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Abstract: Action recognition has been recognized as an activity in which indi-
viduals’ behaviour can be observed. Assembling profiles of regular activities
such as activities of daily living can support identifying trends in the data
during critical events. A skeleton representation of the human body has been
proven to be effective for this task. The skeletons are presented in graphs
form-like. However, the topology of a graph is not structured like Euclidean-
based data. Therefore, a new set of methods to perform the convolution
operation upon the skeleton graph is proposed. Our proposal is based on the
Spatial Temporal-Graph Convolutional Network (ST-GCN) framework. In
this study, we proposed an improved set of label mapping methods for the
ST-GCN framework. We introduce three split techniques (full distance split,
connection split, and index split) as an alternative approach for the convo-
lution operation. The experiments presented in this study have been trained
using two benchmark datasets: NTU-RGB + D and Kinetics to evaluate the
performance. Our results indicate that our split techniques outperform the
previous partition strategies and are more stable during training without using
the edge importance weighting additional training parameter. Therefore, our
proposal can provide a more realistic solution for real-time applications
centred on daily living recognition systems activities for indoor environments.

Keywords: Skeleton split strategies; spatial temporal graph convolutional
neural networks; skeleton joints; action recognition

1 Introduction

Action recognition (AR) has been recognized as an activity in which individuals’ behaviour can be
observed. Assembling profiles of regular activities such as activities of daily living (ADL) can support
identifying trends in the data during critical events. These include actions that might compromise a
person’s life. For that reason, human AR has become an active research area. Generally, human activity
is characterized by different recipes. Amidst these recipes, wearable sensor-based recognition systems
have become one of the most utilized approaches. In this kind of system, the input data comes from
a sensor or a network of sensors [1]. These sensors are worn by the person performing the action. In
general, a sensor-based recognition system consists of a set of sensors and a central node [2]. The aim of
this node is to compute the action representation and perform the action recognition. However, these
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sensor devices are seldom ergonomic. Hence, the discomfort and need of wearing an external device on
a daily basis prevails. These characteristics cause that the person who is monitored to usually forgets
to use the sensor device which makes the recognition system unfunctional [3].

Other AR solutions include computer vision-based systems such as optical flows, appearance, and
body skeletons [4—6]. The use of dynamic human skeletons (DHS) usually carry vital information that
encompasses other modalities. One of the main benefits of this approach is that it minimizes the need
for wearing sensors. Therefore, to collect the data, surveillance cameras can be mounted on the ceiling
or walls of the environment of interest; ensuring an efficient indoor monitoring system [7]. However,
DHS modelling has not yet been fully explored.

A performed action is typically described by a time series of the 2D or 3D coordinates of
human joint positions [6,8]. Furthermore, action is recognized by examining the motion patterns. A
skeleton representation of the human body has been proven to be effective for this task. It provides a
robust solution to noise, and it is considered to be a computational and storage-efficient solution [§].
Additionally, it provides a background-free data representation to the classification algorithms. This
allows the algorithms to focus only on the human body pattern recognition without being concerned
about the surrounding environment of the performed action scenarios. This work aims to develop a
unique and efficient approach for modelling the DHS for human AR.

1.1 Open Pose

There are multiple sources of camera-based skeleton data. Recently, Cao et al. [9] released
the open-source library OpenPose which allows real-time skeleton-based human detection. Their
algorithm outputs the skeleton graph represented as an array with the 2D and the 3D coordinates.
They are 18 tuples with values (X, Y, C) for 2D and (X, Y, Z, C) for 3D; where C is the confidence
score of the detected joint, X, Y and Z represent the coordinates on the X-axis, Y-axis and the Z-axis
of the video frame, respectively.

1.2 Spatial Temporal Graph Neural Network

New techniques have been proposed recently to exploit the connections between the joints of a
skeleton. Among these, Convolutional Neural Networks (CNNs) are used to address human action
modelling tasks due to their ability to automatically capture the patterns contained in the spatial
configuration of the joints and their temporal dynamics [10]. However, the skeletons are presented
in graphs form-like, making it difficult to use conventional CNNs to model the dynamics of human
actions. Thanks to the recent evolution of Graph Convolutional Neural Networks (GCNN:s), it is
possible to analyse the non-structured data in an end-to-end manner. These techniques generalize
CNNs to the graph’s structures [11]. It has been proven that GCNNs are highly capable of solving
computer vision problems and have demonstrated superior performance as compared to CNNs
approaches [12]. The remarkable success of GCNNGs is based on the locally connected configurations
and the collective aggregation upon graphical structures. Moreover, GCNNs operate on each node
separately regardless of the input sequence. Meaning that, unlike CNNs, the outcome of GNNSs is
robust to changes in the input node information [13].

In order to achieve an accurate ADL recognition, the temporal dimension must be considered. An
action can be considered as a time-dependent pattern of a set of joints in motion [8]. A graph offers
a more intuitive representation of a skeleton by presenting the bones as edges and joints as vertices
[14]. Given the advantages of GCNNs mentioned previously, numerous approaches for skeleton-based
action recognition using this architecture have been proposed. The first GCNN-based solution for
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action recognition using skeleton data was presented by Yan et al. [6]. They considered both spatial and
temporal dimensions of skeleton joints movements at the modelling stage. This approach is called the
Spatiotemporal Graph Convolutional Network (ST-GCN) model. In the ST-GCN model, every joint
has a set of edges for the spatial and temporal dimensions independently, as it is illustrated in Fig. 1.
Suppose a given sequence of frames with skeleton joints coordinates; then the spatial edges connect
each joint with its neighbourhood per frame. On the other hand, temporal boundaries connect each
joint with another joint corresponding to the exact location from a consecutive frame. Meaning that,
the temporal edge set represents the joint trajectory over time [6]. However, the topology of the graph
is not implicitly structured like Euclidean-based data. For instance, most of the nodes have different
numbers of neighbours. Therefore, multiple strategies for applying the convolution operation upon
skeleton joints have been proposed.

Figure 1: Spatiotemporal graph representation of a skeleton

In their work, Yan et al. [6] presented multiple solutions to perform the convolution operation
over the skeleton graph. They first divided the skeleton graph into a fixed subset of nodes (the skeleton
joints) they called neighbour sets. Every neighbour set has a central node (the root node) and its adjacent
nodes. Subsequently, it is performed a partitioning of the neighbour set into a fixed number of K
subsets, where a numeric label (which we call priority) is assigned to each of them. Formally, each
adjacent node u, in a neighbour set B(u,;) of a root node u, is mapped to a label /,. On the other hand,
each filter of the CNN has a K number of subsets of values. Therefore, each subset of values of a filter
performs the convolution operation process upon the feature vector of its corresponding node. Given
that the skeleton data has been obtained using the Open Pose toolbox [9], each feature vector consists
of the 2D coordinates of the joints, including a value of confidence C. These ideas are illustrated in
Fig. 2.

In Fig. 2, two of the neighbour sets are shown with an orange background. Subsequently, the
features of each of the nodes (x, y, ¢) are then concatenated into a feature matrix. However, the
criteria to define the position of each of the feature vector in the final matrix is then defined by the
utilized partition strategy. Amidst the skeleton partitioning strategies to perform the label mapping
presented in [0], the Spatial Configuration Strategy served as a reference for the techniques proposed
in the present study.
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1.2.1 Spatial Configuration Partitioning Strategy

In this strategy, the partitioning for the label mapping is performed according to the distance of
each node in the neighbour set with respect to the centre of gravity cg of the skeleton graph. The cg
is defined as the average of the coordinates of all the joints of the skeleton in a single videoframe [6].
According to [6], each neighbour set is divided into three (filter size K = 3). Therefore, each kernel has
three subsets of values; one for the root node, one for the joints closer to ¢g and another one for the
joints located farther with respect to cg. As it can be seen in Fig. 3, each filter with three subsets of
values is applied to the node feature vectors in order to create the output feature map.
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Figure 3: Spatial configuration partitioning
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In this technique, the filter size K= 3, and the mapping are defined by the following [6]:

0 ifr=r
lti(urj): 1 if”/‘< Fi ()
2 ifr>

where /, presents the label map for each joint i in the neighbour set of the root node u,, r; is the average
distance from cg to the root node u, over each frame and r, is the average distance from cg to the i,
joint over each frame across all the training set. Once the labelling of each node in the neighbour set
has been set, the convolution operation is performed to produce the output feature maps, as shown in

Fig. 3.
g

1.3 Learnable Edge Importance Weighting

It is important to note that complex movements can be inferred from a small set of representatives’
bright spots on the joints of the human body [15]. However, not all the joints provide the same quality
and quantity of information regarding the movement performed. Therefore, it is intuitive to assign a
different level of importance to every joint in the skeleton.

In the ST-GCN framework proposed by Yan et al. [6], the authors added a mask M (or M-mask)
to each layer of the GCNN to express the importance of each joint. The mask applied scales the
contribution of each joint of the skeleton according to the learned weights of the spatial graph network.
Accordingly, the proposed M-mask considerably improves architecture’s performance. Therefore, the
M-mask is applied to the ST-GCN network throughout their experiments.

1.4 Ouwr Contribution

This work proposes an improved set of label mapping methods for the ST-GCN framework by
introducing three split techniques (full distance split, connection split, and index split) as an alternative
approach for the convolution operation. It is based upon the ST-GCN framework proposed by Yan
et al. [6]. Our results indicate that all our proposed split strategies outperform the baseline model.
Furthermore, the proposed frameworks are more stable during training. Finally, our proposals do
not require additional training parameters of the edge importance weighting applied by the ST-GCN
model. This proves that our proposal can provide a more suitable solution for real-time applications
focused on daily living recognition systems activities for indoor environments.

The contributions are summarized below:

I: We present an improved set of label mapping methods for the ST-GCN framework by
introducing three split techniques (full distance split, connection split, and index split) as an
alternative approach for the convolution operation.

II: Instead of the traditional way of extracting information from the skeleton without consid-
ering the relations between the joints, we exploit the relationship between the joints during the
action execution to provide valuable and accurate information about the action performed.
III: We find that an extensive analysis of the inner skeleton joint information by partitioning
the skeleton graph in the most number of pieces possible results in more accurate data.

IV: We propose split strategies that focus on capturing the patterns in the relationship between
the skeleton joints by carefully analysing the partition strategies utilized to perform the
movement modelling using the ST-GCN framework.
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The rest of the paper is structured as follows: Section 2 presents state-of-the-art review for previous
skeleton graph-based action recognition approaches. The details of the proposed skeleton partition
strategies are presented in Section 3. Section 4 discuss the experimental settings we use to obtain the
results. The results and discussion are presented Section 5. Finally, Section 6 concludes the paper.

2 Related Literature

There has been previous work on AR upon skeleton data. Due to the emergence of low-cost depth
cameras, access to skeleton data has become relatively easy [16]. Therefore, there has been an increasing
interest in using skeleton representations to recognize human activity in general. For the sake of being
conscience, few most recent but relevant works are mentioned. Zhang et al. [1 7] combined skeleton
data with machine learning methods (such as logistic regression) upon dataset benchmarks. They
demonstrated that skeleton representations provide better performance in terms of accuracy than
other forms of motion representations. In order to model the dependencies between joints and bones,
Shi et al. [14] presented a variety of graph networks denominated Directed Acyclic Graph (DAG).
Later, Cheng et al. [18] presented a shift CNN inspired method called Shift-GCN. Their approach
aims to reduce the computational complexity of previous ST-GCN-based methods. The results showed
the achievement of 10x less computational complexity. However, to the best of our knowledge, there
have not been unique partition strategies proposed to enhance the performance of an AR using the
ST-GCN model presented in [6].

3 Proposed Split Strategies

In this section, we present a new set of techniques to create the label mapping for the nodes in
the neighbour sets of the skeleton graph. The techniques are modifications of the previously proposed
spatial configuration partitioning presented in [6].

As the baseline model, a maximum distance of one node with respect to the root node defines the
neighbour sets in the skeleton graph. However, every node in the neighbour set is labelled separately
in every strategy presented in this section. Therefore, in every proposed approach, the filter size K =4.
For instance, consider a neighbour set consisting only of the root node with a single adjacent node. For
this case, the third and fourth subsets values of the kernel are set by zeros. Each of the split strategies
proposed is computed in each frame of a training video sample individually.

Fig. 4 illustrates our proposed partitioning strategy. As it can be seen, a different label mapping
is assigned to each node in the neighbour set. Therefore, a different subset of values of each filter
is applied to each joint feature vector. However, the bottleneck is defining each node’s order (split
criterion) in the neighbour set. We propose three different approaches to address this issue: full distance
split, connection split, and index split. These proposals are shown in Fig. 5 and will be explained in
the following sections.
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Figure 5: Proposed split techniques; (i) Full distance split. (i1) Connection split. (iii) Index split

3.1 Full Distance Split

In this method, the partitioning for the label mapping is performed according to the distance
of each node in the neighbour set with respect to cg. As can be noticed, this solution is similar
to the spatial configuration partitioning approach previously explained. However, here we consider
the distance of every node in the neighbour set. Thus, this solution is named the full distance split
technique. Therefore, depending on the neighbour set in the skeleton, each kernel can have up to four
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subsets of values. Fig. 51 shows that each filter with four subsets of values is applied to the node feature
vectors. The order is defined by their relative distances with respect to ¢g to create the output feature
map. To explain this strategy, we define the set F as the Euclidean distances of the i, adjacent node u,
(of the root node u,;) with respect to cg sorted in ascending order as:

F={flm=1,2,..., N} (2

where N is the number of adjacent nodes to the root node ;. For instance, f; and f have the minimum
and maximum values in F, respectively. In this strategy, the label mapping is given by:

_ |0 if u, —cg,=r,
where /,; represents the label map for each joint i in the neighbour set of the root node u,, x, is the
Euclidean distance from the root node u, to cg.

3.2 Connection Split

In this approach, the number of adjacent joints of each joint (i.e., the joint degree) represents
the split criterion in the neighbor set. Thus, the more connections the joint has, the higher priority is
assigned to it.

Fig. 511 shows that the joint with label A represents the root node, and B is the joint with the
highest priority since it has three adjacent joints connected. We observe that both C and D joints have
two connections. Hence, the priority for these nodes is set randomly. Once the joint priorities have
been set, the convolution operation is performed with a subset of values of each filter for every joint
in the neighbor set independently.

To define the label mapping in this approach, we first define the neighbor set of a root node u,
and N adjacent nodes as B(u,) [0], and we also define the degree matrix of B(u,) as D, where D €
R™N_ Therefore, the values at the d;; position of D contain the degree value d(u,) of the each of the
adjacent nodes of the root node u,. Similarly, we define a set C as the degree values d(u,) of each of
the N adjacent nodes of the root node sorted in descending order as follows:

C={c,m=12,..., N} C))

For instance, ¢, and ¢, have the maximum and minimum values of C, respectively. Finally, the label
mapping is thus defined as:

_ 0 lf‘ d(uti) = d;
ln'(ulj) - {m l]( d(uﬁ) =c, (5)

where /, represents the label map for each adjacent joint i to the root node u, in the neighbor set, and
d, is the degree corresponding the root node u.

3.3 Index Split

The skeleton data utilized for our study is gathered using the Open-Pose [9] library. According to
the library documentation, the output file with the skeleton information consists of critical/key points.
The output skeleton provided by the Open Pose toolbox is shown in Fig. 6.
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Figure 6: Open-Pose output key points

In this approach, the value of the index of each key point defines the priority criterion of the
neighbour set. An illustrative example is shown in Fig. 5iii. For instance, joint B is assigned with the
highest priority since it has a key point index value of 1, and C is the joint with the second priority
since it has a key point index value of 3. Finally, D is the joint with the least priority since it has a key
point index value of 8.

Therefore, we define the set P as the indexes of the key points ind(u,) of the i, adjacent nodes u,
(of the root node u,) sorted in ascending order as:
P:{pl‘ﬂlmzl’z’"'7 N} (6)

where N is the number of adjacent nodes to the root node u,,. For instance, p, and p, have the minimum
and maximum values of P, respectively. The label mapping is therefore defined as:

[o if ind(u,) = in,
Li(u,) = { m if ind(u;) = p, @)

where /, represents the label map for each joint i in the neighbour set of the root node u, and in, is the
index of the key point corresponding to the root node u,,.

4 Experiments
4.1 Datasets
To evaluate the performance of our proposed partitioning techniques, we train our models on two

benchmark datasets: the NTU RGB + D [19] and the Kinetics [20] dataset. These two datasets were
considered in order to provide a valid comparison with the original ST-GCN framework.
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4.1.1 NTU-RGB+D

Up to date, the NTU-RGB+ D is known to be the most extensive dataset with 3D joints
annotations for human AR tasks [6]. The samples have been recorded using the Microsoft Kinect
V2 camera. In order to take the most advantage of the chosen camera device, each action sample
consists of a depth map modality, 3D joint information, RGB frames, and infrared sequences. The
information provided by this dataset consists of the tri-dimensional location of the 25 main joints of
the human body.

In their study, Shahroudy et al. [19] proposed two evaluation criteria for the NTU-RGB + D
dataset: the Cross-Subject (X-sub) and the Cross-View (X-view) evaluations. In the first approach,
the train/test split for evaluation was based upon groups of subjects performing the action; the data
corresponding to 20 participants is used for training and the remaining samples for testing. On the
other hand, the X-view evaluation approach considers the camera view as criteria for the train/test
split; the data collected by the camera 1 is used for testing and the data collected by the other two
cameras is used for training.

The NTU-RGB + D dataset provides a total of 56,880 action clips performing 60 different actions
classified into three major groups: daily actions, health-related actions, and mutual actions. Forty
participants performed the test action samples. Each sample has been captured with 3 different
cameras simultaneously located at the same height but different angles. Later, this dataset was extended
twice its size by adding 60 more classes and another 57,600 video samples [19]. This extended version
is called NTU RGB + D 120 (120-class NTU RGB + D dataset). By considering the 3D skeletons
modality of the NTU-RGB + D dataset only, the storage was reduced from 136 GB to 5.8 GB.
Therefore, the computational speed is reduced considerably.

4.1.2 Kinetics

While the NTU-RGB + D dataset is widely known to be the largest in-house captured AR dataset,
the DeepMind Kinetics human action dataset is the largest set with unconstrained AR samples.

The 306,245 videos provided by the Kinetics dataset are obtained from YouTube. Each video
sample is supplied with no previous editing to ensure good variable resolution and frame rate for
action modelling and is classified into 400 different action classes.

Due to the vast quantity of classes, one video sample can be classified into more than one cluster.
For instance, a video sample with a person texting while driving a car can be classified with the
“texting” label or the “driving a car” label. Therefore, the authors in [20] suggest considering a top-5
performance evaluation rather than a top-1 approach. Meaning that, a labelled sample is considered
a true positive if its ground truth label appears within the 5 classes with the highest scores predicted
by the model (top-5); contrary to considering only the predicted class with the highest score (top-1).

The Kinetics dataset provides the raw RGB format videos. Therefore, it requires the skeleton
information to be extracted from the sample videos. Accordingly, we use the dataset that contains
the Kinetics-skeleton information provided by Yan et al. [6] for our experiments.

4.2 Model Implementation

The experiment process comprises of three stages: Data Splitting, ST-GCN model setup, and
Model Training. These stages are explained as follows:
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4.2.1 Data Splitting

The datasets are divided into two subsets: the training and the validation sets. In our experiments,
we consider a 3:1 relation for training and validation split, respectively.

4.2.2 ST-GCN Model Setup

The ST-GCN model uses a baseline architecture. It consists of a stack of 9 layers that are divided
into 3-layer blocks stacked together. Each layer block consists of 3 layers each. The layers of the first
block have 64 output channels each. The second and third blocks have 128 and 256 output channels,
respectively. Finally, the 256-feature vector output by the last layer is fed into a softmax classifier to
predict the performed action [6].

4.2.3 Model Training

The ST-GCN model is implemented on the PyTorch framework for deep learning modelling [21].
The models are trained using stochastic gradient descent with learning rate decay as an optimization
algorithm. The initial learning rate is 0.1. The number of epochs and decay schedule for training varies
depending on the dataset used. For the NTU-RGB + D dataset, we train the models for 80 epochs,
and the learning rate decays by a factor of 0.1 on the 10™ and the 50" epochs. On the other hand,
for the Kinetics dataset, we train the models for 50 epochs, and the learning rate decays by a factor
of 0.1 every 10™ epoch. Similarly, the batch size also varies according to the dataset utilized; for the
NTU-RGB + D dataset, the batch sizes for training and testing used were 32 and 64, respectively; on
the other hand, for the Kinetics dataset, the batch sizes for training and testing used were 128 and 256,
respectively. To avoid overfitting, a weight decay value of 0.0001 has been considered. Additionally, a
dropout value of 0.5 has been set for the NTU-RGB + D dataset experiments.

To provide a valid comparison with the baseline model, an M-mask implementation is considered
in the experiments presented in this study.

5 Experimental Results and Discussion

This section discusses the performance of our proposals against the benchmark ST-GCN models
based on [6] using the spatial configuration partition approach. This strategy provides the best
performance in terms of accuracy in [6]. Therefore, it has been chosen as a baseline to prove the
effectiveness of the partition strategies introduced in this study.

5.1 Results Evaluation on NTU-RGB + D

Note that we aim to recognize ADL in an indoor environment. Therefore, the NTU-RGB + D
dataset serves as a more accurate reference than the Kinetics dataset since it was recorded using
the same conditions. Hence, we focus on the results obtained with this dataset. We use the 3D joint
information provided in [19] in our experiments. The Tab. | shows the performance comparisons of
our proposals and the state-of-the-art ST-GCN framework. It can be observed that all our partition
strategies outperform the spatial configuration strategy of the ST-GCN. For the X-sub benchmark, the
connection split achieves the highest performance of 82.6% accuracy, more than 1% higher than the
ST-GCN performance. On the other hand, the index split outperforms the rest of the strategies with
90.5% accuracy on the X-view benchmark, more than 2% higher than the ST-GCN performance.



4654 CMC(, 2022, vol.71, no.3

Table 1: NTU-RGB + D performance

Method X-sub X-view
ST-GCN Spatial configuration 81.5% 88.3%
partitioning
Ours Full distance split 81.6% 89.3%
Ours Connection split 82.6% 89.6%
Ours Index split 81.7% 90.5%

Figs. 7-10 show the training behaviour of the models using the spatial configuration partitioning
of the ST-GCN framework and the proposed connection split on both X-sub and X-view benchmarks
without the M-mask implementation. The blue and orange plots show the performance of the models
using the training and the validation sets, respectively. The training score plots show that the learning
performance of the proposed connection split stabilizes while increasing over time compared with the
ST-GCN outcome. Our proposals provide a considerable advantage over the benchmark framework
because it demonstrates that the M-mask is not required to yield satisfactory performance. The
omission of the M-mask results in a reduction of computational complexity. Hence, our proposal
can provide a more suitable solution for real-time applications. Moreover, given the performance
superiority on accuracy and time consumption, our proposed method offers a practical solution an
ADL recognition system.

Accuracy Plot

30 ~ —— Train Accuracy
Test Accuracy

T T T T T

T T T
0 10 20 30 40 50 60 70 80
No. of epoch

Figure 7: Spatial C.P X-sub training scores

5.2 Performance on the Kinetics Dataset

The recognition performance has been evaluated using the top-1 and top-5 criterion using
the Kinetics dataset. We validate the performance of our proposed techniques with the ST-GCN
framework, as shown in Tab. 2.
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Figure 8: Connection split X-sub training scores
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Figure 9: Spatial C.P X-view training scores
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Figure 10: Connection split X-view training scores
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Table 2: Performance on kinetics dataset

Method Top-1 Top-5
ST-GCN Spatial configuration 30.7% 52.8%
partitioning
Ours Full distance split 31.7% 54.5%
Ours Connection split 30.7% 53.3%
Ours Index split 31.5% 54.1%

As the results indicate, all our partition strategies outperform the spatial configuration strategy of
the ST-GCN using the top-5 criteria. We observe that 54.5% accuracy is achieved using the full distance
split approach, which is 2% higher than the performance obtained with the baseline model. On the
other hand, by using the top-1 evaluation criteria, our proposal achieves the same performance as the
ST-GCN model. Similarly, using this evaluation basis, the highest performance achieved is a 31.7%
accuracy using the full distance split approach resulting in a 1% margin higher than the result obtained
with the ST-GCN model.

Therefore, we can conclude that the performance metrics presented in Tab. 2 validates the
superiority of the full distance split method proposed on the Kinetics dataset.

6 Conclusion

In this work, we propose an improved set of label mapping methods for the ST-GCN framework
(full distance split, connection split, and index split) as an alternative approach for the convolution
operation. Our results indicate that all our split techniques outperform the previous partitioning
strategies for the ST-GCN framework. Moreover, they demonstrate to be more stable during training
without using the additional training parameter of the edge importance weighting applied by the
baseline model. Therefore, the results obtained with our current split proposals can provide a
more suitable solution for real-time applications focused on ADL recognition systems for indoor
environments than the baseline strategies for the ST-GCN framework.

A significant computational effort is involved in using heterogeneous methods to calculate
the distances between the joints and the c¢g for each frame in the video sample for full distance
split and spatial configuration partitioning. It will be computationally less demanding to use a
homogeneous technique to calculate the distance between the joints and the cg for both splitting
strategies. Furthermore, while our current methodology considers greater distances from the root node
to perform the skeleton partitioning, additional flexibility can be made by increasing the amount joints
per neighbour set. This may give room to cover larger body sections (such as limbs), making it possible
to find more complex relationships between the joints during the execution of the actions.
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