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The island formula—an extremization prescription for generalized entropy—is known to result in
a unitary Page curve for the entropy of Hawking radiation. This semiclassical entropy formula has
been derived for Jackiw-Teitelboim (JT) gravity coupled to conformal matter using the “replica trick” to
evaluate the Euclidean path integral. Alternatively, for eternal Anti–de Sitter black holes, we derive the
extremization of generalized entropy from minimizing the microcanonical action of an entanglement
wedge. The on-shell action is minus the entropy and arises in the saddle-point approximation of the
(nonreplicated) microcanonical path integral. When the black hole is coupled to a bath, islands emerge
from maximizing the entropy at fixed energy, consistent with the island formula. Our method applies to JT
gravity as well as other two-dimensional dilaton gravity theories.
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I. INTRODUCTION

Hawking’s discovery [1,2] of thermal radiation emitted
by black holes has led to a puzzle quantum gravity
is expected to resolve: the information paradox [3]. A
solution will provide a better understanding of the quantum
mechanical evolution of black holes. Either black holes
evolve unitarily, such that the von Neumann (vN) entropy
of radiation SradvN follows a Page curve [4,5], or they do not.
For dynamical black holes formed from gravitational
collapse, the Page curve has the generic feature that SradvN
increases from zero (as the radiation begins in a pure state),
until it reaches a maximum at the Page time tP, and then
decreases to zero at late times, thus conserving information.
Advances motivated by the Anti–de Sitter/Conformal Field
Theory (AdS=CFT) correspondence suggest SradvN indeed
evolves unitarily [6–15].
Surprisingly, the unitary Page curve can be derived

within semiclassical gravity. Crucial to this derivation
are quantum extremal surfaces (QESs)—codimension-2
surfaces X which extremize the semiclassical generalized
entropy Sgen—and the QES formula [16–18]

SvNðΣXÞ ¼ min
X

ext
X

�
AreaðXÞ

4G
þ SscvNðΣXÞ

�
: ð1Þ

Here, SvNðΣXÞ is the fine-grained vN entropy of ΣX in the
full quantum theory, SscvN is the vN entropy of bulk quantum
fields including both matter fields and the metric in the
semiclassical approximation, and ΣX is a codimension-1
slice bounded by X and a cutoff surface. The bracketed
term is the generalized entropy SgenðΣXÞ, and obeys a
generalized second law [19–21].
The QES formula (1) also holds for the vN entropy of

Hawking radiation SradvN, where it is known as the “island
formula” [9]. Indeed, applying (1) to evaporating or eternal
black holes reveals a Page curve [6–8]. In this case ΣX may
be disconnected, ΣX ¼ Σrad ∪ I, where Σrad is the region
outside the black hole and I is an “island” with X ¼ ∂I. For
evaporating black holes I lies inside the black hole
[9,14,15], while for eternal black holes islands extend
outside the classical horizon [8,22–25]. Motivated by
[17,26–29], the island formula has been derived using
the “replica trick” in the context of Jackiw-Teitelboim (JT)
gravity [10–12]. The Page curve arises from a competition
between two saddle point geometries dominating the
Euclidean gravitational path integral (PI). At early times
the (replicated) black hole solution, or “Hawking saddle”,
dominates the PI and is responsible for the rise in SradvN.
At late times, “replica wormholes” overtake the black hole
leading to the “island saddle” and, for evaporating black
holes, a decrease in SradvN.
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Working in the microcanonical ensemble [30,31], here
we derive the extremization condition in (1) from a (non-
replicated) AdS2 gravitational PI. Indeed, for black holes
with Uð1Þ Killing symmetry, the replica trick is not
necessary to compute gravitational fine-grained entropies
[32]. Rather, one may opt to use the standard thermal
gravitational partition function [33]. Further, in this ensem-
ble we show how islands arise for eternal AdS2 black holes
coupled to a bath, a setting with its own information
paradox [8]. For definiteness, we will focus on semi-
classical JT gravity but our methodology applies to more
general two-dimensional (2D) dilaton theories of gravity.

II. SEMICLASSICAL JT GRAVITY AND THE
WALD ENTROPY

Semiclassical JT gravity is characterized by the action

I ¼ IJT þ IPol; ð2Þ

where IJT ¼ IbulkJT þ IGHYJT þ IctJT is the classical JT action
[34,35] with a Gibbons-Hawking-York (GHY) term, such
that the variational principle is well posed for spacetimesM
with boundary B, and a local counterterm to regulate
divergences at B

IbulkJT ¼ 1

16πG

Z
M
d2x

ffiffiffiffiffiffi
−g

p �
ðϕ0 þ ϕÞRþ 2ϕ

L2

�
;

IGHYJT þ IctJT ¼ 1

8πG

Z
B
dt

ffiffiffiffiffiffi
−γ

p �
ðϕ0 þ ϕÞK −

ϕ

L

�
: ð3Þ

Here ϕ is the dilaton arising from a spherical reduction of the
parent theory, ϕ0 a constant proportional to the extremal
entropy of the higher-dimensional black hole system, L is
the AdS2 length scale, and K is the trace of the extrinsic
curvature of B with induced metric γμν. The semiclassical
contribution IPol ¼ IbulkPol þ IGHYPol þ IctPol is composed of the
Polyakov action localized via an auxiliary massless scalar
field χ of central charge c, a GHY term and counterterm [36]

IbulkPol ¼ −
c

24π

Z
M
d2x

ffiffiffiffiffiffi
−g

p ½ð∇χÞ2 þ χR�;

IGHYPol þ IctPol ¼ −
c

12π

Z
B0
dt

ffiffiffiffiffiffi
−γ

p �
χK þ 1

2L

�
: ð4Þ

Here B0 represents a cutoff surface near infinity in the flat
space regions, which are sewn at the AdS2 boundary B with
transparent boundary conditions, as in [8]. Notably, the
Polyakov action arises as the quantum effective action
associated to the conformal anomaly of a CFT2 coupled
to any 2D theory of gravity [37].
Semiclassical JT gravity admits eternal AdS2 black holes

as a solution, for which the line element of the metric gμν in
Schwarzschild coordinates ðt; rÞ is

dl2 ¼ −fðrÞdt2 þ f−1ðrÞdr2; fðrÞ ¼ r2

L2
− μ; ð5Þ

with μ a mass parameter in the classical Arnowitt-Deser-
Misner (ADM) energy. The horizon is at rH ¼ L

ffiffiffi
μ

p
. The

remaining semiclassical equations of motion may be solved
once the state of the quantum matter is specified. Requiring
regularity at the horizon fixes the vacuum state to be the
Hartle-Hawking state jHHi [38,39], for which observers
in (null) static coordinates ðu; vÞ ¼ ðt − r�; tþ r�Þ, with
tortoise coordinate r� ∈ ½−∞; 0�, see a thermal bath of

particles at Hawking temperature TH ¼
ffiffi
μ

p
2πL. The expect-

ation value of the normal-ordered Polyakov stress tensor
is hHHj∶Tχ

uu∶jHHi ¼ cπ
12
T2
H (and similarly for Tχ

vv). With
respect to jHHi, the semiclassical correction to ϕ is just a
constant [36,40]

ϕðrÞ ¼ ϕr
r
L
þ Gc

3
¼ ϕr

ffiffiffi
μ

p
coth

�
−

ffiffiffi
μ

p
L

r�

�
þ Gc

3
; ð6Þ

where the dimensionless parameter ϕr > 0 is the boundary
value of ϕ, such that at a cutoff r ¼ ϵ−1c near the boundary
ϕ → ϕr

ϵcL
. Recently, moreover, we demonstrated χ is

generically time dependent, such that in the Hartle-
Hawking state jHHi [40]

χ ¼ −
1

2
log

�
4μ

�
1þ μUV

L2

�
−2
�

þ k − log

��
KU −

ffiffiffi
μ

p
U

L

��
KV þ

ffiffiffi
μ

p
V

L

��
; ð7Þ

where ðU;VÞ ¼ ð− Lffiffi
μ

p e−
ffiffi
μ

p
u

L ; Lffiffi
μ

p e
ffiffi
μ

p
v

L Þ are dimensionful

Kruskal coordinates, and k, KU, KV are constants.
Directly from the action (2), using the Noether charge

formalism [41], we can derive the Wald entropy SW

SW ≡ −2πϵμνϵρσ
∂L

∂Rμνρσ ¼
1

4G
ðϕ0 þ ϕÞ − c

6
χ; ð8Þ

which is generally evaluated on a bifurcate Killing horizon
with binormal ϵμν. Remarkably, imposing a Dirichlet
boundary condition on χ, consistent with the transparent
boundary condition at B, the integration constants k, KU,
KV may be fixed such that the semiclassical correction
to SW is exactly the vN entropy of a single interval with
endpoints ðU1; V1Þ and ðU2; V2Þ of a CFT2 in jHHi with
UV regulators δ1, δ2 [40]

SHHvN ¼ −
c
6
χ

¼ c
12

log

�
16μ2

ð1þ μU1V1

L2 Þ2ð1þ μU2V2

L2 Þ2
�

þ c
12

log

�
1

δ21δ
2
2

ðU2 −U1Þ2ðV2 − V1Þ2
�
: ð9Þ
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We emphasize that this result simply follows from solving χ
with Dirichlet boundary. Consequently, while the Wald
entropy is evaluated on some bifurcation point, the solution
χ describes the entropy associated with an interval. Thus, in
semiclassical JT gravity the Wald entropy (8) equals the
generalized entropy Sgen [40]

SW ¼ SBH þ SHHvN ¼ Sgen; ð10Þ

which is the sum of the Bekenstein-Hawking entropy
SBH ¼ 1

4G ðϕ0 þ ϕÞ—corresponding to the area term in (1)
in higher dimensions—and the CFT entropy SHHvN (9). This
resolves the discrepancy found in [42] between the Wald
entropy and generalized entropy in two dimensions.
A key insight of [40] is that, in the microcanonical

ensemble, the generalized entropy is equal to the micro-
canonical entropy. Further, Sgen is stationary at fixed
energy, δSgenjE ¼ 0, which has the basic elements of the
extremization prescription in the QES formula. This obser-
vation suggests, at least for backgrounds with Uð1Þ Killing
symmetry, that we may compute the generalized entropy
and its extremization directly when working with Euclidean
path integrals in the microcanonical ensemble.

III. MICROCANONICAL ACTION AND
GENERALIZED ENTROPY

We are interested in deriving the extremization prescrip-
tion in the QES formula (1) from first principles. This was
accomplished in [29] using the replica trick. Now we will
show for eternal black holes how to derive the extremiza-
tion of Sgen from a gravitational Euclidean PI in the
microcanonical ensemble.
We consider the saddle-point approximation to the

microcanonical gravitational partition function [30,43]

WðE0Þ ¼
Z

Dψe−I
mc
E ðψÞ ≈ e−I

mc
E ðψ0Þ; ð11Þ

where the path integral is taken over all dynamical fields
ψ ¼ ðgμν;ϕ; χÞ with fixed energy E0 (specified below). In
the saddle-point approximation the Euclidean microcanon-
ical action Imc

E is evaluated on the solutions ψ0 of the
semiclassical field equations. We will compute the action
Imc
E on the entanglement wedge [44–46] of an interval Σ in
AdS2, which is the domain of dependence of any achronal
surface with boundary ∂Σ. The microcanonical boundary
condition specifies an entanglement wedge at fixed energy
E0 in the eternal AdS2 black hole background, where the
external CFT2 remains in the Hartle-Hawking vacuum.
The entanglement wedge consists of a rectangular causal

diamond (CD) with null boundaries at ðu − u0 ¼ �a;
v − v0 ¼ �bÞ, where a, b > 0 are in principle different
length scales. Since after extremizing Imc

E the lengths a and
b coincide, we set a ¼ b for purposes of clarity. Such CDs

have a conformal isometry generated by a conformal
Killing vector ζ [47–49], which we fix uniquely by
demanding ζ becomes the boost Killing vector of AdS2-
Rindler when the future and past vertices of the CD both lie
on the AdS boundary (see Appendix A). We cover the CD
in “diamond universe” coordinates ðs; xÞ, adapted to the
flow of the vector field ζ [48] (left Fig. 1). The coordinate s
is the conformal Killing time, satisfying ζ · ds ¼ 1. The
line element in these coordinates is (Appendix B)

dl2 ¼ C2ðs; xÞð−ds2 þ dx2Þ; ð12Þ

with s; x ∈ ½−∞;∞� and the conformal factor C2 given
in (B4). The null boundaries are conformal Killing horizons
with constant surface gravity κ, defined by ∇μζ

2 ¼ −2κζμ
[50], which is positive on the future horizon and negative
on the past horizon (below we take κ > 0). When restricting
the HH state to the CD, it becomes a thermal density
matrix with temperature T ¼ κ=2π. Near the null bounda-
ries of the causal diamond at x ¼ �∞, the metric (12) is
approximately

dl2 ≈ 4L2κ2e∓2κxð−ds2 þ dx2Þ: ð13Þ

This is simply the Rindler metric dl2 ¼ −κ2ϱ2ds2 þ dϱ2,
with radial coordinate ϱ≡ 2Le∓κx and surface gravity
κ ¼∓ C−1∂xCjx→�∞. Hence, ζ ¼ ∂s becomes an approxi-
mate boost Killing vector near x ¼ �∞.
Next, we compute the on-shell microcanonical action of

CDs in semiclassical JT gravity following the Hilbert action
surface term method of [31,51]. Concretely, we evaluate the
GHY term on the boundary of an infinitesimal disk Dϵ of
radius ϵ orthogonal to the punctures ∂Σ∶x ¼ �∞ in the
Euclidean diamond (right Fig. 1),

Imc
E ¼ −lim

ϵ→0

Z
∂Dϵ×∂Σ

dsE
ffiffiffi
γ

p
K

�ðϕ0 þ ϕÞ
8πG

−
cχ
12π

�
: ð14Þ

FIG. 1. Lorentzian AdS2 diamond (left) and its Euclidean
continuation (right) in Kruskal coordinates ðT; XÞ ¼ ð1

2
ðV þUÞ;

1
2
ðV − UÞÞ. Lines of constant x (red) and lines of constant s; sE

(blue) are at equal intervals of 0.125. On the right, high contour
density corresponds to horizon punctures at x ¼ �∞. We have
set a ¼ b ¼ 1=2, μ ¼ L ¼ κa ¼ κb ¼ 1 and u0 ≠ v0 ≠ 0.

MICROCANONICAL ACTION AND THE ENTROPY OF HAWKING … PHYS. REV. D 105, 126010 (2022)

126010-3



Here Euclidean time sE ¼ is is periodic, sE ∼ sE þ 2π
κ , to

remove the conical singularity at x ¼ �∞ or ϱ ¼ 0. Note
this regularity condition at the horizon is consistent with our
choice of the Hartle-Hawking vacuum state [52]. Further,ffiffiffi
γ

p ¼ C is the induced metric on constant sE slices and the
extrinsic trace of these slices is K ¼∓ C−2∂xC. Crucially, in
the limit x → �∞, the fields ϕ (6) and χ (7) are independent
of sE, and

ffiffiffi
γ

p
K → κ, leading to

Imc
E ¼ −Sgenj∂Σ; ð15Þ

where we used (8) and the nontrivial fact SW ¼ Sgen. This is
a semiclassical extension of the microcanonical action
formula Imc

E ¼ −SBH obtained by [30,31], and may be
interpreted as a path integral derivation of the generalized
entropy of causal diamonds. Note since ∂Σ consists of two
points, the action is actually twice the entropy. We further
derive (14) and (15) in Appendix C using the Noether charge
method [41,53,54], and show that the microcanonical on-
shell action is proportional to the Noether charge. Thus, we
find the partition function (11) equals the density of states
W ≈ eSgen in the saddle-point approximation, with Sgen as the
microcanonical entropy.
In standard thermodynamics the entropy is maximized

at fixed energy in the microcanonical ensemble. Thence,
via (15), the microcanonical action Imc

E is minimized at
some fixed energy E0. For CDs we can infer E0 from the
variation of the microcanonical action on the full Euclidean
diamond MCD

E , which has a Euclidean time circle S1 of
period 2π=κ. Explicitly, (see Appendix C)

δImc
E ¼

Z
MCD

E

dsE ∧ ωðψ ; δψ ;LζψÞ ¼
Z
S1
dsEδHζ; ð16Þ

where ωðψ ; δψ ;LζψÞ is the symplectic current 1-form
evaluated on the Lie derivative Lζψ of ψ along ζ. In the
second equality we inserted Hamilton’s equations,
δHζ ¼

R
ΣsE

ωðψ ; δψ ;LζψÞ, where Hζ is the Hamiltonian

generating evolution along the flow of ζ and ΣsE are
constant sE slices that smoothly intersect ∂Σ. Therefore,
the action Imc

E is stationary at fixed energy E0 ∼Hζ.
By way of (15), the variational identity (16) is an

integrated version of the semiclassical first law for AdS2
CDs, κ

2π δSW ¼ −δHζ, which can be derived using the
Noether charge method [40,48]. Since the CFT is in the
HH state, T ¼ κ

2π is identified as the temperature of the
causal diamond. The first law turns into a proper thermo-
dynamic first law TδSgen ¼ δE0 if we identify E0 ¼ −Hζ.
Alternatively, one may include the minus sign into the
temperature T as done in [48,55], however, this negative
temperature seems inconsistent with the thermality of
the HH state when reduced to the CD, see (B6).
Moreover, the first law or (15)–(16) tells us the thermo-
dynamic potential defining the microcanonical ensemble is

SgenðE0Þ, obeying the equilibrium condition δSgenjE0
¼ 0.

This proves Jacobson’s entanglement equilibrium hypoth-
esis for JT gravity [47,56,57], which thus holds in the
microcanonical ensemble.

IV. QUANTUM EXTREMAL SURFACES

The extremization prescription in the QES formula (1),
for eternal AdS2 black holes coupled to a heat bath, thus
arises from extremizing the microcanonical action Imc

E , and
will lead to the existence of QESs. Specifically, for ∂Σ
consisting of one endpoint in AdS2 and one in flat space
near the AdS boundary, the Wald entropy (8) of the latter
point vanishes, since there ϕ ¼ 0 (no gravity) and χ ¼ 0
(Dirichlet boundary condition). We can then extremize Sgen
(10) using (9) with respect to the first endpoint ðU1; V1Þ
while holding the second point ðU2; V2Þ fixed. Subtracting
the extremization conditions yields U1=V1 ¼ U2=V2 or
t1 ¼ t2 [40]. Substituting this into Sgen gives a time-
independent result, whereby removing the divergence near
the boundary (r�;2 → 0), yields

Sgenðr�Þ ¼ SBHðr�Þ þ
c
6
log

�
2

ffiffiffi
μ

p
tanh

�
−

ffiffiffi
μ

p
r�

2L

��
ð17Þ

with r� ¼ r�;1. Extremizing Sgen with respect to r� leads to
a QES just outside the classical horizon [8,40]

rQES¼
2

3
rHϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9

4ϵ2

r
≈rH

�
1þ2ϵ2

9

�
; or

r�;QES¼−
Lffiffiffi
μ

p arcsinh

�
3

2ϵ

�
≈−

Lffiffiffi
μ

p
�
log

�
3

ϵ

�
þϵ2

9

�
: ð18Þ

The first equality is an exact expression for the QES
location, and in the second equality we expanded in terms
of the small parameter ϵ≡ Gcffiffi

μ
p

ϕr
≪ 1, which follows from

the semiclassical regime of validity ϕðrHÞ=G ≫ c ≫ 1.

V. ISLANDS AND ENTROPY OF HAWKING
RADIATION

We can adapt our prescription to obtain the island and
Hawking saddles corresponding to the island and Hawking
phases in the Page curve for eternal AdS2 black holes in
equilibrium with a flat space bath at temperature TH [8] (see
Fig. 2). Radiation emitted from the black hole into the bath
is modeled by a CFT2 at large central charge c, entirely
encoded by the semiclassical Polyakov action, and is in the
HH state. To maintain equilibrium, radiation entering the
baths is compensated by infalling matter, such that the total
entropy S of the system is the sum of the entropies SBH of
the two sides of the black hole, S ¼ 2SBH. While our
derivation above is in Euclidean signature, we analytically
continue to Lorentzian signature below.
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The island formula technically computes the vN entropy
of Hawking radiation using the entanglement wedge of the
radiation. However, since the HH state is pure, we instead
compute the action ImcE on the entanglement wedge of the
black hole, as in [10,58]. The entanglement wedge of the
black hole is the union of the domain of dependence
of achronal surfaces with boundaries ∂Σ ¼ B ∪ PR and
∂Σ0 ¼ B0 ∪ PL, wherePR;L are points in the flat region close
to the boundary and B;B0 are arbitrary points in AdS2. After
extremization, B becomes the QESQR and B0 turns into QL
for the island saddle, while B0 ¼ B ¼ PL for the Hawking
saddle. Thus, in the island phase the entanglement wedge of
the black hole is given by two CDs, while in the Hawking
phase the entanglement wedge is a single CD.
In the island phase we compute the on-shell action for the

two identical CDs with edges ∂Σ ¼ B ∪ PR and ∂Σ0 ¼
B0 ∪ PL (right Fig. 2). We can treat each diamond sepa-
rately due to large-c factorization [59,60] or because at
times t ≫ tP ≫ μ−1=2L the vN entropy of the two CDs
reduces to twice the entropy of one diamond due to an
operator product expansion where PRðPLÞ and BðB0Þ are
close [8]. Focusing on the right CD, extremization of (15)
fixes tB ¼ tPR

(which implies a ¼ b) and B ¼ QR, such
that Sgen evaluated at the QES (18) is [40]

SgenðrQESÞ ≈ SBH þ c
6
logð2 ffiffiffi

μ
p Þ − cϵ

9
þOðϵ2Þ: ð19Þ

Here we used Sgenj∂Σ ¼ SgenjQR
since at PR (x ¼ ∞) we

can set ϕ ¼ 0 and χ ¼ 0. A similar discussion holds for the
left CD. Including both CDs, since ϕ0=G ≫ ϕr

ffiffiffi
μ

p
=G ≫ c,

for t > tP we find SradvN ≈ 2SBH, consistent with [8] and up to
small corrections near t ∼ tP [61]. Thus, we have derived
the constant island phase in the Page curve, where the
island is identified as the interval ½QL;QR�.
The Hawking phase also follows from extremizing the

action (15). However, since gravity is absent in the flat
space bath regions, one neglects the dilaton. Extremizing

SHHvN with respect to ðUL; VLÞ results inUL ¼ VR and VL ¼
UR (or, tL ¼ −tR ≡ −t and r�;L ¼ r�;R ≡ r�) and r� ≪
μ−1=2L and t ≫ μ−1=2L. This fixes B0 ¼ B ¼ PL to be close
to the left AdS boundary, such that the Polyakov term in Imc

E
(14) is evaluated over a Wheeler-deWitt CD (left Fig. 2).
Inserting the extremal points into SHHvN yields a time-
dependent result [8]

SHHvN ¼ c
3
log

�
2L
δ

coshð ffiffiffi
μ

p
t=LÞ

sinhð− ffiffiffi
μ

p
r�=LÞ

�

≈
c
3

ffiffiffi
μ

p
L

tþ � � � ; t ≫ L=
ffiffiffi
μ

p
: ð20Þ

One may interpret the growth in time as arising from a
sequence of Wheeler-deWitt CDs of each time slice. This
linear growth leads to an information paradox [8].
Combined, we see extremizing (15) yields the Hawking

and island phases of SradvNðtÞ. According to the QES
formula (1) the Page curve follows from a global mini-
mization over the location of the QES, where the turnover
between the Hawking and island curves occurs at the Page
time tP ¼ 6βH

2πc SBH ≈ 3Lϕ0

2
ffiffi
μ

p
Gc ≫ 1. This global minimization is

not apparent from extremizing Imc
E or from the maximiza-

tion condition on Sgen found here. This is because we are
working in a microcanonical ensemble. Our choice of
ensemble is akin to [62] who found the condition of
dominance in the microcanonical path integrals of small
eternal AdS black holes corresponds to maximizing the
holographic entanglement entropy [16]. Crucially, maxi-
mizing Sgen with respect to the solution at fixed E0 is
consistent with the QES prescription (1) of extremizing
Sgen with respect to the location and shape of X [62].
Thus, minimizing Imc

E is consistent with the QES or
island formula.
Note that maximizing Sgen at fixed energy suggests

SradvNðE0Þ follows a curve mirroring the Page curve, arising
from the global minimization of the microcanonical action.
That is, for “low” energies E0, the entropy SgenðE0Þ is
maximal for the Hawking saddle, while at “higher”
energies the entropy is maximal for the island saddle.
Deriving such a curve, however, entails a more detailed
knowledge of the gravitational energy of CDs.

VI. DISCUSSION

The island formula was derived for eternal and dynami-
cal AdS2 black holes in JT gravity using the “replica trick”
[10–12,29,63,64]. It remains an open question how to
generalize the derivation for other theories of gravity,
including non-JT 2D dilaton theories of gravity, such
as deformed JT [65], or 2D flat space analogs [66–68].
The microcanonical PI may be able to address this problem.
Firstly, the above arguments for the microcanonical PI hold
for generic 2D dilaton gravity models with Lagrangian

FIG. 2. Penrose diagram of AdS2 (blue) coupled to a bath
(green) displaying Hawking (left) and island phases (right). On
the right,QL;R are quantum extremal surfaces bounding the island
I (purple). In the Hawking phase the entanglement wedge
(yellow) of the black hole is the Wheeler-deWitt patch and in
the island phase it consists of two identical causal diamonds.
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density L ¼ L0½ZðϕÞRþUðϕÞð∇ϕÞ2 − VðϕÞ� þ LPol, for
which the microcanonical on-shell action (14) generalizes to

Imc
E ¼ −lim

ϵ→0

Z
∂Dϵ×∂Σ

dsE
ffiffiffi
γ

p
K

�
2L0ZðϕÞ −

cχ
12π

�
: ð21Þ

Following the derivation above, we again find Imc
E ¼ −SW

with the Wald entropy SW ¼ 4πL0ZðϕÞ − cχ=6. Since the
Polyakov contribution may always be cast as the vN entropy,
this yields Imc

E ¼ −Sgen for any 2D dilaton gravity theory
coupled to conformal matter. Then, applying our arguments
here would provide a derivation of the extremization of Sgen
for flat eternal black holes [22,23] and 2D de Sitter space
[69–72], recently accomplished in [73]. This is a distinct
advantage over current techniques using the replica trick.
Thus far the island formula has not been derived for

theories of gravity in higher dimensions. The so-called
Hilbert action boundary term method [31] or the Noether
charge formalism [54] employed here holds for arbitrary
theories of gravity in general spacetime dimensions [54]. In
fact, our derivation of the on-shell microcanonical action in
Appendix C is valid for causal diamonds in any theory of
gravity. Thus, given the correct equivalent of the semi-
classical Polyakov action, the microcanonical path integral
may be used, in principle, to derive the island formula for
higher-dimensional theories of gravity, and, correspond-
ingly, a Page curve. An obstacle to applying our results to
higher dimensions, however, is the fact that our arguments
here rely on the equivalence between the Wald entropy and
the generalized entropy [40]. This could be due to the fact
that the Polyakov action is 1-loop exact in 2D, capturing the
full effect of the conformal anomaly, which might not hold
in higher dimensions.
Finally, while the replica trick derives the Page curve of

Hawking radiation of dynamical black holes, it is a clear
challenge for the microcanonical path integral described
here. This is because our results reliably hold in equi-
librium since there exists an obvious candidate for
(conformal) Killing time, while a dynamical black hole
lacks such a symmetry. This problem may be circum-
vented by instead considering the York time [74],
which exists for more general spacetimes, or providing
a microcanonical interpretation of dynamical horizon
entropy [53,75,76].
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APPENDIX A: CONFORMAL ISOMETRY OF
CAUSAL DIAMONDS IN AdS2

We first derive the conformal isometry that preserves a
causal diamond in a generic two-dimensional spacetime,
for a line element in conformal gauge dl2 ¼ −e2ρdudv.
Afterwards, we specialize to diamonds in AdS2. Since the
property of a conformal isometry is invariant under a Weyl
rescaling of the metric, we can leave off the conformal
factor and study the conformal Killing vectors of the line
element dudv, which take the general form [47,48]

ζ ¼ AðuÞ∂u þ BðvÞ∂v: ðA1Þ

Suppose the causal diamond consists of the intersection of
the regions ½u − u0 ¼ −a; u − u0 ¼ a� and ½v − v0 ¼ −b;
v − v0 ¼ b�. The maximal spatial slice Σ is described by
u − u0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv − v0Þ2 þ a2 − b2

p
and the line between

the future and past vertices is given by u − u0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv − v0Þ2 þ a2 − b2

p
. The conformal Killing vector that

preserves the diamond is only a function of the distance
u − u0 and v − v0, i.e., A ¼ Aðu − u0Þ and B ¼ Bðv − v0Þ.
To map the diamond onto itself ζ must be tangent to the
null generators on the null boundaries u ¼ u0 � a and
v ¼ v0 � b, which implies Að�aÞ ¼ 0 and Bð�bÞ ¼ 0.
Hence, AðyÞ¼ gaðyÞ½hðaÞ−hðyÞ� and BðyÞ¼mbðyÞ½nðbÞ−
nðyÞ�, with hðyÞ ¼ hð−yÞ and nðyÞ ¼ nð−yÞ. In addition,
the flow of ζ must respect the reflection symmetries across
the line between the future and past vertices and across Σ,
when a and b are interchanged. In particular, replacing
u − u0 ↔ v − v0 and a ↔ b leaves the vector field
unchanged ζ → ζ, so mbðyÞ ¼ gbðyÞ and nðyÞ ¼ hðyÞ.
Further, if u − u0 ↔ −ðv − v0Þ and a ↔ b we must have
ζ → −ζ, yielding gðyÞ ¼ gð−yÞ. Therefore, the conformal
isometry of a causal diamond is generated by

ζ¼Aaðu−u0Þ∂uþAbðv−v0Þ∂v; with

AaðyÞ¼gaðyÞ½hðaÞ−hðyÞ�; gðyÞ¼gð−yÞ; hðyÞ¼hð−yÞ;
ðA2Þ

which holds for a generic two-dimensional spacetime.
Further, the past and future null boundaries of the diamond
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are conformal Killing horizons, since ζ becomes null on
these boundaries. Due to the different length scales a and b,
there are two (positive) surface gravities

κa ¼ gaðaÞh0ðaÞ and κb ¼ gbðbÞh0ðbÞ; ðA3Þ

defined via ∇μζ
2 ¼ −2κζμ [50] evaluated on the future null

boundaries u − u0 ¼ a and v − v0 ¼ b, respectively.
Next we place the causal diamond in AdS2 space, for

which the line element in null coordinates u ¼ t − r� and
v ¼ tþ r� reads

dl2 ¼ −e2ρdudv; e2ρ ¼ μ

sinh2
h ffiffi

μ
p
2L ðv − uÞ

i : ðA4Þ

As a special case, we consider a Rindler wedge in AdS
space which has the shape of a half causal diamond,
and becomes a full diamond when AdS is glued to a
Minkowski patch at the conformal boundary. We require
that the conformal isometry of a generic diamond becomes
the boost isometry of AdS-Rindler space, if the future
and past vertices of the diamond are both located on the
AdS boundary, i.e., if b ¼ a and r�;0 ≡ 1

2
ðv0 − u0Þ ¼ 0 or

t0 ≡ 1
2
ðv0 þ u0Þ ¼ v0 ¼ u0. The boost Killing vector of

AdS-Rindler space is [40]

ξ ¼ Aðu − t0Þ∂u þ Aðv − t0Þ∂v; with

AðyÞ ¼ Lκ=
ffiffiffi
μ

p
sinhð ffiffiffi

μ
p

a=LÞ ½coshð
ffiffiffi
μ

p
a=LÞ − coshð ffiffiffi

μ
p

y=LÞ�;

ðA5Þ

for which the surface gravities coincide κa ¼ κb ¼ κ.
Comparing (A2) and (A5), we see the requirement ζ → ξ,
as b → a and v0; u0 → t0, restricts the functions in the
conformal Killing vector (A2) to be

gaðyÞ ¼
Lκa=

ffiffiffi
μ

p
sinhð ffiffiffi

μ
p

a=LÞ ; hðyÞ ¼ coshð ffiffiffi
μ

p
y=LÞ; ðA6Þ

and similarly for gbðyÞ. Thus, by the special case of the
AdS-Rindler (half) diamond, the conformal isometry of a
causal diamond in AdS2 is uniquely fixed to be

ζ ¼ Aaðu − u0Þ∂u þ Abðv − v0Þ∂v; with

AaðyÞ ¼
Lκa=

ffiffiffi
μ

p
sinhð ffiffiffi

μ
p

a=LÞ ½coshð
ffiffiffi
μ

p
a=LÞ − coshð ffiffiffi

μ
p

y=LÞ�:

ðA7Þ

For a ¼ b and μ ¼ 1 this is equivalent to the conformal
Killing vector of a spherically symmetric causal diamond in
higher-dimensional de Sitter spacetime [48].

APPENDIX B: DIAMOND UNIVERSE
COORDINATES IN AdS2

We can cover a causal diamond with the inextendible
coordinates (s, x), introduced in [48] (see also [51]). This
coordinate system is adapted to the flow of the conformal
Killing vector ζ that preserves the diamond. In particular,
the coordinate s ∈ ½−∞;∞� is the conformal Killing time,
defined as the function that satisfies ζ · ds ¼ 1 and, for
a ¼ b, s ¼ 0 on the maximal slice Σ (t ¼ t0). Further, the
coordinate x ∈ ½−∞;∞� is a spatial coordinate and satisfies
ζ · dx ¼ 0 and jdxj ¼ jdsj and, for a ¼ b we have x ¼ 0
at r� ¼ r�;0. It follows from these conditions that the two-
dimensional line element in “diamond universe” coordi-
nates is

dl2 ¼ C2ðs; xÞð−ds2 þ dx2Þ ¼ −C2ðū; v̄Þdūdv̄: ðB1Þ

where ū ¼ s − x and v̄ ¼ sþ x are null coordinates.
The null boundaries of the diamond are at ū ¼ �∞
(u − u0 ¼ �a) and v̄ ¼ �∞ (v − v0 ¼ �b), where the
plus signs corresponds to the future horizon and the minus
signs to the past horizon. On any constant x slice the
vertices are located at s ¼ �∞, and on a constant s slice the
two edges are at x ¼ �∞. Furthermore, in these coordi-
nates ζ ¼ ∂s ¼ ∂ ū þ ∂ v̄, which should be equivalent to the
conformal Killing vector in (A2) where the functions are
given by (A6) in AdS2. From the equality of these two
expressions for ζ we obtain the transformation from the null
coordinates ðu; vÞ to ðū; v̄Þ

eκaū ¼
sinh

h ffiffi
μ

p
2L ðaþ u − u0Þ�

i

sinh
h ffiffi

μ
p
2L ða − uþ u0Þ

i ;

eκbv̄ ¼
sinh

h ffiffi
μ

p
2L ðbþ v − v0Þ�

i

sinh
h ffiffi

μ
p
2L ðb − vþ v0Þ

i ; ðB2Þ

and the inverse transformation

e
ffiffi
μ

p ðu−u0Þ=L ¼ cosh ½ð ffiffiffi
μ

p
a=Lþ κaūÞ=2�

cosh ½ð ffiffiffi
μ

p
a=L − κaūÞ=2�

;

e
ffiffi
μ

p ðv−v0Þ=L ¼ cosh ½ð ffiffiffi
μ

p
b=Lþ κbv̄Þ=2�

cosh ½ð ffiffiffi
μ

p
b=L − κbv̄Þ=2�

: ðB3Þ

Kruskal coordinates ðT; XÞ ¼ ð1
2
ðV þUÞ; 1

2
ðV −UÞÞ, with

ðU;VÞ ¼ ð− Lffiffi
μ

p e−
ffiffi
μ

p
u

L ; Lffiffi
μ

p e
ffiffi
μ

p
v

L Þ, are convenient to visualize

the Euclideanized diamond [51].
By comparing the metrics (A4) and (B1), and using the

transformation in (B3), we find
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C2ðū; v̄Þ ¼ 4κaκbL2ðe
ffiffi
μ

p
L 2a − 1Þðe

ffiffi
μ

p
L 2b − 1Þ

× e
ffiffi
μ

p
L 2r�;0þκaūþκbv̄½ðe

ffiffi
μ

p
L b þ eκbv̄Þðe

ffiffi
μ

p
L aþκaū þ 1Þ

− e
ffiffi
μ

p
L 2r�;0ðe

ffiffi
μ

p
L a þ eκaūÞðe

ffiffi
μ

p
L bþκbv̄ þ 1Þ�−2; ðB4Þ

where r�;0 ≡ 1
2
ðv0 − u0Þ. Note for r�;0 ¼ 0 and a ¼ b we

recover AdS-Rindler space since the conformal factor
becomes C2 ¼ κ2L2= sinh2½κ

2
ðv̄ − ūÞ�, where κ ¼ κa ¼ κa.

For a generic diamond there exist two different surface
gravities, associated to the two parts of the future conformal
Killing horizons, ū ¼ ∞ and v̄ ¼ ∞, given by

κa ¼ −C−2∂ ūC2jū→∞; κb ¼ −C−2∂ v̄C2jv̄→∞; ðB5Þ

where we applied the definition ∇μζ
2 ¼ −2κζμ [50]. As

shown in [48], surface gravities satisfying this definition are
constant on a bifurcate conformal Killing horizon, so κa
and κb are constant. As usual, these surface gravities can be
interpreted as the temperatures corresponding to the a and b
portions of the conformal Killing horizon. This is because
the Hartle-Hawking state, satisfying hHHj∶Tχ

uu∶jHHi ¼
cπ
12
T2
H with TH ¼

ffiffi
μ

p
2πL, is also thermal with respect to the

ðū; v̄Þ coordinates

hHHj∶Tχ
ū ū∶jHHi ¼

�
du
dū

�
2 cπ
12

T2
H −

c
24π

fu; ūg

¼ cπ
12

�
κa
2π

�
2

¼ cπ
12

T2
a; ðB6Þ

where we used the anomalous transformation law for the
normal-ordered stress tensor, and inserted (B3). A similar
result holds for ∶Tχ

v̄ v̄∶, i.e., its expectation value in jHHi is
thermal with temperature Tb ¼ κb=2π. This was already
known for the special case of AdS-Rindler [40], but here
we showed the HH state in AdS2 is thermal with respect
to any causal diamond. The temperature of the CD thus
seems positive and finite, in contrast to the negative
temperature interpretation in [48,55] and the infinite
temperature claim in [51].
Near the bifurcation points x ¼ �∞ of the conformal

Killing horizons of the diamond the surface gravity satisfies
the relation ∇μζν ¼ κnμν [48], where nμν ¼ 2u½μnν� is the
outward and future pointing binormal, with u ¼ C−1∂s is
the future pointing timelike unit normal and n ¼ �C−1∂x is
the outward pointing spacelike unit normal at x ¼ �∞.
The surface gravity can be computed to be κ ¼
∓ 1

2
C−2∂xC2jx¼�∞ ¼ ðκa þ κbÞ=2. This expression can

also be obtained from the periodicity of the Euclidean
time. In the Euclideanized diamond spacetime the con-
formal Killing horizon maps to punctures at x → �∞.
Near x → �∞ the diamond universe line element (B1)
becomes

dl2 ≈ 4L2κaκbe∓ðκaþκbÞxð−ds2 þ dx2Þ; ðB7Þ

which is simply flat Rindler space dl2 ¼ −κ2ϱ2ds2 þ dϱ2

for the coordinate ϱ≡ 4L
ffiffiffiffiffiffiffiffiffi
κaκb

p ðκa þ κbÞ−1e∓ðκaþκbÞx=2,
and identifying the surface gravity κ ¼ ðκa þ κbÞ=2.
Note the null boundaries x ¼ �∞ map to the Rindler
horizon ϱ ¼ 0. Upon Wick rotating s → −isE, removing
the conical singularity in the Euclidean spacetime located at
the horizon, has us periodically identify sE ∼ sE þ 2π=κ.

APPENDIX C: MICROCANONICAL ACTION IN
THE NOETHER CHARGE FORMALISM

In the main text we obtained the on-shell microcanonical
action (15) using the Hilbert action surface term method
[31,51]. However, the microcanonical action can be derived
using various methods. Brown [77] showed an equivalence
between the GHY surface action [31] and the micro-
canonical action developed by Brown and York [30].
Later, both actions were expressed in the Noether charge
formalism [41,54], and shown to be equivalent to the
Noether charge. These methods are typically applied to
black hole spacetimes, but here we use them to define the
microcanonical action for causal diamonds. Specifically,
employing the Noether charge formalism, below we define
the off-shell Euclidean microcanonical action of CDs, and
show it equals (14) and (15) on shell.
We consider generic semiclassical 2D dilaton gravity

theories with Lagrangian 2-form L ¼ ϵL0½RZðϕÞ þ
UðϕÞð∇ϕÞ2 − VðϕÞ� þ LPol, with ϵ the spacetime volume
form on the Lorentzian CD spacetime MCD. We foliate the
CD with spacelike slices Σs, labeled by the conformal
Killing time s, which smoothly intersect the bifurcation
points ∂Σ of the null boundaries. The Euclidean diamond
spacetime MCD

E is defined by periodically identifying
the Euclidean time sE ¼ is with 2π=κ to avoid a conical
singularity at ∂Σ. Motivated by [30,54], we define the off-
shell microcanonical Euclidean action

Imc
E ≡ −i

�Z
MCD

E

L −
Z
MCD

E

ds ∧ θðψ ;LζψÞ
�
; ðC1Þ

where θ is the symplectic potential 1-form, and the
dynamical fields are ψ ¼ ðgμν;ϕ; χÞ. Note θðψ ;LζψÞ here
is non-vanishing since ζ is a conformal Killing vector
instead of a Killing vector. Writing L ¼ ds ∧ ζ · L, we see
the two terms between brackets combine into an integral
over the Noether current 1-form jζ ≡ θðψ ;LζψÞ − ζ · L
associated with diffeomorphisms generated by ζ. Using the
on-shell identity jζ ¼ dQζ, with Qζ the Noether charge
0-form, and applying Stokes’ theorem we find the on-shell
Euclidean microcanonical action for CDs is equal to
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Imc
E ¼

Z
∂MCD

E

dsE ∧ Qζ; ðC2Þ

where the total Noether charge for semiclassical 2D dilaton
gravity is Qζ ¼ Qϕ

ζ þQPol
ζ with [40]

Qϕ
ζ ¼ −L0ϵμν½ZðϕÞ∇μζν þ 2ζμ∇νZðϕÞ�;

QPol
ζ ¼ c

24π
ϵμν½χ∇μζν þ 2ζμ∇νχ�: ðC3Þ

where ϵμν ¼ −nμν is the binormal volume form on ∂Σ, with
nμν as the outward and future pointing binormal. Since
∂MCD

E has topology S1 × ∂Σ we restrict the Noether charge
to ∂Σ, where ζj∂Σ ¼ 0 and ∇μζνj∂Σ ¼ κnμν, hence it
becomes Qζj∂Σ¼− κ

2π ½4πL0ZðϕÞ− c
6
χ�. Importantly, Qζj∂Σ

is independent from sE, because ϕ; χ are constant in the
limit x → �∞. Thus, we can integrate out the Euclidean
time, and obtain that the on-shell microcanonical action is
equal to minus the Wald entropy

Imc
E ¼ 2π

κ

I
∂Σ

Qζ ¼ −SWj∂Σ; ðC4Þ

where SW ¼ 4πL0ZðϕÞ − cχ=6. This shows the micro-
canonical action is proportional to the Noether charge
and it proves (15), given SW ¼ Sgen.
In a proper microcanonical ensemble the action is

minimized at fixed energy E0. The definition of E0 in
our setup may therefore be identified from the variation of
the on-shell action on MCD

E

δImc
E ¼

Z
MCD

E

dsE ∧ ωðψ ; δψ ;LζψÞ ¼
Z
S1
dsEδHζ; ðC5Þ

where the symplectic current 1-form is defined as
ωðψ ; δ1ψ ; δ2ψÞ≡ δ1θðψ ; δ2ψÞ − δ2θðψ ; δ1ψÞ, and in the
second equality we inserted δHζ ¼

R
ΣsE

ωðψ ; δψ ;LζψÞ,
the variation of the Hamiltonian generating evolution along
the flow of ζ. The first equality follows from varying (C1)
and using δL ¼ Eψδψ þ dθðψ ; δψÞ, where Eψ ¼ 0 are the
field equations for ψ, and inserting Cartan’s magic formula
ζ · dθ ¼ Lζθ − dðζ · θÞ. The term R

∂MCD
E
ds ∧ ζ · θ vanishes

because ζ is zero at the edge ∂Σ. Thus, we see from (C5)
the action Imc

E is minimized at fixed energy E0 ∼Hζ up to a
sign and constant. We set the constant to zero and the sign

is fixed by comparing to the first law κ
2π δSW ¼ −δHζ such

that E0 ¼ −Hζ.
Lastly, let us comment on the equivalence between the

on-shell microcanonical action (C4) and the GHY surface
term used in the main text

Imc
E ¼ −lim

ϵ→0

Z
∂Dϵ×H

dsE
ffiffiffi
γ

p
K

�
2L0ZðϕÞ −

cχ
12π

�
: ðC6Þ

where Dϵ is an infinitesimal disk of radius ϵ orthogonal to
the punctures ∂Σ∶x ¼ �∞ in the Euclideanized diamond.
While initially obscure, the equivalence of (C4) and (C6)
follows from the fact that, on-shell, Hζ ¼ 0 on the
bifurcation surface and that the GHY boundary term is
independent of s on ∂Σ [54]. More explicitly, the
Hamiltonian Hζ for a theory which fixes the induced
metric of the boundary ∂M of a (Lorentzian) manifold
M is generically given by an integral over the codimension-
2 slices Cs where Σs orthogonally intersects ∂M [40] (see
also [54,78])

Hζ ¼
Z
Cs

ðQζ − ζ · bÞ ¼
I
Cs

ϵ∂ΣNε: ðC7Þ

Here b ¼ ϵBK½−2L0ZðϕÞ þ c
12π χ� is the GHY boundary

term 1-form, ε ¼ −2L0nα∇αZðϕÞ is the quasi-local energy
density, and N ¼ −ζμuμ is the lapse. Crucially, on bifur-
cation points ∂Σ, the lapse N ¼ 0 such that Hζ ¼ 0. Then,
for a 1-parameter family of surfaces ð∂ΣÞϵ in ΣsE , where
limϵ→0ð∂ΣÞϵ → ∂Σ, we have

lim
ϵ→0

Z
ð∂ΣÞϵ

Qζ ¼ lim
ϵ→0

Z
ð∂ΣÞϵ

ζ · b: ðC8Þ

Thus, by the definition SW ¼ − 2π
κ

R
∂Σ Qζ of the Wald

entropy, we find

SW ¼ −lim
ϵ→0

2π

κ

Z
ð∂ΣÞϵ

ζ · b ¼ −lim
ϵ→0

Z
∂Dϵ×∂Σ

dsE ∧ ζ · b

¼ lim
ϵ→0

Z
∂Dϵ×∂Σ

dsE
ffiffiffi
γ

p
K

�
2L0ZðϕÞ −

cχ
12π

�
; ðC9Þ

where 2π=κ was replaced with the integral
R
∂Dϵ

dsE and we
used that the GHY term b is independent of sE on ð∂ΣÞϵ.
This shows (C4) and (C6) are equal, which establishes the
Hilbert action surface formula (14).
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