.5)

which, via the min flow-max cut theorem, should be equal to the maximal volume of a
Cauchy slice Σ homologous to A. In terms of flows, we take advantage of powerful convex

4Here the length parameter ` is often chosen in an ad hoc manner; ` = L or ` = rh for black holes
large or small compared to L, respectively. This ad hoc tuning has been a chief reason for preferring
the ‘complexity=action’ proposal over CV duality. It turns out, however, as pointed out in [84], that for
(spherical) black holes in d+ 1 ≥ 4 dimensions, ` can be replaced by the maximum time τf to fall from the
horizon to the final maximal cylinder, as τf naturally transitions between L or rh when rh ≥ L or rh ≤ L.
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optimization techniques to prove a number of general properties holographic complexity is
known to satisfy, including a bound on the complexity rate. We are also able to provide a
conceptual interpretation of holographic complexity in terms of ‘Lorentzian threads’, which
we argue naturally augments the tensor network description of spacetime.

It is worth mentioning that, similar to the bit thread description of the Ryu-Takayangi
formula, a crucial difference between CV duality (1.3) and our reformulation (1.5) is that
while the maximal volume hypersurface is typically unique, the flow v is highly non-unique.
In particular, while v takes a specific form on the maximal volume hypersurface, away
from this surface v is some arbitrary timelike, divergenceless vector field. Thus, there are
infinitely many thread configurations that can achieve CV duality. Since the Lorentzian
flows naturally probe the interior of a black hole, they may provide insight into the nature
black hole microstates, of which different thread configurations correspond to different
classes of microstates. This is motivation enough to study complexity and Lorentzian flows
in detail. In this article we take advantage of the non-uniqueness of Lorentzian flows by
showing a particular class of configurations — ‘canonical’ threads defined with respect to
the bulk symplectic form — can be used to show how spacetime dynamics emerges from
boundary complexity.

Let us now provide a detailed summary of our central results.

1.2 Summary of main results

Section 2. The chief goal of this section is to reformulate CV duality using Lorentzian
flows. After briefly reviewing the various prescriptions of boundary complexity and the
holographic duals in section 2.1, we recast CV duality in Lorentzian flow based language,
given by (1.5), in section 2.2. This is accomplished using a continuum version of the min
flow-max cut theorem, first proven in [17]. In section 2.3 we use the nesting theorem to
derive a number of properties holographic complexity is expected to satisfy, including

C(σA)− C(σAB) ≤ C(σA|σAB); , (1.6)

and
Φ(AC) + Φ(BC)− Φ(C)− C(σABC) ≤ 0 . (1.7)

Here C(σA|σAB) is defined as the minimal flux through region A, subject to having a fixed
flux through Σ(AB), and Φ(X) corresponds to the minimal flux through a boundary time-
like region X. The first relation can alternatively be understood in terms of a complexity
rate, for which we are able to relate the flux through regions not homologous to a single
bulk Cauchy slice to the integrated momentum flux, thereby making contact with the
‘momentum/volume/complexity’ correspondence (PVC) [91–93]. We also provide a flow
reformulation of the superadditivity of CV complexity [23, 94–96], and briefly comment on
the existence and obstacles in a general proof of ‘Lorentzian multiflows’.

In section 2.4 we provide a ‘gateline’ interpretation5 of the Lorentzian flows in which the
complexity C(σA) is understood as the minimum number of threads or gatelines connecting

5The word ‘gateline’ in the context of Lorentzian flows was first coined in [17] to offer a suggestive
application of Lorentzian flows. In this article we provide the first explicit realization of Lorentzian flows as
gatelines via state preparation.
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the boundary region A to its complement Ā. Equivalently, C(σA) is the minimum number of
threads passing through the maximal volume slice Σ(A) homologous to A. This perspective
is conceptually appealing in that it matches to our intuition of circuit complexity being the
minimum number of simple gates needed to prepare a target state from a given reference
state. More precisely, a CFT state prepared by a Euclidean path integral via the Hartle-
Hawking prescription such that its initial data is specified on a maximal volume Cauchy
slice in the bulk Euclidean AdS. The threads piercing this bulk slice Σ(A) then represent
the various unitary gates needed to transform a reference state to a target state. This
interpretation allows us to interpret the quantity C(σA|σAB) as a conditional complexity:
the number of gatelines needed to prepare the state assigned to A given the gatelines used
to prepare the state of AB.6

Section 3. Lorentzian flows are defined as timelike, divergenceless, future directed vector
fields v with a norm bound |v| ≥ α for α is some positive constant, where the norm is
saturated on the maximal volume slice. As such, Lorentzian flows are highly non-unique. In
this section our main goal is to provide explicit geometric constructions of the Lorentzian
thread configurations described in section 2. Two such constructions are considered: starting
from a family of integral curves (section 3.1) or starting with a family of level set surfaces
(section 3.2). More precisely, integral line flows are timelike vector fields which arise from
foliating the bulk spacetime with a set of timelike curves, for example, geodesics. Their
norm is chosen such that the divergenceless condition is satisfied locally. Level set flows,
meanwhile, are timelike vector fields found from a family of nested slices foliating the
spacetime, with integral lines orthogonal to these slices. We consider both constructions in
empty AdSn and the BTZ black hole background, where, in the integral curve construction,
the interior of the Wheeler De Witt patch is foliated by the geodesics, while in the level set
construction the interior of the WDW patch is foliated by surfaces of constant extrinsic
curvature. Moreover, to capture the time dependence of complexity and its connection
with the second law of complexity, we use the geodesic method to uncover the Lorentzian
flows at late times, where the maximal volume slice partially wraps around the singularity.
We notice that, even at late times, the threads from this construction foliate the WDW
patch, intersecting at its past tip and terminating at the singularity, thus probing Planck
scale physics.

Section 4. The objectives of this section are twofold. First we show how to recast the
Lorentzian flow based formulation of holographic complexity in terms of closed differential
forms in section 4.2, following a map between divergenceless vector fields v and closed
differential forms u. Moreover, we find it simplest to work with differential forms when
developing the notion of perturbative Lorentzian threads, characterizing linear perturbations
to AdS spacetimes, which are dual to excited CFT states, as discussed in section 4.1.
Moreover, for a canonical choice of the perturbative Lorentzian thread form, δu, we discover

6Notice that if the state on AB is coincides with the reference state, then C(σA|σAB) = C(σA). Conversely,
if the state on A coincides with the state on AB, then C(σA|σAB) = 0.
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the closedness condition d(δu) = 0 encapsulates the linearized Einstein’s equations, leading
to the second achievement of this section, as we now describe.

It is known the mapping between boundary sources λ̃ and bulk initial data holds at
the level of the symplectic structure of both boundary and bulk theories [97], which we
review in section 4.3. Particularly, the (Euclidean) boundary symplectic form associated
with the space of sources is dual to the (Lorentzian) bulk symplectic form on the classical
phase space of gravitational configurations,

ΩB(δλ̃1, δλ̃2) =
∫

Σ
ωL

bulk(φ, δφ1, δφ2) , (1.8)

where Σ is a Lorentzian time slice, ωL
bulk is the Lorentzian bulk symplectic 2-form density

(the ‘symplectic current’) as a function of arbitrary bulk fields φ, including the metric,
and ΩB is the boundary symplectic form associated with coherent holographic CFT states
prepared by a Euclidean path integral with sources. As shown in [97, 98], the left hand side
of the above relation is equal to the volume of the extremal Cauchy slice when Σ is this slice,
while ΩB with respect to the ‘new York’ deformation, is equal to holographic complexity C.
Separately, boundary field complexity defined in terms of the boundary symplectic form is
known to satisfy a first law on the space of sources.

In section 4.4 we show that if one assumes CV duality, and the bulk-boundary symplectic
form correspondence, the holographic first law of complexity is equivalent to the linearized
Einstein’s equations holding in the bulk:

δV = ΩB ⇒ δEµν = 0 . (1.9)

Our argument is spiritually and structurally motivated by the derivation of linearized
Einstein’s equations from the (holographic) first law of entanglement [41, 42], however,
physically distinct in that we show bulk gravitational dynamics is encoded in varying
boundary complexity. This suggests a notion of ‘spacetime complexity’, and is not only the
second central achievement of this section, but, in our view, one of the central results of
this manuscript.

We conclude in section 4.5 by showing the Lorentzian symplectic current ωL
bulk provides

a canonical choice for the perturbative Lorentzian thread form δu, providing a solution to
the min flow-max cut program, and that the linearized Einstein’s equations are captured
by the closedness condition d(δu) = 0.

Section 5. Here we demonstrate how the gateline interpretation of Lorentzian flows relates
to tensor network constructions of spacetime and suggest the need for a more refined notion
of holographic complexity. First, in section 5.1, we review basics about tensor networks
and how holographic entanglement entropy and complexity are computed in this context.
We use this to combine the gateline reformulation of CV duality and that complexity can
be interpreted as the number of tensors of a tensor network discretization of the maximal
volume slice such that the optimal flow solving the min flow-max cut program prepares the
tensor network on the maximal volume slice. Motivated by the maximin prescription of
the HRT formula [99], in section 5.2 we argue suboptimal flows prepare suboptimal tensor
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networks, and play a role in a more general definition of holographic complexity. This leads
us to propose holographic complexity should be understood as an ensemble average over
tensor networks on all Cauchy slices in the Wheeler-De Witt patch, which we explain in
section 5.3. We make several comments and compare to the recent holographic dual to the
path integral optimization definition of boundary field complexity [100, 101].

Section 6. Here we discuss the main results and, in particular, list how Lorentzian
threads suggest a notion of ‘emergent time’. We conclude with an outline of future research
directions we find most promising.

We also include a number of appendices to keep this article self-contained and ped-
agogical. Specifically, in appendix A we briefly summarize the bit thread formulation of
holographic entanglement entropy and some of their geometric constructions. We include
this section as we find it beneficial to compare the features of Riemannian (bit) threads
to the features of the Lorentzian threads considered in this paper. Appendix B provides
a number of proofs of the various theorems and related corollaries used in section 2 of
this article. Notably, we review the proof of the min flow-max cut theorem first given
in [17] using convex optimization techniques, and then prove the nesting property and
study the possible existence of Lorentzian multiflows. Lastly, we relegate some of the
calculational details of deriving the linearized Einstein’s equations from the holographic first
law of complexity to appendix C. Note this manuscript is an expanded and more detailed
version of [1].

2 Holographic complexity and Lorentzian flows

2.1 Prescriptions of holographic complexity: review

To appreciate our reformulation of holographic complexity using Lorentzian flows and its
conceptual interpretation, here we briefly review the various notions of boundary complexity
and, when the boundary theory is holographic, their corresponding gravitational duals.

Quantum computational complexity, or circuit complexity, is a key concept in quantum
information science described as follows. Given an initial reference state |ψR〉, and a finite
set of gates (unitary operations) {g1, . . . , gN}, the complexity C(|ψT 〉) of preparing a target
state |ψT 〉, is the minimum number of such gates needed to construct the unitary operator
UTR transforming |ψR〉 into |ψT 〉:

|ψT 〉 = UTR|ψR〉 = gin . . . gi2gi1 |ψR〉 . (2.1)

In other words, the complexity C defines the optimal cost required to prepare a specific
target state given an initial reference state. The reference and target states, together with
the set of gates {gi} define the quantum circuit. In this elementary set-up, the growth of
complexity as a function of time t obeys an upper bound at late times, first derived by
Lloyd [102]:

Ċ(|ψT (t)〉) ≤ 2E
π~

, (2.2)

– 7 –
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where E is the energy of system and is taken to be constant. This bound places an upper
limit on computation speed of a classical computer.

The observation that computational complexity grows linearly at late times and obeys
Lloyd’s bound (2.2), aided by the fact entanglement generates wormholes or Einstein-Rosen
bridges (‘ER=EPR’) [63] (see also [103–105]), act as guiding principles for searching for
holographic duals to the boundary complexity. As described earlier, broadly, there are two
proposed conjectures or dualities relating complexity of the boundary theory to a bulk
geometric quantity. The first of these was ‘complexity=volume’ (CV) [67, 78, 79], where the
boundary complexity of a (holographic) CFT state defined on a Cauchy slice σA separating
a boundary region A from its complement, such that ∂A = σA, is dual to the spatial volume
of the maximal hypersurface homologous to A,

CV (σA) = 1
GN`

Vol
Σ∼A

(Σ(A)) . (2.3)

This duality correctly captures the linear growth of complexity at late time, where, the
energy E of the system is typically given by the mass of the black hole.7 Due to the seeming
ambiguity in length scale `, however, the ‘complexity=action’ (CA) proposal [81, 82] was
conjecture. In CA duality the boundary complexity is dual to the on-shell bulk action
evaluated on the Wheeler-DeWitt (WDW) patch

CI = IWDW
π~

. (2.4)

See figure 1 for a simple illustration.
For charged Reissner-Nordstrom black holes, however, CA duality does not generally

obey the Lloyd bound. Recognizing this difficulty, the authors of [80] proposed a second
version of CV duality, dubbed ‘complexity=volume 2.0’ (CV 2.0), where the action of
CA duality is replaced with spacetime volume of the WDW patch. Importantly, CV 2.0
duality was shown to satisfy Lloyd’s bound for charged RN black holes.8 There is also
a ‘complexity=action 2.0’ (CA 2.0) conjecture [83], utilizing similar ideas as CV 2.0 and
reduces to CV 2.0 duality for general relativity plus a cosmological constant. There is still
debate as to what the correct bulk dual of boundary complexity is, however, the study of
holographic complexity tells us the bulk volume and the WDW patch are important new
inputs in the holographic dictionary.

Both CV and CA dualities have a conceptual base in computational/circuit complexity,
a concept mostly developed in ordinary quantum mechanics. In the context of AdS/CFT,
however, the boundary is described by a field theory, and therefore a definition of complexity
in field theories is necessary. One approach is to generalize Nielsen’s ‘geometrization’

7This is the case for neutral static systems. For more general black holes, the energy E is characterized
by the mass and other thermodynamic potentials.

8It is worth pointing out CV 2.0 makes use of extended black hole thermodynamics, such that C ∼
PVspacetime, where P is the thermodynamic pressure. Moreover, it was shown in [80] the thermodynamic
volume of black holes in Einstein-Maxwell gravity is equal to late time growth of the spatial volume of the
WDW patch. Recently the thermodynamic volume was also shown to control the complexity of formation of
large black holes [106].
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Figure 1. WDW patch in double sided AdS-Schwarzschild black hole. The shaded region (green) is
the domain of dependence of the bulk Cauchy slice (purple) asymptoting to the (r =∞) boundary
Cauchy surfaces defined at left and right boundary times tL and tR. Here we have considered the
case when tL = tR. More precisely, the left and right corners and upper and lower tips of the causal
diamond hit UV regulating surfaces just before reaching the timelike boundaries r =∞ or past and
future singularities r = 0, respectively. CA duality is defined by the gravitational action evaluated
on the WDW patch, while CV duality is given by the spatial volume of the maximal hypersurface
extending to tL and tR.

of circuit complexity [107, 108], to the case of field theories [69]. In this method, the
unitary gates are given by a continuum representation such that the circuits are represented
by geodesics in an auxiliary manifold whose length measures the so-called depth of the
associated circuit. The optimal circuit, i.e., the complexity, is then given by the length of
the minimal geodesic with endpoints at the reference and target states (see [72, 73, 89, 90]
for further developments). This approach to field theory complexity shares many similarities
with an alternative approach based on the state dependent Fubini-Study metric [68] (we
will have more to say about the Fubini-Study metric in a later section).

In a seemingly independent approach to defining complexity in field theories, the authors
of [70, 71] proposed an optimization procedure for Euclidean path integrals that evaluate CFT
wavefunctionals. In particular, the optimization is performed with respect to a particular
functional, known as the ‘path integral complexity’, and provides a measure of computational
complexity with respect to specific background metrics in the equivalent tensor network
description. Thus this alternative approach to field theory complexity provides a concrete
realization of the proposed interpretation of AdS/CFT as a tensor network. In the context
of two-dimensional CFTs, where the path integral complexity functional is the Liouville
action, the authors of [74] showed this alternative definition of field theory complexity is in
fact equivalent to the circuit complexity advocated by [69, 72, 73, 89, 90], thereby unifying
two seemingly unrelated concepts of field theory complexity (see also [109]).

Let us spend some time describing the path integral optimization description of com-
plexity, as it will help motivate our interpretation of Lorentzian flows later on. For details,
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see [70, 71]. The basic idea is as follows. Begin with a wavefunctional representation of a
CFT state defined by Feynman’s path integral on a flat Euclidean space with a prescribed
set of boundary conditions. Specifically, in the case of a two-dimensional CFT on R2

with coordinates (τ, x), the ground state wavefunctional of CFT fields ϕ(τ, x), denoted
ΨCFT[ϕ(x)], where ϕ(x) ≡ ϕ(τ = 0, x), is formally given by the Euclidean path integral:

ΨCFT[ϕ(x)] =
∫ ∏
−∞<τ≤0,x

Dϕ̃(τ, x)e−ICFT[ϕ̃]δ(ϕ̃(0, x)− ϕ(x)) , (2.5)

where ICFT is the Euclidean action of the CFT, and we observe ΨCFT is a wavefunctional
of the boundary conditions imposed on the CFT fields ϕ at the time τ = 0 slice. Formally,
this path integral may be evaluated using a lattice discretization, where the flat Euclidean
spacetime is characterized by ds2 = ε−2(dτ2 + dx2), with ε as some UV regularization scale.

The next step is to evaluate this Euclidean path integral utilizing conformal symmetry
by performing a conformal transformation of the Euclidean metric whilst all boundary
conditions are kept fixed. Explicitly, one considers the conformally flat Euclidean metric
ds2 = e2φ(τ,x)(dτ2 +dx2). The measure of the CFT fields Dϕ in (2.5) undergo an anomalous
change under this conformal transformation, such that wavefunctional (2.5) becomes

ΨCFT[ϕ(x)]→ eIL[φ]−IL[φ0]Ψ(φ0)
CFT[ϕ(x)] , (2.6)

where φ0 is defined by the boundary condition e2φ(0,x) = ε−2 ≡ e2φ0 , and IL[φ] is the
Liouville action on a flat Euclidean space.

Intuitively, the path integrals on different conformally deformed Euclidean geometries
can be interpreted as continuous tensor networks preparing the same quantum state. The
size of a tensor network — the number of tensors needed to prepare a specific quantum
state — provides a notion of complexity. As such, one seeks to optimize over different
conformal factors so as to compute the path integral which generates the tensor network
of the smallest size. This procedure is called ‘path integral optimization’ and corresponds
to minimizing the ‘path integral complexity’ functional, in this case given by the Liouville
action, over the background metric. Minimizing the Liouville action amounts to solving
the Liouville equations of motion. As shown in [70, 71], solving the Liouville equation is
equivalent to the condition that the two-dimensional Euclidean geometry be a hyperbolic
space, and, in particular, the optimal metric to prepare the vacuum state of a CFT confined
on a line is a time slice of empty AdS3; to prepare the TFD state, the optimal metric is
a time slice of the BTZ black hole. Therefore, the path integral optimization presents
a continuum version of the AdS/tensor network correspondence, in which AdS geometry
emerges from a tensor network.

While the method of path integral optimization is most precise for two-dimensional
CFTs, the authors of [70, 71] provided general arguments to write down a higher dimensional
generalization. Even in the two-dimensional case, however, there were still open questions,
particularly concerning the preparation of excited states which seemingly required one to
minimize the quantum Liouville theory, understood as the path integral, rather than the
classical Liouville theory. At the semiclassical level, this was shown to give the expected
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gravity metric dual to a primary state with 1/c corrections (a time slice of AdS3 with a
deficit angle due to a bulk point particle backreaction). Very recently these open questions
were resolved by showing path integral optimization is equivalent to the maximization of
the Hartle-Hawking wavefunctional on a Euclidean AdS background [100, 101]. We will
return to this new interpretation in section 6.

Lastly, let us briefly summarize a recent holographic complexity relation, known as the
‘complexity/momentum’ correspondence [91] (see also [92, 93]). In this set-up, increase in
bulk radial momentum is dual to the growth of boundary operators, which, via complexity’s
relation to operator size, links the momentum generator to growth in complexity. The
intuition behind the complexity/momentum correspondence is that bulk gravitational
clumping is holographically dual to an increase in complexity of the corresponding boundary
quantum state. This is indeed the case for black holes, but has been argued to be true
for any gravitationally infalling matter. In particular, in the case of collapsing thin shells
(cf. [86, 110–114]) one finds the complexity rate of the collapsing shells Ċ is related to the
energy-momentum tensor Tµν of the background spacetime [114],

Ċshell = −
∫

Σ
nµTµνζ

ν , (2.7)

where nµ is the unit timelike vector to the maximal volume hypersurface Σ, and ζµ is
an inward pointing radial field tangent to Σ.9 The right hand side is understood to be
the (infalling) momentum flux through Σ. Since Σ plays a prominent role in relating the
momentum and complexity, eq. (2.7) is referred to as the momentum/volume/complexity
(PVC) relation. More generally, it was proven (2.7) is essentially the momentum constraint
of general relativity, such that one has the ‘generalized PVC’ relation [115, 116]

ĊV = Pζ [Σ] +Rζ [Σ] , (2.8)

with integrated momentum flux Pζ =
∫

Σ Pζ , where Pζ = Paζa with Pa = −nµTµνeνa is
the pulled-back momentum flux through Σ, and Rζ [Σ] is a ‘remainder’ arising from an
integration of the momentum constraint of general relativity.10 In the event the field ζ is an
exact conformal Killing vector field, e.g., for smooth, spherically symmetric backgrounds,
or the background is a solution to Einstein’s equations in 2 + 1 dimensions, Rζ = 0 such
that the complexity rate is solely attributed to the momentum flow through Σ.

As we will explore below, our reformulation of holographic complexity using Lorentzian
flows provides a new interpretation of holographic complexity, allows us to make contact
with the PVC relation, and deepens the connection between spacetime and tensor networks.

2.2 Reformulating ‘complexity=volume’ using min flow-max cut

The Ryu-Takayanagi (RT) formula relating holographic entanglement entropy S(A) across
a boundary region A to the area of a bulk minimal surface homologous to A, denoted as

9More precisely, ζ is a vector tangent to Σ that is asymptotically equal to a radial, inward-pointing vector
field whose modulus is given by the angular sphere at infinity.

10The momentum flux is related to the (contracted) Codazzi equation ∇aKab − ∇bK = −8πGPb,
where Kab is the extrinsic curvature of the bulk codimension-1 Cauchy slice, and the remainder term is
RΣ = − 1

8πG

∫
Σ K

ab∇aζb.
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m(A), was reformulated in terms of holographic ‘bit threads’ using Riemannian flows v [16]:

S(A) = max
v

∫
A
v . (2.9)

Here we are using the notation that
∫
A v represents the flux of flow v through the bulk

surface m(A) homologous to A. (For full details see [16], or a condensed discussion in
appendix A). The reformulation of the RT equation (2.9) is a consequence of the max
flow-min cut theorem for Riemannian flows,

max
v

∫
A
v = αmin

m∼A
area(m) , (2.10)

where α is a constant bounding the normalization of v, |v| ≤ α, and m ∼ A denotes the
homology constraint. The left hand side describes a (non-unique) flow v that maximizes
the flux through A, while the right hand side gives the minimal area of the bulk surface
m homologous to A. When α ≡ 1

4GN , by the RT formula (1.1), one arrives to the
reformulation (2.9). The continuous version of the max flow-min cut theorem (2.10) was
proven using convex optimization techniques in [17] after restating the question as a convex
optimization problem.

Analogously, the authors of [17] proved a Lorentzian analog of the max flow-min
cut theorem, appropriately called the min flow-max cut theorem, again using convex
optimization techniques. In this subsection we briefly provide a statement of the theorem
as described in [17], with minor changes in notation, and demonstrate how it is related to
holographic complexity, before moving onto the properties and interpretational questions in
later subsections.

Let M be a d+ 1-dimensional compact, oriented and time-oriented Lorentzian manifold
with boundary ∂M . Here we will mostly consider when M is an asymptotically AdS
background (with a timelike d-dimensional conformal boundary and Euclidean past and
future boundaries), however, the statement of the theorem holds for other Lorentzian
spacetimes as well, including flat and de Sitter space. A bulk region, denoted by r,
is an embedded compact codimension-0 submanifold (with boundary) of M , while a
boundary region, denoted by R, is defined similarly with respect to ∂M . A slice Σ is an
embedded compact oriented codimension-1 submanifold-with-boundary of M whose interior
is contained inside the interior of M . The orientation of the hypersurface Σ is identified
using a normal covector nµ, for which we take to be future directed (n0 > 0). We will take
Σ to be a Cauchy slice of M providing a Cauchy development of M . For an illustration,
see figure 2.

For our purposes we will assume the timelike boundary of M is foliated by (boundary)
Cauchy slices σ (in figure 2 these are denoted as points on the left and right timelike
boundaries). We will take the bulk slice Σ to be anchored at these boundary slices σ.
Sometimes we will denote σ by a boundary time parameter t and typically assume that the
left and right boundary times are equivalent. We emphasize, however, the left and right
boundary times need not be equivalent for the statement or proof of the min flow-max cut
theorem. Alternatively, the boundary of a boundary region A ends at a point σA, and so
we sometimes denote ∂A = σA.
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Figure 2. Asymptotically AdS M in Lorentzian signature foliated by maximal bulk slices Σ.
Here the boundary subregion A (gold) has boundary ∂A = σA on both timelike boundaries of
M , anchoring the maximal volume slice Σ(A). Disconnected boundary subregion B (light blue) is
disjoint from A and has boundary σAB anchor Σ(AB). The surfaces A and AB ⊃ A are nested
boundary regions. The upper shaded region (light green) is the bulk region r(A), while the middle
shaded region (blue) is the bulk region r(B). Bulk regions r(A) and r(B) are nested inside the bulk
region of AB, r(AB) = r(A) ∪ r(B).

The homology condition relating a slice Σ to a boundary region A is analogous to
the equivalent statement in the Riemannian case. More precisely, Σ is homologous to A
(relative to R), Σ ∼ A, when there exists a bulk region r(A) satisfying

∂r \ ∂M = −(Σ \ ∂M) , (2.11)

such that the intersection between the bulk region r(A) and the complement Rc is equal
to boundary region A, i.e., r ∩ Rc = A. An essential difference from the Riemannian
set-up is that we require an additional necessary and sufficient condition such that the
homology constraint (2.11) holds: the causal future of A, denoted J+(A), intersected with
the complement of boundary region Rc is equal to A, J+(A) ∩Rc = A. Consequently, for
asymptotically AdS spacetimes cutoff by spacelike and timelike boundaries, the boundary
region R may be the entire or a subset of the timelike boundary. Here we will often assume
R = ∅ such that A = J+(σ)∩∂M , and ∂A = σA, in which case Σ is a Cauchy slice anchored
by the left and right σA Cauchy slices.

With this set-up out of the way, let us now define Lorentzian flows and state the min
flow-max cut theorem and how we can use it to reformulate the complexity=volume conjec-
ture (2.3), analogous to what was accomplished for holographic entanglement entropy [16].
A Lorentzian flow11 v is a divergenceless, future oriented vector field on M with norm

11In the event R 6= ∅, then we also demand
√
hnµv

µ|R = 0, such that v has vanishing flux through R.
This is a consequence of the relative homology constraint (2.11).

– 13 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
3

|v| ≥ α, i.e.,
∇µvµ = 0 , v0 > 0 , −vµvµ ≥ α , . (2.12)

Here, α is some real positive constant which we will set momentarily, though we can choose
the normalization such that −v2 ≥ 1.

Together, the homology constraint (2.11), and the definition of the flow (2.12) yields∫
A
v ≡

∫
A

√
hnµv

µ =
∫

Σ

√
hnµv

µ ≥ αV(Σ) , (2.13)

where nµ is the unit normal covector12 to A and
√
h the induced volume element. The logic

is as follows. The first equality on the left hand side is the notational definition of the flux
through A, which is precisely equal to the flux across Σ(A) since Σ(A) ∼ A, where we have
made use of the divergenceless condition. The inequality arises since nµvµ ≥ α, and we
have used

∫
Σ(A)
√
h ≡ V(Σ), with V being the volume of Σ.

The min flow-max cut theorem is the non-trivial statement that the inequality is
saturated for a (non-unique) minimizing flow

min
v

∫
A
v = αmax

Σ∼A
(V(Σ)) . (2.14)

In words, a flow v which minimizes the flux through boundary region A, has its flux equal to
the maximal volume of the bulk slice Σ homologous to A. Therefore, the inequalities

∫
A v ≥

αV(Σ) for all of the different members Σ of the homology class are the only obstructions to
decreasing the flux, where the strongest is the volume maximizing representative Σ(A), an
inverse bottleneck. The proof of this theorem can be found in [17], which follows the same
steps as the Riemannian case, using convex optimization techniques.

We now have all of the necessary ingredients to reformulate the complexity=volume
conjecture in terms of Lorentzian flows. With Lorentzian manifold M being a static
asymptotically AdS bulk spacetime, A a region of its conformal boundary, and Σ(A) the
bulk Cauchy slice homologous to A with maximal volume V(Σ), setting α = 1

GN `
we uncover

C(σA) =
∫
A
v(A) = 1

GN`
V(Σ) . (2.15)

Here it is understood v(A) is a minimizing flow obeying the min flow-max cut theorem (2.14).
In this way, the maximal bulk slice serves as the (inverse) bottleneck for the Lorentzian flow.
We emphasize that here we are advocating to replace the complexity=maximal volume
picture with a Lorentzian flow picture. This leads to some interesting differences. First,
recall the maximal volume will in general be divergent at the timelike and asymptotic
boundaries. That is, it is necessary to introduce regulating cutoff surfaces at the boundaries
to define the globally maximal slice. In the flow picture, however, one can give a definition
of a minimal flow that applies even when its flux is infinite. This is accomplished by
diminishing the flow v by a vector field ∆v with negative flux through A such that v + ∆v
is also a flow. A minimal flow is then one which cannot be diminished [17].

12Since boundary region A can have both timelike and spacelike sections, covector nµ could likewise be
timelike or spacelike. On the maximal volume slice Σ(A), however, vµ|Σ = αnµ, such that nµ is purely
timelike on Σ.
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2.3 Properties of Lorentzian flows

Before discussing the conceptual interpretation of Lorentzian flows, let us now uncover
interesting properties we expect holographic complexity to satisfy, inherited from conditions
on Cauchy slices of maximal volumes.

2.3.1 Nesting and complexity rates

The first important property is that the bulk regions bounded by maximal bulk Cauchy slices
are ‘nested’, analogous to the nesting properties of bulk regions bounded by minimal RT
surfaces in the context of holographic entanglement entropy. This follows as a lemma from
the min flow-max cut theorem, whose proof follows straightforwardly from the Lorentzian
analog of the nesting lemma in the Riemannian case.

Two nested regions. For concreteness, consider two nested regions AB, and AB ⊃ A of
the boundary, which, without loss of generality obey, A ∩B = ∅. Let Σ(A) and Σ(AB) be
unique maximal cuts anchored at boundary Cauchy slices σA and σAB , respectively, where
σA lies entirely to the future of σAB , i.e., the boundary is foliated by Cauchy slices. When
the strong energy condition and the Einstein’s equations hold in the bulk, this boundary
foliation will induce a bulk foliation by non-intersecting maximal volume slices Σ(A) and
Σ(AB), with Σ(A) ∼ σA and Σ(AB) ∼ σAB , such that slice Σ(A) lies entirely to the future
of Σ(AB) [84]. This is the picture we have in mind, however, the nesting theorem need not
make this assumption about the bulk. Either way, the bulk region r(A) is nested inside
r(AB), r(A) ⊂ r(AB). See figure 2 for an illustration. Notice region B is not homologous
to a single bulk slice Σ(B). From the Lorentzian flow perspective, the nesting of maximal
cuts tells us there exists a flow v(A,AB) that simultaneously minimizes the flux through A
and AB, but not through A and B simultaneously.13 Equivalently, v(A,AB) maximizes
the flux through B, given the condition it also minimizes through AB.

It is worth emphasizing that Lorentzian flows through a boundary region A homologous
to any Cauchy slice Σ will always have positive flux. This follows from the norm bound
and the reverse Cauchy-Schwarz inequality for timelike vectors vµ and nµ, where nµvµ ≥
|nµ||vµ| ≥ α (when evaluated on Σ). Note, however, not all Lorentzian flows have positive
flux. In particular, the flux of v(A,AB) through the timelike region B may be positive or
negative. This is because that B obeys J+(B) ∩ ∂M 6= B, i.e., it is not homologous to a
bulk slice Σ(B). We will see the consequences of this momentarily.

Via CV duality (2.15), we can use the nesting property to uncover a number of
interesting behaviors holographic complexity must satisfy. For starters, by the nesting
property there exists a unique flow v(A,AB) that simultaneously minimizes the flux through

13A brief comment on notation. In [16] v(A,B) denotes a Riemannian flow which maximizes through
A and AB, and minimizes through B. Instead, we denote the Lorentzian analog by v(A,AB) which we
find illustrative.
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Figure 3. Examples of flows v(A,AB) for two nested regions. Left: C(AB) = C(A), occurs when
there is no flux through B; all flux passing through Σ(AB) also passes Σ(A). Middle: C(AB) > C(A),
where flux crosses Σ(AB) but exits through B. Right: C(AB) < C(A), when flux enters through B
and exits through A.

boundary regions A and AB, such that

C(σAB)− C(σA) =
∫
AB

v(A,AB)−
∫
A
v(A,AB) =

∫
B
v(A,AB) , (2.16)

where the final equality simply follows from
∫
A v +

∫
B v =

∫
AB v. Moreover, given that

v(A,AB) is the maximum flux on B, we have the manifestly non-positive quantity:∫
B
v(AB)−

∫
B
v(A,AB) ≤ 0 , (2.17)

where v(AB) denotes the minimizing flow through AB, but not necessarily through A or
B.14 Incidentally, combining inequalities (2.16) and (2.17), we arrive at the following

C(σA)− C(σAB) ≤ −
∫
B
v(AB) ≡ C(σA|σAB) , (2.18)

where we have suggestively defined a new quantity C(σA|σAB) as the flux of minimizing
flow through AB. We will ascribe meaning to this quantity as well as (2.18) momentarily.

A few comments are in order. From (2.16), we see (net) flux through region B determines
how complexity changes in time. We have three cases: zero flux, flux leaving, and flux
entering. When there is net zero flux entering or leaving through B, C(σAB) = C(σA), i.e.,
there is no change in complexity between a CFT state at σA and σAB , and is characterized
by a flow configuration which enters through region R and exits through A. Alternatively,
a flow which has integral lines entering through R and exiting through A, in addition to
integral lines entering through R and exiting through region B describes C(σAB) > C(σA),
i.e., complexity decreases to the future. Lastly, when a flow has integral lines entering

14We point out we are restricting to flow v(AB) rather than the flux minimizing through B, v(B,AB),
which also satisfies inequality (2.16). This is because the flux of v(AB) through B is bounded from below,
whereas v(B,AB) is generally unbounded from below.
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through R and ending on A, but also has lines entering through B, avoiding Σ(AB), and
ending on A, then C(σA) > C(σAB), such that complexity increases to the future.15 For an
illustration distinguishing each of these scenarios, see figure 3. Collectively, we emphasize
C(σA|σAB) describes a two-step optimization procedure: a flow first passes through Σ(AB),
such that additional flux through B then passes through A at a later time. We will more
carefully interpret this procedure in a moment.

As the left hand side of (2.16) is computing a change in complexity, in the limit we
shrink region B → 0, we actually uncover a complexity rate. More precisely, let σAB be the
boundary Cauchy slice at time tAB , and tA the time denoting σA, with tA > tAB , such that
tA = tAB + δt with δt > 0. As B → 0, then tA − tAB = δt→ 0, and we have

− dC
dt

= lim
B,δt→0

1
δt

∫
B
v(A,AB) . (2.19)

Thus, the rate of complexity is characterized by the maximizing flux through region B,
and, by way of inequality (2.18), is bounded below by the flow minimizing through AB,
C(σA|σAB).

The above rate allows us to make contact with the PVC correspondence. Specifically,
since in the limit B → 0 the bulk Cauchy slices Σ(A) and Σ(AB) tend to the same maximal
volume surface Σ, we may relate the rate of maximal flux through B to the momentum flux
through Σ upon invoking the generalized PVC relation (2.8) [115, 116],

lim
B,δt→0

1
δt

∫
B
v(A,AB) =

∫
Σ
Tµνn

µζµ −RΣ . (2.20)

The first term on the right hand side is the integrated momentum flux Pζ , where ζ is
an ‘infalling’ vector field tangent to Σ, asymptotically equal to a radial, inward pointing
vector with modulus given by the radius of the angular sphere at long distances. The
remainder term RΣ arises from integrating the momentum constraint in general relativity
and vanishes whenever ζ is a conformal killing vector field. Hence, for spherically symmetric
configurations, or when the background Lorentzian manifold M is a solution to Einstein’s
equations in 2 + 1-dimensions, RΣ = 0 and the right hand side collapses to −Pζ . Notice
the background energy-momentum tensor has been left unspecified, which suggests the flux
through B may be controlled by various energy conditions.

15For general spacetimes, there is nothing to prevent complexity from increasing or decreasing in time. In
black hole spacetimes, however, complexity is known to obey a second law [117], and is easily justified in
the language of flows. The change in volume between Cauchy slices is entirely accounted for by the flux
of the flow v through the boundaries of the slice because v is divergenceless. As pointed out in [84], for
slices restricted inside the horizon of a black hole, the change in volume is quantified by the flux through
the horizon, a null surface. Since flows are taken to be future directed, the flux through the future event
horizon is positive such that the interior volume can only increase. Provided the apparent horizon has only
spacelike sections, such that flux through it is positive, by the CV relation one recovers the second law.
Though here we considered B a timelike region, one can consider a null region B such that flux through B
is positive, leading to a second law. Proving this carefully requires extending the definition of flows to the
case of degenerate metrics [17].
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Figure 4. Nested cuts associated with the three disjoint boundary regions A,B,C.

Three nested regions. It is straightforward to generalize to more nested regions, where
we uncover additional properties holographic complexity obeys. Consider the case we have
three boundary regions A,B and C, such that Σ(A) lies to the future of Σ(AB) which
lies to the future of Σ(ABC) (see figure 4). Let Φ(X) denote the minimal flux through a
boundary region X, and consider the following flows: v(C,AC) which minimizes the flux
through C and AC and v(BC,ABC) which minimizes the flux through BC and ABC.
We have

Φ(AC) + Φ(BC)− Φ(C)− C(σABC) =
∫
AC
v(C,AC) +

∫
BC
v(BC,ABC)

−
∫
C
v(C,AC)−

∫
ABC
v(BC,ABC)

=
∫
A
v(C,A)−

∫
A
v(BC,A) ,

(2.21)

where we used the fact v(C,AC) and v(BC,ABC) are both maximizing flows through
A. By the nesting property, v(C,AC) will also minimize the flux through ABC, and
v(BC,ABC) minimizes on C, allowing us to write (2.21) as

Φ(AC) + Φ(BC)− Φ(C)− C(σABC) =
∫
A
v(C,AC,ABC)−

∫
A
v(BC,ABC,C) , (2.22)

where v(C,AC,ABC) minimizes the flux through A and v(BC,ABC,C) maximizes the
flux on A. Since the minimum is less than the maximum, we have

Φ(AC) + Φ(BC)− Φ(C) ≤ C(σABC) . (2.23)

Thus the complexity of all boundary regions C(σABC) is bounded below by the net flux
through regions AC, BC, and C.16 Unfortunately, since flux entering through regions AC,

16The above calculation is the Lorentzian analog of the strong subadditivity of holographic entanglement
entropy using Riemannian flows [16].
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BC, and C are generally unbounded from below, not much can be gleaned from (2.23)
without imposing further conditions on the background spacetime.

The case of three nested regions does lead to an interesting relation on the second
derivative of the complexity. Shrink regions B and C such that the boundary Cauchy
slices σABC , σAB and σA, denoting boundary time slices tABC , tAB and tA, respectively,
are infinitesimally separated, i.e., tA = tAB + δt and tAB = tABC + δt (assuming the time
differences between nested regions A and AB, and AB and ABC are equal to δt). Then,
Taylor expanding C(σA) and C(σABC) about tAB, the second derivative of C is given by

C̈|t=tAB = 1
(δt)2 [C(σA)− C(σAB)− (C(σAB)− C(σABC))]→ 1

δt
[PBζ − PCζ +RB −RC ] .

(2.24)
To get to the final expression we used the generalized PVC relation (2.8) to express the
change in complexity in terms of the integrated momentum flux through regions B and C,
PBζ and PCζ . Taking δt→ 0 and assuming the infalling vector field ζ is a CKV we recover
the known result that the second derivative of complexity is given by the time derivative of
the momentum Pζ [91, 92]:

C̈ = Ṗζ . (2.25)

As argued in [92] (see also [115]), working locally in the Lorentzian spacetime such that we
may assume the Newtonian limit of a collection of point particles, one recovers Newton’s
second law in a gravitational background such that the force of attraction, clumping, is
equal to the second time derivative of the complexity, suggesting gravitational dynamics
may be holographically equivalent to laws obeyed by complexity. We will verify this in
section 4.

2.3.2 A comment on Lorentzian multiflows

With our Lorentzian flow reformulation of the CV proposal, from the nesting property alone
we uncovered holographic complexity satisfies two bounds (2.18) and (2.23) depending on
the number of nested regions. The second of these follows from the Lorentzian analog of the
derivation of strong subadditivity of entanglement entropy using Riemannian flows [16]. It
is natural to ask how far we may extend the metaphor between holographic complexity and
holographic entanglement. Specifically, one may wonder if there is a type of monogamy rela-
tionship for Lorentzian flows analogous to the monogamy of holographic mutual information
(MMI) [118].

To prove MMI in (Riemannian) flow based language, it was shown in [16] that the
nesting theorem is not enough. Rather, the MMI concerns a collection of flows, and thus one
is required to introduce Riemannian multiflows [20]. Multiflows are a natural generalization
of single Riemannian flows and is a set of vector fields simultaneously occupying the same
geometry which satisfy the same conditions as a single flow (reviewed in appendix A). In
proving the existence of a max multiflow — a multiflow which maximizes the flux on each
boundary subregion — the authors of [20] verified the MMI.

In the Lorentzian context, the goal then is to search for a collection of flows vij such
that their linear combination, a min multiflow, minimizes the flux out of the non-overlapping
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timelike boundary regions. If such a flow exists it contains correlated components, and we
might hope to find new, generalized inequalities, such as a monogamy-like relationship. A
natural, but ultimately naive definition is the following. Given a Lorentzian manifold M
with boundary ∂M covered by a finite collection of n non-overlapping boundary regions
{Ai} for i = 1, . . . n (∪iAi = ∂M). A Lorentzian multiflow is a set of divergenceless, timelike
and causal vector fields vij on M satisfying the following

∇ · vij = 0 ,
∑
i<j

|vij | ≥ α , n̂ · vij = 0 (on Ak for k 6= i, j) , vij = −vji . (2.26)

As we detail in appendix B, working with this definition has a number of technical and
conceptual challenges. For example, the antisymmetry vij = −vji, telling us a flow directed
to the future, connecting regions Aj to Ai for Aj < Ai, is the negative of the past directed
flow from Ai to Aj , seems counter to the demand Lorentzian flows be future directed
and causal.17 Relaxing this conceptual hurdle, the antisymmetry to tells us there exist
n(n−1)/2 independent vector fields. Then, up to the future directed condition, for constant
coefficients ξij ∈ [1,∞], the linear combination

v =
n∑
i<j

ξijvij , (2.27)

is a timelike flow obeying the norm bound.18 Moreover, given a multiflow {vij}, we can
define n vector fields vi

vi ≡
n∑
j=1

vij . (2.28)

Note, however, unlike the Riemannian case, the linear combination of v ≡ ∑
i=1 vi =∑

i,j vij = 0, is no longer a flow as it does not obey the norm bound. While we don’t work
with v directly, the fact the linear combination v is not a flow is inconsistent, meaning there
is something awry with the antisymmetry condition vij = −vji.

Collectively then, the definition (2.26) is unsatisfactory and one must seek an alternative
definition and see whether a min multiflow can be proven to exist. For the interested reader,
in appendix B we review such an alternative, and other obstructions in defining Lorentzian
multiflows, as well as a proof for an uncorrelated multiflow.

We should point out while (2.26) is insufficient in describing a Lorentzian multiflow,
it is already known min multiflows exist for certain backgrounds. For example, in [84] it
was shown when the strong energy condition holds, a foliation of the boundary induces
a foliation of the bulk by maximal volume slices. Consequently, there exists a minimally
packed flow, nµ, where nµ is the unit normal to the foliation, and is easily seen to be
divergenceless due to the fact that ∇µnµ = K = 0. In such spacetimes, e.g., AdS, the flux
out of nested regions Ai is simultaneously minimized by nµ and such that vµi = nµ for all i.
Moreover, vi are maximally correlated with each other and this was exploited to prove a
second law of complexity for black hole horizons.

17In the Riemannian case there is no future directed condition and so vij and −vji equally satisfy the
definition of a flow.

18This readily follows from the reverse triangle inequality for future directed timelike vectors; |v|+ |w| ≤
|v + w|. Specifically, for ξij ∈ [1,∞], we have |v| = |

∑n

i<j
ξijvij | ≥

∑n

i<j
|vij | ≥ α.
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2.3.3 Subregion complexity and superadditivity

CV complexity is known to satisfy a number of other properties, including superadditivity
and weak superadditivity [23, 94–96]. The superadditivity relations concerns itself with
subregion complexity: given that states on boundary subregions are dual to respective entan-
glement wedges [36, 45, 119], the volume of a maximal volume slice within the entanglement
wedge is dual to the ‘subregion complexity’ of the reduced state on the associated boundary
subregion [85, 120].19 Subregion complexity thus implies a notion of mixed state complexity.
One possible definition of mixed state complexity is ‘purification complexity’ [94]: the
minimum number of gates required to prepare an arbitrary purification of a given mixed
state.20 Such a definition was explored in the context of the complexity=action conjecture
in [94] and the complexity=volume conjecture in [95, 96] (see also [121]).

In the latter case, by comparing the volumes of different Cauchy slices in the bulk, it
was found subregion complexity via CV duality obeys a superadditivity relation. To be
precise, define subregion complexity CS according to the prescription of [85] as follows. Let
σA be a boundary Cauchy slice of a boundary region A containing spatial subregions σX
and σY , such that σX ∪σY = σA and σX ∩σY = ∅. Denote the HRT surface dividing σA by
R.21 Then, the subregion complexity CS(σX) is given by finding the maximal volume slice
anchored at σX ∪R, and similarly for CS(σY ). The superadditivity of subregion complexity
then states

CS(σX ∪ σY ) ≥ CS(σX) + CS(σY ) . (2.29)

We leave the study of a flow formulation of subregion complexity more generally to
future work, however, it is easy to prove (2.29) using flows. To see this, first note that since
σX , σY are non-overlapping boundary slices, then their corresponding entanglement wedges
wA, wB are non-overlapping [45]. Extending this into the bulk means we can consider
the bipartition of a boundary region A ⊂ ∂M into two non-overlapping boundary regions
A = AX ∪ AY (with AX ∩ AY = ∅ and AX,Y are not nested regions; see figure 5). Let
σAX and σAY be the associated non-intersecting spatial slices of AX and AY , respectively,
obeying σAX ∪ σAY = σA. A solution to the min-flow problem for subregion complexity
induces a flow v on M which simultaneously computes the minimal fluxes through the
spatial slices anchored at σAX ∪ R and σAY ∪ R. The minimum flux through each slice
yields the maximum volumes VAX and VAY , and is less than or equal to the volume of the
maximal slice Σ(A). Therefore, the subregion complexity of a state reduced to the Cauchy

19For static bulk geometries, CV duality considers the volume of the portion of the constant-t slice
bounded by the boundary subregion and the corresponding Ryu-Takayangi surface [120]. For time dependent
geometries, this proposal is naturally extended using the HRT prescription where one considers the (maximal)
volume of a bulk slice bounded by the boundary region and the HRT surface [85].

20A second definition of mixed state complexity is the ‘basis complexity’, which is roughly the minimum
number of gates required to prepare a specific mixed state sharing the same eigenvalue spectrum as the
initial minimal complexity state [94].

21For simplicity we will assume the state on σA is pure such that σX and σY share the same HRT surface
R. If the state is mixed, as is the case in black hole backgrounds, we first purify the state such that σX and
σY have the same HRT surface.
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Figure 5. A partition of a boundary region A ⊂ ∂M into A = AX ∪AY , where AX ∩AY = ∅, and
with associated non-intersecting boundary Cauchy slices σAX

∪ σAY
= σA. The red line connecting

σX and σY denotes the maximal Cauchy slice Σ containing the HRT surface R. The minimal
flux of a Lorentzian flow v through the boundary AX,Y computes the subregion complexity of the
boundary regions σX,Y , given by the maximum volumes of VAX

and VAY
, respectively. The flow

which computes the volume of the entire boundary slice will always have more flux through AX and
AY than the minimal flux, leading to superadditivity (2.30).

slice σX ∪ σY is given

CS(σX ∪ σY ) =
∫
σA

v =
∫
AX

v +
∫
AY

v ≥ CS(σX) + CS(σY ), (2.30)

where the inequality follows from the fact the flux of the flow through AX will always be
greater than the minimum flux through AX , which computes CS(σX) and similarly for AY .

Equivalently, superadditivity (2.30) can be rephrased in terms of the mutual complexity
∆CS [96],

∆CS = CS(σX) + CS(σY )− CS(σXY ) , (2.31)

where ∆CS < 0 implies (2.30). It would be interesting to extend subregion complexity to
multiple boundary regions, in which flows may be technically advantageous.

2.4 Interpretation: Lorentzian threads as ‘gatelines’

Above we used Lorentzian flows v to reformulate the complexity=volume conjecture (2.15),
and showed, using the nesting property, holographic complexity satisfies the inequality (2.18)
such that the (negative) change in complexity evaluated at two boundary times is bounded
below by the minimal flux through the combined region, C(σA|σAB). In this section we
focus on developing a physical interpretation of each of these statements.

Similar to the ‘bit thread’ interpretation22 of Riemannian flows [16], there is a unique
mapping (up to unimportant Planck scale effects) between Lorentzian flows and what we

22Namely, the set of (unoriented) integral curves of the flow v with density |v| everywhere and are only
allowed to end on the boundary, which can be interpreted as a continuous path in a network. As reviewed in
appendix A, the maximum number of bit threads for a given configuration NAĀ quantifies the entanglement
between A and Ā, S(A) = max NAĀ.
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will call ‘Lorentzian threads’ or ‘gatelines’. Specifically, a thread configuration is defined as
a set of future oriented timelike curves on the Lorentzian manifold M satisfying: (i) they
only end on the boundary ∂M , and (ii) everywhere the thread density obeys |v| ≥ 1

GN `
. We

emphasize the norm bound condition tells us the threads cannot be packed more loosely
than 1/GN`. Thus, on macroscopic AdS scales, where ` = LAdS, one has GN ∼ N−2 and
L ∼ N (in the usual gauge/gravity parlance), such that the threads are bounded below by
∼ N , and saturate this density on the maximal bulk surface.

Let us denote the number of threads connecting a timelike boundary region A to its
complement Ā in a specific configuration by NAĀ. Then it is straightforward to show,
given our reformulation (2.15), that holographic complexity is the minimum number of
threads connecting A to Ā. Equivalently, NAĀ = NA, where NA are the threads piercing
homologous bulk Cauchy slice Σ(A) to A:

C(σA) = min NA . (2.32)

The proof of (2.32) is as follows. First, given any flow v we can construct a thread
configuration by choosing a set of integral curves with density |v| everywhere, such that the
NAĀ — the number of threads passing from Ā to A (and vice versa) — is bounded above by
the flux of v on A. When this flow is a minimizing flow v(A), this is equal to the complexity
C(σA), NAĀ ≤

∫
A v(A) = C(σA). Alternatively, NAĀ is bounded below by the volume of

any slice Σ homologous to A, multiplied by the density |v| = α, i.e., NAĀ ≥ α vol(Σ).23

When Σ is the maximum volume slice, we have NAĀ ≥ αΣ(A) = C(σA). Combining this
with the previous bound, we find the saturation (2.32).

Thus, the holographic complexity C associated with a boundary subregion A can be
understood as the minimum number of threads connecting Ā to A, for Ā to the past of
A. Equivalently, C(σA) is the minimum number of threads passing through the maximal
volume slice Σ(A) homologous to A. This latter observation naturally encourages the
idea these threads should really be thought of as ‘gatelines’ preparing the state on the
homologous maximal volume slice from a specific reference state defined on the infinite past
of the manifold.24

To make this picture more precise, recall that bulk Lorentzian AdS spacetimes really
describe the time evolution of a specific CFT state, in which the CFT state is prepared
by a Euclidean path integral [122, 123]. That is, the initial CFT state is described using a
wavefunctional approach following the Hartle-Hawking prescription where the functional
is computed by summing over bulk field configurations on a half of Euclidean AdSd+1, a
southern hemisphere, whose boundary is the half cylinder Sd−1 × R− ≈ Bd, where the
origin of the sphere is mapped to negative infinite Euclidean time. The cap of the southern

23This can be shown by considering a bulk region surrounding Σ of some thickness T , such that the
(spacetime) volume Tvol(Σ(A)) multiplied by α is a lower bound to the length of the threads within the
bulk region. Moreover, any thread connecting A to Ā, and must pass through Σ, and such that the total
length of threads passing through this region is TNAĀ.

24The word ‘gateline’ in the context of Lorentzian flows was introduced in [17] to offer a suggestive
application of Lorentzian flows. Here we provide the first explicit realization of Lorentzian flows as gatelines
via state preparation.
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hemisphere is given by a spatial Cauchy slice, which here we label as Σ−. On the gravity
side then, all that is required to describe a CFT state is initial data, i.e., data on Σ− given
by the value of the bulk fields and their normal derivatives on Σ−. The former values are
interpreted as sources that are turned on, while the latter specify the choice of ‘reference
state’ on Σ−. With this initial data, the time evolution of the CFT state is determined by
solving the bulk equations of motion using the boundary conditions imposed at the timelike
AdS boundary. Furthermore, a Lorentzian AdS cylinder is glued along Σ, whose length
describes the duration of the time evolution in real time. Note that this prescription of
real-time gauge/gravity duality was generalized to characterize excited [124] and coherent
CFT states [125], where coherent states are prepared by Euclidean path integrals with
sources turned on.25 We will make extensive use of these generalizations in section 4.

We can now consider Lorentzian threads associated to a boundary region A, flowing in
the AdS background. These threads pass through Cauchy slices foliating the spacetime,
including the maximal hypersurface Σ, whose volume is given by the minimum number
of threads passing through. More generally, due to the divergenceless condition, we can
consider any surface Σ′ homologous to A. The norm bound then enforces Σ′ = Σ. When
the bulk region in the past of Σ is replaced with the southern hemisphere as in the Hartle-
Hawking description, then the Lorentzian flow v with minimal flux through Σ prepares the
CFT state on this maximal volume slice. A visualization of this is given in figure 6. From
this perspective, it is natural to interpret Lorentzian threads as gatelines: trajectories in
spacetime that represent the various unitary gates needed to transform a reference state to
a target state. Complexity, then, is simply the minimum number of gatelines through the
hypersurface preparing the reference state.

With this interpretation we can provide conceptual insight to the inequality (2.18)
and the quantity C(σA|σAB). First, C(σAB) is the determined by the minimum number of
gatelines needed to prepare the state on Cauchy slice Σ. The inequality (2.18) simply tells
us the minimizing flux through region B is the amount of gatelines used to prepare the
state on slice Σ(A) given the state on Σ(AB) (which is now taken as the reference state).
In other words, the minimum number of gatelines needed to prepare state A given the
minimum number of gatelines preparing AB. It is thus natural to interpret C(σA|σAB) as
a ‘conditional complexity’: the complexity of state A conditioned by the state on AB. In
the event the flux through B is zero, then the same minimum number of gatelines prepare
the state on the timeslices ΣAB and ΣA, such that the states have the same complexity.

25In fact, we can be a bit more precise here. Following the observations made in [126], turning on Euclidean
sources for single-trace operators corresponds to looking for regular solutions to the bulk equations of motion
satisfying suitable boundary conditions such that the bulk fields match the sources, i.e., given some sources
there exists a map determining the corresponding Lorentzian initial data preparing a state. Turning this
map around, it turns out the problem of using arbitrary initial data to determine the associated boundary
sources is ill-posed, e.g., localized initial data leads to divergent CFT sources [125], and the initial data
cannot be completely generic but rather analytic. Moreover, to obtain arbitrary initial data, one must
include delta function sources in the bulk, located at singularities in the bulk equations of motion. To have a
smooth Euclidean section, the initial data must obey a non-local condition specified by a particular integral
equation. Thus, the bulk equations of motion reveal which sources are needed to prepare a state, and we
assume we work with analytic initial data such that the Euclidean section is singularity free.
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Σ A Σ A

Σ−

v v

Figure 6. Left: visualization of Lorentzian threads moving in the Lorentzian cylinder. Right: state
preparation by a Euclidean path integral, where the optimal thread configuration prepares the CFT
state on the maximal volume hypersurface Σ, the cap of the southern hemisphere of Euclidean AdS,
which is glued along the Lorentzian cylinder. Complexity is then understood to be the minimum
number of Lorentzian threads (i.e. ‘gatelines’) passing through this bulk slice or, equivalently, the
minimum number of gates required to prepare the state on Σ from a reference state on Σ−.

From the boundary perspective, this is not surprising as the same number of boundary
sources are used to the prepare the state at two different times. Alternatively, for gatelines
exiting B there are more gatelines needed to prepare the state on ΣAB than on ΣA, i.e.,
C(σAB) > C(σA), while threads entering through B indicate additional gatelines are needed
prepare the state on ΣA such that it has a higher complexity than the state on AB (more
boundary sources are needed to prepare the state on ΣA). Nonzero flux Φ(B) thus can
either reduce or increase the complexity of the state prepared on ΣA which we can think of
as characterizing the rate of complexity or ‘uncomplexity’. Lastly, C(σA|σAB) exemplifies
the aforementioned two step optimization procedure: an intermediate state is prepared on
Σ(AB) via some number of gatelines before the state on Σ(A) is prepared by a potentially
different number of gatelines.

There are several more comments in order. First, for the Lorentzian setting to work it is
important the full manifold M defining the state preparation be compact, accomplished by
gluing Euclidean portions to the past M− to the future M+ along the Lorentzian cylinder.
The boundary region A then covers at least the boundary of M+. Second, while the full
Lorentzian manifold specifies the time evolution of the boundary state, the portion of the
flows to the future of slices where a state is prepared do not affect the preparation of the
target state. That is, the complexity of the state prepared on ΣA is characterized by the
number of threads that enter A from the past, which pass through the boundary part of the
manifold to the past of ΣA — the part of the manifold to the future of Σ does not affect
this number of threads, and hence complexity.

Next, in our interpretation, specifying the reference state is particularly important,
unlike the traditional CV or CA dualities, where one usually does not define the reference
state. Our prescription, which is tightly connected to the problem of state preparation in
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AdS/CFT, the reference state is found by specifying (normalizable) boundary conditions
on Σ−. The target state is then specified as a boundary condition on Σ, where one asks
what sources (non-normalizable modes) are needed to be turned on at Σ− to reach the
target state. Thus, if one were to ask what is the complexity of the vacuum state, in our
prescription we would first need to know what the reference state is, i.e., the complexity
of the vacuum is dependent on the reference state. For example, if the reference state is
the vacuum — where all sources are turned off — then complexity is zero. In this case,
the part of the manifold to the past of Σ (including the Euclidean southern hemisphere
M−) would collapse to a point and the volume (or, equivalently, number of threads) goes to
zero. If, however, the reference state is other than the vacuum, the complexity is non-zero
as some sources must be turned on, and the past to Σ− is not collapsed to a point.

We would like to also briefly highlight our interpretation here offers a notion of ‘emergent
time evolution’. More precisely, sitting along the bulk surface Σ where the CFT state has
been prepared, the forward time evolution of this state arises by following the trajectory of
the Lorentzian flow passing through Σ. Earlier, moreover, we noted time evolution of the
boundary state is determined by solving bulk (gravitational) equations of motion subject
to specific boundary conditions. This suggests Lorentzian threads, or at least a particular
thread configuration, encodes information about bulk field equations. We detail this in
section 4.

Lastly, our intuition above focused on thread configurations which solve the min flux
problem, namely, optimal flows. However, non-optimal flows are expected to play a role
and naturally fit withina tensor network description of AdS. This suggests an alternative
notion of complexity. We offer a proposal for such an alternative and describe how gatelines
prepare tensor networks in section 5.

3 Simple geometric constructions

In section 2 we proposed holographic complexity, as understood in the ‘complexity=volume’
conjecture, is given by the minimum flux of divergenceless bulk timelike vector fields v whose
norm satisfies |v| ≥ 1.26 The definition (2.12) of Lorentzian flows is highly non-unique, as
infinitely many timelike vector fields can be made to satisfy its properties. As such, so far
we have described Lorentzian flows and their interpretation rather generically.

In this section we provide explicit realizations of these Lorentzian threads. Broadly we
consider two types of constructions:

(i) integral lines: timelike vector fields found by foliating the bulk Lorentzian spacetime
with timelike curves, such as geodesics, where the norm is specifically chosen such
that the divergenceless condition is locally satisfied.

(ii) level set flows: timelike vector fields obtained whose integral lines are orthogonal to
a family of (nested) slices foliating the spacetime. By construction, the norm of the
vector saturates the bound |v| = 1. In the case where these are taken to be maximal

26Here we normalize our flows such that α = 1.
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volume slices, they lead to the so-called minimally packed flows which we have already
discussed above in relation to the property of superadditivity.

The Riemannian analogs of these constructions were developed in [22] (also briefly sum-
marized in appendix A), however, we will see some key differences in this context. For
example, when the bulk spacetime under consideration is asymptotically AdS, the geodesic
flows are constructed to foliate inside and outside the Wheeler-DeWitt (WDW) patch,
though we build flow configurations via level sets only in the interior of the WDW patch,
augmenting the exterior by geodesic flows. Because of this, let us first describe integral line
constructions in detail.

3.1 Method of integral lines

Here we consider a construction using a set of integral lines obeying certain properties such
that the Lorentzian flow is described by a vector field tangent to the integral curves. A
specific subclass of such lines, as we will show, are future directed timelike geodesics which
foliate the bulk spacetime.

Flows based on integral lines are built following a rather generic algorithm. For this
construction, we assume the following: a Lorentzian bulk spacetime endowed with metric
gµν with a (compact) boundary ∂M , and any connected boundary region A which has an
associated bulk maximal volume slice denoted by Σ(A), such that Σ(A)|∂M = ∂A. There are
essentially two steps to this construction: (i) consider a family of integral curves satisfying
the properties described below, from which we are able to identify the vector τ̂ tangent to
the flows, and (ii) the magnitude |v| is found by demanding the divergenceless condition
be satisfied. These two steps will allow us to construct the desired vector field, v = |v|τ̂ ,
characterizing the holographic complexity.

More precisely, the family of integral curves we propose are taken to satisfy:

(1) The tangent vector τ̂ is taken to be unique and well defined everywhere. Consequently,
the flows themselves are continuous and non self-intersecting, except possibly at a
set of bulk points of measure zero. If these points exist, the amount of integral lines
coming in and out should exactly cancel out, such that total flux across a surface
enclosing the point is zero.

(2) The tangent vector τ̂ must be equal to the unit normal n̂m at the maximal volume
slice Σ(A). This must hold since the bound on the flow |v| = 1 on Σ(A), as demanded
by the min flow-max cut theorem.

(3) The vector field v must be divergenceless, such that, as we will see, the integral lines
should begin and end at the boundary of the manifold.

Once we have picked a family of integral curves satisfying properties (1)-(3), the final
task is to find an appropriate norm |v| such that |v| ≥ 1 holds everywhere. A brute force
method is to simply scale the tangent vector τ̂ by some function of the coordinates and
demand ∇ · v = 0. This can result in a partial differential equation which may be difficult
to solve, particularly for spacetimes which don’t exhibit much symmetry. A more natural
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way to obtain the appropriate norm is by enforcing the integral version of Gauss’s theorem,
so that the flux through an infinitesimal volume element is constant through the Lorentzian
threads. This is accomplished by first parametrizing the curves X(xm, λ) by the point xm
at which the flows intersect the maximal volume slice, and where λ is an affine parameter
that runs along the curve. We then follow the set of integral curves that leave from an
infinitesimal region δA(xm) surrounding xm at Σ(A). The volume of the bulk slice will
propagate along the flow, defining a co-dimension zero region in the bulk. Since this bulk
region is made out of the proposed integral curves, flux does not enter or leave the region
such that the divergenceless condition is imposed by choosing norm |v| so the flux through
any transverse section of the bulk region is constant. More precisely, we choose |v| such that∫

δA(xm)

√
hλd

d−1xm|v| = constant , (3.1)

where hλ is the induced metric on the plane orthogonal to the flow line at point xm. Since
|v(xm, λm)| = 1 (the location of the maximal slice), where λm is the value of λ at which the
flow intersects Σ(A), one arrives to the following expression for |v| along the integral curves:

|v(xm, λ)| =
√
h(xm, λm)√
h(xm, λ)

. (3.2)

From this continuity equation, we have |v| ≥ 1 if and only if the volume satisfies√
h(xm, λm) <

√
h(xm, λ), i.e., the volume decreases everywhere away from the maxi-

mal volume slice. This condition, however, must be explicitly verified after the fact: if the
norm bound |v| ≥ 1 is not satisfied, we must modify our choice of curves until the bound
is achieved.

A natural subclass of flows which follow from the above algorithm are so-called geodesic
flows. In particular, as we will show, timelike geodesics foliating the interior of the WDW
patch can be used to construct particular flows using our algorithm. By the choice of
boundary conditions in the interior of the WDW patch the integral lines in this case will not
foliate the region outside the WDW patch, however, we will fill this region by translating
and twisting the interior geodesic curves.

We will apply this general algorithm specifically when the background geometry is
empty AdS and the BTZ black hole, where our proposed thread configurations are the
integral curves to timelike geodesics foliating the interior of the WDW patch. As we will
see, there is an important difference between the constructions in empty AdS and the BTZ
black hole. Due to the higher degree of symmetry in empty AdS, without loss of generality,
the WDW patch is built by picking a point at the origin in radial coordinates — regardless
of the value of the time coordinate — from which the null rays emanating from the origin
form the boundary of the WDW patch. Consequently, the maximal volume slice may be
determined independently from imposing orthogonality to the hypersurface on the solutions
to the timelike geodesic equations. Rather, the WDW patch and the maximal volume slice
appear automatically from the emission of all possible radially outgoing geodesics from
the origin. Alternatively, the WDW patch in the BTZ black hole background is heavily
influenced by the presence of a double timelike boundary as well as the past and future
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singularities. We therefore impose orthogonality relations on the timelike geodesics such
that the associated left and right corners of the WDW patch intersecting the timelike
boundaries are anchored at the same boundary time (we take left and right boundary times
to be equal, tL = tR). This is in fact standard in the context of studying the growth of the
volume of the wormhole behind the black hole horizon in the complexity=volume scenario
(see, for example, [127]). We will also explore the change in Lorentzian threads due to
this time dependence by explicitly construcing the threads configuration for the late time
surface, which we then use to explain how the second law of complexity can be interpreted
in the light of these gatelines.

Lastly, note that radial timelike geodesics are not the only class of flows we could have
considered, e.g., integral curves of timelike Killing vectors, however, timelike geodesics carry
a physical interpretation: they represent timelike trajectories of backreactionless observers
probing the geometry of the entire spacetime. It is also worth pointing out the foliation
of the WDW patch is obtained by a congruence of observers which probe the entirety of
spacetime at the same instant in coordinate time t. By this we mean the maximal volume
slice lies exactly where every point in the spacetime slice is reached by a geodesic foliating
the WDW patch. This always happens in vacuum AdS and happens in the BTZ spacetime
when the boundary times at which the WDW patch is anchored are the same time.

3.1.1 Flows in vacuum AdS

Geodesic foliation of WDW patch

For simplicity and pedagogy, let us first work in AdS3. We will return to its higher
dimensional generalization momentarily. In global coordinates the line element takes
the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dθ2 , f(r) = 1 + r2

L2 , (3.3)

where L is the AdS length. As mentioned above, we have the freedom to place the past tip
of the WDW patch at r = 0, for any coordinate t value. Future null rays emanating from
the origin r = 0 then hit the timelike boundary before bouncing back and ending at the
future tip r = 0 (see figure 7 for an illustration).

A natural candidate for the integral curves satisfying the desired properties (1)–(3) of
our aforementioned algorithm are non-intersecting timelike geodesics of AdS3. In particular,
we will show timelike geodesics foliate the interior of the WDW patch, such that the tangent
vector τ̂ to the integral lines of the geodesic flows is equal to the timelike unit normal vector
nµ to the maximal volume slice, and, using the continuity equation (3.2), the associated
vector field will indeed satisfy v = |v|τ̂ everywhere inside the WDW patch.

Thus, our first task is to work out the timelike and null geodesics (since the boundary
of the WDW patch is generated by the null geodesics) for global AdS3, and verify they
foliate the interior of the WDW patch. The geodesic equations are simply:

ẗ+ 2r
L2f

ṫṙ = 0 , r̈ + rf

L2 ṫ
2 − r

L2f
ṙ2 − rf θ̇2 = 0 , θ̈ + 2

r
ṙθ̇ = 0 , (3.4)
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from which we uncover two conserved quantities E, and `,

E ≡ ṫf , ` ≡ θ̇r2 , (3.5)

where we take the ‘energy’ E to be positive. Due to conservation of angular momentum,
we need only to consider a constant angle θ = θ0.

To solve the geodesic equations, we consider future directed geodesics emanating from
the past tip of the WDW patch, which we fix to be the point ppast = (−πL

2 , r = 0).
Consequently, the maximal volume slice is the t = 0 slice, where the null rays intersect the
(right) conformal boundary, and the geodesics all end at the future tip of the WDW patch
located at pfut = (πL2 , r = 0). The integral curves xµ to the null geodesics satisfying the
initial condition may be parametrized by either an affine parameter λ or coordinate time t:

xµλ(λ) = [t(λ) , r(λ) , θ(λ)] =
[
L arctan

(
Eλ

L

)
− θ0 , Eλ , θ0

]
,

xµt (t) = [t , r(t) , θ(t)] =
[
t , L

∣∣∣∣cot( tL
)∣∣∣∣ , θ0

]
.

(3.6)

It is easy to verify xµt (t) = (−πL
2 ) = xµλ(λ = 0). Similarly, we may parametrize the timelike

geodesics in terms of proper time τ or coordinate time t:

xµτ (τ) = [t(τ) , r(τ) , θ(τ)]

=
[

EL√
1 + ω2

arctan
(√

1 + ω2 tan
(
τ

L

))
− πL

2 , ωL sin
(
τ

L

)
, θ0

]
,

xµt (t) = [t , r(t) , θ(t)] =

t, L
√
E2 − 1√

1 + E2

tan2( tL+π
2 )
, θ0

 .
(3.7)

Here ω ≡ dr(τ=0)
dτ , and we see r(τ = 0) = 0.

A few comments are in order with respect to integral lines (3.6) and (3.7). First, notice
the coordinate functions xµ are real if and only if E ≥ 1. This tells us timelike geodesics
are bounded above by the null rays emanting from ppast. Indeed, for timelike geodesics (3.7)
the timelike condition gµν ẋµτ ẋντ < 0, where ẋµτ ≡ dxµτ

dτ , yields

gµν ẋµτ ẋ
ν
τ < 0⇒ 0 ≤ ω < E . (3.8)

Consequently, since E controls the velocity of the null geodesics and ω controls the velocity
of the timelike geodesics, we have the null rays bound the timelike geodesics emanating
from ppast. This observation, moreover, tells us that while the null rays reach infinity
(r = ∞, t = 0) after a time t = πL

2 , bounce back, and meet again at r = 0 after total
coordinate time ∆t = πL; the timelike geodesics never reach infinity.27 An illustration of

27This is easily seen by looking at r(t) in (3.7) for which we see E must take imaginary values for
r(t = 0) =∞, a contradiction.
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t

tpast

tfut

ρ

Figure 7. Foliation of the Wheeler-De Witt patch by timelike geodesics in compactified coordinates,
r = tan(ρ). The boundary of the WDW patch is generated by null curves originating at the
tpast = −πL2 , hitting the conformal boundary at t = 0 and ending at tfut = πL

2 . Higher initial
energies E of the timelike geodesics correspond to higher initial radial velocities, asymptotically
approaching, but never reaching the conformal boundary. All the geodesics cross at the past and
future tip of the WDW patch. Here we have set L = 1. Curves of different colors correspond to
different values of E: E = 1 (red), E = 1.05 (blue), E = 1.2 (orange), E = 1.6 (violet), E = 2.5
(cyan), and E = 15 (black). As the energy increases, the timelike geodesics tend to the null geodesics
forming the boundary of the WDW patch. Geodesics at the right side of the ρ axis are at an angle
θ0, while those on the left side are at an angle θ0 + π, thus correspond to their reflected versions.

the WDW patch is presented in figure 7, where we use radial compactified coordinates,
r = L tan ρ, with 0 < ρ < π

2 , for which the line element (3.3) becomes

ds2 = − sec2(ρ)dt2 + sec2(ρ)dρ2 + L tan2(ρ)dθ2 . (3.9)

Second, the timelike geodesics completely foliate the interior of the WDW patch, i.e.,
for any point inside of the patch that does not belong to the null boundary, there exists
a unique timelike geodesic which passes through q. To see this, let q = (tq, rq) be a point
inside the WDW patch and does not lie on the boundary. For the range −πL

2 < tq <
πL
2 ,

we can always invert the integral curves (3.7) to find E as a function of coordinates r and
t and identify the timelike geodesics emanating from ppast which passes through q. The
geodesic which passes through q will have a unique energy E = Eq given by

E2
q = f(rq)

1−
r2
q

L2 tan2
(
tq
L + π

2

)
−1

. (3.10)
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Thus, for every point q inside the WDW patch there exists a unique timelike (radial)
geodesic passing through q. Due to the angular symmetry of the background spacetime,
this argument need not require we fix θ.

Lastly, we see the tangent vector to the curves τ̂ is well-defined everywhere and is equal
to the unit normal n̂ to the maximal volume slice at t = 0, e.g.,

τ̂µ = dxµt
dt

=
(

1 , − E2√E2 − 1
1 + E2 tan2 ( t

L

) sec2
(
t

L

)
tan

(
t

L

)
, 0
)
, (3.11)

with τ̂ |t=0 = (1, 0, 0) = n̂. The unit vector, however, is neither divergenceless, nor has norm
satisfying |τ | ≥ 1 everywhere.

Timelike geodesics as Lorentzian threads

Thus far we have shown the integral lines associated to the timelike geodesics foliating
the interior of the WDW patch meet the requirements outlined by the three criteria in
our general algorithm. Indeed, by construction, the tangent vector τ̂ is unique and well
defined everywhere, is equal to the timelike unit normal on the maximal volume slice Σ,
and the flows begin and end at the past and future tips of the WDW patch. It remains to
be seen whether the properly normalized vector field is divergenceless and obeys the norm
bound |v| ≥ 1.

To find the norm we parametrize the curves by the point xm at which the flows
intersect the maximal volume slice Σ at t = 0. The integral curves to the timelike geodesics
parameterized by coordinate time t in (3.7) evaluated at t = 0 obey

xµt (0) =
[
0 , L

√
E2 − 1 , θ0

]
, (3.12)

from which we see the energy E defines the intersection point rm ≡ L
√
E2 − 1. Thus, for

any point (t, r) in the interior of the WDW patch, the integral lines xµt may be expressed in
terms of xm,

xµm(t) =

t , rm√
1 +

(
1 + r2

m
L2

)
tan2 ( t

L

) , θ0

 . (3.13)

Moving forward, it behooves us to work in radial compactified coordinates (3.9), for which
the integral lines (3.13) take the form

xµm(t) =

t , arctan
 tan(ρm)√

1 + sec2(ρm) tan2 t

 , θ0

 , (3.14)

where we have set L = 1 for convenience, and ρm denotes the intersection point of the
integral curves at the t = 0 maximal volume hypersurface.

Our task now is to find the norm bound following our algorithm and using the continuity
equation (3.2). This requires we determine the induced metric in the adapted coordinates
hµν(ρm, t). With the following coordinate transformation

tan(ρ(t, ρm)) = tan(ρm)√
1 + sec2(ρm) tan2(t)

, (3.15)
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we may write the AdS3 metric (3.9) in adapted coordinates (t, ρm) as

gµν(t, ρm) =


− sec2(ρm) sec4(t)

(1+sec2(ρm) tan2(t))2 − cos(ρm) cot(t) csc2(t) sin(ρm)
(1+cos(ρm)2 cot2(t) 0

− cos(ρm) cot(t) csc2(t) sin(ρm)
(1+cos(ρm)2 cot2(t)

sec2(am) sec2(t)
(1+sec2(ρm) tan2(t))2 0

0 0 − 1
1+csc(ρm)2 sec(t)2

 .
(3.16)

With the above metric we identify the timelike unit normal vector field τ̂ everywhere
tangent to the integral curves to be

τµ = 1√
−gtt

(1, 0, 0) =
(

1 + sec2(ρm) tan2(t)
sec2(t) sec(ρm) , 0 , 0

)
. (3.17)

The induced metric hµν = gµν + τµτν characterizing surfaces of constant t in adapted
coordinates (t, ρm) is then given by

hµν(t, ρm) =

 cot2(t)(cos2(ρm) csc2(t)+sin2(ρm))
(1+cos2(ρm) cot2(t))2 0

0 − 1
1+csc(ρm)2 sec(t)2

 . (3.18)

We now use the continuity equation (3.2) to construct the Lorentzian thread vector
field:

vµ =
√
h(0, ρm)
h(t, ρm)n

µ = (1 + sec2(ρm) tan2(t))
4 cos(ρm) | cos(2t)− 3− 2 cos2(t) cos2(2ρm)|∂µt . (3.19)

By construction, it is straightforward to verify, vµ is divergenceless, and obeys |v| ≥ 1,
saturating the bound at t = 0 on the maximal volume slice. Moreover, we can transform
v(t, ρm) back to the radial compactified AdS3 coordinates (t, ρ),

vµ(t, ρ) =

2
√

2
√

cos2(t) cos8(ρ)
(cos(2t) + cos(2ρ))3 , −

√
2 sin(2t)

√
cos6(ρ) sec2(t) sin2(ρ)
(cos(2t) + cos(2ρ))3 , 0

 .

(3.20)
The vector field remains divergenceless and satisfies |v| ≥ 1 everywhere, and are tangent to
the integral curves foliating the interior of the WDW patch. For an illustration, see figure 8.

Generalizing to AdSn
Before moving on to discuss the thread configuration outside the WDW patch, we point out
the above construction generalizes to higher dimensional empty AdS in a straightforward
way. In n spacetime dimensions, empty AdS in global coordinates is

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
n−1 , dΩ2

n−1 = dθ + sin2(θ)dΩ2
n−2, (3.21)

where dΩ2
n−2 is the (n− 2)-dimensional spherical boundary line element. In compactified

radial coordinates r = tan ρ (where we maintain L = 1) this becomes,

ds2
AdSn = − sec2(ρ)dt2 + sec2(ρ)dρ2 + tan2(ρ)

dθ2 +
n−3∑
i=1

 i∏
j=1

sin2(φj−1)

 dφ2
i

 , (3.22)

where φ0 = θ ∈ [0, π/2] and φi≥1 ∈ [0, 2π] are angular coordinates.
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A nearly identical analysis of the geodesic structure follows, from which we find the
normal τ̂ to surfaces of constant t in coordinates adapted to the foliation is given by

τµ = 1 + sec2(ρm) tan2(t)
sec2(t) sec(ρm) (1 , 0 , . . . , 0) . (3.23)

The induced metric hµν(t, ρm) characterizing the constant t-surfaces follows from hµν =
gµν + τµτν , such that now

h(0, ρm)
h(t, ρm) =

[
sec2(t) sec2(ρm)

4 (3− cos(2t) + 2 cos2(t) cos(2ρm))
]n−1

, (3.24)

which leads to the norm

|v| = (1 + 1
4 tan2(t) sec2(ρm))(n−1)/2, (3.25)

and is easily seen to satisfy the norm bound inside the WdW patch. In fact, one can see
that the norm is monotonically increasing away from the maximal volume slice at t = 0.
Consequently, the Lorentzian thread vector field (3.19) in radial compactified coordinates
becomes

vµ =
( 2

cos(2t)+cos(2ρ)

)n
2 (
|cos(t)|cosn+1(ρ),−2−1 sin(2t) sec(t) sin(ρ) cosn(ρ), 0 , . . . , 0

)
.

(3.26)
When n = 3, after some simplifications, we recover the vector field in (3.19).

Thread configuration outside the WDW patch

Above we constructed a Lorentzian thread configuration inside the WDW patch of empty AdS
for any number of dimensions using radial timelike geodesics. To build these configurations
we specified boundary conditions such that the flows foliate the interior of the WDW
patch. Due to these boundary conditions, the timelike geodesics inside the WDW patch
do not foliate the entire spacetime, leaving the outside of the patch untouched by the flow.
Nevertheless, in order for the min flow-max cut theorem to apply under the conditions
stated in section 2, we would like to foliate the entire manifold. Therefore, we proceed with
the construction of a Lorentzian vector field which will be able to fill the gaps left by the
previously constructed flow. The vector field outside the WDW patch is built by twisting
and translating the timelike geodesics that have been used for the inside. In this way, we
are confident the curves will neither intersect with the curves inside the patch nor with
each other.

For simplicity we work in AdS3. Shifting the integral curves (3.14) by π
2 in t and ρ

such that we are outside of the WDW patch, upon rescaling the parameter t, we have

xµ =

t, π2 − arctan

 cot(ρm)√
1 + csc2(ρm) cot2(t)

 , θ
 , (3.27)
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where we use t = π
2 as the intersection surface. The tangent to the curves are easily obtained

by taking the time derivative, which we write in compactified radial coordinates by making
the following substitution.

ρm = arccot
(√

−1 + cos(2ρ)
cos(2t) + cos(2ρ) cot(ρ)

)
. (3.28)

The resulting vector field takes the simple form of

V µ = (1,− cot(t) cot(ρ), 0) . (3.29)

Note that vector field V µ is not divergenceless and therefore does not meet the criteria
for a valid Lorentzian flow. Nonetheless, let us normalize V µ, resulting in

τµ = 1√
sec2(ρ)− cot2(t) csc2(ρ)

(1,− cot(t) cot(ρ), 0) . (3.30)

We can construct a divergenceless vector field by brute force by multiplying the normalised
vector field by a scalar function and solve a differential equation to set the divergence to
zero, and then verify ex post facto the norm bound is satisfied. Multiplying τµ by the
function f(t, ρ) and demanding ∇ · (fτ) = 0, the solution is non-unique and is solved when
f is given by the following class of functions:

f(t, ρ) = sin(t)
2
√

1− cos2(ρ)
C(−2 cos(ρ) csc(t)) , (3.31)

where C can be any function of (−2 cos(ρ) csc(t)). We will take advantage of this arbitrariness
momentarily.

Now that the divergenceless condition has been satisfied, it remains to be checked that
the norm bound, |v| ≥ 1, is satisfied. In particular, we want our choice of f(t, ρ) to be at its
minimum on the maximal volume slice. Given the choices made so far in the construction
of the WDW patch, the Lorentzian thread will cross the maximal volume surface at (t = 0,
ρ = π

2 ). Technically, this point is on the boundary of the patch and not outside of it. Thus
a sufficient condition for the total Lorentzian thread field, constructed by summing the
inside and the outside vector field contributions, outlining the maximal volume surface, is
for the norm outside the patch to never saturate the lower bound. This can be achieved by
choosing f(t, ρ) such that the Lorentzian thread field vµ = f(t, ρ)τµ is given by:

vµ =

 sec(ρ) sin2(t)
2ε sin(ρ)

√
sec2(ρ)− cot2(t) csc2(ρ)

,− cos(t) csc(ρ) sin(t)
2ε sin(ρ)

√
sec2(ρ)− cot2(t) csc2(ρ)

, 0

 .

(3.32)
Here we have introduced a scalar number ε in the expression for the thread vector field
using the arbitrariness of f . See figure 8 for an illustration.

Note that generically the norm |vµ| will violate the bound as we approach the anchoring
point of the WDW patch at (t = 0, ρ = π

2 ). This violation of the norm bound is an artifact
of competing divergences as we near this point. The role of ε is to constrain this violation
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ρ

t

t
ρ

log |v|t

ρ

Figure 8. Left: plot of the complete Lorentzian thread field in AdS spacetimes. The distinction
between the inside and the outside of the WDW patch can be easily seen. The inside field has been
constructed from timelike geodesics, while the outside field had to be constructed from translated
geodesics. Right: logarithmic plot of the full norm of the vector field inside and outside the WdW
patch in AdS3. In both plots the time coordinate t goes from −π2 to π

2 , while the radial coordinate
ρ goes from 0 to π

2 . The norm satisfies |v| ≥ 1, saturating the norm bound |v| = 1 on the maximal
volume slice at t = 0, which is indicated by a dark red line on the norm plot. The angular coordinate
has been suppressed for all values except 0 and π, which are represented by the right and left side of
the ρ axes.

exactly to the anchoring point such that as ε� 1 but finite, the violation is tuned away. In
fact, the norm bound violation at the anchoring point can be ignored by either taking a
cutoff at infinity, as is usually done when studying holographic complexity, or by recognizing
the point lies on the boundary of the WDW patch, which lies outside the domain of the
exterior Lorentzian thread configuration. Excluding this point, the norm bound in the
manifold outside the patch does then behave as it should, expressed by

|vµ| =
∣∣∣csc2(2ρ) sin4(t)

ε2

∣∣∣ (3.33)

and is depicted in figure 8. Consequently, we have a valid Lorentzian thread configuration
outside of the WDW patch which complements the interior construction.

Generalisation to AdSn
It is straightforward to generalize the construction for the threads outside the WDW patch
to n dimensions. The vacuum AdSn metric is given by (3.22). Given that the time and radial
part remain invariant, the approach used to construct the field outside the WDW patch
remains the same. Even the function C(−2 cos(ρ) csc(t)) solves the divergenceless condition.
The only change that occurs in higher dimensions is, given that f(t, ρ) presents higher
powers of the trigonometric functions, the choice of C(t, ρ) has to be modified accordingly.
To be precise, in n-dimensional AdS:

f(n)(t, ρ) = sinn−2(t)
2n−1(1− cos2(ρ))n−2

2
C(−2 cos(ρ) csc(t)). (3.34)
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To obtain the same result as in AdS3, we pick C(t, ρ)(n) = (−2 cos(ρ) csc(t)))−n+2 and
multiply by −2n−2

εn−2 such that:

vµ(n) =
(

sec(n−2)(ρ) sin(n−2)(t)
(2ε)(n−2)

√
sec2(ρ)− cot2(t) csc2(ρ)

,−cos(t) sin(2n−5)(t) csc(n−1)(ρ) sec(n−3)(ρ)
(2ε)(n−2)

√
sec2(ρ)− cot2(t) csc2(ρ)

, 0, . . . , 0
)
.

(3.35)
Consequently, the norm for n-dimensional thread fields can be expressed as:

|vµ|(n) =
∣∣∣csc2(2ρ) sin4(t)

ε

∣∣∣(n−2)
, (3.36)

obeying the norm bound.

3.1.2 Flows in the BTZ black hole

Geodesic foliation of WDW patch

Let us now explicitly construct the Lorentzian thread configuration in an eternal (double
sided) 2+1-dimensional BTZ black hole background using our general algorithm. Motivated
by our construction of Lorentzian threads in empty AdS, it is natural to guess the integral
lines to the timelike geodesics foliating the WDW patch are good candidate vector fields
satisfying the properties of our general algorithm. Unlike the empty AdS case, any spacelike
slice, including the maximal volume slice, is anchored to the left and right boundaries at,
in principle, two different times tL and tR, respectively.28 Consequently, the WDW patch
is double sided and we will look for a geodesic foliation of the interior of the patch before
using a level construction to describe the thread configuration outside of the patch. We
also emphasize studying Lorentzian threads in a BTZ black hole background is of interest
as the BTZ black hole has been an illuminating case study in holographic complexity.
This is because, in the context of AdS/CFT, the BTZ black hole is dual to a thermofield
double (TFD) state [10], and the TFD state is one of the few examples where the boundary
complexity has been analyzed in detail [72]. Holographically, the growth of the boundary
complexity due to the time evolution of the TFD state maps to the time dependent growth
of the spatial volume of the black hole interior [79, 127].

The metric of the static, neutral BTZ black hole [128, 129] in Schwarzschild coordinates
takes the form

ds2 = −
(
r2

L2 −M
)
dt2 +

(
r2

L2 −M
)−1

dr2 + r2dφ2 , (3.37)

where L is the AdS length, M is its ADM mass, and r = L
√
M is the location of the horizon.

It is prudent for us to work in the maximal Kruskal extension of the BTZ solution since we
want the integral curves to the Lorentzian threads to be globally defined, especially when
crossing the event horizon. Working in Kruskal coordinates is contrary to what is typically
done in the literature, where one typically uses Eddington-Finkelstein coordinates to model

28We will make the simplification tR = tL.
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III
II
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IV

Figure 9. Plot of the compactified BTZ timelike geodesics inside the WDW patch for different
crossing points at the maximal volume t = 0 slice. As the crossing point approaches L = 1, the
timelike geodescs tend to the null geodesics which form the boundary of the causal diamond. The
crossing points values are color coordinated: |sm| = 0 (red), |sm| = 0.1 (blue), |sm| = 0.4 (orange),
|sm| = 0.6 (violet), and |sm| = 0.9 (black).

shockwaves [79]. In null Kruskal coordinates (u, v), which are related to Schwartzchild (t, r)
coordinates by,

u = −
√
r − L

√
M

r + L
√
M
e−t , v =

√
r − L

√
M

r + L
√
M
et , (3.38)

the Schwarzschild line element becomes

ds2 = − 4dudv
(1 + uv)2 + (1− uv)2

(1 + uv)2dφ
2 . (3.39)

The horizon is now positioned at u = v = 0, the AdS3 boundary is at uv = −1, and past
and future singularities are located at uv = 1.

Since the geodesic foliation of the WDW patch in the BTZ black hole is more involved
than in empty AdS, let us describe the geodesic analysis in some detail. Ingoing null radial
geodesics are described by

d2v

dλ2 −
2u

1 + uv

(
dv

dλ

)2
= 0 , (3.40)

where λ is an affine parameter. For geodesics crossing the horizon in quadrant I, the null
condition imposes u to take a constant value, u = u0 ≥ 0. Consequently, null geodesics
trace straight lines to the future singularity. Similarly, infalling radial null geodesics crossing
the horizon from quadrant III tend towards the future singularity and have constant
v = v0. Solving the geodesics equation and imposing the conditions v(λ → −∞) = − 1

u0
and v(0) = 1

u0
, the two null rays identify two boundaries of the WDW patch anchored at

tL = tR = 0. Analogously, we identify the remaining sides of the WDW patch by sending
null geodesics toward the past singularity. See figure 9 for an illustration.
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We now construct the interior of the WDW patch by demonstrating every point in the
interior volume belongs to a timelike geodesic orthogonal to the (Schwarzschild) time t = 0
slice. The timelike geodesic equation and its timelike condition form the following system
of ordinary differential equations

d2v

dτ2 −
2u

1 + uv

(
dv

dτ

)2
= 0 , − 4

(1 + uv)2 u̇v̇ = −1 , (3.41)

where u̇ = du
dτ and v̇ = dv

dτ , with τ being the proper time parametrizing the geodesic. We find
an analytical solution to the set of equation by first extracting from the geodesic equation
an expression for u(τ) in terms of v(τ) and its derivatives, and then substituting it into the
timelike condition such that we arrive at the following third order ODE

d3v

dτ3 −
1
2v
′(τ)− 3

2
(v′′(τ))2

v′(τ) = 0 . (3.42)

Using the initial conditions v(0) = −v0, u(0) = u0, which sets the initial point to lie in
quadrant I, and v′(τ)

u′(τ)

∣∣∣
τ=0

= dv
du

∣∣∣
τ=0

= 1, such that the curves are normal to the t = 0 slice,
the solution to (3.42) is

v(τ) =
(1− s2

m) sec
(
τ
2 + arctan(sm)

)
sin
(
τ
2
)√

1 + s2
m

− sm , u(τ) =
sm cos

(
τ
2
)

+ sin
(
τ
2
)

cos
(
τ
2
)

+ sm sin
(
τ
2
) . (3.43)

Here, moreover, we fixed u0 = v0 = sm ≥ 0 such that the geodesics at τ = 0 lie on the
t = 0 slice and have coordinates (u, v)|τ=0 = (sm,−sm). The point sm is analogous to
the intersection point rm in empty AdS, which characterize geodesics of different ‘energy’
E. As we will see momentarily, we will treat (τ, sm) as adapted coordinates describing
the geodesics.

Inverting the relations (3.43) and using uv = 1, we find the proper time τsing at which
the timelike geodesics reach the past and future singularities is τsing = ±π

2 .29 Thus, all
geodesics meet at the past and future singularities at the same proper time at which they
cross with each other, independent of their starting position along the t = 0 surface.

It is straightforward to repeat the above analysis with timelike geodesics in quadrant
III, which cross the horizon from the other side of the wormhole and meet at the black hole
singularities. The geodesic equations are of the same form, except now sm ≤ 0. Considering
all geodesics coming from both quadrants I and III, it follows we can construct the interior
of the WDW patch, provided the timelike geodesics foliate the spacetime inside the boundary
of the patch identified by the null geodesics, as we will now verify.

Proving the timelike geodesics foliate the interior of the WDW patch is most easily
visualized in compactified coordinates

u = tan(σ), v = tan(ρ), (3.44)

with −π
2 ≤ σ, ρ ≤

π
2 , such that the Kruskal metric (3.39) transforms to

ds2 = −4 sec2(ρ− σ)dσdρ+ cos2(ρ+ σ) sec2(ρ− σ)dφ2, (3.45)
29More explicitly, uv = 1 yields 2−2s2

m

1−s2
m+cos(τ)+s2

m cos(τ) − 1 = 1, which implies τsing = ±π2 .
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where we have set L = M = 1 for convenience. In (σ, ρ) coordinates the BTZ spacetime
boundaries at the singularities and spatial infinity limit the range of the coordinates to
|σ|+ |ρ| ≤ π

2 . Therefore, the WDW patch anchored at tL = tR = 0 is now identified with
−π

4 ≤ σ, ρ ≤
π
4 .

Let us now show the timelike geodesics foliate the interior of the WDW patch. The
argument is nearly identical to the empty AdS case. Let p be any point inside the patch
that does not lie on one of the null rays, and has (compactified) Kruskal coordinates (σp, ρp).
The WDW patch is considered foliated by the geodesics if, for every point inside the patch,
there exists a unique geodesic which passes through the point. Given that timelike geodesics
in the patch are identified by their crossing point sm, we can invert the geodesic equation
to find

sm =
√

cos(2ρp) cos(2σp)− cos(ρp + σp) csc(ρp − σp) . (3.46)

Since the coordinates inside the WDW patch are bounded from above and below (−π
4 <

σ, ρ < π
4 ), this identifies a unique geodesic to which the point belongs. Moreover, we can

discern the proper time τp the curve intersects the crossing point by explicitly inverting the
equation to express τ as a function of the point coordinates.30 Therefore, each point inside
the WDW patch belongs to a unique timelike geodesic, proving that the patch is foliated
by this congruence of integral curves.

Timelike geodesics as Lorentzian threads

Let us move forward and use the integral lines to the timelike geodesics as our proposed
Lorentzian thread configuration. Indeed, the curves xµ(τ) = {v(τ), u(τ)} are continuous
and non-intersecting (except at the singularities), such that the tangent to the curves
τµ = dxµ

dτ is well-defined everywhere and is equal to the unit normal n̂ to the maximal
volume slice at t = 0. We will use the continuity equation (3.2) to further construct the
vector field vµ which is divergenceless and has norm bounded from below.

As in empty AdS, first we express the geodesics in adapted coordinates (τ, sm),

σ(τ, sm) = arctan
[
sm cos

(
τ
2
)

+ sin
(
τ
2
)

cos
(
τ
2
)

+ sm sin
(
τ
2
)] , (3.47)

ρ(τ, sm) = arctan
[

(1− s2
m) sec

(
τ
2 + arctan(sm)

)
sin
(
τ
2
)√

1 + s2
m

− sm

]
, (3.48)

where the metric in compactified coordinates (3.45) becomes

ds2 = −dτ2 + 4 cos2(τ)
(1− s2

m)2ds
2
m + (1 + s2

m)2 cos2(τ)
(1− s2

m)2 dφ2 . (3.49)

In these adapted coordinates, the vector tangent to the integral curves is

τµ =
( 1√
−gττ

, 0, 0
)

= (1, 0, 0) , (3.50)

30Specifically,

τp =
√

cos(2ρp) cos(σp)− cos(ρp)
√

cos(2σp)√
cos(2ρp) sin(σp)− sin(ρp)

√
cos(2σp)

.
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such that the induced metric on surfaces of constant τ , hµν = gµν + τµτν , is

ds2 = 4 cos2(τ)
(1− s2

m)2ds
2
m + (1 + s2

m)2 cos2(τ)
(1− s2

m)2 dφ2. (3.51)

Knowing that the point of intersection is at τ = 0, we can construct the Lorentzian threads
following (3.2)

vµ =
√
h(0, sm)
h(τ, sm)τ

µ = (sec2(τ), 0, 0) . (3.52)

It is straightforward to verify that vµ is divergenceless and has norm bound satisfying
|v| ≥ 1. To better visualise the Lorentzian threads, we transform from adapted coordinates
back into compactified Kruskal coordinates, leading to

vµ = cos(ρ− σ)
2 sec2

[
2 arctan

(√
cos(2ρ) cos(σ)− cos(ρ)

√
cos(2σ)√

cos(2ρ) sin(σ)− sin(ρ)
√

cos(2σ)

)](√
cos(2σ)
cos(2ρ) ,

√
cos(2ρ)
cos(2σ) , 0

)
.

(3.53)
The norm is simply

|vµ| = sec4
[
2 arctan

(√
cos(2ρ) cos(σ)− cos(ρ)

√
cos(2σ)√

cos(2ρ) sin(σ)− sin(ρ)
√

cos(2σ)

)]
, (3.54)

where we see the minimum coincides at the maximal volume slice. An illustration of the
Lorentzian threads and the norm is given in figure 10.

Thread configuration outside the WDW patch

Now that we have constructed the Lorentzian threads inside the WDW patch of BTZ, let
us construct the field outside. As we explained when constructing the threads outside the
WDW patch of vacuum AdS, there is no naturally occurring set of integral curves that
complements the future directed timelike geodesics — we simply translated and twisted
the flows foliating the interior. Therefore, as before, we manually construct the integral
curves by translating the interior geodesics appropriately. Given the symmetry of the BTZ
Penrose diagram, we need to fill four corners which form the complement of the WDW patch.
Luckily, it is enough for us to translate the geodesics in compactified Kruskal coordinates
by ±π

2 , namely, σ ± π
2 and ρ± π

2 . The resulting Lorentzian vector field will then naturally
fill the remaining corners appropriately.

We start by translating the ρ coordinate to ρ − π
2 , keeping σ fixed,31 such that the

compactified null coordinates in terms of τ and sm become

σ(τ, sm) = arctan
[
sm cos

(
τ
2
)

+ sin
(
τ
2
)

cos
(
τ
2
)

+ sm sin
(
τ
2
)] , (3.55)

ρ(τ, sm) = arctan
[

(1− s2
m) sec

(
τ
2 + arctan(sm)

)
sin
(
τ
2
)√

1 + s2
m

]
− π

2 . (3.56)

31Note that given the symmetry of the tangent function v = tan(ρ) from which ρ is defined, we realize the
Lorentzian threads obtained from the translation ρ− π

2 are exactly the same as those obtained from ρ+ π
2 .

Therefore, we will fill two corners outside the WDW patch in one go.
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We then pullback the metric into adapted coordinates

ds2 = −
(
eiτ (1− s2

m)
sm(1 + e2iτ )

)2

dτ2 + ds2
m

s2
m

+ (1− s2
m)2 tan2(τ)
4s2
m

dθ2. (3.57)

The unit vector along the curves is then easily read off from the metric,

τµ =
( 1√
−gττ

, 0, 0
)
, (3.58)

and used to induce it on surfaces of constant τ ;

ds2 = ds2
m

s2
m

+ (1− s2
m)2 tan2(τ)
4s2
m

dθ2. (3.59)

Following the construction inside the WDW patch, we would like to construct the
Lorentzian threads

vµ =
√
h(τ0, sm)
h(τ, sm) τ

µ =
(2sm cos(τ) cot(τ) tan(τ0)

1− s2
m

, 0, 0
)
, (3.60)

where we have left τ0 unspecified for the moment. Even with arbitrary τ0, v is divergenceless.
One can also easily transform back into compactified coodinates (ρ, σ), though the resulting
expressions are not terribly enlightening. While v remains divergenceless, the norm bound
is not identically satisfied and depends on the choice of τ0. Ideally, we would like to set
τ0 = −π

2 . Unfortunately, this is not possible since this is where the singularity lies, and the
vector field diverges at that point. Nevertheless, we are allowed to get arbitrarily close by
setting τ0 = −π

2 + ε. For arbitrary ε the norm bound will be violated, however as ε→ 0,
the violation gets pushed to the edge of the WDW patch at spacelike infinity. Then, as in
vacuum AdS, we again use the cutoff argument to eliminate the norm violation.

The remaining two corners outside of the WDW patch are built in exactly the same
way, where now we keep ρ fixed but translate σ → σ − π

2 . The adapted and induced metric
are the same, and the resulting thread vector field is

vµ =
(
−1

2 cos(ρ− σ) cos(2σ) cot(ε) sec(ρ+ σ), 1
2 cos(ρ− σ) cos(2ρ) cot(ε) sec(ρ+ σ), 0

)
(3.61)

with norm
|vµ| = cos(2σ) cos(2ρ) cot2(ε) sec2(ρ+ σ) (3.62)

A complete plot of the threads and their norm can be seen in figure 10.

Late time behavior and second law of complexity

In the previous section, we showed how Lorentzian threads explicitly identify the maximal
volume slice passing through the bifurcation surface, such that the WDW patch is anchored
at the boundary time tL = tR = 0. As the boundary time moves forward, the portion of the
maximal volume surface trapped in the interior of the black hole grows. This represents the
growth of the volume of the wormhole connecting the asymptotically AdS spacetimes and
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σ

ρ

log |v|

ρ σ

Figure 10. Left: plot of the Lorentzian flows for the full BTZ spacetime in compactified Kruskal
coordinates. The coordinates are bounded by ±π4 . The maximal volume slice runs from the left
to the right corner. The plot is divided in the 4 quadrants representing two asymptotically AdS
spacetimes connected by a wormhole. For this choice of WDW patch, the past and future tips are
located precisely on the past and future singularities. Right: norm of the vector field for the full
BTZ in compactified Kruskal coordinates. The maximal volume slice runs from the left to the right
corner and coincides with the minimum value of the norm, indicated by a darker red line.

it is holographically dual to the growth in complexity of the boundary TFD state [79]. As
time continues forward, the maximal volume surface tends to a surface of constant radius,
entirely confined in the interior of the black hole, and begins to wrap around the future
singularity. This slice is referred to as the late time surface and describes the complexity of
the boundary state as t→∞. Eventually the complexity saturates and plateaus at some
value until the recurrence time, which is doubly exponential in the entropy [117].

Here we wish to study the late time behavior of the geodesic construction of the
Lorentzian thread configurations. The construction which we will present holds for any of
the surfaces at t > 0, but we focus on the late time surface both for simplicity, as we know
an explicit expression for the slice, and due to the greater importance that this slice has.
The strategy is as follows. First we consider geodesics emanating from the maximal volume
surface at late time, where we see the late time surface corresponds to the WDW patch
anchored at infinity. We then adapt the algorithm used above to construct Lorentzian flows,
such that even at late times the norm bound |v| ≥ 1 is saturated at the late time surface.
Moreover, as we will comment on briefly, the Lorentzian flows nicely illustrate the second
law of complexity. The late time surface for a BTZ black hole is given by the constant
r-surface

r = 1− tan(σ) tan(ρ)
1 + tan(σ) tan(ρ) = 1√

2
, (3.63)

where we expressed the radius in terms of Kruskal coordinates using (3.38). The radius
value can be obtained through a method analogous to [130], where we treat the maximal
volume surface as a lower dimensional geodesic problem, extremizing the functional in
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ρ σ

Figure 11. The late time maximal volume slice (in red), and the timelike geodesics passing through.
The timelike geodesics meet at the past tip of the late time WDW patch and end on the singularity.

Eddington-Finkelstein coordinates

L =
√
r2(−f(r)v̇2 + 2v̇ṙ) (3.64)

where v is the ingoing null coordinate. The result has been computed numerically in [131].
Imposing the timelike condition and orthogonality of the radial geodesics to the surface, it
is straightforward to show the geodesics xµ = {xσ, xρ, xθ} emanating from the late time
surface in compactified coordinates are

xσ = arccot
[
cot(sm) csc

(
π

8 + τ

2

)(
cos

(
τ

2

)
sin
(
π

8

)
+(2
√

2−3) sin
(
τ

2

)
cos

(
π

8

))]
,

(3.65)

xρ =−arctan
[
cot(sm)

(
−1+

√
2+(−2+

√
2)cos

(
π

8 −
τ

2

)
sec
(
π

8 + τ

2

))]
, (3.66)

xθ = θ , (3.67)

where τ is the proper time along the geodesics, with τ = 0 indicating the time at which
geodesics intersect the maximal volume surface, and sm being the parameter indicating the
point of intersection with the maximal volume surface.

A quick computation shows all of the geodesics meet the singularity at τsing = π
4 and

meet at the bifurcation surface at τb = −π
4 as shown in figure 11. Moreover, as seen from

the figure, geodesics meet at the bifurcation surface. Incidentally, this intersection point is
where the past tip of the WDW patch lies, the closest point to the past singularity.

This allows for the null rays emitted from the tip to reach the boundaries without
ending on the singularity. Indeed, the construction of Lorentzian threads which we are
about to present goes through smoothly if one starts from the past tip of the WDW patch
and follows all possible future time directed geodesics. If the past tip is then positioned at
the furthest possible future, the geodesics coincide with those showed here. This is how we
originally individuated the maximal volume surface to lie at r = 1√

2 .
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Following the general algorithm, we now find the vector tangent to the integral curves.
Since the tangent vector field to these curves is not divergenceless, we opt for the Gaussian
method to construct the thread configurations. Pulling back the metric to coordinates
adapted to the geodesics, we obtain a diagonal metric where τ and sm are the coordinates
parallel and perpendicular to the geodesics. While the metric itself is quite cumbersome
to write, the unit vector field along the curves dramatically simplifies to a unit vector
orthogonal to surfaces of constant τ

τµ =
( 1√
−gττ

, 0, 0
)

= (1, 0, 0). (3.68)

Rather nicely, the induced metric on surfaces of constant τ leads to a remarkably simple
expression for the metric determinant:

h(τ, sm) = 1
4 cos2(2τ) csc2(sm) sec2(sm), (3.69)

from which we construct the vector field v,

vµ =
√
h(0, sm)
h(τ, sm) =

(
sec(2τ), 0, 0

)
. (3.70)

Transforming back to compactified Kruskal coordinates, we obtain,

vµ = ξ(σ, ρ)
(

cos(ρ− σ) csc(ρ) sin(σ), cos(ρ)(cos(ρ) + sin(ρ) tan(σ)), 0
)
, (3.71)

ξ(σ, ρ) = cos2(ρ− σ) sec(ρ+ σ)
√

csc(ρ) csc(σ) sec(ρ) sec(σ) cot(σ) , tan(ρ) (3.72)

from which it is straightforward to verify vµ is divergenceless, ∇µvµ = 0.
Meanwhile, the associated norm is

|vµ| = − 1
16 cos4(ρ− σ) sec2(ρ+ σ) csc(ρ) csc(σ) sec(ρ) sec(σ) . (3.73)

We plot the vector field and its norm in figure 12, where we observe |v| reaches its minimum
on the maximal volume surface, as expected.

Before moving to the level set construction, it is interesting to consider what the
Lorentzian thread flow can tell us about the second law of quantum complexity. In the
case of a double sided black hole, it has been shown that complexity grows monotonically
with the boundary time until it reaches a plateau value, i.e., black holes obey a second
law of complexity. The maximum plateau value can be interpreted in different ways. For
example, from a circuit complexity point of view, it can be seen as the volume of the space
of operators SU(2K) [117], while from a graph theory perspective the max value can be
instead interpreted as the size of the graph at which the no-collision assumptions breaks
down [132].

In a manner similar to [84], we can think of the growing volume inside the double sided
black hole as the increase in the number of Lorentzian threads which cross the portion of
the maximal volume slice inside the horizon (thus, reaching the singularity) as we move the
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σρ
ρ σ

ρ

σ

Figure 12. Lorentzian thread vector field at late times and its norm. The norm satisfies |v| ≥ 1,
saturating the lower bound on the maximal slice (thick line in red).

associated WDW patch forward in time. Alternatively, by the same reasoning, a decrease
in the complexity of the state as it evolves forward from past infinity is associated to the
decrease in the number of threads crossing the portion of the maximal volume slice inside
the white hole. Thus, we can connect the thread picture to the second law of quantum
complexity: as the WDW patch moves forward in time, additional threads are forced to
cross the event horizon before meeting the maximal volume surface and ultimately ending
at the singularity. This leads to a monotonic increase in the associated complexity of the
boundary state.

With this point of view in mind, it is possible to interpret the maximal complexity as
the complexity associated to the ‘final state’ in which all the threads cross the maximal
volume surface inside the black hole and reach the singularity. Therefore, the complexity
has the same plateau value at past and future infinity, and the semiclassical boundary states
associated to the time in between the two correspond to a dip in complexity, occurring once
every recurrence time [117], corresponding to the threads switching their crossing points
with the maximal volume surface from inside the white hole to inside the black hole, with
the minimum of the dip corresponding to the transition time at which the crossing points lie
completely outside the black hole except for a set of measure zero on the bifurcation surface.

We conclude the section with a thought on the CV duality. It has been argued that one
of the reasons why the CV duality is preferable over the CA duality is that, even at late
times, the maximal volume slice does not intersect the singularity, thus is robust against
quantum corrections. Among other things, this allows one to circumvent the difficulties in
handling the boundary terms which appear when computing the complexity through the
action of the WDW patch. Given the above observation the Lorentzian thread reformulation
of CV duality shows that the threads do, in fact, probe the singularity, unlike Riemannian
Bit-threads. It would be interesting to explore the consequences of this. Indeed, since the
region near the singularity is expected to encode Planck scale physics it is likely that the
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late time surface and the corresponding threads will need quantum corrections to correctly
characterize the CFT state. In particular, without quantum corrections, the thread gatelines
commute, however, when quantum effects are included, this commutativity property may
be lost.

3.2 Method of level sets

The second method of constructing Lorentzian thread configurations has us specify a family
of level set hypersurfaces, satisfying the below properties, where the vector field is orthogonal
to the level sets and is divergenceless. Our construction is motivated by the Riemannian
analog for holographic bit threads introduced in [22, 28] and reviewed in appendix A.

We propose a family of level sets satisfying:

(1) One of the members is the maximal bulk slice ΣA homologous to boundary region A.

(2) All surfaces are continuous and do not self-intersect.

(3) Closed bulk surfaces are not included.

(4) All hypersurfaces are homologous to A; not just the maximal bulk slice.

From the first three properties it is possible to construct a divergenceless vector field
with a desired boundary condition. This is seen as follows. Given a family of level sets
satisfying at least (1)–(3), one generates the corresponding integral lines orthogonal to each
hypersurface in the family. Once the integral lines have been found, then the problem
reduces to the one described in section 3.1.

All that remains is checking the norm bound is satisfied. Condition 4, while not
necessary, is useful to assume since it will ensure |v| ≥ 1 is satisfied everywhere. This
follows from the min flow-max cut theorem, where, since |v|ΣA = 1, then |v| ≥ 1 at any
other member of the family of level sets. Note that a simple vector field configuration
generated by level sets which are not all homologous to the same boundary region A are the
minimally packed flows described in section 2. In that context, recall, the level set surfaces
constituted a family of nested maximal volume slices, containing ΣA as one of its members,
and the flux of the thread v was minimal through multiple regions, satisfying |v| = 1 in
a given bulk region. An explicit geometric realization of such flows were also described
in [84], where one introduces the notion of a ‘volume current’ V . The volume current was
defined given a foliation of the bulk spacetime by maximal volume hypersurfaces induced
by a Cauchy foliation of the boundary by slices orthogonal to an asymptotic Killing flow
affiliated with time translations. Specifically, the volume current V is the unit timelike
vector field orthogonal to the bulk foliation with a divergence proportional to the extrinsic
curvature K of each bulk Cauchy slice. Since all slices are assumed to be maximal, K = 0,
the divergenceless conditions trivially holds. Our explicit construction below will not be
of this minimally packed type (we assume condition 4 above), however, we will foliate the
bulk spacetime by constant K slices (a ‘constant mean curvature’ (CMC) slicing).

Let us now describe in some detail the general construction from level sets, and then
apply this to a specific context. We specify our level hypersurfaces as ϕ = constant surfaces,
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for some appropriate scalar function ϕ(xi). We then consider the gradient flow

v = Υ(xi)∇ϕ , (3.74)

where Υ is some unspecified scalar function. The unit normal vector τ̂ = v/|v| is given by

τ̂ = ∇ϕ
|∇ϕ|

. (3.75)

Note further that the covector vµ = Υ(ϕ, g)∂µϕ, such that the boundary condition at
the maximal bulk slice implies

|Υ2gµν∂µϕ∂νϕ|ΣA = 1 . (3.76)

This condition gives the value of Υ at ΣA:

Υ(ϕ, g)|ΣA = |∂ϕ|−1
g

∣∣∣∣
ΣA

, |∂ϕ|g ≡
√
gµν∂µϕ∂νϕ . (3.77)

It remains to find Υ away from Σ. This is accomplished by imposing the divergenceless
condition ∇ · v = 0, leading to a first order differential equation:

(∇ϕ) · (∇Υ) + (�ϕ)Υ = 0 . (3.78)

Solving this differential equation subject to the boundary condition (3.77) at ΣA yields a
unique solution for Lorentzian thread configuration v.

Below we carry out this procedure in the case of empty AdS where our level sets are
specified as constant mean curvature slices K = constant, where the maximal hypersurface
K = 0 is a member of the family of hypersurfaces.

3.2.1 Flows in vacuum AdS

Here we build Lorentzian thread configurations using a family of constant mean curvature
K hypersurfaces in empty AdSn+1. Such a CMC slicing for empty AdSn+1 is given in terms
of Wheeler- De Witt (WDW) coordinates

ds2 = −dτ2 + cos2(τ)dΣ2
n, (3.79)

where dΣ2
n = habdx

adxb is a τ independent Einstein metric satisfying (Rn)ab = −(n− 1)hab.
In these coordinates AdS is foliated by surfaces of constant τ , or, equivalently, surfaces of
constant K [98]:

K = −n tan(τ) . (3.80)

We seek a function ϕ(xi) characterizing these level sets, where xi are global compactified
coordinates (t, ρ, θi). This is accomplished by first translating WDW coordinates (3.79)
into Poincaré coordinates (T, Z) and then into global coordinates

τ = arcsin
(
T

Z

)
, T = sin(t)

cos(t) + sin(ρ)Ωn−1
, Z = cos(ρ)

cos(t) + sin(ρ)Ωn−1
, (3.81)
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t

ρ

Figure 13. Plot of the level sets for AdS3. The CMC slicing of the WDW patch are curves of
constant K. For K = 0, the corresponding slice is the maximal volume slice, represented by the red
line along the ρ axis. We suppressed the angular coordinate apart from θ = 0 and θ = π, which are
represented on the right and left side of the time axis.

where Ωn−1 is the solid angle and we have set L = 1. Using K(τ) above, we may express
global coordinate t in terms of K and ρ such that our level sets are defined by

t+ arcsin
(
K cos(ρ)√
n2 +K2

)
= 0 . (3.82)

Inverting this relation to express K = K(t, ρ), the function ϕ characterizing our level sets
is defined to be:

ϕ(t, ρ) ≡ K(t, ρ) = − n sin(t)√
cos2(ρ)− sin2(t)

. (3.83)

We present illustration of our level set construction in figure 13. As depicted, we see our
level sets satisfy properties (1)–(4) described above.

The gradient (∇ϕ) vector, denoted by V µ
(n) is

V µ
(n) =

 (n− 1) cos(t) cos4(ρ)√
(cos3(ρ)− sin2(t))3

,−(n− 1) cos3(ρ) sin(t) sin(ρ)√
(cos3(ρ)− sin2(t))3

, 0, . . . , 0

 . (3.84)

It remains to be seen whether this vector field satisfies the norm bound and is divergenceless.
It turns out in n = 3, ∇ · V(3) = 0 automatically.32 In higher dimensions V µ

(n) is not
divergenceless, thus we multiply by an overall scalar function Υ(t, ρ) and determine Υ by

32While the divergenceless condition is automatically satisfied in n = 3, V µ(3) does not satisfy the norm
bound, requiring we multiply by an overall scalar function.
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ρ

tt

ρ

t

ρ

Figure 14. Plot of the Lorentzian thread vector field in AdS3 and of its norm. The maximum
volume surface is indicated by the darker horizontal line. As for the geodesic construction, the
angular coordinate is suppressed for all values except θ = 0 and θ = π.

imposing the divergenceless condition, where we demand the norm bound be saturated
at the K = 0 surface. It is straightforward to show the function solving the differential
equation (3.78) is

Υ(t, ρ)(n) = sec(n−1)(t)

√√√√( 1− sin2(ρ)
1− sec2(t) sin2(ρ)

)n−1

. (3.85)

The resulting vector field is

vµ ≡ Υ(t, ρ)V µ
(n), (3.86)

depicted in figure 14, from which we see v is a valid Lorentzian thread configuration.

3.2.2 Flows in the BTZ black hole

Let us now find a Lorentzian flow using a similar level set construction in a BTZ background.
This is rather straightforward given our construction above and the fact the BTZ black hole
and AdS3 have similar group structures, such that both solutions can be put into Poincaré
form. In particular, the transformation of the static BTZ black hole (3.37) in Schwarzschild
coordinates (t, r, φ) to Poincaré coordinates (T, Z,X) is (see, e.g., eq. (2.9) in [133] in the
static limit):

T =

√
r2 − 1
r2 sinh(t)eφ , Z =

√
1− r2

r2 eφ , X =

√
r2 − 1
r2 cosh(t)eφ , (3.87)

where for convenience we have set L = M = 1 such that rs = 1.
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ρ σ

Figure 15. Plot of the level sets for the BTZ black hole. The CMC slicing of the WDW patch are
curves of constant K. K = 0 is the maximal volume slice and it is represented by the red line.

In terms of Poincaré coordinates, we may now use the CMC slicing (3.79) with extrinsic
curvature K (3.80) for n = 2.33 Then, combining the transformation (3.87) with Kruskal
coordinates (3.38), we may write an equation for the level sets in global compactified
Kruskal coordinates (σ, ρ) as follows

σ + arctan
(
K −

√
4 +K2 tan(ρ)

K tan(ρ)−
√

4 +K2

)
= 0 . (3.88)

Inverting this relation to express K = K(σ, ρ), the function ϕ characterizing the BTZ level
sets is given by

ϕ(t, ρ) ≡ K(σ, ρ) = − 2(tan(σ) + tan(ρ))√
(1− tan2(σ))(1− tan2(ρ))

. (3.89)

These level sets are presented in figure 15, from which we see the BTZ level sets satisfy
general properties (1)–(4) above.

The gradient of this function, which we will denote by ∇µϕ ≡ V µ, is

V µ =

(1− tan2(σ))(cos(σ) + sin(σ) tan(ρ))3 sec(σ)√
[(1− tan2(σ))(1− tan2(ρ))]3

,

(1− tan2(ρ)) sec(ρ)(cos(ρ) + sin(ρ) tan(σ))3√
[(1− tan2(σ))(1− tan2(ρ))]3

, 0

 . (3.90)

It is easy to verify V µ is divergenceless. The norm is minimum at the maximal volume
hypersurface, however, the bound is not saturated. Happily, unlike the empty AdS case,

33We are using the fact the static BTZ black hole in CMC coordinates is a quotient of AdS3 by a discrete
subgroup of the SO(2, 2) isometry group, with topology Σ× R, where Σ is an annulus [134].
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σρρ σ

ρ

σ

Figure 16. Plot of the Lorentzian thread vector field in BTZ and of its norm. The maximum
volume surface is indicated by a darker line.

since the norm on the surface is constant we do not need introduce a function Υ and solve
the differential equation (3.78) to fix Υ. Rather, it is enough to multiply V µ by the scalar
function Υ(σ, ρ) = 1

4 such that the final Lorentzian thread field is then given by

vµ ≡ 1
4V

µ . (3.91)

The vector field along with its norm is plotted in figure 16.

Outside the WDW patch

Note we only considered level set constructions using CMC slices which foliate the interior
of the WDW patch in both empty AdS and the BTZ black hole. In principle one can
consider a similar level set construction outside the patch, however, the differential equation
needed to solve for the form Υ is more difficult to evaluate due to a difference in a change in
boundary conditions. Alternatively, one can always invoke the geodesic construction outside
of the patch explored before, in which case the thread configuration of the whole spacetime
is an example of a mixed flow: threads orthogonal to CMC slices inside the WDW patch
combined with integral lines tangent to radial timelike geodesics outside of the patch.

4 Perturbative threads and Einstein’s equations

Thus far we have developed a Lorentzian thread reformulation of complexity=volume duality
and provided multiple explicit geometric constructions of these threads. In particular, we
considered geodesic flows obtained via timelike geodesic foliations of the WDW patch of the
bulk geometry, where the geodesics are identified with the integral lines of the corresponding
divergenceless Lorentzian thread vector field v. We also considered a level set configuration,
in which we foliated the interior of the WDW patch with a set of codimension-1 hypersurfaces
of constant mean curvature (CMC) K.
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This CMC slicing has played a prominent role in understanding CV duality before [98].
As we will describe in more detail below, in the phase space formulation of general relativity
the Hamiltonian constraint can be understood as a differential equation in the spatial
volume density such that, in a CMC slicing, the extrinsic curvature K can be interpreted as
a time parameter, the so-called ‘York time’ [135]. In this slicing, the spatial volume V of the
constant K curvature slice is interpreted as a Hamiltonian whose variation coincides with
the covariant bulk symplectic form when V is the volume of an extremal slice. Furthermore,
using that the bulk symplectic form is dual to the boundary symplectic form [97], it was
shown [98] the variation δV is proportional to the variation of boundary complexity δC.

The bulk symplectic form is useful when studying linear perturbations around the bulk
spacetime since one need not make explicit reference to the background metric, and it encodes
information about gravitational field equations. This suggests a deep relationship between
boundary complexity and bulk spacetime dynamics. Here we will expand on this insight
and show a first law of holographic complexity leads to the linearized Einstein’s equations.
Furthermore, we will demonstrate an equivalence between Einstein’s equations and a
condition on the Lorentzian threads. Specifically, using a map between the divergenceless
timelike vector fields v and closed forms u, we show perturbative Lorentzian threads —
Lorentzian threads corresponding to linear perturbations around AdS — are naturally
identified with the bulk symplectic current such that the linearized Einstein’s equations are
encoded in the closedness condition of the perturbative Lorentzian thread form.

Since our argument is rather detailed, let us provide a very brief summary of this
section. First in section 4.1, we develop the notion of perturbative Lorentzian threads,
and how they relate to linear perturbations to vacuum AdS, which are dual to excited
CFTs. We then cast Lorentzian threads in the language of differential forms including their
perturbative counterparts in section 4.2. This set-up will allow us to directly connect the
closedness condition of the perturbative thread form to the linearized Einstein’s equations.
To illustrate this, we first review the relationship between the boundary and bulk symplectic
structure in section 4.3, including the definition of the York deformation and how it relates
to CV duality [97, 98]. We then provide the first detailed proof showing an equivalence
between a first law of holographic complexity and the linearized Einstein’s equations in
section 4.4. We emphasize our argument is spiritually and structurally very similar to the
derivation of Einstein’s equations from the holographic first law of entanglement [41, 42].
In section 4.5 we conclude by showing a canonical choice of the perturbative thread is the
bulk symplectic current, such that the closedness condition of the thread form is equivalent
to linearized Einstein’s equations being satisfied.

4.1 Excited states and perturbative Lorentzian threads

By the holographic dictionary, bulk vacuum AdS is dual to the vacuum state of the boundary
CFT, while linear perturbations to vacuum AdS correspond to perturbative excited CFT
states. This fact was utilized in [41, 42] to show the first law of entanglement is equivalent
to linearized gravitational field equations being satisfied in the bulk. To encode metric
perturbations in the bit thread reformulation of holographic entanglement, one needs to
generalize the bit thread construction to time dependent backgrounds, where, moreover, the
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threads themselves are perturbed. Such ‘perturbative bit threads’ characterize entanglement
in excited boundary states and were explicitly constructed in [28]. It will benefit us to
review this argument as we will consider an analogous scenario for the Lorentzian threads.

While a fully covariant bit thread formulation of HRT is currently underway [29], one
may instead use the maximin principle of covariant holographic entanglement entropy [99] to
describe bit threads living in a dynamical bulk spacetime. That is, one first picks a specific
Cauchy slice Σt extending to the timelike boundary characterized by time coordinate t,
perform the area minimization over this slice to find the minimal RT surface, and then
maximizes over all such possible Cauchy slices Σt. The entanglement entropy is then given
by the area of a maximin surface m(A). This leads to a ‘maximax’ version of Riemannian
flows [26, 28], where one first finds the Riemannian flow with maximum flux through the
boundary region Σt ∩D[A], a Cauchy slice intersecting the boundary domain of dependence
of (boundary) region A, and then maximizes over all such Cauchy slices Σt. It turns out
Cauchy slices Σt away from the maximin surface m(A) are highly degenerate [99].

This observation about degeneracy was used to argue that to first order in a general
time dependent perturbation to an otherwise static metric, Σt may always be chosen to be
the Cauchy slice Σ associated with the unperturbed metric, or any spacelike surface Ση [28].
Here Σ corresponds to the Cauchy slice at t = 0, while Ση is the spacelike hypersurface
perturbatively close to Σ, where η is a small parameter characterizing the bulk metric
perturbation, gηµν = gµν + ηδgµν +O(η2) (which is assumed to satisfy Einstein’s equations).
Cauchy slices far away from Σ0 correspond to highly excited CFT states and are neglected
since the unique maximin surface is not necessarily minimal on such slices. Correspondingly,
the perturbative bit thread vη associated to a perturbatively excited CFT state is given by

vη = v + ηδv +O(η2) . (4.1)

As a flow, vη is expected to satisfy the usual criteria, thereby constraining δv.
Since either holographic complexity conjecture naturally incorporates time dependent

backgrounds, naively we need not worry about the maximin principle. This is not quite
accurate, however, as, in vacuum, the maximal volume slice Σ0 is ‘foliated’ by all RT
surfaces of all subregions. Thus, by the above discussion, only for perturbative excited
states, where Ση is equivalent to Σ at leading order, will the maximin surface be contained
in the maximal volume slice. The point we are making here deserves emphasis: the CV
proposal, and hence our Lorentzian flow reformulation, holds perturbatively. For highly
excited states, where the minimax surface may not be contained in the maximal volume slice
at t = 0, it may be more suitable to define an alternative notion of holographic complexity.
We will come back to this point in section 6.

Let us now briefly describe perturbative Lorentzian threads in some generality. For a
perturbed metric of the form gηµν = gµν + ηδgµν , for the vector field (4.1) to be a Lorentzian
flow, we must have

∇η · vη = 0 , v0
η > 0 , |vη| ≥ 1 , vµη |Σ = nµ , nµv

µ
η |R = 0 , (4.2)

where ∇η is the covariant derivative with respect to perturbed metric gηµν . Here v = vη=0 is
assumed to already satisfy each of these properties. The future directed and flux vanishing
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on boundary region R conditions tell us, respectively,

v0 > ηδv0 , ηnµ(δvµη )|R = 0 . (4.3)

Using gµνη = gµν + ηδgµν , and working to linear order in parameter η, we find the norm
bound leads to

− gµνη vηµv
η
ν = −gµνvµvν + η(2gµνvµδν + vµvνδg

µν)|Σ ≥ 1 . (4.4)

When evaluated on the maximal volume slice Σ, we have that the second term vanishes on
Σ. Lastly, the divergenceless condition, gives

0 = ∇η · vη = 1
√
gη
∂µ(√gηvµη ) =

√
g

√
gη

(∇ · v) + η
√
gη
∂µ[vµδ(√gη) +√gδvµ] , (4.5)

such that, upon using ∇ · v = 0, the last term in brackets is equal to a spacetime constant.
Altogether, given a background metric gµν and a solution to the min flow problem vµ, we

can always solve the problem of minimizing the flux where the metric gηµν is perturbatively
close to the original one, i.e., for bulk geometries dual to perturbative excited states. Due
to the presence of the metric and its variations, working with perturbative vector fields
becomes a bit cumbersome. As we will show below, it will be more convenient to work in
the language of differential forms.

4.2 Threads as differential forms and linear perturbations of complexity

Our reformulation of CV duality (1.5) relied on an equivalence between maximal volumes
and minimal flows v, where v is a divergenceless timelike vector field with norm satisfying
|v| ≥ 1. Thus, our reformulation (1.5) makes explicit reference to the background metric.
Here, however, we will be interested in studying bulk locality and how Einstein’s equations,
which are manifestly background independent, are encoded in the Lorentzian threads. To
make the background independence explicit, we opt to work with differential forms.34 This
is rather straightforward, because, in the presence of a D-dimensional spacetime metric gµν ,
divergenceless vector fields v map directly to closed (D − 1)-forms u:

vµ = gµν(?u)ν ,

(?u)ν ≡
1

(D − 1)!
√
guµ1...µD−1εµ1...µD−1ν ,

(4.6)

where ? is the Hodge star, and εµ1...µD−1ν represents the Levi-Civita symbol such that
ε = √gε is the volume form on manifold with metric gµν . In terms of the natural volume
form ε,

ε = 1
D!εµ1...µDdx

µ1 ∧ . . . ∧ dxµD , (4.7)

34Replacing (Riemannian) flows with closed (d− 1)-forms was recently accomplished in [28] to express the
bit thread reformulation of the Ryu-Takayanagi relation in the language of differential forms. For a brief
review see appendix A. The equivalence of flows and closed forms was also previously remarked in [16, 17].
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we formally express u as

u = 1
(D − 1)!εµ1...µD−1νv

νdxµ1 ∧ . . . ∧ dxµD−1 . (4.8)

In components we have uµ1...µD−1 = εµ1...µD−1νv
ν .

It is now clear how to connect divergenceless vector fields v to closed forms u. Taking
the exterior derivative of (4.8), one has

du = (∇µvµ)ε , ∇µvµ = 0 ⇔ du = 0 . (4.9)

The norm bound |v| ≥ 1, meanwhile, now becomes 〈u, u〉 ≥ 1, where 〈u, ũ〉 is a norm on
the space of forms defined via

〈u, ũ〉g = 1
(D − 1)!g

µ1ν1 · · · gµD−1νD−1uµ1...µD−1 ũν1...νD−1 . (4.10)

The future oriented condition v0 > 0 is also easy to state as g0ν(?uν) > 0.35

We can now express our reformulation of CV duality (1.5) (equivalently, the min
flow-max cut optimization program) in terms of u. To do this we write down the value of u
pulled back to a hypersurface Σ of M with normal covector nµ,

u|Σ = (nµvµ)ε̃ , (4.11)

where ε̃ is the pull back of the volume form to Σ, εµ1...µd−1ν = dε̃[µ1...µD−1 nν]. In particular,
when Σ is a maximal volume slice, the norm bound is saturated on Σ, resulting in36∫

Σ
u =

∫
Σ

(nµvµ)ε̃ =
∫

Σ
ε̃ = vol(Σ) , (4.12)

where we used nµvµ = 1; otherwise nµvµ ≥ 1. Thus, in terms of forms, the full min-flow
max-cut program reads

min
u

∫
A
u = max

Σ∼A
vol(Σ) . (4.13)

Consequently, the flow version of CV duality (1.5) becomes

C(σA) = min
u

∫
A
u , (4.14)

where it is understood u is a closed (D − 1)-form.
We can also use differential forms to describe the perturbative Lorentzian threads

introduced above. Particularly, for spacetime metrics perturbatively close to gµν , i.e.,
gηµν = gµν + ηδgµν , we denote the perturbed (D − 1) form by uη = u+ ηδu. The closedness
condition of the solution uη implies

d(u+ ηδu) = 0 =⇒ d(δu) = 0 , (4.15)
35For spacetimes where g0i = 0 and g00 < 0, it follows ∗u0 < 0.
36Here we have already made use of Stokes’ theorem in terms of differential forms, namely, 0 =

∫
r
du =∫

A
u−

∫
Σ u, where bulk region r has boundary ∂r = −(Σ/∂M).
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which is far simpler over the divergenceless condition (4.5). Moreover, by direct calculation
the norm bound −〈uη, uη〉 is easily seen to be

− 〈u, u〉g + η [2〈u, δu〉g + 〈u, u〉δg] ≥ 1 . (4.16)

Lastly, using that to first order in η the maximal volume slice Σ is unaltered, we know

(u+ ηδu)|Σ = ε̃+ ηδε̃ =⇒ δu|Σ = δε̃. (4.17)

Hence, when studying linear perturbations of complexity around a background metric we
seek to find a closed (D − 1) form δu satisfying δu|Σ = δε̃ and the norm bound in (4.16).

4.3 Symplectic structure and York time: review

Here we review the central results of [97, 98]: the boundary dual of the bulk symplectic
form and effect of ‘new York’ time translations on the boundary. This review will introduce
necessary tools to show an equivalence between the (Euclidean) bulk Einstein’s equations
and a boundary first law of complexity. Later we will show for linear perturbations of the
metric, the ‘new York’ transformation of the bulk symplectic form provides a canonical
choice of δu and hence a solution to the peturbed min-flow max-cut program and which
also characterizes Einstein’s equations.

4.3.1 Boundary dual of the bulk symplectic form

Building off of the ‘piece-wise holography’ developed in [122, 123] and its generalization to
excited states [124], the authors of [125] demonstrated coherent states of the boundary CFT
are dual to bulk coherent states, i.e., semi-classical geometries. More precisely, coherent
CFT states |λ〉 with wavefunctionals prepared via a Euclidean path integral

|λ〉 = Te
−
∫
τ<0 dτd

d−1~xλα(τ,~x)Oα(τ,~x)|0〉 , 〈λ| = 〈0|Te−
∫
τ>0 dtEd

d−1~xλ∗α(−τ,~x)O†α(τ,~x) (4.18)

are understood as bulk coherent states in that |λ〉 ∼ eλia
†
i |0bulk〉 where |0bulk〉 is the bulk

vacuum state, and {a†i} are a collection of commuting bulk creation operators, dual to
derivative operators acting on the conformal descendants of CFT primaries O(x). Thus, λ
acts as a source for O(x) and the corresponding semi-classical geometries are understood to
be states prepared by Euclidean path integrals with sources turned on.

To clarify, |λ〉 is understood to be a path integral over the boundary of Euclidean AdSd+1
and is really the state prepared by initial data on the boundary of the southern hemisphere
Sd−1 × R− ∼ Bd, denoted ∂M−. The conjugate 〈λ| corresponds to sources λ∗ inserted
in the northern hemisphere M+. Since the two submanifolds ∂M± are diffeomorphic,
functions and operators in either section can be extended to ∂M via the dualization map
λ(τ, x)→ λ∗(−τ, x), which may be combined into a single joint source profile λ̃(x), which
equals λ(x) for τ < 0 and λ∗(xT ) for Euclidean time τ > 0. Lastly, the vacuum CFT
wavefunction is represented by a Euclidean path integral over ∂M− in terms of the Euclidean
action SCFT

E , |0〉 ≡
∫
τ<0[Dφ(τ)]e−SCFT

E . For an illustration, see figure 17.
The key insight of [97] is that the mapping between boundary sources and initial data

continues to persist at the level of the symplectic structure. That is, for holographic CFTs,
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Figure 17. Coherent state preparation. The CFT state |λ〉 represents a state prepared by a
Euclidean path integral over the τ < 0 section of the boundary of Euclidean AdS ∂M− whilst
inserting sources λα on the boundary. The dual state 〈λ| is prepared by integrating over the τ > 0
section of the boundary inserting the sources λ∗(−τ, x) and the inner product 〈λ|λ〉 is computed by
gluing the two manifolds together.

the symplectic form on the classical phase space of gravitational configurations is dual to
the CFT symplectic form obtained from the Fubini-Study metric pulled back to the space
of Euclidean path integral states. To see this, note the coherent states (4.18) satisfy the
holomorphicity condition

∂λ∗α |λ〉 = 0 , ∂λα〈λ| = 0 , (4.19)

such that the space of coherent CFT states {|λ〉, 〈λ|} is described by a Kähler manifold
with Kähler potential and a closed Kähler 2-form, respectively,

K = log〈λ|λ〉 , ΩB = i∂λα∂λ∗α′
log〈λ|λ〉dλα ∧ dλ∗α′ . (4.20)

The form ΩB is a symplectic form,37 and thus the complex manifold is symplectic. Denoting
global coordinates onM by λ̃ = (λ, λ∗), one has the symplectic form in terms of variations
of λ̃ given by

ΩB(δ1λ̃, δ2λ̃) = i∂λα∂λ∗α′
log〈λ|λ〉[δ1λαδ2λ

∗
α′ − δ2λαδ1λ

∗
α′ ] . (4.21)

Physically, the Kähler potential is interpreted in terms of the partition function ZCFT[λ̃] ≡
〈λ|λ〉 of the CFT with sources, K = logZCFT [λ̃], where now the Kähler potential is
understood as a functional of half-sided sources (λ, λ∗), and its Kähler form becomes

ΩB(δ1λ̃, δ2λ̃) = i(δ∗1δ2 − δ∗2δ1) logZCFT [λ̃] = i

∫
τ>0

dx (δλ∗1δ2〈O〉 − δλ∗2δ1〈O〉) . (4.22)

The expression in (4.22) can seen to localize on τ > 0 due to the Z2 + C symmetry of the
sources, but we could write an equivalent expression in terms of quantities on τ < 0.

37In fact the symplectic form can be interpreted as the Berry curvature 2-form associated to the Berry
connection on the complex manifold, A = i〈Ψλ|d|Ψλ〉 with |Ψλ〉 = |λ〉√

λ|λ〉
.
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When the boundary CFT is holographic, the standard AdS/CFT dictionary yields

〈λ|λ〉 = e−S
on-shell
E,grav [λ̃] , (4.23)

with K = −Son-shell
E,grav , and λ̃ set the boundary conditions for the bulk fields following the

piece-wise holography prescription [122, 123]. In this holographic context, the authors
of [97] showed the Kähler form can be cast in terms of the bulk symplectic form,

ΩB(δ1λ̃, δ2λ̃) = i(δ∗2δ1 − δ∗1δ2)Son-shell
grav [λ, λ∗] = i

∫
∂M−

ωE
bulk(φ, δ1φ, δ2φ) . (4.24)

To see the above statement, recall that on a bulk D-dimensional spacetimeM with
volume form ε, the Lagrangian D-form is L = Lε, where L is the scalar Lagrangian, and is
local in arbitrary (bulk) fields φ. The variation of the (Euclidean) Lagrangian form is

δL = −Eφδφ+ dθ(φ, δφ) , (4.25)

where Eφ is a D-form characterizing the equations of motion of fields φ, and θ is the
symplectic potential, a (D − 1)-form, or, equivalently on phase space, the symplectic one-
form density. For on-shell field configurations Eφ = 0, such that upon integrating (4.25)
over the Euclidean AdS bulkM, one has a boundary term

δSon-shell
E,grav [λ̃] =

∫
∂M=Sd

θ(λ̃, δλ̃) . (4.26)

From the joint source λ̃ profile, we have

δδ1S
on-shell
grav =

∫
τ<0

θ(λ̃, δλ̃) , δδ∗1S
on-shell
grav =

∫
τ<0

θ(λ̃, δλ̃) . (4.27)

Then, using the bulk symplectic 2-form density, i.e., the symplectic current (D − 1)-form,

ωbulk(φ; δφ1, δφ2) = δ1θ(φ, δ2φ)− δ2θ(φ, δ1φ) , (4.28)

the holographic boundary symplectic form ΩB (4.24) follows, where the extrapolate dictio-
nary has been used to relate the sources λ̃ to the boundary values of the dual bulk fields φ.
We emphasize that in arriving to (4.24) we explicitly used that the bulk background fields
φ are solutions to the equations of motion, Eφ = 0.

Further, note that while the fields φ satisfy the bulk equations of motion, Eφ = 0, the
generally independent variations δ1φ and δ2φ need not satisfy the equations of motion, even
to linear order. However, when the field variations δ1φ, δ2φ are solutions to the linearized
equations of motion, the bulk symplectic 2-form ωbulk in (4.28) will be closed, dωbulk = 0.
Indeed, since variations δ1 and δ2 commute and dδθ = δdθ, it is quick to see

dωbulk = (δ1Eφ)δ2φ− (δ2Eφ)δ1φ , (4.29)

which vanishes when δ1,2Eφ = 0 at linear order in δ1φ, δ2φ. When this occurs, ωbulk can be
‘pushed’ to other codimension-1 surfaces. Specifically, using the boundary-to-bulk Green’s
function, one can push the southern hemisphere ∂M− to a surface Σ anchored at τ = 0 in
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Figure 18. Using the on-shell conservation of the bulk symplectic form dω = 0, one can use the
boundary-to-bulk Green’s functions to push the boundary symplectic form to any surface Σ anchored
at τ = 0 on the boundary. If the fields continue smoothly to Lorentzian initial data on Σ, this
gives an equality between the boundary symplectic form and the symplectic form on initial data,
described by equation (4.30).

the Euclidean bulkM (see figure 18 for an illustration). To relate this push to the bulk
symplectic structure, the symplectic flux is integrated on a Lorentzian initial value surface
Σ (a Lorentzian t = 0 time slice). Consequently, the holographic dual of the boundary
symplectic form is the bulk symplectic form of the initial data on the Lorentzian time slice:

ΩB(δλ̃1, δλ̃2) =
∫

Σ
ωL

bulk(φ, δφ1, δφ2) = ΩL
bulk(φ, δ1φ, δ2φ) . (4.30)

Here ωL
bulk denotes the Lorentzian symplectic 2-form density.

4.3.2 The ‘new York’ time transformation

The authors of [97, 98] further showed there is a special deformation of boundary sources,
and hence bulk symplectic form, which gives rise to the change in volume on extremal
surfaces. This deformation is dubbed the ‘new York’ transformation due to the similarities
with York time [135]. We briefly introduce this deformation and later we will show how it
gives rise to a canonical thread construction.

In Einstein gravity, the bulk symplectic form can be directly read off from the variation
of the action, (4.25). Working in Lorentzian signature, consider a d + 1 split of the
gravitational action, where the Lorentzian manifold M is foliated by surfaces Σt of constant
t, with normal nµ, where µ runs over the full spacetime index. The induced metric on Σt is
hµν = gµν + nµnν , and the canonical momentum conjugate to hµν is

πµν = −
√
h

16πGN
(Kµν − hµνK) , (4.31)

where Kµν = hλµ∇λnν is the extrinsic curvature to Σt in M . Let ξµ = δµt be a timelike
vector field responsible for t translations. generated by the Hamiltonian Hξ. The vector
field ξ in the ADM decomposition is represented as ξµ = −Nnµ+Nµ, where the t-derivative
is given by ḣµν := hαµh

β
νLξhαβ , with Lξ being the Lie derivative along ξ.
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Assuming bulk matter is minimally coupled, schematically write φm, πm for the collection
of matter fields and conjugate momenta, such that the gravitational action takes the form

Sgrav =
∫
dtddx

[
πµν ḣµν + πmφ̇m −Hξ

]
, (4.32)

where H is the ADM Hamiltonian. The gravitational pre-symplectic form θg is read off
from the metric variation of Sgrav, θg = πµνδhµν , from which the bulk symplectic 2-form
density (a d-form on M) is defined by

ωL(δ1φ, δ2φ) = δ1π
µνδ2hµν − δ2π

µνδ1hµν . (4.33)

The pullback of ωL
bulk to the hypersurface Σt one has the bulk symplectic form

ΩL
bulk(δ1φ, δ2φ) =

∫
Σt

(δ1π
ijδ2hij − δ2π

ijδ1hij) (4.34)

where we use the i, j indices to emphasize that hij , πij are the (proper) induced metric
and its conjugate momentum, which live as tensors on Σt (as opposed to being tensors in
M lying tangent to hypersurfaces Σt) and we write L to remind us that we are now in
the Lorentzian bulk. Conservation of the bulk symplectic form follows from the important
fact that

dωL
bulk = δ1Eφδ2φ− δ2Eφδ1φ (4.35)

vanishes, so long as the perturbations are on-shell. To be on-shell, the phase space
coordinates must satisfy the Hamiltonian constraint H = δH

δN = 0 and momentum constraint
Hi = δH

δN i = 0, or, respectively, working with variables pulled back to Σt,

H = 1
16πGN

[
−Rd + 2Λ + (16πGN )2h−1

(
πijπ

ij − 1
d− 2π

2
)]

+Hm = 0 ,

Hi = −2Dj(h−1/2πij) +Him = 0 .
(4.36)

Here Hm,Him are the matter contributions of the lapse and shift variations. The momentum
constraint is associated with diffeomorphisms inside the surface Σt, while the Hamiltonian
constraint is associated with diffeomorphisms which change the initial value surface.

The tensors hij and πij may not be ‘good’ phase space variables; a ‘good’ set of phase
variables are those which satisfy the momentum and Hamiltonian constraints. It turns out
the momentum constraint may always be satisfied by fixing a gauge, while the Hamiltonian
constraint is not always solvable. However, when one provides initial data on a surface with
constant mean curvature, there is a general method for solving the constraint developed by
York [135]. The basic idea is to separate the induced metric into a scale captured by the
volume element

√
h on Σt, and a conformal metric h̄ij = |h|−1/dhij . In these new variables,

one has πijδhij = πV δ
√
h+ π̄ijδh̄ij , where

πV = 2(1− d)
d

K , π̄ij = |h|
1
d

+ 1
2 (Kij −

1
d
Khij) . (4.37)

When πV is constant, the Hamiltonian constraint may be interpreted as a differential
equation in the volume density

√
h, known as the Lichnerowicz equation. This equation
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is solvable and allows us to interpret
√
h[h̄, πV , π̄] as a functional of the remaining phase

space variables. Working in a constant mean curvature (CMC) slicing, where each slice has
constant K, πV is a number parametrizing each of the slices and can be interpreted as time
— the York time. Meanwhile, the volume V =

∫ √
h can be understood as a Hamiltonian for

the remaining variables.
The authors of [97, 98] utilized this decomposition due to York and provided a boundary

interpretation of V . In particular, they showed a special deformation of the Euclidean
boundary data, and therefore the bulk symplectic form, gave rise to the change of volume of
maximal slices Σ. This transformation was dubbed the ‘new York’ transformation, denoted
by δY . Explicitly, in terms of the new variables,

δY πV = 2(d− 1)α , δY π̄
ij = δY

√
h = δY h̄ij = 0 , (4.38)

where α is some constant unrelated to the normalization of our Lorentzian flows. In terms
of the extrinsic curvature, the above reads

δY hij = 0 , δYKij = αhij . (4.39)

Since the new York transformation is generically not a diffeomorphism, it does not evolve
the gauge invariant initial data in (York) time. Rather δY copies the initial data to a
neighboring slice. We will see, however, for deformations about empty AdS, the new York
transformation (4.39) is indeed a diffeomorphism.

One can directly verify this leads to the variation of the bulk symplectic form [97, 98]

ΩB(δY λ̃, δλ̃) = ΩL
bulk(δY φ, δφ) =

∫
Σ

(d− 1)α
8πGN

δ(
√
h) = (d− 1)α

8πGN
δV , (4.40)

where V =
∫ √

h is the spatial volume of the slice Σ.38

In general the deformation (4.39) will not be on-shell, i.e., the Hamltonian and momen-
tum constraints are not generally preserved under δY . In particular, while the momentum
constraint is automatically preserved, the Hamiltonian constraint reads

δYH = 2(d− 2)K . (4.41)

Thus, δY is an on-shell perturbation of initial data provided the deformation occurs on a
maximal slice Σ, where K = 0. In other words, δY is on-shell when V is the volume of the
maximal hypersurface Σ. In choosing α such that the coefficient becomes α ≡ (8π/`(d− 1)),
we see by CV duality ΩL

bulk(δY φ, δφ) encodes a notion of varying complexity, δC. More
carefully, by the equivalence of boundary and bulk symplectic forms, δV is equal to the
boundary symplectic form (on ∂M) and may be interpreted as type of field theory complexity.
We will return to this point later on.

38In a less generic context, the relation (4.40) was also derived in detail [136] (see their appendix B).
Nicely, the parameter α appearing in the York deformation is shown to be equal to the proper velocity
of the conformal factor defining a conformal Killing vector generating a causal diamond in a maximally
symmetric background evaluated on a s = 0 slice of conformal Killing time s. That is, the conformal Killing
transformation and new York transformation coincide on the maximal volume slice.
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4.3.3 The new York deformation of sources in vacuum AdS

Since it will be useful momentarily, let us consider the new York deformation of sources
on the Euclidean boundary which will give rise to the new York deformation on Σ. It is
easiest to work with a CMC slicing in Wheeler De Witt coordinates [98], but it shall prove
useful for us to study the transformation in Euclidean Poincaré coordinates, with Euclidean
time τ ,

ds2 = 1
z2 (dτ2 + dz2 + dxidxi) . (4.42)

In vacuum AdS, the new York deformation is a diffeomorphism [98] (and in fact equivalent
to translation in York time) generated by the vector field

ξµ∂µ = αz2
√
τ2 + z2

∂τ −
ατz√
τ2 + z2

∂z , (4.43)

under which the metric changes according to

δY gµν = 2ατ3

z2 (τ2 + z2)3/2dτ
2 + 4ατ2

z (τ2 + z2)3/2dτdz + 2ατ
(τ2 + z2)3/2dz

2 + 2ατ
z2
√
τ2 + z2

dxidxi.

(4.44)
The fact δY acts as a diffeomorphism in vacuum AdS will prove crucial for our derivation of
Einstein’s equations.

Near the boundary, the new York transformation acts like

δY |z→0 → −αz sign(τ) ∂z , (4.45)

such that δY on the boundary metric γµν retains the Z2 + C symmetry under the new
York deformation. Thus, near the boundary, the transformation (4.45) acts as a Weyl-like
transformation. Imposing a cut-off at z = ε, one can read off the sources from the change
in boundary metric due to the new York transformation explicitly

δY γ = 2ατ3

(τ2 + ε2)3/2dτ
2 + 2ατ√

τ2 + ε2
dxidxi . (4.46)

4.4 Einstein’s equations from varying complexity

We now have all of the ingredients to explicitly derive the linearized Einstein’s equations
from varying complexity. Before we demonstrate this, however, it is worthwhile to compare
our argument with previous derivations of gravitational equations of motion from physical
principles other than varying the action.

4.4.1 Comparison to other derivations of Einstein’s equations

Most famously, perhaps, is Jacobson’s derivation of the full non-linear Einstein’s equations
from the Clausius relation [137]. In this formulation, one assumes: (i) local holography, such
that local patches of spacetime carry a thermodynamic entropy proportional to the area of
local Rindler horizons and a local Unruh-Davies temperature, and (ii) the Clausius relation
Q = TδS, where T is the Unruh-Davies temperature associated with locally accelerating
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observers, holds. Here Q corresponds to the heat seen by accelerating observers and depends
on the matter stress tensor. These two inputs are enough to show

Q = TδS ⇒ Gµν + Λgµν = 8πGNTµν , (4.47)

where the right hand side is the full non-linear Einstein’s equations. This argument holds for
other theories of gravity, where the entropy S is replaced with the Wald entropy functional
(see, e.g., [138–141]). Thus, gravity emerges from spacetime thermodynamics. A similar
idea appeared in [142], where gravity was supplanted with an ‘entropic force’.

The spirit of Jacobson’s argument has also been utilized in the context of spacetime
entanglement [41–44]. The basic idea is that the first law of entanglement, δSA = δ〈HA〉,
is dual to the linearized Einstein’s equations due to linearized perturbations on an AdS
background. More precisely, for small perturbations over a reference state ρA = ρ

(0)
A + λδρ,

where one takes ρ(0)
A to be the vacuum CFT state confined to a ball A of radius R, the modular

Hamiltonian HA ≡ e−ρA may be cast in terms of the CFT stress-energy tensor [11, 143],
such that, for holographic CFTs dual to Einstein gravity, the leading order variation δ〈HA〉
is given in terms of bulk metric fluctuations evaluated on the boundary. The leading order
variation of the entanglement entropy δSA, meanwhile, is given by the Ryu-Takayangi
prescription, cast in terms of the volume form ε on the RT surface γA.

Rather elegantly, the Iyer-Wald formalism [144, 145] can be used to define a (d−1)-form
χ in terms of a timelike Killing vector ξ, the volume (d−1)-form ε, and the metric fluctuation
such that

δSgrav
A =

∫
γA

χ , δEgrav
A =

∫
A
χ (4.48)

where the nomenclature is as above: Sgrav
A is the holographic dual of the boundary entangle-

ment entropy, and Egrav
A is the holographic dual of the expectation value of the boundary

modular Hamiltonian. Evaluating χ on a constant t Cauchy slice containing γA and A,
one finds

dχ = −2ξtδEgttεt , (4.49)

where δEgtt is the tt component of the linearized Einstein’s equations. The other components
to Einstein’s equations may be obtained by considering other Cauchy slices. Thus, when χ
is closed, the linearized Einstein’s equations are satisfied. By Stokes’ theorem and (4.48),
when χ is closed one has

δSgrav
A = δEgrav

A ⇒ δEgµν = 0 . (4.50)

In other words, for holographic field theories where the RT prescription holds, the first law
of entanglement is dual to the bulk linearized Einstein’s equations being satisfied in pertur-
bations about empty AdS. In this way, gravity emerges from ‘spacetime entanglement’.39

Here we propose a new derivation of the linearized Einstein’s equations, involving
varying complexity. In lieu of CA duality, it is natural to expect Einstein’s equations will

39A distinct but related equivalence between Einstein’s equations and the first law of entanglement is
given in terms of Jacobson’s entanglement equilibrium proposal [146], where the first law of entanglement
gives the non-linear Einstein’s equations, linearized higher curvature field equations [147], and is intimately
tied to the principles of spacetime thermodynamics [148].
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arise from varying complexity, as the complexity is dual to the bulk gravitational action.
This was argued for in [149] by showing vacuum solutions of pure Einstein gravity in AdS3
arise from optimizing path integral complexity. Much was left to be desired, however, as
it was not clear how the covariant nature of Einstein’s equations could be made manifest.
We thus seek an argument similar to [41, 42] which shows the leading variation of the
complexity is equivalent to Einstein’s equations linearized about AdS. What is needed
is a quantity that relates the form χ to the variation of complexity. As already eluded
to, such a quantity is given by the bulk symplectic form, evaluated with respect to the
new York time translation. Then, using the fact the bulk symplectic form is dual to the
boundary symplectic form [97], which is equal to the variation of complexity [98], we will
show the first law of holographic complexity is equal to the linearized Einstein’s equations.
Thus, Einstein’s equations arise from ‘spacetime complexity’.40 It is important to note our
argument relies on CV duality and is motivated by the derivation invoking the first law of
entanglement [41, 42].

4.4.2 Varying complexity and Einstein’s equations

Above we reviewed the equivalence between the boundary and bulk symplectic forms ΩB
and ΩL

bulk at the conformal boundary. The new York transformation of the bulk symplectic
form (4.40) was shown to be proportional to the variation of the spatial volume of the
Cauchy slice Σ, which for on-shell perturbations, is the maximal volume hypersurface in
Lorentzian AdS. Assuming the complexity=volume conjecture, the new York transformation
therefore provides a first law relating δV to the boundary symplectic form ΩB, where ΩB is
interpreted as the variation of the boundary complexity, ΩB(δY λ̃, δλ̃) = δC. Precisely, the
duality between boundary and bulk symplectic forms in addition to the fact the boundary
symplectic form is pushed to the maximal bulk slice when the metric perturbations satisfy
the linearized bulk gravitational equations of motion, tells us

δEµν = 0⇒ δV = ΩB , (4.51)

where one further identifies δC = 1
8GN `δV upon assuming CV duality.

Here we show the converse statement: assuming CV duality, the holographic first
law (4.51) implies the (linearized) Einstein’s equations must be satisfied. Our argument
can be viewed in a similar vein as gravity from entanglement [41, 42], but rather, gravity
from complexity. Unlike the derivation given by [41, 42], or the thermodynamic reasoning
of Jacobson [137], a weakness of our argument is that the first law of complexity is not well
established. That is, while the first law of entanglement and the Clausius relation are firmly
established principles which, when applied in a particular context, have a gravitational
character, the first law of complexity lacks the same robustness. In part this is due to a
lack of a precise definition of field theory complexity.

There have been recent advances in establishing a first law of complexity, however. One
adapts Nielsen’s geometrization program for circuit complexity to field theories [89, 90].

40In using ‘complexity=momentum’ proposal [91, 93], it was shown the attractive nature of gravity, as
understood by Newton’s laws, are a consequence of the inevitable increase in complexity [92]. This argument
has some similarities with the entropic force viewpoint advocated in [142].
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Under a change in target state, the first order variation of complexity is given by a
‘cost’ function F (xa, ẋa), which depends on paths xa(s) and tangent vectors ẋa to these
paths in the space of unitaries defining the circuit, and satisfies a number of niceness
conditions [69, 73].

In the set-up under consideration here, namely, the space of boundary souces λ, the
boundary symplectic form has a natural interpretation as ‘complexity’, without invoking
CV duality. As argued in [98], distances in the space of sources are given in terms of the
Kähler metric gab = (δ+

a δ
−
b + δ+

b δ
−
a ) logZ[λ̃], where the minimal path in this space is found

by minimizing the ‘cost’ function F [gabλ̇aλ̇b]. Assuming the cost function is the kinetic
energy,41 the boundary complexity associated with the Euclidean path integrals is given by

C(si, sf ) =
∫ sf

si

dsgabλ̇
aλ̇b , (4.52)

where s parametrizes trajectories in the space of sources. Thus, finding the complexity is
analogous to identifying a ‘particle’ trajectory minimizing its kinetic energy. Moreover,
using the definition of the boundary symplectic form, varying the complexity with respect
to the endpoint coordinate λ(sf ) ≡ λf results in the following first law of complexity [98]:

δλfC = (λ̇a|λf )gabδλbf . (4.53)

Provided the reference state λi does not equal the target state λf (for which δC = 0),
the variation in complexity is expected to be non-zero. In what follows, it will be this
boundary first law we have in mind. In fact, when the tangent vector to the minimal
trajectory in source space λ̇a|λf is identified with the complex structure of the Kähler
manifold J [δY λ], then

δλfC = ΩB(δY λ̃, δλ̃) . (4.54)

Note that this is entirely a boundary statement. For holographic CFTs, the equivalence
between boundary and bulk symplectic forms leads to δC ∼ δV on the maximal volume
slice Σ.42

Our argument is now easy to state. We claim that when the holographic version of the
boundary first law (4.54) holds, where in lieu of CV duality, δC ∼ δV , then the linearized
Einstein’s equations are required to hold in the bulk. That is, assuming (i) the first law of
complexity, and (ii) CV duality, then

δV = ΩB ⇒ δEµν = 0 , (4.55)

where δEµν = 0 is the linearized Einstein’s equations for perturbations about vacuum AdS.
Let us now begin our explicit derivation. We start with the following identity

i

∫
M−

dωE
bulk = i

∫
∂M−

ωE
bulk − i

∫
Σ
ωE

bulk , (4.56)

41The kinetic energy is F [y] = y and is additive for tensor product states. A natural alternative is the
geodesic distance F [y] = √y, however, it is not generally additive [98, 117].

42As pointed out in [98], around the AdS vacuum the variation δV is purely divergent. This is remedied
by choosing the reference state to be the vacuum state, i.e., λi = 0.
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Figure 19. An illustration showing how we relate the boundary symplectic form to the symplectic
form on Σ through dω in the bulk.

which must hold for all variations that yield real Lorentzian initial data on Σ. To derive
the Einstein’s equations from (4.56), it is sufficient to consider a subset of variations43

in the bulk of M, namely, δ = δ+ + δ−, where δ± are the variations which localize to
M±, respectively, and δ+(τ, x) = (δ−)∗(−τ, x). For the variations to agree on Σ means
δ+φ(t, x)|Σ = δ−φ(t, x)|Σ and ∂t(δφ+)∗|Σ = −∂t(δφ−)|Σ from which it follows that ‘good’
Lorentzian initial data (ϕL, πL) can be defined by

δϕL = Re[(δ+φ)|Σ] , δπL = Im[(∂tδ+φ)|Σ] . (4.57)

It follows

i

∫
M−

dωE
bulk = i

∫
∂M−

ωE
bulk − i

∫
Σ
ωE

bulk = ΩB(δY λ̃, δλ̃)−
∫

Σ
ωL

bulk(δY φ, δφ) , (4.58)

where the last equality appears since we wish to perturb around Lorentzian initial data
cancelling the factor of i, and where we used (4.24) to exchange the integral over ωE

bulk for
ΩB.44

Now, in the case of Einstein gravity, we know from the new York transformation the
Lorentzian symplectic 2-form density ωL

bulk is equal the variation of the spatial volume on Σ,∫
Σ
ωL

bulk(δY φ, δφ) = δV . (4.59)

Collectively then, we have

i

∫
M−

dωE
bulk(δY φ, δφ) = ΩB(δY λ̃, δλ̃)− δV . (4.60)

43More generally we could consider arbitrary variations δ in the bulk which preserve the Z2 +C symmetry
at the boundary, but that is not necessary for our purposes.

44We remind the reader that in this step we made use of the fact the background is a solution to
Einstein’s equations, Eφ = 0. Here we are aiming to show δEφ = 0, which does not trivially follow from
Eφ = 0 generally.
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When the right hand side vanishes, ΩB = δV , it follows dωE
bulk(δY , δ) must vanish in all

ofM−. Similarly, since the background field is real and we are considering the subset of
transformations for which δ+(t, x) = δ−(−t, x), dω(δY , δ) must also vanish in all of M+,
i.e., everywhere inside the manifold where the path integral is prepared.45

Let us now explore the consequences of dωE
bulk(δY φ, δφ) = 0. Taking the exterior

derivative of the symplectic form density (4.33) and substituting in the variation (4.25) we
arrive at

dωE
bulk(δY φ, δφ) = δYEφδφ− δEφδY φ. (4.61)

As discussed in section 4.3.3, the new York deformation δY is a diffeomorphism for pertur-
bations around vacuum AdS. Consequently, δYEφ = 0 and the derivative (4.61) reduces to

dωE
bulk(δY φ, δφ) = −δEφδY φ = −εδEµνδY gµν , (4.62)

where in the last equality we are considering only perturbations to the bulk AdS metric,
with δEµν = 1√

g
δSgrav
δgµν

, such that Eφ is no longer a d form onM. More generally, δY is not
a diffeomorphism on general backgrounds, however, δY is on-shell, such that δYEµν = 0 for
perturbations around any on-shell background. We will return to this point momentarily.

Demanding that
∫
M dωE

bulk(δY , δ) vanishes for all variations therefore implies

δEµνδY gµν = 0 . (4.63)

We shall now argue that demanding this holds for all Lorentzian initial data is equivalent
to the linearized Einstein’s equations δEµν being satisfied in the Euclidean bulkM.

4.4.3 First law of complexity implies the linearized Einstein equations

Here we explicitly study the consequences of (4.63) for variations around vacuum AdS.
We first study the case when the Euclidean bulk is glued to the Lorentzian bulk along a
maximal hypersurface Σ in a fixed Lorentz frame described by coordinates t = 0. Working
in Euclidean Poincaré cooordinates (4.42), the new York transformation is generated by the
vector field (4.43), under which the metric changes according to (4.44). Substituting (4.44)
into the constraint (4.63) yields

δEττ
2ατ3

z2 (τ2 + z2)3/2 + δEτz
4ατ2

z (τ2 + z2)3/2 + δEzz
2ατ

(τ2 + z2)3/2 +
∑
i

δEii
2ατ

z2
√
τ2 + z2

= 0.

(4.64)
Multiplying through by (τ2 + z2)3/2 this can be slightly simplified to arrive at

2τ3δEττ + 4τ2zδEτz + 2τ
(
τ2 + z2

)
δExx + 2τ

(
τ2 + z2

)
δEyy + 2τz2δEzz = 0 . (4.65)

We now demand this constraint hold for all Lorentzian maximal slices Σ which provide data
for different Lorentz observers in the Lorentzian space-time, a fact we shall use to conclude
the linearized Einstein’s equations must be satisfied in the Euclidean bulk.

45As we will show in the next section, δY gµν |Σ vanishes due to the new York transformation and so
dωE

bulk(δY , δ) must vanish in all ofM.
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Figure 20. An illustration from [124], where the Lorentzian space-time is cut-into two sections
along a surface Σ. By Wick rotating each section, then we can interpret M̃− ∪ M̃− and M̃+ ∪M+
as describing preparation of an initial (and final) state on Σ, respectively. The slice Σ′ is an equally
valid bulk Lorentzian slice which also partitions the two regions. In particular, we could pick Σ′ to
be the constant time surface of a Lorentz boosted observer.

So far we have been considering initial states Σ which can be viewed as initial data for
a t = 0 slice in the Lorentzian bulk. As mentioned before, more generally, according to the
Skenderis van-Rees prescription [122, 123], we can compute real-time correlation functions
by performing a Euclidean path integral overM−, gluing this to a Lorentzian space-time
along Σ− and evolving in Lorentzian time to the surface Σ+, where the path integral
is closed over M+. Furthermore, the authors of [124] considered when the Lorentzian
space-time M̃ is split in two sections M̃−,M̃+ along a surface Σ (see figure 20).

If we perform a Wick rotation in each of the Lorentzian pieces M̃± then we can interpret
M̃− ∪M− and M̃+ ∪M+ as describing preperation of an initial (and final) state on Σ.
Indeed M̃±∪M± is diffeomorphic to half of Euclidean AdS and the Euclidean path integral
is performed by joining the two hemispheres. However, there is nothing special about the
slice Σ and we could have instead chosen a different bulk slice Σ′, for example, the constant
time surface of a Lorentz boosted observer in the bulk. In this case, after Wick rotating the
two regions M̃′± we again end up with a Euclidean path integral over the sphere, but which
now prepares Lorentzian initial data on the slice Σ′. In particular, in boosted coordinates,
the surface provides Lorentizian initial data along the t′ = 0 surface (see figure 20).

More generally, since the background is real in Euclidean AdS, we can imagine picking
any other maximal surface Σ′ in the Euclidean manifold, described by coordinates t′(t, z, x) =
0. We view this as preparing initial states on the different possible Lorentzian slices Σ as
illustrated in figures 20 and 21. To draw a consistent picture, we find it useful to change
coordinates so that the surface Σ′ lies along the t′ = 0 surface.
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Figure 21. In the Euclidean bulk,the background is real and we can imagine picking any other
maximal surface Σ′ in the Euclidean manifold, which we view as preparing initial states on the
different possible Lorentzian slices Σ illustrated in figure 20. On the left hand side is the boosted
surface Σ′, t′(t, x, z) = 0 as drawn in (t, x, z) co-ordinates, whilst on the right hand side the surface
is drawn in (t′, x′, z′) co-ordinates, and the boosted surface lies along the t′ = 0 plane.

In particular, if Σ′ is related to Σ by an isometry of AdS, then in the new coordinates the
Euclidean metric will take the same form, as will the initial data on Σ′. As a consequence the
York deformation, which is defined with respect to deformations of initial data also remains
unchanged and so we know that under an isometry (δY g)′(x′(x)) = (δY g)(x). However, the
equations of motion will transform according to

δE′µν(x′(x)) = ΛµγΛνδδEγδ(x) , (4.66)

where Λµ
ν = ∂x′µ

∂xν . Since dωbulk(δY φ, δφ) must also vanish in the primed coordinates, we
deduce

δE′µν(δY g)′µν(x′(x)) = ΛµρΛνσδEρσδY gµν(x) = 0 . (4.67)

Thus, demanding the constraint (4.63) holds for all maximal slices Σ corresponding to
different Lorentz observers in the bulk means

ΛµρΛνσδEρσδY gµν = 0 (4.68)

for any rotation of Euclidean AdS (including the identity).
It turns out this statement, in addition to the Bianchi identities, ∇µδEµν = 0, which

follows directly from the diffeomorphism invariance of the Einstein action, is enough to
conclude that the linearized Einstein’s equations must hold in the bulk M. In appendix C,
we provide an explicit demonstration of this point for spacetimes in d = 3 + 1 dimensions.

To summarize, we see that when we assume (i) complexity=volume, (ii) the first law of
complexity holds, and (iii) the boundary symplectic form is dual to the bulk symplectic
form, we find the first law of (holographic) complexity implies the linearized Einstein’s
equations must be satisfied around vacuum AdS:

δV = ΩB ⇒ δEµν = 0 . (4.69)

Bulk spacetime dynamics emerges from boundary complexity.
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Before we move onto describe how Lorentzian threads encode the bulk equations of
motion, a few comments are in order. First, we point out our derivation of linearized
Einstein’s equations can be adapted to derive equations of motion for higher derivative
gravity theories as well. That is, provided one suitably modifies the definition of ‘volume’ in
CV duality, namely, the generalized volume in [147], the first law for holographic complexity
is equivalent to linearized higher curvature equations of motion being satisfied. We say
more about this in section 6. Second, our derivation above holds for perturbations over
general states, not just around vacuum AdS.

Let us clarify this second point a bit. As noted in [97], the bulk symplectic form
is tightly related to the problem of state preparation using the Euclidean path integral,
where one replaces the part of the manifold in the past of the slice Σ of interest by a
Euclidean hemisphere. One then imposes ‘initial conditions’ in Σ− (both normalizable and
non-normalizable modes) and let the bulk equations determine the state on Σ. This is
done generally, either in empty AdS, or even on a two sided BH background following the
Hartle-Hawking prescription. In practice, what the new York deformation δY implements
is an analogous problem, where one instead specifies ‘boundary conditions’ (normalizable
modes) both on Σ− and Σ, such that bulk equations of motion determine which sources
on Σ− are needed (see e.g. [126]). Provided the states on Σ− and Σ are reasonable, one
can solve the problem, and the resulting geometry should be smooth, solving the Einstein
equations.46 This combined with the factor δY is on-shell tells us our derivation of the
linearized equations holds for more perturbations about more general backgrounds

This second point, moreover, potentially leads to something rather profound. Since
the bulk-boundary symplectic form equivalence (4.24) holds for perturbations over general
states, then, as suggested in [150], any asymptotically AdS spacetime obeying CV duality
and the first law for first order state/metric deformations around the background should
satisfy the full non-linear Einstein equations. Though not shown rigorously, this would
constitute a derivation of the full non-linear Einstein equations from holographic complexity.

4.5 Einstein’s equations encoded in Lorentzian threads

Now that we have demonstrated how the linearized Einstein’s equations emerge from the first
law of complexity, let us show how Einstein’s equations are encoded in a specific Lorentzian
thread configuration. To do this, we will verify the symplectic density ωbulk(δY φ, δφ) defines
a canonical pertubative Lorentzian thread d-form δu, explicitly in the case of perturbations
about vacuum AdS.47 Indeed, it is clear that if we perturb initial data according to the new
York transformation (4.39) (with the suitable α), then, when restricted to the maximal
slice Σ,

ωL
bulk(δY φ, δφ)|Σ = δε̃ , (4.70)

46There is a caveat, however, as sometimes this problem is not so well-defined and one ends up with
singularities in the sources. Intuitively, we believe this could be interpreted to the impossibility of going
from the reference state to the target state (with a given precision) using the allowed gates that we have at
disposal in a perturbative setting.

47Our derivation of Einstein’s equations was accomplished explicitly for perturbations about vacuum AdS,
however, as noted above, we expect the derivation to extend to other spacetimes. Since here we focus on
vacuum perturbations about pure AdS, φ represents the metric gµν of perturbed AdS only.
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Figure 22. The new-York transformation acts to deform the initial data on the Lorentzian slice Σ.
Given a foliation of AdS into space-like slices Σt, with initial data on Σt=0 we use the equations of
motion in the ADM formalism to build up the deformed four metric δY g, from which we can define
a symplectic form on the full Lorentzian space-time.

is the same condition the perturbative thread d-form δu satisfies, requirement (4.17). This
suggests then δu = ωL

bulk(δY φ, δφ). To make this identification, we must show ωL
bulk(δY φ, δφ)

meets the other criterion the perturbative thread uη satisfies, namely, the closedness
condition (4.15) and the norm bound (4.16). If so, even if only to linear order in η for
background gηµν = gµν + ηδgµν , then we may safely conclude ωL

bulk(δY φ, δφ) represents a
perturbative thread form configuration which solves the min flow-max cut problem.

In order to satisfy these remaining requirements, we first need to extend ω to a form
on the Lorentzian space-timeM using the ADM equations of motion. With the new initial
data on Σ, (hij , πij + δY π

ij , φm, π
m), we solve Einstein’s equations in the ADM formalism

to build a varied metric onM. See figure 22 for an illustration of this point.
Denote the York deformation of the background metric as δY gµν , from which we

can calculate the variation of the (extended) induced metric and conjugate momenta
δY h

µν , δY π
µν . We can input this into the definition of the gravitational symplectic density

onM from (4.33) to define the (phase space) 1-form

δu = ωL
bulk(δY g, δg) = δY π

µνδhµν − δπµνδY hµν (4.71)

which we emphasize now defines a d-form onM whose pullback to the maximal volume
slice takes the form

δu|Σ = ωL
bulk(δY g, δg)|Σ = 1

2
√
hhijδhij = δ

√
h = δε̃ . (4.72)

Furthermore, since the York transformation is on-shell when the initial slice is maximal,
the form δu is closed since

d(δu) = dωL
bulk(δY φ, δφ) = −δEφδY φ = 0 , (4.73)

provided we consider on-shell variations, δEφ = 0. Thus far then, ωL
bulk(δY φ, δφ) is a closed,

d-form whose integral over Σ gives rise to the change in volume on Σ.
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It remains to show the norm bound of (4.16) is satisfied to leading order in η. To
discuss the norm bound, we could proceed with the definition given in (4.16), however, we
find it slightly easier to work with the corresponding perturbed vector field vµ + ηδvν =
gµνη ? (u+ ηδu)ν . The reason for this is purely technical: the norm on the space of forms, as
defined in (4.10), contains products of the metric, which can be more cumbersome. Thus
we map the variation of the perturbed form δu = ω(δY φ, δφ) to the corresponding vector
field. In components, the Hodge star operation relating forms and vector fields reads

vµ = gµν
1

(D − 1)!
√
guµ1...µD−1εµ1...µD−1ν . (4.74)

A quick calculation shows the variation of the vector field can be written as

δvµ = δvµ0 −
1
2v

µgρσδgρσ , (4.75)

where δvµ0 is defined as the Hodge dual of the form δu in the unperturbed background δvµ0 ,
δvµ0 = gµν ? (δu)ν . More explicitly, using

δuµ1...µD−1 = ωL
bulk (δY g, δg)µ1...µD−1

= 1
16πGN

εaµ1...µD−1P
αβγδεζ (δgβγ∇δδY gεζ − δY gβγ∇δδgεζ) ,

(4.76)

with

Pαβγδεζ = gαεgβζgγδ − 1
2g

αδgβεgγζ − 1
2g

αβgγδgεζ − 1
2g

βγgαεgfd + 1
2g

βγgαδgεζ , (4.77)

we can write δvµ0 in terms of variations of the metric as

δvµ0 = 1
16πGN

Pµβγδεζ (δgβγ∇δδY gεζ − δY gβγ∇δδgεζ) . (4.78)

It is useful to note, since the form u is closed, δvµ0 is divergenceless with respect to the
background metric gµν , (∇ηδv0)|η=0 = 0.

From (4.75) we see δvµ depends not only on the variation of the background form,
but also on the background flow vµ. As in [28], we shall exploit the dependence on the
background flow in order to argue the norm bound can be satisfied quite generally, and show
this explicitly for variations around vaccuum AdS. In particular, to show δu = ω(δY g, δg)
provides a ‘good’ perturbed thread, one needs only to find a single background flow vµ for
which the norm bound |vη| ≥ 1 is satisfied.

Since the background flow vµ already obeys |v| ≥ 1 everywhere, the perturbed vector
field vη is only at risk of exceeding this bound by an amount of order O(η). For all points
which do not saturate the bound, we can take η to be small enough so that the perturbed
flow still saturates the bound, |vη| = |v| + O(η) ≥ 1, i.e., there will be some range of η
for which the perturbative treatment is valid. Within this range of η, we only have to
worry about the neighborhood of points which saturate the bound. Generically, there are
many solutions to the convex optimization program, which all yield the same flux along
the maximal surface Σ, but may differ elsewhere. We expect for most space-times, one can
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always choose a background flow vµ such that the norm bound increases away from the
maximal surface, with a rapidly increasing norm bound giving a larger range of validity for
η for which the perturbed thread is valid, although we do not have a general proof of this
statement.48 However, we are able to show this explicitly for perturbations around vacuum
AdS using the geodesic construction of the background flow vµ in section 3.

The norm of the background vector field vµ for AdSn, found using the geodesic method
in section 3, takes the form

|v| = (1 + 1
4 tan2(t) sec2(ρm))(n−1)/2, (4.79)

where, recall, we are working with compactified coordinates, t ∈ (−π/2, π/2), ρm,∈ (0, π/2),
and the WDW patch is described by the condition |ρm| + |t| ≤ π/2. The norm bound
is a monotonically increasing function inside the WDW patch, while outside the WDW
patch, from (3.31) we see we can tune C such that the norm bound is arbitrarily large.
Consequently, we need only consider the perturbed norm bound in the vicinity of the
maximal slice Σ in the interior of the WDW patch.

In particular, moving a distance ∆ in the t direction away from the minimal surface,
we see that the norm bound can be written as

|v| = 1 + (n− 1)
8 ∆2 sec2(ρm) +O(∆4) , (4.80)

and monotonically increases in ∆ away from this. Since the range of sec2(ρm) is sec2(ρm) ∈
(1,∞), away from the maximal surface the norm bound is strictly satisfied |v| > 1, whilst
we know from (4.72) the norm bound is satisfied exactly on the maximal surface. Explicitly,
the perturbed norm reads

|vη| = |v| − η (2δvµvµ − δgµνvµvν) = 1 + (n− 1)
8 ∆2 sec2(ρm)− η (2δvµvµ − δgµνvµvν) .

(4.81)
We want to check that for arbitrarily small ∆ we can always find an η such that the norm
bound is satisfied to O(η). Since the norm bound is satisfied exactly at t = 0, we know that
(2δvµvµ − δgµνvµvν) |Σ = 0, while away from the maximal slice we have

(2δvµvµ − δgµνvµvν) = c(xµ)∆k +O(∆k̄), k̄ > k, (4.82)

for some k > 0 and c(xµ) which is finite as t → 0. This follows from asking that the
perturbative expansion makes sense as we approach the maximal volume slice, such that a

48While a general proof is lacking, the intuition is as follows. In any spacetime, the norm bound is
saturated on the maximum volume slice. For any other homologous slice the norm must increase (thus
maintaining the bound) in order for the flux to be conserved. This is consistent with the focusing theorem.
Consider an infinitesimal tube composed of integral curves to a Lorentzian flow about a point which the
curves intersect the maximal volume slice. As one moves to the past or the future of this intersection point,
the cross-sectional area of the tube decreases, which forces the integral curves to focus, thereby maintaining
the norm bound. Hence, we expect the norm bound to be satisfied for any spacetime obeying appropriate
energy conditions.
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power expansion exists in positive powers of tk. From (4.81) we see the norm bound will be
satisfied so long as

(n− 1)
8 ∆2 sec2(ρm) ≥ η (2δvµvµ − δgµνvµvν) +O(∆k̄>k) . (4.83)

Since the smallest value of sec2(ρm) is when ρm = 0, the norm bound is satisfied provided

∆2−k ≥ 8c(xµ)
n− 1 η +O(η∆k̄−k). (4.84)

If 2 − k ≤ 0, then taking ∆ → 0, the left hand side of (4.84) is either constant or
diverges, in which case one can always pick η small enough such that the inequality is
saturated. Conversely, if 2 − k > 0, the inequality can be violated by picking ∆ to
be arbitrarily small for fixed η. However, whenever the inequality (4.84) is violated,
η (2δvµvµ − δgµνvµvν) = O(η∆k) . O(η1+ k

2−k ) < O(η), implying the violations to the
norm bound enter at higher than linear order. Thus, we deduce we can always find an η
such that the norm bound is satisfied to O(η) for any ∆.

Collectively then, the bulk symplectic density ωL
bulk(δY φ, δφ), to leading order, satisfies

all of the properties of a perturbative thread form δu,

ωL
bulk(δY φ, δφ) = δu , (4.85)

and is thus a solution to min flow-max cut program. Since, moreover, dωL
bulk(δY φ, δφ) = 0 is

equivalent to the linearized Einstein’s equations being satisfied, we have that, equivalently,

d(δu) = 0⇒ δEµν = 0 . (4.86)

That is, the linearized Einstein’s equations are captured by the closedness condition of the
canonical thread configuration. This is analogous to the case of holographic bit threads,
where the canonical candidate for the perturbed thread form is the Iyer-Wald form χ̃.

Recall from our discussion in section 2.4 that Lorentzian threads can be viewed as
preparing a CFT state on the maximal volume slice. The time evolution of the CFT
state is then characterized by the future of flow v. More traditionally the time evolution is
characterized by solving bulk gravitational equations subject to specific boundary conditions.
Here, we have uncovered a particular thread configuration — our perturbative thread form
δu = ωL(δY φ, δφ) — encodes these bulk equations. From this viewpoint, Lorentzian
threads genuinely provide a notion of ‘emergent time’: evolution of the boundary CFT, and,
correspondingly the dynamics of the bulk, are encapsulated by Lorentzian flows.

We point out, of course, our above arguments only considered perturbative excited
states, i.e., for bulk perturbations such that Σ ∼ Ση, and, moreover, we only recovered the
linearized Einstein’s equations. The second of these issues we leave for the discussion. The
first of these criticisms, that our Lorentzian flows hold perturbatively, is really a limitation
of CV duality such that holographic complexity may need to be generalized. In the next
section we offer a more general proposal and discuss how it relates to tensor network
constructions of spacetime.
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5 Tensor networks and Lorentzian threads

Thus far the bulk of this article has concerned itself with optimal flows, i.e., those which
solve the min flow problem. We have largely ignored sub-optimal flows, despite the fact
they will be present in general. Between this and given the aforementioned limitations of
CV duality in regards to highly excited states, here we discuss prospects towards a more
general definition of holography complexity. To motivate our proposal we take a cue from
tensor network representations of AdS which, as we will discuss below, will be augmented
due to our gateline interpretation of Lorentzian threads. We will also take motivation
from the covariant formulation for holographic entanglement entropy. In particular, the
maximin prescription for computing HRT surfaces will be informing us that sub-optimal
tensor networks, and hence flows, have a special role to play.

5.1 Motivation and physical intuition of tensor networks

Tensor networks can be thought of as spatial discretizations of quantum states [151], and
are known to be a good description in situations of high symmetry, such as the ground
state [152]. They were first introduced in the context of condensed matter quantum
many-body simulations as an efficient way of dealing with systems with exponentially-large
Hilbert spaces. In this context, different phases/states are often classified in terms of their
computational complexity. The strategy of tensor networks is to target a given class of
computational complexities and then find, within the given class, an optimal quantum state
which most faithfully resembles the original state. In this way, tensor networks avoid the
exponential blow-up of the Hilbert space dimension as a function of the system size. This
offers a key advantage over a continuum description, overcoming some of the challenges
that arise in the definition of complexity in quantum field theory — see however [68–77] for
recent progress on this problem.

It behooves us to provide an elementary review of tensor networks and its relation to
entanglement and complexity. In terms of tensor networks, a quantum state |Ψ〉 is described
in terms of a set of tensors. These tensors describe a discretized version of the system,
where each degree of freedom correspond to an M -level system, e.g., if M = 2 we can
represent them as spins. In such a description, the wavefunction can be written as

|Ψ〉 =
M∑
ki=1

Tk1k2...kn |k1, k2, . . . , kn〉 , (5.1)

where each basis state may be expressed as a direct product of local state vectors

|k1, k2, . . . , kn〉 = |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kn〉 . (5.2)

The state (5.1) is thus expressed byMn amplitudes Tk1k2...kn , which implies that the number
of parameters that describe the wavefunction is exponentially large in the system size. The
dimension of each index, often called the bond dimension, is given by M . One then needs
a suitable ansatz for the amplitudes, which is provided by a tensor network. This ansatz
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gives the Tk1k2...kn in terms of a contraction of complex-valued tensors. For example, for
n = 3 one has

Tk1k2k3 = Uk1j3j1Vk2j1j2Wk3j2j3 (5.3)

where U , V andW are rank-3 tensors and repeated indices imply summation. This operation,
and the structure it generates while considering the full state (5.1), is often represented as
a graph, with nodes and edges representing tensors and their indices, respectively. For a
more detailed exposition on the basics of tensor networks, see e.g., [153–155].

One of the main motivations of using tensor networks to describe holographic space-
times is that they can be engineered to correctly reproduce the entanglement entropies
of subsystems in a given state, in agreement with the RT prescription. This observation
was first pointed out in [33, 35]. A particular class of tensor networks that is relevant
to describe systems with conformal symmetry, and hence often discussed in the context
of holography, is the Multi-scale Entanglement Renormalization Ansatz (MERA) [156].
These tensor networks live naturally on discretizations of hyperbolic space, and, as a result,
many statements from holography have a natural realization in such networks. The MERA
network has a layered structure that is motivated by the real space renormalization group
idea, and is pictorially represented in figure 23 (where we consider M = 2 for the ease
of visualization). The layers are labeled by an integer u according to their depth, i.e.,
u = 0, 1, 2, . . .. The original system is located on the 0-th layer (u = 0), which is at the
bottom of the network. Each layer is then composed by one of two types of tensors, that
are referred to as isometries or disentanglers, respectively. The isometries combine a set of
degrees of freedom by a linear map, which is regarded as a coarse graining procedure or
a scale transformation. These tensors represent physical degrees of freedom at any given
depth in the network. The isometries on their own are not enough to correctly reproduce
features of the ground state of the system.49 To remedy this, one generally needs to add
extra bonds in between the layers that are referred to as disentanglers. These extra tensors
do not represent physical degrees of freedom. Their role is to perform an appropriate
unitary transformation on the Hilbert space of a subset of the degrees of freedom. This
transforms the state |Ψu〉 into a less entangled state |Ψu+2〉. One then repeatedly applies
this two-step procedure as many times as one wishes.50 We point out that a continuous
version of the MERA network, relevant to describe quantum field theories, was proposed
in [34]. This is referred to as continuousMERA (or cMERA, for simplicity). Intuitively,
this framework is used to describe networks where the original lattice spacing is sent to
zero, and hence, is particularly useful in trying make the connection with AdS/CFT more
precise — see e.g., [159–162].

To better understand the connection with the RT prescription, we can consider the
entanglement entropy for a subsystem A, composed of L of the original degrees of freedom,
with its complement B. The relevant quantity to compute here is the reduced density

49They lead to a tree-like structure, called tree tensor network (TTN), that does not capture the dependence
of correlations between different degrees of freedom with their separation.

50If the system is defined on a circle, the number of layers is cut off due to the finiteness of the volume.
Locally, tensor networks defined on a circle look the same those defined on a plane, but they are topologically
inequivalent [157, 158]. See figure 23 (right) for an illustration.
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Figure 23. Pictorial representation of a binary MERA network on the line (left diagram) and on
the circle (right diagram). The black dots represent the original sites in a quantum 1D critical
system. Diamonds and triangles are the disentangler tensors and the isometries (coarse-grainings),
respectively. The vertical/radial direction represents the renormalization flow and exhibits the
property of self-similarity. The orange line denotes a path γA that splits the network into two smaller
networks associated with the subsystem A and its complement. The number of links cut along this
trajectory bounds the entanglement entropy of the subsystem, according to the formula (5.7). For
some special cases, e.g., the vacuum state, this inequality is saturated so that the bound becomes an
equality (5.8).

matrix ρA, which is found by tracing over the degrees of freedom of the complement. If
these two parts are not entangled, the total state can be written as a tensor product
|Ψ〉 = |Ψ〉A ⊗ |Ψ〉B, such that ρA = trB ρ = |Ψ〉B〈Ψ| and SA = −tr ρA log ρA = 0. More
generally, the global state can be written using the Schmidt decomposition

|Ψ〉 =
∑
k

λk|Ψk〉A ⊗ |Ψk〉B , (5.4)

where the |Ψk〉A and |Ψk〉B each form an orthogonal set of state vectors on A and B,
respectively. For a properly normalized state, i.e., for ∑k |λ2

k| = 1, one then finds that

SA = −
∑
k

|λk|2 log |λk|2 . (5.5)

In a tensor network, any path γA cutting through the network ending on the boundary ∂A
can be associated with a decomposition like (5.4). Any of these cuts effectively splits the
tensor network in two smaller networks which are associated with the subsystems A and
B. The contraction between them over the chosen cut entangles both boundary regions.
Each of the contractions, i.e., those connecting a pair of legs, contain at most M2 terms,
where M is the bond dimension. This limits the number of terms that can appear in
the decomposition (5.4). Conversely, this sets a bound on the contribution to SA by the
contraction of a single pair of legs, which is maximized if all Schmidt values are identical,
namely, |λ2

k| = 1/M2. This bound implies that for a general path γA

SA ≤ (# cuts)× logM . (5.6)
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Now, the number of cuts will depend on the chosen path γA. In particular, this bound is
tightest for the path γA with fewest number of cuts, thus leading to the well-known bound

SA ≤ min[# cuts]× logM . (5.7)

Remarkably, for a MERA network this bound can be strictly saturated for particular states
given any bipartition of the Hilbert space. In these cases (5.7) becomes an equality which is
reminiscent of the RT prescription,

SA = min[# cuts]× logM . (5.8)

For instance, in the vacuum state one can estimate the minimal number of cuts to be
proportional to the logarithm of the number of degrees of freedom included in the subsystem
A [156], min[# cuts] ∼ logL, hence (5.8) agrees with the standard result in CFT51

SA = c

3 log
(
`

ε

)
, (5.9)

upon identification c = 3 logM . For more general states, the bound can be saturated by
particular bipartitions of the Hilbert space but not general ones.

As pointed out in [79], the ‘complexity=volume’ conjecture is naturally realized in
tensor network constructions by associating a fixed spatial volume to each (physical) tensor.
On a given tensor network, then, a notion of state complexity can be given in terms of the
number of (physical) tensors required to describe the network:

C ∼ # of tensors. (5.10)

It is also true that the same state can be represented by different tensor networks, all with
different numbers of tensors (i.e., depending on the structure, bond dimension, etc.), and
hence, different complexities. Thus one can always aim to describe the state in the most
optimal way (computationally speaking), such that

C ∼ min[# of tensors] . (5.11)

This has resemblance to the thread-based formula for complexity derived in section 2.4.
There, we argued that a solution to the min flow problem prepares the state on the maximal
volume slice. We have also discussed that, upon discretization, we can think of the integral
lines of the flows, or threads, as ‘gatelines’ such that

C ∼ min[# threads] ∼ min[# of gates to prepare the state] . (5.12)

The discrete threads also occupy a fixed spatial volume, as the physical tensors. Compar-
ing (5.11) and (5.12), it is then natural to combine the two prescriptions and conjecture
that the optimal thread configuration prepares the tensor network on the maximal volume
slice Σ. That is, we can imagine attaching a unitary (gate) to each thread, which will

51In this formula ε is a UV cutoff which can be identified as the discretized lattice spacing and ` is the
length of the subsystem.
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Σ A Σ′ A

M−M−

v v′M̃ M̃

Figure 24. Via convex optimization, we can find a flow program that is dual to the CV conjecture.
The discrete version of the dual program implies that complexity is can be interpreted as the
minimum number of threads, or gatelines, preparing a state on the maximal volume slice Σ (left).
Suboptimal flows prepare more complex TNs, which can be defined over non-maximal volume slices
Σ′ (right).

connect physical tensors of the network from the reference state, defined on Σ−, to physical
tensors of the network on Σ, so that

min[# threads] ∼ min[# of gates to prepare the state] ∼ min[# of tensors] . (5.13)

One may view these unitaries as playing a similar role as the disentanglers in a MERA
network. They do not represent physical degrees of freedom but, instead, implement an
appropriate unitary transformation on the Hilbert space that connect degrees of freedom
on Σ− to those in Σ, which can now be viewed as two ‘layers’ on a network with an
extra dimension τ . In other words, they transform the state |Ψ−〉 into the state |Ψ〉. In
a Lorentazian setting, these unitaries implement time evolution, in the same sense that
the disentanglers implement evolution along the radial (holographic) direction. Thus,
time evolution emerges intrinsically from complexity. A pictorial diagram illustrating this
interpretation is shown in figure 24.

5.2 A lesson from the maximin prescription: suboptimal flows are relevant

As mentioned above, equation (5.8) resembles the well-known prescription to compute
entanglement entropy in the context of AdS/CFT. In this context, entanglement entropy
can be calculated via the RT formula [2]

SA = min
γA∼A

[
A(γA)
4GN

]
. (5.14)

This prescription holds for static states, or for time dependent scenarios provided it is used
in a moment of time reflection symmetry. More generally, in a covariant setting the formula
is upgraded to the HRT prescription [3],

SA = ext
γA

[
A(γA)
4GN

]
, (5.15)
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where the minimization condition is replaced by extremization. A useful observation that is
not often appreciated is that even for static cases, the HRT formula is more powerful and
hence supersedes the RT prescription. The reason is that it does not assume the choice of a
particular Cauchy slice Σ, while RT only works provided one picks the standard constant-t
slice. For other choices Σ′ the minimization procedure simply does not work. As an example,
consider a slice Σ′ that is arbitrarily close to the upper edge of the WDW patch. In this
case the minimization would yield a fake RT surface γ′A with vanishingly small area. This
means that even in static cases, the correct way to compute entanglement entropy is via
the HRT prescription.

On the other hand, the HRT formula can be rewritten as a maximin prescription [99]

SA = max
Σ′

min
γ′A

[
A(γ′A)
4GN

]
. (5.16)

This formula involves two steps: (i) pick an arbitrary slice Σ′ and find the minimal area
surface γ′A within this slice, and (ii) vary over all possible slices Σ′ and find one that
maximizes the area of γ′A. This two-step algorithm gets rid of all spurious solutions γ′A
and gives the true γA, whose area computes the entanglement entropy. We note that in
general the maximin prescription does not select a unique slice Σ, but it imposes a series of
constraints that it should satisfy.

Extrapolating the maximin prescription to the realm of tensor networks, this implies
that for a generic network defined over an arbitrary Σ′, we generally expect that [163]:

min [# cuts]× logM ≤ SA . (5.17)

However, one can still optimize over these tensor networks defined on arbitrary Σ′s and
arrive to a formula akin to the maximin prescription for holographic entanglement entropy,
which should now be valid for arbitrary, possibly time-dependent states [163]

SA = max
Σ′

min [# cuts]× logM . (5.18)

An important lesson can be drawn from the above formula: at least for the computation of
entanglement entropies, not only the tensor network on the maximal volume slice plays
a role but also other non-optimal tensor networks defined over other slices. However, we
have argued that these tensor networks have in general higher complexity, as one generally
needs more tensors to prepare the state. This highlights the need of a more refined measure
of complexity, one that captures the notion of state independence and considers all these
tensor networks as part of its definition.

We can also rephrase this discussion by thinking about the Lorentzian flow interpretation
of the complexity=volume conjecture. Previously, we have argued that an optimal flow v

which solves the min flux problem effectively prepares the state on the maximal volume
slice Σ. We conjectured that the discrete version of this statement still makes sense, so that
the thread configuration that can be extracted from one of these flows could be thought of
as preparing a tensor network over the maximal volume slice. Similarly, in this context,
non-optimal flows v′, i.e. those with higher flux than v, and their corresponding thread
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configurations can be said to prepare tensor networks over different slices Σ′. See figure 24
(right) for an illustration. Thus, if we are to construct an averaged measure of complexity
that account for all these multiple tensor networks, we could alternatively average over
non-minimal thread/flow configurations. We will come back to this point in next section.

5.3 A more general proposal for holographic complexity

Before discussing a concrete proposal, let us offer a couple of comments to further clarify the
idea that we want to put forward. First and foremost, there might be particular states in
which the optimal tensor network is enough to compute the full set of entanglement entropies.
The prototypical example is the vacuum state, but this also applies to any other static
configuration, as well as linear (but possibly time dependent) perturbations of these states.52

In these cases we have the property that the RT surfaces that compute entanglement entropy
of different subsystems all lie on a constant-t slice Σ, which is a maximal volume slice. Then,
the standard notion of complexity as the volume of the maximal slice should be accurate
(to a certain extent). However, we could argue that a rigorous measure of complexity should
be state independent, in which case this notion of complexity could lead to some challenges.
The problem is that for generic out-of-equilibrium configurations, the above observation is
not true. Namely, the maximal volume slice cannot be foliated by HRT surfaces in general.
This leads us to the next point: for these out-of-equilibrium states it is true that we need
to consider tensor networks defined over all possible slices Σ′. Since these networks have
different number of tensors and therefore different complexities, we must then consider
an appropriate average over these to fully characterize the state. Likewise, appealing to
the idea of state independence, we can argue that a similar average must be considered in
general, even for the static cases discussed above.

More concretely, we propose that for a general state we should consider an ensemble of
all possible tensor networks defined over all bulk slices Σ′. Formally, we can formulate this
ensemble as a path integral, such that

Z ∼
∫
D[Σ′]e−

1
~S[Σ′] , Σ′ ∈WDW patch, (5.19)

for a given measure of integration D[Σ′] and weight S[Σ′] that we have left unspecified.
A couple of comments are in order. First, notice that we have chosen to integrate over
slices Σ′ instead of tensor networks. We can formally do the latter provided we compensate
with an appropriate change in the measure; however, the first option seems easier to work
with so we will stick with it in the following discussion. Second, we have introduced for
convenience a control parameter ‘~’ such that, for small ~, it is valid to work in the saddle
point approximation. Given our previous discussion, then, we can assume that the maximal
volume slice Σ should emerge as a ‘classical’ saddle, at least for the case of static spacetimes.
For example, a canonical choice could be S[Σ′] ∼ Vol[Σ′], however, there is ample room for
maneuver to make this work. We also note that we cannot take ~ to be a universal value.
For instance, we cannot take ~ ∼ GN because we have seen that even in the limit GN → 0
there are situations where the maximal volume slice is not enough. A natural conjecture is

52Notice that RT surfaces are stationary under arbitrary linear perturbations.
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that ~ is a covariantly defined quantity that can take values depending on the background.
For instance, it could be associated to a time-scale of the state, so that for static cases
~→ 0, while for dynamical cases one has ~ 6= 0. We will come back to this point below.

Assuming that this notion of ensemble average is well defined, we can now ask how an
averaged measure of complexity would look. As usual, we could take the expectation value
in the path integral language, i.e., (omitting constants of proportionality)

C ∼ 1
Z

∫
D[Σ′]Vol[Σ′] e−

1
~S[Σ′] , (5.20)

for appropriate optimized choices of S, ~, and measure of integration. In the saddle point
approximation, or when ~→ 0, we recover the complexity=volume formula. For general
states, however, this formula gives a weighted average that deviates from CV. In terms of
flows, we could imagine defining a weighted average,

vavg ∼
1
Z

∫
D[v′] v′ e−

1
~S[v′] , (5.21)

from which we can compute the complexity (5.20) as its flux. In this formula we are summing
over arbitrary flow configurations v′ such that ∇ · v′ = 0 but do not necessarily correspond
to a solution to the min flux problem. The averaged version of the flow will still obey the
divergenceless condition ∇ · vavg = 0, however, it will generally relax the norm bound. Such
a modification is reminiscent of the flow prescription for entanglement entropy for cases
where higher curvature corrections are included [19]. It will be interesting to use convex
optimization techniques to derive a flow-based prescription like this one for other proposals
of holographic complexity that do take into account other Cauchy slices, not necessarily
the maximal, e.g., the CA or CV 2.0 proposals. We leave this for a future exploration.

It is worthwhile to compare our proposal of holographic complexity to the recent
conjecture in [100, 101], which is intimately tied to path integral complexity [70, 71] (briefly
reviewed in section 2.1). The claim is the path integral optimization procedure in holographic
CFTs is equivalent to maximizing the Hartle-Hawking (HH) wavefunction in AdS. More
precisely, consider the case of the vacuum of a CFT on Rd, such that bulk geometry is dual
to Euclidean Poincaré AdSd+1, ds2 = z−2(dz2 + dτ2 +∑d−1

i=1 dx
2
i ). The HH wavefunction of

interest is
Ψ(T )

HH[φ] =
∫
Dgµνe−I

E
bulk[g]−IT [e2φ]δ(gab|Q − e2φδab) , (5.22)

where IEbulk is the bulk gravitational action in Euclidean signature, Q is a bulk codimension-1
surface specified by z = f(τ) meeting the boundary cutoff surface σ located at z = ε, and
gab is the induced metric on Q with line element ds2

Q = e2φ(w)[dw2 + ∑d−1
i=1 dx

2
i ], with

w = w(τ). The action IT ascribes a tension T to Q, such that Q may be interpreted as an
end-of-world-brane with

IT [h] = T

8πGN

∫
Q

√
h . (5.23)

Thus, the HH wavefunction Ψ(T )
HH is evaluated over a bulk region M between σ and Q, where

the metric on Q is viewed as the holographic dual of the conformally flat space metric used
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in the path integral optimization procedure, and T 6= 0 provides a deformation of the usual
HH wavefunction.

Via a saddle-point analysis, one evaluates the HH wavefunction semiclassically for
on-shell configurations to leading order, such that Q is a probe brane, i.e., Q doesn’t
backreact on the bulk AdS geometry. The HH wavefunction is then maximized by choosing
an appropriate metric on Q. Specifically, as detailed in [71], the extrinsic curvature K on
Q is proportional to the tension,

K|Q = d

d− 1T , (5.24)

such that maximization implies Q provides a CMC slicing of the empty AdSd+1. The
tension provides a measure of the complexity such that when K = 0 the path integral
complexity functional is optimized, where the conformal factor evaluated at the boundary
becomes e2φ = ε−2. CMC slices T 6= 0 correspond to partially optimized or sub-optimal
path integral tensor networks. Specifically, the holographic path integral complexity C(e)

T of
the partially optimized tensor network Q at fixed T is estimated by the on-shell bulk gravity
action evaluated on M plus a modified Hayward term IH [164] to deal with a non-smooth
corner appearing in M due to Q. The minimum value of C(e)

T occurs when T = 0, where
C(e)
T corresponds to complexity=volume-like duality.

Let us now directly compare our general proposal (5.20) to the procedure of maximizing
the deformed HH wavefunction (5.22). The HH wavefunction is a path integral over different
metrics, which, upon maximization, can be understood as a path integral over different
CMC slices Q, where the ‘classical’ saddle corresponds to the maximal K = 0 slice and
C(e)
T=0 is proportional to the volume on Q. Our proposal is more general in that we are not

specifying the particular geometry of the slice Σ′ (just that it lives inside the WDW patch),
where generally Σ′ is an example of a sub-optimal tensor network. However, when Σ′ = Σ,
the tensor network is optimal such that complexity reduces to the CV relation. Thus, both
proposals for holographic complexity (5.20) and (5.22) make use of sub-optimal tensor
networks, and we suspect, at least in particular contexts, the two proposals will coincide.
In particular, for Euclidean vacuum AdS and when M is the interior of the Euclideanized
WDW patch, slices Q correspond to the CMC slices foliating the WDW patch, such that the
two proposals (5.20) and (5.22) will be equivalent when Σ′ in (5.20) are restricted to have
constant mean curvature and where ~ corresponds to a scale such that ~→ 0 corresponds
to Σ′ → Σ, e.g., ~ ∼ T . While the precise form of S[Σ′] is not specified, a natural guess
would be the bulk Euclidean action plus the Nambu-Goto like action for Q.53 It would be
interesting to explore the connection between the two proposals further.

53An important caveat worth mentioning: Euclidean path integral optimization described in [100, 101] is
closer to CV duality, while Lorentzian path integral optimization is similar to CA duality. Our proposal
above is more like CV duality, however, the average does deviate from CV. In fact, depending on the choice
of S, it’s possible the ensemble proposal interpolates between CA and CV. We thank Tadashi Takayanagi
for a discussion on this point.
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6 Conclusions and outlook

Let us now very briefly summarize the main ideas of this article before discussing avenues
for future work. In this article we provided a Lorentzian flow based reformulation of the
complexity=volume proposal, following an application of the min flow-max cut principle
from network theory. In the language of flows, boundary computational complexity with
respect to boundary regions covering the future boundary of a Lorentzian AdS spacetime is
the minimum flux of a Lorentzian flow passing through the maximal Cauchy slice homologous
to the boundary region. Crucially, the equivalence between flows and volumes requires
we attach Euclidean sections in the past and future of the Lorentzian manifold, akin to
standard Lorentzian AdS/CFT. Moreover, unlike the usual CV and CA proposals, our
interpretation relies on state preparation in AdS/CFT, for which the nature of the reference
state (specified in the past Euclidean boundary) plays a crucial role. We used the nesting
of bulk Cauchy slices to argue holographic complexity should obey particular inequalities,
particularly a bound on the complexity rate by the ‘conditional complexity’ and, via the
generalized PVC relation, we recovered the second time derivative of complexity is equal to
the time derivative of the integrated momentum flux. Most of all, we argued that discretized
Lorentzian flows should be interpreted in terms of gatelines, such that the complexity is
given by the minimal number of gatelines preparing a CFT state on the maximal volume
slice, given a choice of reference state. This interpretation, moreover, is aligned with tensor
network constructions of AdS spacetimes, where the optimal tensor network is the one with
the fewest number tensors, each connected by a gateline.

Following the abstract discussion of Lorentzian flows and their interpretation, we pro-
vided multiple geometric realizations of the thread configurations. Using general algorithms,
these included radial timelike geodesics foliating the WDW patch in empty AdS and the
BTZ black hole, as well as a foliation of the background by a family of constant extrinsic
curvature slices. In the case of the BTZ black hole, we also showed how the flow configura-
tions differ at both early and late times, where in the latter case the maximal volume slice
wraps around the future singularity. Then, we explained how the second law of quantum
complexity can be interpreted in terms of the number of threads crossing the portion of
the maximal volume surface in the black hole interior (thus reaching the singularity) such
that complexity monotonically increases as time moves forward. The maximal complexity
is then interpreted as the complexity associated to the ‘final state’ for which all Lorentzian
threads crossing the maximal volume slice necessarily reach the singularity.

We studied perturbations to AdS spacetimes by developing a notion of perturbative
Lorentzian threads, which we found most beneficial to describe using differential forms. In
particular, we showed a canonical choice for the perturbative Lorentzian thread form is the
symplectic current evaluated with respect to the new York deformation. The closedness
condition of this form, required by consistency, was shown to be equivalent to the linearized
Einstein equations holding in the bulk. Moreover, we provided a detailed derivation of
linearized Einstein’s equations by showing they follow from a first law for holographic
complexity, where the complexity is dual to the volume and the boundary and bulk
symplectic forms are dual. Our argument does not rely on the flow based reformulation of
CV duality, though is certainly augmented by it.
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Indeed, the boundary first law of complexity useful for us is given by the variation of
the complexity with respect to the boundary sources, which is given by the symplectic form
describing the space of sources. Here we have pictured threads as starting from the boundary
attached to sources. Varying the sources then corresponds to varying the endpoints of the
threads, each of which connect to physical tensors in a tensor network discretization of the
bulk Cauchy slice. Consequently, the source variation directly corresponds to a variation of
the tensors in the network and hence a changing volume (which is equivalent to the bulk
symplectic form), leading the linearized Einstein’s equations being satisfied in the bulk.
Thus, if we take the viewpoint Lorentzian threads are fundamental objects, we can imagine
spacetime being sewn together by thread configurations attached to the boundary, encoding
bulk spacetime dynamics. This picture advocates a notion of ‘spacetime complexity’ where
gravity emerges from varying complexity. At any rate, our derivation of Einstein’s equations
from the first law of complexity is disjoint from Lorentzian threads and can be considered
a novel result of independent interest. Moreover, since the equivalence between bulk and
boundary symplectic forms is valid for perturbations over general states, not just around
vacuum AdS, suggests any asymptotically AdS spacetime obeying CV duality and the first
law for first order state/metric deformations around the background necessarily satisfies
the full non-linear Einstein equations.

Building off of our observations we proposed a generalized notion of holographic
complexity based on an ensemble average. Our conjecture is partly motivated by the fact
CV duality does not seem suitable when describing highly excited dynamical states. In
particular, in these cases not all HRT surfaces lie on the bulk maximal volume slice, such
that calculating holographic entanglement entropy requires one evaluate the entropy over
bulk Cauchy slices other than the maximal volume one. From a tensor network perspective,
optimal and sub-optimal tensor networks, and their associated thread configurations, are
thus expected to play a role in defining a more general and state-independent measure of
complexity, where one averages over all such possible tensor networks.

Lastly, at multiple points throughout this manuscript we advocated Lorentzian threads
provide a notion of emergent time. Let us clarify what we mean by this.

Emergence of time

We begin with some philosophical remarks. There are several, sometimes competing, notions
of time, and each depending on what is treated as ‘fundamental’. For example, in classical
gravity we can distinguish between coordinate time x0 = t and proper time τ , where the
former can be arbitrarily reparameterized and generally non-observable, while the latter
depends on the background metric, determined by the dynamical fields in the theory, and is
different with respect to each worldline. Neither coordinate or proper time are considered to
be a ‘physical time’, i.e., a parameter which does not depend on a choice of coordinates or a
metric representation of the background geometry. Note, moreover, neither of these notions
of time provide the sense of forward progression, unlike, for example, thermodynamical
time, which maintains a distinction between past and future by means of an arrow of time
granted by the second law of thermodynamics.
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In an ADM split (where the ‘ADM time’ t characterizing the split is typically a
coordinate time), the dynamical equations of general relativity describe how the spatial
geometry, i.e., metric hij , changes with respect to the ADM time. As a theory of classical
mechanics, moreover, the space of solutions are subject to momentum constraints and a
Hamiltonian constraint, which, in the case of general relativity, leads to a non-trivial initial
value problem. That is, in GR it is difficult to specify a full set of Cauchy data, namely
hij and the conjugate momenta πij , on a spatial slice that satisfy all of the constraints
such that the evolution is uniquely determined at all future and past times. It is well
known solving the initial value problem in GR is highly non-trivial since the Hamiltonian
constraint is generally not satisfied uniquely. As described previously, York [135] provided
an elegant solution to the initial value problem of GR where he showed only the scale free
(conformal) part of the metric, and its conjugate momenta provide the necessary Cauchy
data, however, only satisfy all of the constraints uniquely when restricted to surfaces of
constant mean curvature. York’s solution, then, provides a natural foliation of spacetime —
one by hypersurfaces of constant curvature — where curvature K gives a preferred notion
of time, referred to as the ‘York time’.

Let us now collect the ways in which the Lorentzian threads and our reformulation
of complexity lead to an emergent notion of time. First, Lorentzian threads are naturally
thought of as preparing CFT states on the bulk maximal volume slice. Time evolution of the
CFT, typically found by solving the dynamical bulk equations of motion, is captured by the
closedness condition of the perturbative thread form δu = ωL. This is further exemplified
in the tensor network picture, where unitaries attached to the threads act similar to the
disentanglers in an Euclidean MERA network, transforming the reference state int the
target state (defined over different layers of the network). Upon analytic continuation,
these unitaries naturally implement time evolution, in the same sense that the disentanglers
implement evolution along the radial (holographic) direction. Second, the canonical flow
solution δu = ωL makes use of a constant mean curvature slicing of the AdS vacuum, where
the bulk is foliated by surfaces of constant extrinsic curvature K. In lieu of the above
discussion, particular configurations of Lorentzian threads provide a natural foliation of the
spacetime by hypersurfaces of constant K (York time), such that data specified on these
slices solve the initial value problem (whilst describing boundary time evolution of the CFT
state). If we take the threads to be fundamental, while generally highly non-unique, there
is a particular configuration that makes bulk locality explicit, δu = ωL, and York time
emerges as a preferred notion of time.

This latter point is very reminiscent of another sense of emergent time suggested
recently by path integral optimization definitions of boundary complexity [100, 101]. In
this set up, the maximization of a bulk Hartle-Hawking wavefunction is equivalent to the
path integral optimization procedure in the CFT. The Hartle-Hawking wavefunction (5.22)
is given in terms of a Euclidean path integral of the bulk gravitational action plus the
probe brane action of fixed tension T , where T = 0 corresponds to the most optimal
tensor network configuration and T 6= 0 to suboptimal ones. The tension was seen as
emergent in that it can be interpreted as the conformal radial coordinate in a bulk d+ 1-
dimensional spacetime arising from the boundary optimization procedure. Since the tension
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T is proportional to the extrinsic curvature K of the Q slices, surfaces Q of tension T foliate
the bulk, and, consequently, T may be interpreted as an emergent time. Similarly, though
stated without proof, we expect a similar optimization argument would yield York time
as an emergent physical time. Deepening the connection between Lorentzian threads and
path integral optimization, particularly the related notions of emergent time, is worthy of
further investigation.

Future directions

Below we list a few potential avenues for research we find promising, in order of increasing
speculation.

‘Complexity=generalized volume’ and higher derivative theories. In this article
we focused on holographic CFTs dual to bulk theories of gravity governed by Einstein’s
equations. More generally one could consider other bulk theories of gravity, particularly
higher derivative theories such as Gauss-Bonnet gravity. The CA conjecture for such
holographic set-ups is then easily to generalize: simply work with the bulk action defining
the alternative theory. CV duality is not as straightforward to extend as one needs identify
a suitable generalization of the ‘volume’. Such a generalization was proposed in [147], where
the volume V =

∫
Σ d

dx
√
h is replaced with the local functional W :

W = 1
(d− 2)E0

∫
Σ
dd−1x

√
h(Eabcduaudhbc − E0) , (6.1)

where Eabcd ≡ ∂Lgrav
∂Rabcd

, ua is a timelike unit normal to Σ, and E0 is some constant dependent
on the specific theory of gravity in question; when Lgrav = E0R, one recovers the standard
expression for volume. More recently, a generalized CV proposal was introduced in [165]
to describe holographic complexity for boundary subregions in the ‘island phase’, which
modifies (6.1) by including additional extrinsic curvature corrections (we can think of volume
W (6.1) like a Wald functional for volume, analogous to Wald entropy, while the extrinsic
curvature corrected volume functional is akin to generalized holographic entanglement
entropy [4]).

It would be interesting to extend the Lorentzian flow construction such that these CV
generalizations could be incorporated. We expect, similar to the case of the bit thread
reformulation of holographic entanglement entropy for CFTs dual to higher curvature
theories [19], that one would need to replace the norm bound condition, altering the convex
optimization program slightly. Separately, we point out our derivation of the linearized
Einstein’s equations could be extended to derive higher derivative theories of gravity where
the volume in the first law of holographic complexity is now replaced by the generalized
volume W . Indeed, it is straightforward to show

ωL(δY , δ) ∝ δW , (6.2)

for higher derivative theories of gravity. Proof of the linearized equations of motion then
follow from the same basic arguments we described above. It would be interesting to see
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whether the symplectic current ωL remains a canonical thread configuration, given the
expected modification to the optimization program.

Moreover, the generalized CV proposal presented in [165] makes use of models of ‘double
holography’ [166–168]. We thus expect one would need to extend the Lorentzian thread
prescription to doubly holographic set-ups, for which the recent work on holographic bit
threads to these same systems will be of use [31].

Comparing to other notions of complexity. Here we primarily focused on two can-
didates of holographic complexity: CV and CA conjectures. As already discussed, these
conjectures might come from a more general definition of complexity based on ensemble
averages. This definition is distinct from but similar in spirit to path integral optimization
complexity and its holographic dual [100, 101]. Indeed, above we argued in specific contexts
in which our ensemble proposal for holographic complexity coincides with the maximization
of the Hartle-Hawking wavefunction. Our comparison was only for Euclidean AdS in
vacuum, however, the maximization procedure was also applied to Lorentzian signature
spacetimes, where for Lorentzian spacetimes the complexity functional seems to satisfy com-
plexity=action duality. It would be very interesting to better understand how our ensemble
proposal connects to the maximization of the Hartle-Hawking wavefunction, including its
relation to the quantum circuit models [74, 109, 169, 170]. For example, in [109] complexity
of quantum circuits is given by a gravitational action, generalizes CV duality and shows
CMC slices play a role in optimizing the circuits. A derivation of the ‘action’ S from first
principles should clarify this question.

We also point out CV duality was recently invoked to provide a CFT interpretation of
the first law of causal diamonds AdS3 [136], where the volume of a circular disk in AdS3
is dual to the complexity of a cutoff CFT [171], such that the bulk law is understood as
a first law of differential entropy on the boundary. It would be worthwhile to understand
how our derivation of Einstein’s equations from the first law of complexity fits in with this
picture, though a challenge to overcome is knowing how to incorporate cutoff CFTs into
our framework. Perhaps understanding the quantum circuit model analyzed in [109], which
generalizes the path integral optimization to holographic CFTs with finite cutoff, would
lend insight.

Non-linear Einstein’s equations from complexity. Our derivation of the linearized
Einstein’s equations made use of the first law of complexity, where we only considered
linear perturbations about vacuum AdS. More generally one could consider perturbations
around excited CFT states, which would carry information about non-linear contributions
to bulk gravity equations. Indeed, the bulk-boundary symplectic form equivalence holds
for perturbations over general states. This is precisely how non-linear equations were
recovered in the gravity from entanglement scenario [43, 44], where one must consider
second order variations to the relative entropy (capturing second order contributions in
sources λ of the Euclidean path integral definition of excited CFT states). In the context of
complexity, there are immediately two challenges. The first is identifying the equivalent
of the relative entropy for complexity, and understanding its variations. A more difficult
challenge, as we have discussed at length, is that for highly excited states CV duality should
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be generalized, however, a regime where we can still work with CV duality even with these
higher order perturbations.

Alternatively, in [150] it was argued that equality between bulk and boundary modular
flows for undeformed, but arbitrary states and subregions, the double shape and state
deformation of the of the entanglement entropy and modular Hamiltonian reproduces
the JLMS formula [172]. Then, going in the reverse direction, any asymptotically AdS
geometry satisfying JLMS (or equivalently the RT formula) for first order state and metric
deformations around the background necessarily satisfies both the linearized and non-linear
Einstein equations. Above we applied similar logic to suggest the non-linear equations of
motion are satisfied, however, without an explicit calculation. It is worth showing this
in detail.

Bulk reconstruction from complexity. The Lorentzian thread construction of the
canonical thread configuration, i.e., the thread form u and its perturbation δu, make use
of the property of bulk locality. Thus, in principle, it should be possible to invert this
problem and recover the bulk spacetime metric from (linear) excitations of the boundary
quantum state. This is the essence of the program of ‘bulk reconstruction’ (see, e.g., [45–
60, 173–176]), which aims to build the bulk metric purely from boundary data, typically
field theory entanglement, by inverting some differential operator encoding information
about bulk metric perturbations. Since complexity describes the interior geometry of
black holes, reconstruction of the geometry inside of a horizon should be possible starting
from complexity, as was recently carried out in [177], where input knowledge of the time
derivatives of complexity and the Hartman-Maldacena entanglement entropy, and the metric
outside of the horizon is required. More generally, from the perspective pursued in this
article, we would start with a manifold M with boundary ∂M , and a set of forms δu which
encode the local details of complexity associated with timelike boundary subregions. We
will have to assume some knowledge of the bulk, namely, the zeroth order, pure AdS metric
gµν . Then, at linear order at least, aside from this initial input, we would then use the
forms δu — which are uniquely specified from CFT data — capturing the change in the
CFT complexity for perturbative excited states, to reconstruct metric perturbations δgµν .
A similar treatment of bulk reconstruction in the context of bit threads was carried out
in [28], where it was found to reconstruct the metric beyond linear order in perturbations
one must invert a higher order differential operator, however, this can be accomplished
recursively in the order parameter η. Lessons from this bit thread approach may shed light
onto the method of bulk reconstruction via complexity. In fact, metric reconstruction from
complexity may be more powerful as we know the canonical thread satisfies δu = ωL(δY , δ)
and the duality between bulk and boundary symplectic structure holds for generic states.

Quantum corrections to holographic complexity. Both proposals for holographic
complexity are purely classical, i.e., there is not a 1/N quantum corrected proposal for either
duality, unlike the case for holographic entanglement entropy [6]: entanglement entropy
is dual to the RT formula plus bulk entanglement entropy, summarized by the Faulkner-
Lewkowycz-Maldacena (FLM) formula. Naively, one might imagine 1/N -quantum corrected
holographic complexity goes as, say, the volume plus ‘bulk complexity’. While such a proposal
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has not been explicitly offered, lessons from quantum corrected entanglement entropy may
lend insight. In particular, the recent ‘quantum bit thread’ description of the FLM formula
and quantum extremal surfaces [30, 31], which, due to the similarities between Riemannian
and Lorentzian flow principles, may shed light onto how one might engineer a quantum
corrected version of holographic complexity and its Lorentzian thread interpretation.

Understanding the role of 1/N corrections may lend insight into an important conceptual
question when interpreting Lorentzian flows as gatelines: do the gatelines ‘commute’? This is
relevant since in real space entanglement buildup often requires gates which do not commute.
The Lorentzian reformulation of CV, via the divergenceless condition, suggests individual
gates do commute.54 To understand this better, let’s first consider the Riemannian flow
reformulation of holographic entanglement entropy [16], where the equivalent question is
whether any CFT microstate dual to a classical background can be built with only bipartite
entanglement, i.e., EPR pairs, or if more than this is needed, multipartite generalizations.
Based on the bit-thread reformulation of the RT formula, it was conjectured in [20] that EPR
pairs are enough, however, as argued in [178], this is true only for simply connected regions,
while for regions that are not simply connected e.g. disjoint subsystems, one generally needs
multipartite entanglement.55

Returning to the Lorentzian flow picture of CV, we believe the fact gates do not
commute is not an inconsistency, at least not at leading order in 1/N in the large N
approximation. In particular, we can have a more entangled state as the target state since
we are not only evolving the reference state, but also turning on non-trivial sources. Thus,
since the threads attach to physical tensors (representing physical degrees of freedom) on a
TN defined on Σ and, likewise, we can imagine that they attach both to physical tensors
and sources on Σ−, the bulk Cauchy slice capping the southern hemisphere of Euclidean
AdS. This situation may change when one considers 1/N corrections. Intuitively, in terms
of Lorentzian threads, as proposed for the Riemannian case in [30], the 1/N corrections
may allow threads to split such that they connect multiple degrees of freedom on one slice
or multiple degrees of freedom on another slice.

Threads in flat and de Sitter space and complexity. The continuous version of
the Lorentzian min flow-max cut theorem is sufficiently general that it applies to bulk
backgrounds beyond asymptotically AdS. In particular, the principle holds in asymptotically
de Sitter and Minkowski spacetimes with a suitable cutoff, as first described in [17]. For
de Sitter space, one important change is the boundary region R used to define relative
homology must be empty. Consequently, the boundary subregion A homologous to bulk
slice ΣA is one of three options: a proper subset of a future cutoff boundary, where ΣA is
anchored along ∂A; the entire future cutoff such that ΣA is any Cauchy slice, or A is the
union of the future cutoff and a proper subset of the past cutoff, where ΣA is anchored at ∂A
along the past cutoff (for an illustration, see figure 7 of [17]). Despite this change, and since

54We thank Michal Heller for bringing this important point to our attention.
55Though it should be noted [179], even in non-simply connected cases the entanglement building blocks

may be interpreted in terms of bipartite degrees of freedom, however, at the expense of changing the topology
of the boundary manifold via purifications involving replicated manifolds.
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holographic complexity conjectures have not been systematically derived from fundamental
principles of AdS/CFT, it is natural to propose holographic complexity, specifically CV
duality, holds in these other spacetimes. The complexity=action conjecture was previously
considered to hold for flat spacetimes in [180], while both CV and CA proposals have been
analyzed in de Sitter space [181]; de Sitter space even has a tensor network description [182].
It would be interesting to further investigate Lorentzian flows in these spacetimes and
extend the gateline picture developed here accordingly.

Lorentzian multiflows and de Sitter entanglement. An interesting open question is
whether Lorentzian multiflows exist and are useful. To briefly recap (and further analyzed
in the appendix below), fluxes through the disconnected boundary subregions are not
representative of complexity. This is because these regions are not homologous to bulk
Cauchy slices, nor can they be replaced by Euclidean caps as in the state preparation
picture. Moreover, a naive definition of Lorentzian flows (following the Riemannian multiflow
construction [20] with the norm bound flipped to the opposite direction) doesn’t appear to
work due to the future directed condition, typically leading to uncorrelated flows. One can
imagine more exotic scenarios in which the future (and past) boundaries of a Lorentzian
spacetime are split into multiple subregions such that each subregion is homologous to
a Cauchy slice.56 In such a set-up it seems an inequality like the monogamy of mutual
information may hold as the usual cut-and-paste proof with surfaces doesn’t appear to
breakdown. A potentially simple and illuminating setting to explore this question is to
allow for the future boundary be two dimensional such that the future can be split into
three intervals which touch.57 The maximal cuts for each of the boundary subregions are
then spacelike geodesics connecting the boundary points. Via a cut-and-paste argument
the pairwise ‘mutual complexities’ are each negative such that the ‘tripartite complexity’
is positive, suggesting a non-monogamy relation. It would be interesting to study this
problem in detail from the flow perspective. Understanding the case when both past and
future boundaries are segmented may be applicable to the study of de Sitter entanglement
(e.g., [183–186]), where rotated Hartmann-Maldacena surfaces, timelike codimensnion-2
extremal surfaces stretching between the past and future boundaries in de Sitter space,
describe de Sitter entropy as entanglement via dS/CFT.
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A Riemannian flows and holographic entanglement entropy

To keep this article self-contained, here we briefly review the Riemannian flow reformulation
of the Ryu-Takayanagi formula as well as its interpretation. Following [17], we first outline
the statement of the Riemannian max flow-min cut theorem and show that it naturally
leads to an alternative prescription for holographic entanglement entropy in terms of bit
threads. We then describe some general properties of Riemannian flows and discuss various
relevant explicit constructions built in [22, 28]. These constructions are the Riemannian
analogs of the Lorentzian flows discussed in the body of this paper.

A.1 Max flow-min cut theorem and bit threads

Let M be a compact, oriented manifold with boundary, endowed with a Riemannian metric
gµν . A bulk codimension-1 surface m is said to be homologous to a boundary region A,
m ∼ A, if there exists a bulk region r whose boundary is ∂r = A−m, such that

∂r \ ∂M = −(m \ ∂M) . (A.1)

A Riemannian flow is defined to be a vector field vµ on M that is divergenceless, whose
norm is bounded above by some real positive constant α,

∇µvµ = 0 , |v| ≤ α . (A.2)

Using these properties, Stokes’ theorem then implies the following inequality for any bulk
surface (a cut) m ∼ A and any flow vµ∫

A
v =

∫
m
v ≤ α area(m) . (A.3)

The max flow-min cut theorem is the statement that follows from the saturation of (A.3):

max
v

∫
A
v = α min

m∼A
area(m) . (A.4)

On the left hand side, ‘maximum’ is to mean the supremum, ‘sup’, while on the right
hand side ‘minimum’ means infimum, ‘inf’. The max flow-min cut theorem was proven
in [17] using convex optimization techniques. We will provide an outline of the proof for
the (Lorentzian) min flow-max cut theorem in appendix B, which follows analogously to
the Riemannian case.

As first shown in [16], by identifying the normalization constant to be α ≡ 1
4GN , the

max flow-min cut theorem (A.4) provides a reformulation of the Ryu-Takayanagi formula
for holographic entanglement entropy S(A) in terms of Riemannian flows

S(A) = max
v

∫
A
v = 1

4GN
min
m∼A

area(m) , (A.5)

where v is a flow with maximal flux through A. Written in this way, the RT formula can be
given a sharper information theoretic meaning by interpreting the integral curves of a flow
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v as a set of Planck-thickness ‘bit threads’. A thread configuration is more precisely defined
as a set (possibly unoriented) integral curves of a flow v on M satisfying two properties:

1. They start and end on ∂M .

2. Their density is nowhere larger than |v|.

Heuristically, each thread can be visualized as a channel that communicates a single bit of
quantum information between spatially separated boundary regions. The total amount of
information being communicated between two boundary regions, say A and its complement
Ā, is given by the number of channels connecting the two regions allowed by the bulk
geometry. That is, the entanglement entropy S(A) is equal to the maximum number of
allowed threads connecting A and Ā,

S(A) = maxNAĀ , (A.6)

where NAĀ is the number of threads connecting region A to Ā.

A.2 General properties of Riemannian flows

An important lemma of the max flow-min cut theorem (A.4) is the nesting property. More
specifically, for two disjoint but not necessarily separate boundary regions A and B, it
follows that the bulk region homologous to A, r(A), is a proper subset of the bulk region
homologous to the union AB, i.e., r(A) ⊂ r(AB). Correspondingly, the nesting property
implies that there exists a flow v(A,B) that simultaneously maximizes the flux through A
and AB,

S(A) =
∫
A
v(A,B) , S(AB) =

∫
AB

v(A,B) . (A.7)

The nesting property can be invoked to elegantly prove the subadditivity and strong
subadditivity inequalities of entanglement entropy,

S(A) + S(B) ≥ S(AB) , (A.8)

S(AB) + S(BC) ≥ S(B) + S(ABC) , (A.9)

respectively, which must be satisfied for any quantum system. A proof for the nesting
property using convex optimization methods is provided in [17].

The nesting property of Riemannian flows can be generalized to the case of multiple
nested surfaces or, equivalently, to the case of multiple non-intersecting boundary regions.
Such a flow is called a multicommodity flow or max multiflow, and their existence was proven
in [20] using convex optimization techniques. More precisely, let {Ai} with i = 1, . . . , n
be a set of non-overlapping boundary regions that cover the entire boundary ∂M , i.e.,
∪iAi = ∂M . A multiflow is a set of vector fields vij on M obeying

vij = −vji , ∇ · vij = 0 ,
n∑
i<j

|vij | ≤ α , (A.10)
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such that n̂ ·vij = 0 on Ak for k 6= i, j. Given a multiflow {vij}, it can be shown that the set
of n vector fields vi ≡

∑n
j=1 vij also satisfy the defining properties of flows, i.e., ∇ · vi = 0

and |vi| ≤ α, and therefore satisfy the bound∫
Ai

vi ≤ S(Ai) . (A.11)

A max multiflow in then a set of flows {vij} such that for each i, the flow vi defined above
yields the maximum flux through Ai, i.e.,∫

Ai

vi = S(Ai) . (A.12)

When n = 3, the existence of a max multiflow implies the nesting property (A.7). Another
interesting corollary is when n = 4, leading to the monogamy of mutual information,

S(AB) + S(AC) + S(BC) ≥ S(A) + S(B) + S(C) + S(D) . (A.13)

This inequality does not hold for general quantum systems, but it is satisfied by those with
holographic duals.

A.3 Explicit constructions and applications

There is one crucial difference between computing entanglement entropy via max flows or
via minimal surfaces: while the surfaces are in most cases unique, the solution to the max
flow problem is highly degenerate. Intuitively, this degeneracy could be associated to a
choice of microstate (or a particular class of microstates) that give rise to the same amount
of entanglement between the region A and its complement. This non-uniqueness might seem
problematic at first sight, however, it turns out to be very useful in many instances. Indeed,
one can exploit this non-uniqueness in clever ways to get information that would be hidden
otherwise, for example, by constructing specific solutions that are adapted to the problem at
hand or that realize certain property that makes a physical interpretation manifest. Some
of these construction were introduced in [22, 28], and are the Riemannian analog to the
Lorentzian flows constructed in section 3. Here we will very briefly summarize some of
these methods, their properties and applications. In particular, we will discuss the methods
of construction based on: (i) integral lines, (ii) level sets, and (iii) the Iyer-Wald formalism.

Construction via integral lines

The first method of construction starts with a set of integral lines satisfying certain
properties:

• They must be orthogonal to the minimal surface m.

• They must be continuous and not self-intersecting.

• They must start and end at the boundary of the manifold ∂M .
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Given a family of curves satisfying these properties one then constructs a vector flow
v = |v|τ̂ , such that τ̂ coincides with the tangent vector associated to the curves. The
magnitude |v| is obtained by applying Gauss’s law in its integral form. In order to do so,
one parametrizes the integral curves collectively as X(~xm, λ), where ~xm is the point at
which they intersect the minimal surface and λ is an affine parameter running along each
of the curves. The magnitude is then obtained by integrating the flux across a Gaussian
surface, taken to be an infinitesimal cylinder enclosing one of the curves. This leads to the
following formula for the magnitude:

|v(~xm, λ)| =
√
h(~xm, λm)
h(~xm, λ) , (A.14)

where h is the determinant of the (transverse) metric and λm is the value of the affine
parameter at the location of the minimal surface. In this construction the norm bound is
automatically saturated at the location of the minimal surface, however, it must be checked
everywhere else a posteriori.

A particular class of flows constructed with the above algorithm are the so-called
geodesic flows. These have the particular property that their integral lines are taken to be
space-like geodesics, hence they satisfy a number of nice geometric properties which can be
connected with corresponding bulk energy conditions. This method was used to explicitly
construct holographic bit threads associated with highly symmetric boundary regions,
namely spheres and strips, in empty AdS and planar black brane geometries. Studying more
generic bulk metrics, one can make use of standard tools of Riemannian geometry to arrive
to some generic results. For instance, the Raychauduri equation on a Riemannian manifold
implies that nearby space-like geodesics have positive expansions provided a sufficient set
of conditions on the geometry and matter fields are satisfied. Assuming they are, this
in turns implies that the norm of the vector field decreases monotonically away from the
minimal surface, thus, ensuring the norm bound is satisfied everywhere. Interestingly, for
non-vacuum solutions in a negatively curved space, the energy density of the matter fields
turns out to be bounded above by the background cosmological constant.

Construction via level sets

The second method starts with a set of level set surfaces satisfying these properties:

• They must contain the minimal surface as one of its members.

• They must be continuous and not self-intersecting.

• They must not include closed bulk surfaces.

Given a family satisfying the above one can proceed as follows: first, one can generate the
integral lines by requiring them to be orthogonal to the level set surfaces. With the integral
lines at hand, the problem then reduces to the method explained above. Another equivalent
way of proceeding is by constructing an appropriate scalar function ϕ(xi) such that the
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ϕ = constant surfaces give us the desired level sets. We can then write the vector flow as:

v = Υ(xi)∇ϕ(xi) , (A.15)

and determine Υ by applying Gauss’s law in its differential form. This amounts to solve a
first order differential equation

(∇ϕ) · (∇Υ) + (∇2ϕ)Υ = 0 , (A.16)

subject to the boundary condition

Υ
∣∣
m

= 1
|∇ϕ|

. (A.17)

In any of the two methods we would need to check if norm bound is satisfied a posteriori.
However, we can bypass this obstacle in a clever way; this is, we can ensure that the norm
bound is satisfied by construction if we impose an extra condition on the level set surfaces:

4. They must be homologous to the region A.

This condition is not a strict requirement, but a useful one in many situations. More
generally, we do not have to assume 4 but in such cases we do need to care about the
norm bound.

A particular class of flows constructed from the level set method are the so-called
maximally packed flows. These flows are constructed by taking the family of level set surfaces
as a set of continuously nested minimal surfaces. In this case it can be shown that v = n̂ is a
solution to the max flow problem, where n̂ is the unit normal associated with the level sets.
As a result, these particular flows have the peculiar property of saturating the norm bound,
|v| = 1, everywhere in the bulk (or, at least, in the region that is foliated by the family of
minimal surfaces) hence their name maximally packed. It is clear these flows represent valid
bit thread configurations since the extrinsic curvature of the chosen level set surfaces is
zero for every member of the family, thus, the divergenceless condition is trivially satisfied,
K = ∇ · n̂ = 0. Importantly, maximally packed flows were used in [22] in combination with
geodesic flows to define mixed flows. Among various applications, these flows were used to
compute the entanglement wedge cross section of various configurations and to give it a
neat information-theoretic interpretation in terms of entanglement distillation. Moreover,
they were also used as basic ingredients in the construction of explicit examples of max
multiflows, which were in turn used to illustrate the monogamy of mutual information (A.13)

Construction via Iyer-Wald

The Iyer-Wald formalism is an application of Noether’s theorem for a symmetry generated
by a Killing vector ξ [144]. For on-shell linear perturbations around AdS, this formalism was
used to interpret the entanglement entropy associated with spherical regions in the boundary
theory as the Noether’s charge associated with a specific symmetry [42]. Conversely, starting
from the laws of entanglement in the dual theory, it was found that Iyer-Wald leads to the
linearized Einstein’s equation around AdS. More recently in [28], it was shown that the
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Iyer-Wald formalism can be used to specify a canonical thread configuration for an arbitrary
perturbative state in the bulk. Such a proposal makes the property of bulk locality manifest.
In particular, this construction was shown to elegantly encode the linearized Einstein’s
equations at every point in space, through the divergenceless condition.

To understand the details of this construction it is useful to express the max flow
problem in terms of differential forms. Given a d-dimensional manifold M endowed with
a Riemannian metric, gab, there is an explicit map between divergenceless vector fields v,
i.e., flows, and closed (d − 1)-forms ω, such that the divergenceless condition ∇ · v = 0
corresponds to the closedness condition dω = 0, i.e.,

dω = (∇ · v)ε = 0 , (A.18)

where ε is the natural volume form.58 Here the vector field va is related to the (d − 1)-
form via va = gab(?ω)b, where ?ω represents the Hodge dual of ω, defined as (?ω)b =

1
(d−1)!

√
gωa1...ad−1εa1...ad−1b, with εa1...ad being the total antisymmetric Levi-Civita symbol.

The inverse map ω = 1
(d−1)!εa1...ad−1v

bdxa1 ∧ . . . ∧ dxad−1 , relates the form ω directly to the
vector field in terms of the natural volume form ε = 1

d!εa1...addx
a1 ∧ . . . ∧ dxad .

As shown in [28] (see also [16, 17] for further discussion) the relationship (A.18) allows
for a reformulation of the bit thread description of the Ryu-Takayanagi formula in terms of
closed differential forms. More precisely, using that the form ω evaluated on an arbitrary
codimension-1 bulk surface Γ can be cast as

ω|Γ = (nava)ε̃ , (A.19)

where n is the local unit normal and ε̃ is the (d− 1)-dimensional volume form induced on
Γ, the max flow-min cut theorem is reexpressed as

max
ω∈W

∫
A
ω = min

m∼A

∫
M
ε̃ . (A.20)

Here W is the set of closed forms obeying the norm bound (in the presence of a metric).
Consequently, the RT formula for entanglement entropy is given by

SA = 1
4GN

max
ω∈W

∫
A
ω . (A.21)

The differential form reformulation of the RT formula (A.21) is particularly useful when
one does not know the explicit form of the background metric. For example, in [28] this
alternative description was useful in characterizing perturbative bit threads — Riemannian
bit threads corresponding to linear perturbations around AdS. Along the way, the use of
the Iyer-Wald formalism turned out particularly useful, as it provides a canonical choice for
the pertubed thread configuration, ω = ω0 + δω, where ω0 is a vacuum solution to the max
flow problem and δω ≡ 4GN χ̃. Here χ is a (d− 1)-form that arises from Noether’s theorem
for a symmetry generated by a Killing vector ξ that generates the RT surface; χ̃ is the form

58An independent reformulation of the Ryu-Takayanagi prescription in terms of calibrations (closed forms)
was worked out in [187].
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evaluated on the Cauchy hypersurface Σ containing the (spherical) boundary region A and
its associated RT surface m. Moreover, the linearized Einstein’s equations δEµν = 0 arise
from χ̃ being closed, dχ̃ = −2ξµδEµνεµ = 0. This property was used to recast the problem
of metric reconstruction in terms of the inversion of a specific differential operator.

B Some proofs involving Lorentzian flows

B.1 Min flow-max cut

As discussed in section 2, the max flow-min cut theorem for flows on Riemannian manifolds
becomes the min flow-max cut theorem for flows on Lorentzian spacetimes [17]

min
v

∫
A
v = max

Σ∼A
vol(Σ) , (B.1)

where for now we set |v| ≥ α = 1. By ‘minimum’ we mean the infimum over flows v, and by
‘maximum’ we mean supremum. The proof for the theorem relies on convex optimization
techniques and takes a similar form as the proof in the Riemannian case. For completeness,
let us present a slightly more detailed proof than the one presented in [17].

First let us very quickly state the necessary elements of convex optimization to be used
in the proof. For more details see [17] and the references therein.

Convex optimization basics

A convex program, or optimization problem P can be generically written as follows:

P : minimize f0(y) over y ∈ D, subject to fi(y) ≤ 0 and hj(y) = 0

for all i, j. Here y are vectors living in some vector space Y for which the domain D ⊂ Y
is a non-empty convex subset. The convex function f0 : D → R is the objective function;
fi : D → R denotes a set of (convex) inequality constraint functions, and hj : D → R is an
(affine) equality constraint function. The solution p∗ of P is the infimum of objective f0 on
the feasible set F , i.e., the set of all points in D for which fi(y) ≤ 0 and hj(y) = 0 for all
i, j. Succinctly, p∗ = inff0(F).

As is the case for the proof of the max flow-min cut and min flow-max cut theorems, it
is often useful to write the original (primal) optimization problem in terms of an equivalent
dual problem using Lagrangian duality. Lagrangian duality has one introduce Lagrange
multipliers to enforce the constraints, solving for the original variables to rewrite the
original (primal) problem as an equivalent dual optimization problem. More precisely, the
Lagrangian L(y, λ, ν) is defined as

L(y, λ, ν) ≡ f0(y) +
m∑
i=1

λifi(y) +
n∑
j=1

νjhj(y)

where λ ∈ (R+)m and νj ∈ Rn are Lagrange multipliers enforcing the inequality constraints
fi(y) ≤ 0, and equality constraints hj(y) = 0, respectively. The solution p∗ = inff0(y ∈ F)
to the primal problem is then the solution to the dual program when the supremum of
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L(y, λ, ν) is equal to f0(y ∈ F). Precisely, inf
y∈D

sup
λ,ν
L(y, λ, ν) = inf f0(y ∈ F). The dual

program P ′ is therefore a concave program, where one maximizes g0(λ, ν) ≡ inf
y∈D

L(y, λ, ν)
over λ, ν.

The primal and dual programs are said to exhibit strong duality when the solution of
the dual program d∗ is equal to the solution of the primal program, d∗ = p∗. Strong duality
is implied by Slater’s condition, which formally states the convex problem admits a feasible
point y0 in the interior of D such that fi(y0) < 0 for all i.

These definitions will be enough for us to prove the min flow-max cut theorem (B.1),
as shown in [17].

Proof

The proof of the min flow-max cut theorem largely involves three steps: (i) Express the left
hand side of (B.1) as a convex optimization problem and show Slater’s condition is satisfied;
(ii) Use Lagrangian duality to rewrite the program as an equivalent optimization problem,
and (iii) verify the solution to the dual program is supΣ∼Avol(Σ).

(i) It is straightforward to state the left hand side of the min flow-max cut theorem (B.1)
as a convex program. Using the definition of Lorentzian flows (2.12), one has

min flow : minimize
∫
A

√
hnµv

µ over vµ with
√
hnµv

µ|R = 0 ,

subject to ∇µvµ = 0 , 1− |vµ| ≤ 0 ,
(B.2)

where the future directed causal vector fields vµ living in M form a convex set. We now
want to show Slater’s condition holds. The argument is as follows. Given boundary region
Rc = ∂M \ R satisfies J+(Rc) = J−(Rc) = M , every point in the interior of M lies on
a timelike curve that begins an ends on Rc, e.g., from past to future timelike infinity.
Consequently, M may be covered with overlapping timelike tubes of some proper constant
thickness, where inside each tube a Lorentzian flow v may be placed. In the language of
Slater’s condition, there exists a feasible vector field vµ with 1− |v| < 0 everywhere.

(ii) Next dualize the min flow program (B.2) using Lagrangian duality. This is accom-
plished by introducing Lagrange multiplier scalar fields ψ, φ for the explicit constraints
∇ · v = 0 and 1− |v| < 0, respectively. We take φ ≥ 0. The Lagrangian function is then

L(vµ, ψ, φ) =
∫
A

√
hnµv

µ +
∫
M

√
g(−ψ∇µvµ + φ(1− |vµ|))

=
∫
∂M

√
hnµv

µ(χA − ψ) +
∫
M

√
g(vµ∂µψ − |vµ|φ+ φ) ,

(B.3)

where to get to the second line integration by parts was used and the characteristic function
χA for A on ∂M was introduced, such that χA = 1 on A and χA = 0 on Ac. The task now
is to minimize L with respect to vµ, where we are interested in when L is bounded from
below. We do this by analyzing the two terms on the right hand side of (B.3) separately.

Begin with the first term,
∫
∂M

√
hnµv

µ(χA−ψ). Keeping in mind the implicit constraint√
hnµv

µ|R = 0, this term is non-zero only on Rc. The boundary region Rc is comprised of
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three components: Rc0, Rc−, and Rc+ are the timelike, past spacelike, and future spacelike
parts of Rc, respectively. By past (future) spacelike, we mean nµ is past (future) directed
timelike covector fields. Each of these components lead to three different scenarios when the
first term in (B.3) is bounded from below, i.e., has a finite infimum: (1) On Rc0, n · v can
take either sign since nµ is spacelike, such that the infimum is finite if and only if ψ|Rc0 = χA;
(2) on Rc− n · v is negative and therefore the infimum is finite if and only if ψ|Rc− ≥ χA, and
(3) on Rc+ n · v is positive such that the infimum is finite if and only if ψ|Rc− ≤ χA.

Now consider the second term,
∫
M

√
g(vµ∂µψ − |vµ|φ+ φ). This term will have a finite

infimum if and only if vµ∂µψ ≥ 0, and thus ∂µψ is a future directed causal covector field
(such that ∂µψ is a past directed causal vector field). Moreover, given that vµ is timelike, by
the reverse Cauchy-Schwarz inequality we have vµ∂µψ = |vµ||∂µψ| cosh(η), for η an angle
between vµ and ∂µψ; consequently, 0 ≤ |vµ|(|∂µψ| cosh(η)− φ). Therefore, the second term
will have a finite infimum if and only if 0 ≤ φ ≤ |∂µψ|.

Imposing each of these conditions above,
∫
M

√
gφ is the dual objective to the corre-

sponding dual program

max cut 1 : maximize
∫
M

√
gφ over ψ, φ

with ψ|Rc0 = χA , ψ|Rc− ≥ χA , ψ|Rc+ ≤ χA , 0 ≤ φ ≤ |∂µψ|
(B.4)

with ∂µψ being a future directed causal vector field.

(iii) To complete the proof of the min flow-max cut theorem, the task now is to show the
solution to the dual program is supΣ∼Avol(Σ). We first do this by eliminating φ from the
max-cut 1 program by replacing the objective φ for |∂µψ|, for which the maximum of the
objective is clearly achieved.

We can also simplify the form of the boundary conditions, such that ψ = χA on all
of Rc. This is accomplished in the following way. First note that the future directed
causal condition on ψ implies it is non-decreasing along any causal curve.59 Collectively
the boundary conditions imply 0 ≤ ψ ≤ 1 holds everywhere, since every point in M lies on
a causal curve starting and ending on Rc. Let’s now consider when ψ doesn’t saturate the
inequalities, e.g., ψ < χA on some subset q of Rc+. Since 0 ≤ ψ ≤ 1, q must be a subset of
boundary region A. Then define a new function ψ̃ such that it equals ψ everywhere except
within a small neighborhood of q, where ψ̃ = 1. Since q is spacelike, this can be done such
that ∂µψ̃ is a future directed causal covector field satisfying |∂µψ̃| > |∂µψ|. In other words,
the objective for ψ̃ is larger than for ψ, and, consequently, without changing the supremum
we may have ψ = χA on Rc+. A very similar argument yields ψ = χA on Rc−.

With these simplifications, we may recast the dual program (B.4) more succinctly

max cut 2: maximize
∫
M

√
g|∂µψ| over ψ with ψ|Rc = χA , ∂µψ future directed causal .

(B.5)

59To see this, let mµ be any future directed causal vector field. Then mµ∂µψ ≥ 0.
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Figure 25. A depiction of the level sets of Σ(p) for 0 < p < 1. The boundary region A is the
thick upper gold region, while the lower black boundary represents Rc. The boundary condition
ψ|Rc = χA sets ψ = 1 on A and 0 on Ac. The bulk region r(3/4) associated with Σ(3/4) is shaded
in green, while the bulk region r(1/4) is shaded in blue. Note that unlike the Riemannian case, since
∂µψ is future directed and causal, 0 ≤ ψ ≤ 1, disallowing for any level sets for p > 1 or p < 0.

Our last task is to now show the solution d∗ to this dual program is equal to supΣ∼Avol(Σ).60

Following the logic outlined in [17], we will first work to rewrite the objective of the dual
program (B.5) such that it is related to the volume of a bulk slice Σ ∼ A, such that∫
M

√
g|∂µψ| = vol(Σ). Consequently, taking the supremum of both sides of this relation

demonstrates the solution to (B.5) is equal to right hand side of the min flow-max cut
theorem (B.1).

Let us therefore focus on the objective
∫
M

√
g|∂µψ|. Let us assume for simplicity that

ψ living on M is differentiable.61 We will consider the level sets of ψ, i.e., {ψ(x) = p} for
p ∈ R. Given that ψ|Rc = χA, we can consider a one-parameter family of bulk regions r(p)
associated with the level sets of ψ such that

r(p) ≡ {x ∈M : ψ(x) ≥ p} , (B.6)

for which we emphasize the special values r(0) and r(1). By continuity of ψ, we have ψ = p

on ∂r(p) \ ∂M . The bulk slice Σ(p) (the level set) is defined as the closure of ∂r(p) \ ∂M ,
with an orientation covector nµ parallel to ∂µψ, such that it points into bulk region r(p)
(see figure 25). If we consider ψ as a coordinate on the part of M where ∂µψ 6= 0, we may
rewrite the objective as an integral over p of the volume of the level sets Σ(p):∫

M

√
g|∂µψ| =

∫ ∞
−∞

dp vol(Σ(p)) . (B.7)

60We will show an example of convex relaxation, which replaces a non-convex optimization problem,
namely, finding the maximal volume slice in a given homology class, with an equivalent convex program
(max cut 2).

61This is not strictly true as ψ is not differentiable on ∂A where ψ|Rc = χA leads to a discontinuous jump.
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Now use the boundary condition on ψ, ψ|Rc = χA (recall χA = 1 on A and χA = 0
on Ac). Then, using (B.6), for 0 < p < 1, we have r(p) ∩ Rc = A, such that Σ(p) is
homologous to A.62 Using that Σ(p) ∼ A and taking into account that the volume is a
non-negative quantity, the integrated volume of the level sets is bounded from above by the
volume of the maximal slice homologous to A. That is,∫ ∞

−∞
dp vol(Σ(p)) =

∫ 1

0
dp vol(Σ(p)) ≤ sup

Σ∼A
vol(Σ) . (B.8)

By (B.7), we have then

sup
ψ

ψ|Rc=χA

∫
M

√
g|∂µψ| ≤ sup

Σ∼A
vol(Σ) . (B.9)

All that is left to show is this bound is saturated. Consider any bulk slice Σ ∼ A with an
associated bulk region r. Let χr be its characteristic function (such that χr = 1 on r and
χr = 0 on M \ r). While χr is not generally differentiable due to this jump on Σ, it can be
approximated arbitrarily well by a differentiable function ψ, such that the level sets of ψ lie
arbitrarily close to Σ. Consequently, the objective

∫
M

√
g|∂µψ| is arbitrarily close to vol(Σ).

In other words, the supremum over all Σ is equal to the supremum over all ψ, i.e.,

sup
Σ∼A

vol(Σ) = sup
ψ

ψ|Rc=χA

∫
M

√
g|∂µψ| . (B.10)

Thus, the solution d∗ to the dual program is equal to sup
Σ∼A

vol(Σ), the right hand side of the

min flow-max cut theorem (B.1), and the proof is complete.

B.2 Nesting property

Let us now prove the nesting property for bulk slices used in section 2 to derive the conditions
of superadditivity and weak superadditivity. For convenience, we simplify the notation
above a bit by using the shorthand

C(σA) = inf
v

∫
A
v = sup

Σ∼A
vol(Σ) . (B.11)

We will also assume the supremum is uniquely achieved, such that there exists a maximal
volume slice Σ∗, for which we denote vol(Σ∗) = V(Σ∗). We also leave the condition
nµv

µ|R = 0 implicit.
Let A and B be two disjoint boundary regions (though possibly sharing a common

boundary, see, e.g. figure 2) and denote AB as their union. The nesting property for
Lorentzian flows is a lemma of the min flow-max cut theorem which states there exists
a flow v(A,B) that simultaneously minimizes the flux through A and AB. That is, the
nesting property says∫

AB
v(A,AB) +

∫
A
v(A,AB) = C(σAB) + C(σA) . (B.12)

62Unlike the Riemannian case, since 0 ≤ ψ ≤ 1, there are no level sets with p < 0 or p > 1.
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Generally v(A,AB) will not also minimize the flux through B, but in fact maximize it. The
nesting property for cuts is simply that r(A) ⊂ r(AB).

The proof for the (continuum) Riemannian version of the nesting property was given
in [17] using convex optimization techniques. A completely analogous proof for the
Lorentzian case is given below, which takes the min flow-max cut theorem (B.1) as an input
and will make use of strong duality.

On the flow side, the proof follows a similar format as for the min flow max cut theorem,
involving three steps in which we: (i) write a convex program for a combined sum of
flows through A and AB (see the left hand side of (B.12)); (ii) find the Lagrange dual
optimization problem, and (iii) show the solution to the dual problem is the right hand side
of (B.12).

(i) The left hand side of (B.12) is straightforward to write as a convex optimization
program we refer to as the min flow program:

min flow : minimize
(∫

A
v +

∫
AB

v

)
over v , subject to ∇· vµ = 0 , 1−|vµ| ≤ 0 , (B.13)

where v = v(A,B) is a future directed causal vector field. The solution p∗ to the min flow
program is clearly bounded below by the sum of the individual minima of the two, i.e.,

inf
v

(∫
A
v +

∫
AB

v

)
≥ C(σA) + C(σAB) . (B.14)

When this bound is saturated we have the nesting for flows (B.1). Moreover, since v is a
feasible vector field with |v| > 1 everywhere, Slater’s condition is satisfied.

(ii) We now dualize the program in nearly identically the same way as for the min flow-max
cut theorem, introducing to Lagrange multiplier scalar fields ψ, φ for the respective explicit
constraints. We then likewise replace the objective

∫
M

√
gφ with

∫
M

√
g|∂µψ| where the ψ

will obey a particular boundary condition and ∂µψ is a future directed causal covector field.
Glossing over some of the algebra, we have the dual program

combined max cut : maximize
∫
M

√
g|∂µψ| over ψ with ψ|Rc = χA + χAB , (B.15)

where χA and χAB are the characteristic functions for A and AB, respectively. Note that
since χAB = χA + χB, then χA + χAB = 2χA + χB. Since ∂µψ is future directed, then by
the boundary condition ψ|Rc = χA + χAB, we have 0 ≤ ψ ≤ 2 everywhere.

(iii) We will again consider the level sets of the single function ψ, but this time to
simultaneously represent the A and AB cuts. More precisely, we define a bulk region r(p)
with p ∈ R as r(p) ≡ {x ∈ M : ψ(x) ≥ p} such that the level set Σ(p) is the closure of
∂r(p) \ ∂M . The boundary condition on ψ implies that its level sets Σ(p) are homologous
to AB for 0 < p < 1 and homologous to A for 1 < p < 2. Consequently,∫

M

√
g|∂µψ| =

∫ ∞
−∞

dp vol(Σ(p)) ≤
∫ 1

0
dp vol(Σ(p)) +

∫ 2

1
dp vol(Σ(p)) ≤ +C(σA) , (B.16)
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where, for example, by C(σAB) is shorthand for sup
Σ(AB)∼AB

vol(Σ(AB)). The only way for

saturation to occur is if all of the Σ(p) for 0 < p < 1 fall on Σ(AB), while Σ(p) for 1 < p < 2
fall on Σ(A). Given 0 ≤ ψ ≤ 2, there are no level sets for p < 0 or p > 2. By definition,
r(p) ⊂ r(p′) for p′ < p, i.e., r(A) ⊂ r(AB).

Now take the supremum of the left hand side of (B.16), which we recognize as the
objective of the dual program (B.15),

sup
ψ

ψ|Rc=χA+χAB

∫
M

√
g|∂µψ| ≤ C(σA) + C(σAB) . (B.17)

All that remains is to show this bound is saturated. Following the same steps in the min
flow-max cut theorem we have indeed inequality is saturated. Thus, the solution d∗ to the
dual program (B.15) is equal to the right hand side of the nesting property (B.12). Then,
by Slater’s condition in step (i), we have strong duality d∗ = p∗, which completes the proof.

B.3 Lorentzian multiflows: pitfalls and a partial proof

The existence of Riemannian multiflows was used to prove monogamy of holographic
mutual information [20]. If Lorentzian multiflow were to exist, we expect it could be
used, in analogy with Riemannian multiflows, to prove inequalities for multiple boundary
regions, e.g., generalized versions of the rate of complexity increase found in [84], or possible
a monogamy type relationship. However, in our attempts in proving the existence of
Lorentzian multiflows, we found a number of conceptual and technical obstructions towards
finding a general satisfactory definition of such flows. For the interested reader, here we
outline some of the struggles in proving Lorentzian multiflows exist in general, with the
hope that, if such a flow can be found, the present calculations can provide some use. In
particular, here we describe possible obstructions in defining multiflows where the minimal
flux out of a collection of boundary regions Ai takes the form vi = ∑

j ξijvij , for some ξij , a
relaxation of the condition vi = ∑

j vij used for Riemannian flows. We will also present a
partial proof of the existence of Lorentzian multiflows that are uncorrelated, and therefore
in our opinion are uninteresting.

To set the stage, recall the definition of Riemannian multiflows vij (A.10), for which
one has the max multiflow theorem (A.12), where vi = ∑

j=1 vij is a max flow for spatial
boundary subregion Ai, with

∫
Ai
vi = S(Ai). A key point is that the vi contain correlated

components vij . Namely, the vector field maximizing the flux out of region A3 can be
written in terms of a linear sum of vector fields, which includes for example v32. But the
vector field v32 = −v23 also appears when considering the maximal flux out of the region A2.
It is by considering various linear combinations of the vi that one is able to prove MMI [20].

The goal in the Lorentzian case is then to find a collection of flows V = {v}, such
that some linear combination of the v ∈ V, vi = ∑

v∈V ξi,vv, minimizes the flux out of n
boundary regions Ai covering ∂M . That is, there exists a Lorentzian multiflow {vij} such
that for each i, the n vector fields vi = ∑n

j=1 ξijvij , for some ξij , is a min flow for Ai, i.e.,

Φ(Ai) =
∫
Ai

vi . (B.18)
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If such a flow exists, where the vi contain correlated components, then we might hope to
find new, generalized inequalities. We already know in certain spacetimes such flows exist;
indeed in [84] it was shown when the strong energy condition and Einstein’s equations hold
in the bulk, a foliation of the boundary induces a maximal foliation of the bulk where the
unit vector normal to the bulk Cauchy slices is identified with a min multiflow, minimizing
over all boundary regions.

More generally, in analogy with Riemannian multiflows, one might guess a natural
definition of Lorentzian multiflows is as given in (2.26). Then the outline of the proof
of existence of a min multiflow is as follows. By the reverse triangle inequality, vi is a
Lorentzian flow such that

n∑
i=1

(∫
Ai

vi

)
≥

n∑
i=1

Φ(Ai) . (B.19)

Therefore, to prove (B.18) we must show

n∑
i=1

(∫
Ai

vi

)
≤

n∑
i=1

Φ(Ai) , (B.20)

as then
∫
Ai
vi ≤

∑n
i=1 Φ(Ai). The strategy to verify this is similar to the proof of min

flow-max cut theorem where one develops a Lagrangian dual program and invoking strong
duality. This again broadly involves three steps: (i) express the left hand side (B.20) as a
convex optimization problem, showing Slater’s condition is satisfied; (ii) use Lagrangian
duality to rewrite the program as an equivalent optimization problem, and (iii) verify the
optimal point d∗ of the dual program is bounded from above by

d∗ ≤
n∑
i=1

Φ(Ai) . (B.21)

Then, following Slater’s condition and strong duality, where the optimal solution of the
original program p∗ = d∗, one would have p∗ ≤∑n

i=1 Φ(Ai), completing the proof.
Unfortunately, the definition (2.26) has a number of misgivings, as we list below, such

that even (B.20) is ill-defined. In the obstructions we encounter, we will offer potential
resolutions, however, ultimately find the existence of min multiflows on general Lorentzian
spacetimes remains elusive.

Obstruction (1): Flows with flux unbounded from below. In the Riemannian
definition of multiflows, the spacetime is covered by non-overlapping boundary regions
not necessarily nested, though a corollary to the max multiflow theorem is the nesting
property. In the Lorentzian context, the homology condition demands that for each Ai,
J+(Ai)∩ ∂M = Ai. Regions that do not satisfy this condition, such as region B in figure 4,
can have flux Φi unbounded from below. By contrast, flows through nested regions A or
AB have flux Φ(Ai) = C(σAi), unbounded from above, but bounded from below. From the
perspective of the min flow-max cut theorem unbounded from above is not a problem since
we are interested in the flow with minimal flux, and A and AB obey the relative homology
condition. However, we immediately run into an obstacle when Φ(Ai) is unbounded from
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below, namely, we find a contradiction with (B.20), and therefore the outlined strategy
above fails.

This suggests we should restrict ourselves to nested boundary regions let us attempt to
find a min multiflow in this context. Let the boundary of the Lorentzian manifold M be
covered by (overalpping) nested regions Ai and their complement ∪iAi = A0. Denote the
region between the intersection of Ai, Ai+1 as Bi, a collection of disjoint boundary regions
Bi similar to B in figure 4.63 Thus, ∂M = ∪iAi ∪ A0. The goal is to find a collection of
vector fields vij such that some linear combination of the vij , vi = ∑

j ξijvij are themselves
flows minimizing the flux through each Ai. We proceed below, noting further obstacles.

Obstruction (2): Antisymmetry of multiflow. In the proof of MMI, it is important
that each vij is itself a flow. Analogously, we want to demand vij satisfy

∇ · vij = 0 , |vij | ≥ 1 , vij causal future directed , nµv
µ
ij |Ak = 0 ∀ i, j 6= k . (B.22)

However, the causal future directed (FDC) condition gives rise to an immediate disruption
to a common additional requirement of multicommodity flows: vij = −vji. This condition
ensures vij , combined with the condition has the interpretation of a flow between regions
Ai and Aj , whilst vi is the net flow out of Ai. Keeping to this interpretation, imposing
vij = −vij where vij is FDC for i < j and past directed and causal for j > i. In doing
so, however, we run into a direct contradiction: since each vi must be a flow, then by the
reverse Cauchy-Schwarz inequality, the linear combination v = ∑

i vi should also be a flow.
However, v = ∑

ij vij = 0 due to the antisymmetry of vij . Thus, v = 0 and is not a flow
since it doesn’t satisfy the norm bound |v| ≥ 1. Note that while we don’t care to work with
the linear combination v, for consistency v should still be a flow, but it is not. Moreover,
note the antisymmetry is not an obstruction in the Riemannian case, since v = 0 is a valid
flow due to the norm bound being an upper bound. Due to this inconsistency, we drop the
condition vij = −vji.

Obstruction (3): Flux through Ai. With overlapping nested regions Ai on the
Lorentzian boundary, each Ak will contain a spacelike boundary region, for which its
normal nµ is timelike and nµv

µ
ij |Ak 6= 0 for any k, where vij is FDC (or PDC). Indeed,

when considering relative homology with respect to R, this is one reason why we must
impose the condition that J+(Rc) = J−(Rc) = M , which precludes the case that R is a
purely spacelike boundary region.64 This arises in the proof of Slater’s condition for the
Lorentzian MFMC. Since J+(Rc) = J−(Rc) = M any point in M lies on a causual curve
starting/ending on Rc and so we can find a feasible vector field for which n · v|R = 0.

In the case of nested surfaces Ai, each satisfying the homology condition J+(Ai)∩∂M =
Ai, there always exists a spacelike surface Σi homologous to the Ai [17]. Hence the flux
through Ai is strictly greater than zero; we cannot impose a flux-like bound through the Ai.

63As another example, one can consider three nested boundary regions A,B,C, and their complement
D. Then, correspondingly, we would have A1 = ABC, A2 = AB, and A3 = A, where the Bi’s are given by
B1 = B and B2 = C.

64If R is purely spacelike then it cannot be reached via a causal curve from the future or the past,
depending on whether nµ is past or future directed.
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Put succinctly, since we are working with nested regions, we no longer have n · vij |Ak = 0 for
k 6= i, j, and so we drop this from the definition as well. Also note we cannot impose flux
conditions on the Bi in a natural way, since they will not all satisfy J+(Bc

i ) = J−(Bc
i ) = M

which is an obstruction to satisfying Slaters condition.

A proof for uncorrelated flows through nested regions. Despite each of these last
two obstructions, let us attempt anyway to prove the existence for a min multiflow when
Ai form a collection of nested regions. Let {vij} be a collection of flows such that |vij | ≥ 1,
vij FDC for i < j and ∇ · vij = 0. We try to find ξij such that each vi = ∑

j ξijvij is a
minimal flow for each of the Ai, where the vi contains correlated components. Since we are
considering nested regions, all we need to show is

n∑
i=1

(∫
Ai

vi

)
≤

n∑
i=1
C(σAi) . (B.23)

We find it insightful to first consider uncorrelated flows, where vi = ∑
j<i vji, i.e., for

ξij = δij for j < i. In this case, since the components which make up each vi are independent
we know the program is equivalent to minimizing the flow through each Ai individually, and,
consequently, we will not find any new interesting inequalities relating flows connecting to
multiple regions. Moreover, we will see arranging ξij such that vij are correlated is unable
to properly dualize the program.

The program we aim to dualize is

min multiflow: minimize
n∑
i=1

∫
Ai

√
hnµv

µ
i over vµij with i < j ,

subject to ∇µvµij = 0 , 1− |vµij | ≤ 0
(B.24)

Following the same argument as in step (i) of the proof of the min flow-max cut theorem (B.2),
Slater’s condition holds, i.e., for each i, j there exists a feasible vector field vµij with
1− |vµij | < 0 everywhere in M .

We now dualize the program, similar to what was done for the min flow-max cut
theorem. As described above, this is accomplished by introducing a Lagrange multiplier for
each constraint, and then integrating out the primal variables, leaving only an equivalent
program in terms of Lagrange multipliers. Thus, introduce a set of Lagrange multiplier
scalar fields ψij with i < j associated to the divergenceless constraint ∇µvµij = 0, and
Lagrange multiplier scalar fields φij associated to the norm bound constraint 1− |vµij | ≤ 0,
for which φij ≥ 0. The Lagrangian associated to the program dual to (B.24) is then

L
(
{vµij}, {ψij} , {φij}

)
=

n∑
i<j

∫
Aj

√
hnµv

µ
ij +

∫
M

√
g

− n∑
i<j

ψij∇µvµij +
n∑
i<j

φij
(
1−

∣∣∣vµij∣∣∣)
 .

(B.25)
By induction, the first term can be recast as

n∑
i<j

∫
Aj

√
hnµv

µ
ij =

n∑
i<j

n∑
k=j

∫
Bk

√
hnµv

µ
ij =

n∑
k=1

∫
Bk

k∑
j=1

∑
i<j

vij . (B.26)
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Performing integration by parts to move the derivative off of vµij in the second term
we find

−
∫
M

√
g

n∑
i<j

ψij∇µvµij =
∫
M

√
g

n∑
i<j

vµij∇µψij −
n∑
i<j

∫
∂M

√
hnµv

µ
ijψij . (B.27)

Using ∂M = Bi ∪Bj ∪k 6=i,j Bk, for the non-overlapping regions Bi, which includes B0, we
can replace the integral over ∂M as the sum of integrals over Bi, such that the Lagrangian
of the dual program becomes

L
(
{vµij}, {ψij} , {φij}

)
=

n∑
k=0

∫
Bk

 k∑
j=1

n∑
i<j

√
hnµvij(1− ψij)−

n∑
j=k+1

n∑
i<j

ψij


+

n∑
i<j

∫
M

√
g
(
φij + (vµij∇µψij − |v

µ
ij |φij))

)
.

(B.28)

Following the discussion in (B.3), the boundary term will have a finite infimum when
ψij |Ak = 1 for all i < j, j ≤ k and ψij |Ak = 0 for all i < j, j ≥ k. Meanwhile, the bulk
term will only have a finite infimum if and only if we have vµij∂µψij ≥ 0, such that ∂µψij is
a future directed causal covector field, and 0 ≤ φij ≤ |∂µψij | (the latter inequality follows
from the reverse Cauchy-Schwarz inequality). We can replace φij by its maximum value,
|∂µψij | in which case we arrive at the following dual program

dual : maximize
n∑
i<j

∫
M

√
g|∂µψij | over {ψij}

with ψij |Ak = 1 ∀i < j, j ≤ k, ψij |Ak = 0 ∀i < j, j ≥ k ,
(B.29)

with ∂µψij being future directed. Defining ψ ≡ ∑n
i<j ψij , we can consider the level sets

of ψ. It is easy to see that ψ|Ak = ∑
i<k = k so that 0 ≤ ψ ≤ k. Furthermore, by the

same arguments as in the proof of the min flow-max cut theorem, level sets of ψ will be
homologous to Ak for k − 1 < p < k, k ≥ 1. In particular, sparing the reader some of the
details, we have,∫ ∞

−∞
|∂µψ| =

∫ k

0
|∂µψ| =

∫ 1

0
|∂µψ|+

∫ 2

1
|∂µψ|+ · · · ≤

∑
i

sup(Vol(Ai)) =
∑
i

C(σAi),

(B.30)
and so the program dualizes as expected. Thus, there exists a min multiflow that is
uncorrelated in general Lorentzian spacetimes.

Notice, however, when changing around the components ξij , so that the flows vi contain
correlated components, the proof seems to invariably break down. Notably, if we took a
collection of flows vi = ∑

j vij (ξij = 1 for all j) where the vij are symmetric, then the
above dualization proceeds in a similar manner, but we end up with an upper bound of
2∑i C(σAi).
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C Verifying linearized Einstein’s equations in d = 3 + 1

In four spacetime dimensions, rotations about the (τ, x, y) axis (keeping z fixed) are
parametrized by

R =

 cos θ + u2
τ (1− cos θ) uτux(1− cos θ)− uz sin θ uτuy(1− cos θ) + ux sin θ

uxuτ (1− cos θ) + uy sin θ cos θ + u2
x(1− cos θ) uxuy(1− cos θ)− uτ sin θ

uyuτ (1− cos θ)− ux sin θ uyux(1− cos θ) + uτ sin θ cos θ + u2
y(1− cos θ)

 ,
(C.1)

which describes a proper rotation by an angle θ around the axis with unit vector u =
(uτ , ux, uy). We shall exploit the rotations which mix the spatial and τ components of
Euclidean Ads, which can be seen to be the Wick rotation of the Lorentz boosts.

First consider the rotation about the axis (0, 1, 0) by an angle θ. Substituting into (4.68)
we are led to the expression

2τδEττ
(
τ2 sin2 θ+τ2 cos2 θ+z2 sin2 θ

)
+2τδEτy

(
τ2 sin2θ−2τ2 sinθ cosθ−2z2 sinθ cosθ

)
+4τ2z cosθδEτz+2τ

(
τ2 +z2

)
δExx+2τδEyy

(
τ2 sin2 θ+τ2 cos2 θ+z2 cos2 θ

)
+4τ2z sinθδEzy+2τz2δEzz = 0 . (C.2)

The the left hand side of (C.2) is a real analytic function in θ in an open domain around
θ = 0. Hence, in order for it to vanish its Taylor series about θ = 0 must also vanish.
Performing an expansion in powers of θn we are led to the four equations

n = 1 : 4τ2zδEzy − 4τz2δEty , (C.3)
n = 2 : −2τ2zδEτz + 2τz2δEττ − 2τz2δEyy , (C.4)

n = 3 : 8
3τz

2δEτy − 2
3τ

2zδEzy , (C.5)

n = 4 : 1
6τ

2zδEτz − 2
3τz

2δEττ + 2
3τz

2δEyy . (C.6)

We could include higher powers of θ, but one can verify that the order equations do not
lead to new constraints. With a bit of algebra (C.3) the constraints are solved by

δEyy = δEττ , δEτz = 0 , δEτy = 0 , δEzy = 0 ,

δEzz = −
(
2τ2 + z2) δEττ

z2 −
(
τ2 + z2) δExx

z2 .
(C.7)

By symmetry, rotation about the y axis, (0, 0, 1) will give us a similar expression to (C.7)
but with x↔ y, which gives us further

δExx = δEττ , δEzz = −
(
2τ2 + z2) δEττ

z2 −
(
τ2 + z2) δEyy

z2 , δEτx = 0, δEzx = 0 . (C.8)

Comparing the two expressions for δEzz (or δEττ ) leads to

δExx = δEyy . (C.9)
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Finally we can study the mixed rotations, for example along the axis (0, 1√
2 ,

1√
2). Under

this boost (4.68) becomes

4τz2 sin2 θ

2(cos θ − 1)δEττ + 4τz2 sin2 θ

2(1− cos θ)δExx + 4τz2 sin2 θ

2(cos θ + 1)δExy = 0.
(C.10)

Substituting in for the previous expressions we have from equations (C.7) and (C.8) gives us

δExy = 0. (C.11)

This is enough to write all of the expressions in terms of δEττ . Explicitly we have seen
all of the components vanish expect for

δEττ , δExx = δEττ , δEyy = δEττ , δEzz =
(
−3τ2 − 2z2) δEττ

z2 (C.12)

It remains to show that δEττ = 0. To do this, we shall use the Bianchi identities ∇µδEµν = 0,
which follow directly from the covariance of the action [42]. It is simple to solve the four
Bianchi identities for δEττ to arrive at the following four expressions for δEtt, which must
be consistent65

δEττ = T (z, x, y), δEττ = z7Z(τ, x, y)
(3τ2 + 2z2)1/4 , δE

ττ = X(τ, z, y), δEττ = Y (τ, z, x) . (C.13)

To see that the only consistent solution is that δEττ = 0, we first note the last two equations
tell us δEττ has no x or y dependence, which along with the first equation tells us it
depends only on z, but then the second equation clearly has a t dependence and so the only
consistent solution is T (z, x, y) = Z(τ, x, y) = X(τ, z, y) = Y (τ, z, x) = 0. Thus, δEττ = 0,
which completes the proof.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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