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Abstract

This paper investigates the robust beamforming design in a secrecy multiple-input single-output

(MISO) network aided by the intelligent reflecting surface (IRS) with simultaneous wireless information

and power transfer (SWIPT). Specifically, by considering that the energy receivers (ERs) are potential

eavesdroppers (Eves) and both imperfect channel state information (CSI) of the direct and cascaded

channels can be obtained, we investigate the max-min fairness robust secrecy design. The objective is

to maximize the minimum robust information rate among the legitimate information receivers (IRs). To

solve the formulated non-convex design problem in bounded and probabilistic CSI error models, we

utilize the alternating optimization (AO) and successive convex approximation (SCA) methods to obtain
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an approximate problem. Then, an iteration-based algorithm framework was proposed, where the unit

modulus constraint (UMC) of the IRS is handled by the penalty dual decomposition (PDD) method.

Moreover, a stochastic SCA method is proposed to handle the outage constrained design with statistical

CSI. Finally, simulation results validate the promising performance of the proposed design.

Index Terms

Intelligent reflecting surface, alternating optimization, penalty dual decomposition.

I. INTRODUCTION

The fifth generation (5G) and beyond wireless networks are expected to meet an increasing

requirement for wireless applications such as high spectral efficiency and low latency. Since

battery capacity is limited, wireless devices powered by batteries have a short life and require

frequent recharging [1]. The energy constrained problem has become a major bottleneck for next

generation wireless networks. Energy harvesting (EH) techniques have been seen as an attractive

solution to improve the energy efficiency (EE) in wireless networks.

One main EH method in wireless networks is the simultaneous wireless information and power

transfer (SWIPT) technique, since the radio frequency signal can be used as an energy source [2].

Normally, the energy receiver (ER) is deployed closer to the transmitter (Tx) than the information

receiver (IR) to help EH. However, when the ER tries to access the confidential information sent

to the IR, the ER will become an eavesdropper (Eve). To overcome this security threat, physical

layer security (PLS) techniques have been proposed to improve the secrecy performance in

wireless networks [3]. Specifically, [4] investigated the use of secure beamforming (BF) in a

multiple-input single-output (MISO)-SWIPT system with multiple Eves, where a semi-definite

relaxation (SDR) based method was developed to obtain the sum rate maximization design. Also

[5] studied the robust transmission design in a MISO-SWIPT system, where a secrecy energy

efficiency (SEE) maximization problem was handled by the successive convex approximation

(SCA) technique.

Recently, intelligent reflecting surface (IRS) has drawn great attention in industry and academi-

a. An IRS is a planar array with many reflecting elements, which can rotate the phases of the

incident electromagnetic (EM) wave passively [6]. Therefore, by altering the phase shifters with

a controller, the reflected signals can be adjusted to a desired direction [7]. Moreover, since only

reflecting the received signal with no decoding and encoding operation, IRS consumes much

less power than active Tx or relay, and can have higher EE [8]. With these advantages, IRS has

sparked so much interest recently.
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Specifically, for the MISO channel, [9] studied the IRS-assisted design in a multi-cast MISO

network, where a max-min fairness design problem was solved via a surrogate function. In

[10], the authors investigated the harvested power (HP) maximization problem for IRS-enhanced

MISO-SWIPT networks, where a SDR based algorithm was designed to obtain the reflection

coefficients (RCs) of the IRS. Besides, [11] addressed the joint BF and phase shifter design

for IRS-enhanced MISO-SWIPT networks, where a penalty dual decomposition (PDD) method

was proposed to minimize the transmit power consumption, subject to different quality-of-

service (QoS) constraints. Moreover, for the multiple-input multiple-output (MIMO) channel,

[12] investigated the sum rate optimization in an IRS-aided multi-cell MIMO network, where an

equivalent weighted minimum mean-squared error (MMSE) method was proposed. Also, [13]

studied an IRS-aided MIMO-SWIPT network, where a price based method was presented to

design the precoding matrix and the RCs.

Besides, several works have looked at the secrecy transmission design in IRS-aided networks.

For instance, for the MISO channel, [14] obtained an IRS-assisted secure transmission by a SDR

method. To further improve the secrecy performance, in [15] and [16], the artificial noise (AN)-

assisted secure transmission was designed in an IRS-aided network. Furthermore, for the MIMO

channel, [17] studied the IRS-aided secure design, by using an alternating optimization (AO)

approach. Also, in [18] and [19], the secure MIMO communications via IRS were achieved by

a block coordinate descent (BCD) and Lagrangian dual based algorithm. Among these works,

the majorization-minimization (MM) method and the complex conjugate gradient (CCG) method

were commonly used to design the RCs. However, these two methods are only available for the

ideal channel state information (CSI) case.

Practically, it will be difficult to obtain accurate CSI due to estimation and quantization errors.

While for the IRS-assisted networks, it is more challenging to obtain the accurate CSI about the

cascade link than that in amplify-and-forward (AF) relay networks, since the IRS has no RF chain

to perform baseband processing [20]. Currently, there are two main methods about the channel

estimation for the IRS-related links. One is to separately estimate the Tx-IRS channel and the

IRS-user channel by using some active elements at the IRS, which requires more hardware and

power consumption [21]. The other is to estimate the cascaded Tx-IRS-user channel, where the

main advantage is that no extra power and hardware consumption are needed, and the cascaded

channel are sufficient for the joint BF design, such as [22] for MISO network and [23] for

MIMO network, respectively. However, the robust design in IRS-aided wiretap networks is still

much less understood, especially when Eve is passive and the related CSI is hard to obtain [24].

To handle this problem, several novel works have been proposed. For example, for the worst
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case constrained design with bounded CSI errors, [25] studied the robust secrecy design with

IRS by incorporating the AO, SCA, and penalty-based methods. Moreover, [26] investigated

the robust secrecy BF for IRS-enhanced millimeter wave (mmWave) channels, where the worst

case information rate was maximized by the AO and SDR approaches. Recently, [27] addressed

the robust BF design for IRS-assisted MISO networks, where an AO and S-procedure based

algorithm was designed to maximize the EE.

Besides, for the outage constrained design with probabilistic CSI errors, [28] investigated

the robust design for IRS-enabled MISO systems, where an AO and Bernstein-type inequality

(BTI) based method was proposed to iteratively optimize the BF and RCs. Then, [29] studied

the robust design for IRS-enhanced MISO systems with the MMSE criterion, where an AO and

MM based algorithm was developed. Recently, [30] proposed a robust power minimization design

for IRS-assisted MISO networks, where a penalty concave convex procedure (PCCP) method

was developed. In [31], the authors studied the outage constrained robust BF design in an IRS-

assisted MISO wiretap network, where a penalty SDR algorithm was design to optimize the RCs.

Furthermore, [32] extended the work in [31] by considering imperfect direct link CSI, where a

PCCP based approach was proposed. Besides, [33] studied a robust BF design in IRS-empowered

MISO networks by the PDD method. Then, [34] investigated the outage constrained robust BF

for IRS-aided MISO networks, where a constrained stochastic SCA method was proposed. Also,

[35] studied the IRS-assisted MISO uplink transmission, where the robust power minimization

was solved by the PDD method. Recently, [36] studied the phase shifters design in IRS-assisted

network with statistical CSI, where a genetic algorithm was proposed. Also, [37] proposed a

stochastic optimization-based BF design in IRS-enabled mmWave systems to combat the CSI

uncertainty incurred by the random blockages, and extended in [38] by considering multiple IRSs

and the fairness requirement. However, unfortunately, a comprehensive method for the robust

designs in IRS-aided SWIPT networks has not been found.

Motivated by this, this work investigates the robust secrecy transmission in an IRS-aided

MISO-SWIPT network, where the imperfect direct and cascaded channels of the legitimate

and eavesdropping links are considered. Specifically, by considering imperfect IRs’ and ERs’

channels and multiple QoS constraints, we consider the max-min fairness robust information

rate (RIR) objective, by jointly designing the BF, the AN, and the RCs. The proposed problem

is hard to tackle due to the non-convex objective, the coupled variables, and the unit modulus

constraint (UMC). To facilitate the design, we utilize the SCA method to convert the problem,

then an AO algorithm is proposed, where the UMC is tackled by the PDD technique. Finally,

simulation results verify the performance of the proposed approach.
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Our contribution are summarized as follows:

1) For the bounded CSI error model, we formulate the worst case robust design, subject to the

worst case QoS constraints and the UMC of the phase shifter. The AO and SCA methods

are utilized to decompose and reformulate the original non-smooth non-convex objective

to a tractable formulation, while the CSI error is tackled by the Schur-complement and

general S-procedure, and the UMC is handled by the PDD method, which is guaranteed

to converge. Then, an iterative manner is proposed to optimize the BF, the AN covariance,

and the RCs.

2) Then, for the probabilistic CSI error case, we aim to maximize the minimum outage

information rate subject to the UMC and multiple probability constraints. By applying the

BTI, the probability constraints are transformed into several linear matrix inequality (LMI)

constraints and second order cone (SOC) constraints. Then, similar to the worst case robust

design, the associated variables are jointly optimized by the SCA and PDD techniques in

an iterative manner.

3) Then, for the statistical CSI case, where only statistical distribution of the channel covariance

matrices can be obtained, by approximating the outage probability constraints with convex

surrogate function, we propose a stochastic SCA method to handle the robust design,

where the outer optimization is conducted by the bisection search method, and the inner

optimization is tackled by the SCA and PDD methods.

4) The feasibility and convergence of the proposed algorithm are analyzed. Simulation results

show that the proposed design achieve better secrecy performance than other baselines.

Besides, it reveals that the cascaded channel error level plays a more important role in the

robustness than the direct channel error level, and it is preferable to deploy the IRS close

to Tx or IRs to improve security.

The rest of this paper is given as follows. Section II introduces the system model. Section

III investigates the robust design for the bounded CSI error model. Then, Section IV addresses

the robust design for the probabilistic CSI error model. Section V studies the stochastic SCA

method to tackle the statistical CSI. Finally, Section VI and Section VII provide the simulation

results and conclude the paper, respectively.

Notations: In this work, boldface lowercase and uppercase letters denote vectors and matrices,

respectively. The conjugate, transpose, conjugate transpose, and trace of matrix A are denoted

as A†, AT , AH , and Tr (A), respectively. a= vec (A) means to stack the columns of A into

a. A � 0 means that A is positive semi-definite. ‖·‖2 and ‖·‖F denote the Euclidean norm and

Frobenius norm, respectively. The block-diagonal matrix with diagonal elements A1, . . . ,AN is
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denoted by BlkD (A1, . . . ,AN), and is reduced to D (a1, . . . , aN) when scalar diagonal elements

are considered. [; ] and [, ] denote concatenation by column and row, respectively. 1M and 0M

are M × 1 vectors with all elements being 1 and 0, respectively. I indicates an identity matrix.

Moreover, <{a}, |a|, and ∠a denote the real part, the modulus, and the angle of a complex

number a, respectively. The distribution of a circularly symmetric complex Gaussian (CSCG)

random vector with mean x and covariance Σ is denoted by CN (x,Σ). In addition, ◦ means the

Hadamard production, ⊗ denotes the Kronecker product, O is the big-O notation, E {·} means

the mathematical expectation, and  denotes the imaginary unit, respectively.

II. SYSTEM MODEL

In this section, we propose the IRS-assisted secrecy SWIPT system model. Then, the imperfect

CSI model will be introduced.

A. Signal Transmission Model

Tx

IRS 

F
IR 1

IR K

. . .

ER L

ER 1. . .

,1Th

,T Kh

,R Kh

,1Rh
,1Rg

,R Lg

,T Lg

,1Tg

IRS Controller

Fig. 1. The IRS-aided MISO downlink SWIPT system.

As shown in Fig. 1, we consider an IRS-aided MISO-SWIPT system consisting of one Tx, one

IRS, K IRs, and L ERs. Tx has Nt antennas and the IRS has M reflecting units, respectively. In

addition, each IR (and ER) is single antenna node and the sets of the IRs and ERs are denoted

as K ∆
= {1, . . . , K} and L ∆

= {1, . . . , L}, respectively. The channel between Tx and the k-th IR

and the l-th ER is denoted by hT,k ∈ CNt×1 and gT,l ∈ CNt×1, respectively. Besides, the channel

between Tx and the IRS is denoted as F ∈ CM×Nt , while the channel between the IRS and the

k-th IR and the l-th ER is denoted by hR,k ∈ CM×1 and gR,l ∈ CM×1, respectively. In addition,

an IRS controller is utilized to control the CSI exchange and information transmission between

Tx and the IRS.
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Let xk ∈ C be the information for the k-th IR. The transmit signal x ∈ CNt×1 is given as

x =
K∑
k=1

wkxk + w0, where wk ∈ CNt×1,∀k ∈ K is the transmit BF for the k-th IR, and w0 ∈

CNt×1 is the AN, which can been seen as an energy signal to improve the energy transmission.

The RCs of the IRS are are modeled as θ ∆
=
[
eφ1 , . . . , eφM

]T , with φm denoting the phase-

shifting of the m-th reflection element. Besides, the diagonal phase shift matrix is given by

Θ = D (θ). Since due to the “distance-product” effect [6], the signals reflected twice or more

times are omitted here.

Assuming quasi-static flat channels, the signals received by the k-th IR and the l-th ER are,

respectively, given by

yi,k =
(
hHT,k + hHR,kΘ

HF
)
x + ni,k, (1a)

ye,l =
(
gHT,l + gHR,lΘ

HF
)
x + ne,l, (1b)

where ni,k denotes the antenna noise at the k-th IR with ni,k ∼ CN
(
0, σ2

i,k

)
, and ne,l denotes

the antenna noise at the l-th ER with ne,l ∼ CN
(
0, σ2

e,l

)
, respectively. In this work, we assume

that perfect synchronization can be obtained between the direct link and the cascaded link. In

fact, synchronization is still an open issue in an IRS-aided network [7].

In fact, we have hHT,k + hHR,kΘ
HF = hHT,k + θH D

(
hHR,k

)
F︸ ︷︷ ︸

HR,k

=
[
θH , 1

]︸ ︷︷ ︸
θ̂
H

[
HR,k; h

H
T,k

]︸ ︷︷ ︸
Hk

and gHT,l +

gHR,lΘ
HF = gHT,l + θH D

(
gHR,l
)
F︸ ︷︷ ︸

GR,l

= θ̂
H [

GR,l; g
H
T,l

]︸ ︷︷ ︸
Gl

. Thus, the signal-to-interference-noise-ratio

(SINR) for the k-th IR is given as

Γk =

∣∣∣θ̂HHkwk

∣∣∣2
K∑

j=0,j 6=k

∣∣∣θ̂HHkwj

∣∣∣2 + σ2
i,k

=

∣∣∣θ̂HHkwk

∣∣∣2∥∥∥θ̂HHkW−k

∥∥∥2

2
+ σ2

i,k

, (2)

where W−k
∆
= [w1, . . . ,wk−1,wk+1, . . . ,wK ,w0].

On the other hand, when the l-th ER attempts to eavesdrop the confidential information

intended to the k-th IR, the SINR for the l-th ER is given as

Γl,k =

∣∣∣θ̂HGlwk

∣∣∣2
K∑

j=0,j 6=k

∣∣∣θ̂HGlwj

∣∣∣2 + σ2
e,l

=

∣∣∣θ̂HGlwk

∣∣∣2∥∥∥θ̂HGlW−k

∥∥∥2

2
+ σ2

e,l

. (3)

In addition, the HP for the l-th ER is

El =
K∑
j=0

∣∣∣θ̂HGlwj

∣∣∣2 + σ2
e,l =

∥∥∥θ̂HGlW0

∥∥∥2

2
+ σ2

e,l, (4)

where W0
∆
= [w1, . . . ,wK ,w0].
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B. CSI Error Models

In this work, both imperfect direct link and cascaded link are considered, i.e.,

HR,k = H̄R,k + ∆HR,k,hT,k = h̄T,k + ∆hT,k, (5a)

GR,l = ḠR,l + ∆GR,l,gT,l = ḡT,l + ∆gT,l, (5b)

where HR,k and hT,k denote the true CSI, H̄R,k and h̄T,k denote the estimated CSI, ∆HR,k and

∆hT,k denote the associated CSI error, respectively. So as the same to GR,l, gT,l, ḠR,l, ḡT,l,

∆GR,l and ∆gT,l. Specifically, the following CSI models are considered:

1) The bounded CSI error model, where the CSI error is assumed to lie in a region with a

given bound, i.e.,

Hb,k =
{
‖∆hT,k‖2 ≤ εT,l, ‖∆HR,k‖F ≤ εR,k

}
, (6a)

Gb,l =
{
‖∆gT,l‖2 ≤ χT,l, ‖∆GR,l‖F ≤ χR,l

}
, (6b)

where εT,k, εR,k, χT,l and χR,l denote the respective sizes of the bounded channel error

region. This CSI error model is commonly used to characterize the channel quantization

error which lies in a bounded region and associated with the worst case constrained design.

For instance, in the frequency division duplex (FDD) network, the receiver (Rx) estimates

the downlink CSI and then feeds the quantized CSI back to Tx. Thus, the obtained CSI is

affected by quantization errors [30].

2) The probabilistic CSI error model, where the CSI error is assumed to follow the CSCG

distribution, i.e.,

Hp,k = {∆hT,k ∼ CN (0,RT,k) , vec (∆HR,k) ∼ CN (0,RR,k)} , (7a)

Gp,l = {∆gT,l ∼ CN (0,CT,l) , vec (∆GR,l) ∼ CN (0,CR,l)} , (7b)

where RT,k ∈ CNt×Nt , RR,k ∈ CMNt×MNt , CT,l ∈ CNt×Nt and CR,l ∈ CMNt×MNt are the

positive semi-definite error covariances for the direct link and the cascaded link, respectively.

This kind of imperfect CSI is mainly caused by channel estimation error and associated with

the outage constrained design. For instance, in the time division duplex (TDD) network,

limited training time and noise will cause channel estimation error, which generally follows

the CSCG distribution when the MMSE method is used to estimate the channel [30].

3) The statistical CSI model, where both the estimated CSI and the CSI error are random

variables following unknown distribution. In fact, the statistical CSI model can be treated

a special case of the probabilistic CSI error model.

In practical systems, these types of errors commonly coexist and it would be hard to determine

whether kind of CSI error is the major factor. Thus, in this work, we aim to find a comprehensive
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robust method, which is suitable for these types of CSI errors.

III. THE WORST CASE CONSTRAINED ROBUST DESIGN

Here, we investigate the worst case robust design, which can guarantee that the information rate

of each IR is no less than its minimum rate constraint for all possible CSI errors. Mathematically,

the problem is given as

max
wk,θ̂,Rw,k

minRw,k (8a)

s.t. min
∀{∆hT,k,∆HR,k}∈Hb,k

ln (1 + Γk) ≥ Rw,k, ∀k, (8b)

max
∀{∆gT,l,∆GR,l}∈Gb,l

ln (1 + Γl,k) ≤ γw,k,∀k, ∀l, (8c)

min
∀{∆gT,l,∆GR,l}∈Gb,l

El ≥ Eth,l, ∀l, (8d)∣∣∣θ̂m∣∣∣ = 1,m = 1, . . . ,M, θ̂M+1 = 1, (8e)

K∑
k=0

‖wk‖2 ≤ Ps, (8f)

where Ps is the maximum transmit power, Rw,k denotes the worst case rate threshold for the

k-th IR, γw,k denotes the worst case rate threshold for the l-th ER, when this ER try to decode

the information for the k-th IR, and Eth,l denotes the worst case HP threshold for the l-th ER,

respectively. Unfortunately, (8) is hard to solve due to multiple coupled variables, the infinite

constraints caused by the CSI error, and the UMC. In the next part, we will propose an AO and

SCA based method to handle (8).

A. Active BF and AN Optimization

At first, we denote the fixed point of
(
{wk}Kk=0 , θ̂

)
in the iteration as

(
{w̃k}Kk=0 , θ̃

)
. Simi-

larly, we denote W̃−k
∆
= [w̃1, . . . , w̃k−1, w̃k+1, . . . , w̃K , w̃0], and W̃0

∆
= [w̃1, . . . , w̃K , w̃0].

Here, we aim to solve the subproblem with respect to (w.r.t.) {wk}Kk=0 with fixed
(
{w̃k}Kk=0 , θ̃

)
.
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By introducing the auxiliary variables {tk}Kk=1, and {pk,l}K,Lk=1,l=1, (8) can be reformulated as

max
wk,κ

κ (9a)

s.t.
∣∣∣θ̃HHkwk

∣∣∣2 ≥ tk

(∥∥∥θ̃HHkW−k

∥∥∥2

2
+ σ2

i,k

)
,∀k, (9b)∣∣∣θ̃HGlwk

∣∣∣2 ≤ pk,l

(∥∥∥θ̃HGlW−k

∥∥∥2

2
+ σ2

e,l

)
,∀k, ∀l, (9c)

1 + tk ≥ eRw,k , 1 + pk,l ≤ eγw,k , Rw,k ≥ κ,∀k, (9d)

(8d), (8f). (9e)

It is known that the non-convex (9b) can be further reformulated as∣∣∣θ̃HHkwk

∣∣∣2 ≥ 1

sk

(∥∥∥θ̃HHkW−k

∥∥∥2

2
+ σ2

i,k

)
, (10a)

1 ≥ sktk. (10b)

Besides, according to [39], (10b) can be upper bounded by

1 ≥ t2ks̃k

2t̃k
+
t̃ks

2
k

2s̃k
, (11)

where t̃k and s̃k are the values of tk and sk in the previous iteration. Furthermore, using the

identity Tr
(
AHBCD

)
= vec(A)H

(
DT ⊗B

)
vec (C), (10a) is equivalent to

hHk

((
wkw

H
k −

W−kW
H
−k

sk

)T
⊗ θ̃θ̃H

)
hk ≥

σ2
i,k

sk
, (12)

where hk = vec (Hk). Similarly, (9c) can be turned into

gHl

((
W−kW

H
−k −

wkw
H
k

pk,l

)T
⊗ θ̃θ̃H

)
gl + σ2

e,l ≥ 0, (13)

where gl = vec (Gl). Note that (12) and (13) are still non-convex due to the difference of the

quadratic terms. To handle (12) and (13), we find the following lemma is useful.

Lemma 1 [40]: For any complex matrix P, a lower bound of PPH is PP̃H + P̃PH − P̃P̃H ,

where P̃ is a given point.

By Lemma 1, (12) can be approximated as

hHk

(
(Xk −Yk)

T ⊗ θ̃θ̃H
)

hk ≥
σ2
i,k

sk
, (14a)

Yk �
W−kW

H
−k

sk
, (14b)

where Xk
∆
= w̃kw

H
k +wkw̃

H
k −w̃kw̃

H
k . By the Schur complement [39], (14b) can be equivalently

converted into the following linear matrix inequality (LMI) Yk W−k

WH
−k skI

 � 0. (15)
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Following the same way, (13) can be approximated as

gHl

(
(Ωk −Ψk,l)

T ⊗ θ̃θ̃H
)

gl + σ2
e,l ≥ 0, (16a) Ψk,l wk

wH
k pk,l

 � 0, (16b)

where Ωk
∆
= W̃−kW

H
−k + W−kW̃

H
−k − W̃−kW̃

H
−k.

Next, we aim to handle the CSI uncertainty in (14a) and (16a). First, we denote H̄k =[
H̄R,k; h̄

H
T,k

]T , and ∆Hk =
[
∆HR,k; ∆hHT,k

]T , it is known that Hk = H̄k + ∆Hk. Besides, the

following equation holds ‖∆HR,k‖F ≤ εR,k ⇒ ‖vec (∆HR,k)‖2 ≤ εR,k. Then, we denote I1
∆
=

D (1MNt ,0Nt) , I2
∆
= D (0MNt ,1Nt). Thus, we have ∆hHk I1∆hk ≤ ε2R,k, and ∆hHk I2∆hk ≤ ε2T,k,

where ∆hk = vec (∆Hk).

Lemma 2 [30]: Define the function w.r.t. x ∈ Cn×1:

fj (x) = xHAjx + 2Re
{
bHj x

}
+ cj, j = 0, . . . , J,

where Aj = AH
j ∈ Cn×n, bj ∈ Cn×1, and cj ∈ R. The condition {fj (x) ≥ 0}Jj=1 ⇒ f0 (x) ≥ 0

holds if and only if there exists {λj ≥ 0}Jj=1 such that A0 b0

bH0 c0

− J∑
j=1

λj

 Aj bj

bHj cj

 � 0.

To utilize Lemma 2, we first rewrite (14a) as

h̄Hk

(
ZT
k ⊗ θ̃θ̃

H
)

h̄k + ∆hHk

(
ZT
k ⊗ θ̃θ̃

H
)

∆hk + 2<
{

h̄Hk

(
ZT
k ⊗ θ̃θ̃

H
)

∆hk

}
≥
σ2
i,k

sk
, (17)

where h̄k = vec
(
H̄k

)
and Zk = Xk −Yk.

Following Lemma 2, (17) holds if the following LMI holds ZT
k ⊗ θ̃θ̃

H
+ ϑ1,kI1 + ϑ2,kI2

(
ZT
k ⊗ θ̃θ̃

H
)

h̄k

h̄Hk

(
ZT
k ⊗ θ̃θ̃

H
)

ξk

 � 0, (18)

where {ϑ1,k ≥ 0, ϑ2,k ≥ 0}Kk=1 are the slack variables, and ξk = h̄Hk

(
ZT
k ⊗ θ̃θ̃

H
)

h̄k −
σ2
i,k

sk
−

ϑ1,kε
2
R,k − ϑ2,kε

2
T,k.

Then, we denote ḡl = vec
(
Ḡl

)
and Φk,l = Ωk−Ψk,l, (16a) holds if the following LMI holds ΦT

k,l ⊗ θ̃θ̃
H

+ α1,k,lI1 + α2,k,lI2

(
ΦT
k,l ⊗ θ̃θ̃

H
)

ḡl

ḡHl

(
ΦT
k,l ⊗ θ̃θ̃

H
)

ρk,l

 � 0, (19)

where {α1,k,l ≥ 0, α2,k,l ≥ 0}K,Lk=1,l=1 are the slack variables, and ρk,l = ḡHl

(
ΦT
k,l ⊗ θ̃θ̃

H
)

ḡl +

σ2
e,l−α1,k,lχ

2
R,l−α2,k,lχ

2
T,l. Similarly, by denoting Ξ = W̃0W

H
0 +W0W̃

H
0 −W̃0W̃

H
0 , the worst

case HP constraint (8d) can be given as ΞT ⊗ θ̃θ̃H + β1,lI1 + β2,lI2

(
ΞT ⊗ θ̃θ̃H

)
ḡl

ḡHl

(
ΞT ⊗ θ̃θ̃H

)
πl

 � 0, (20)
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where {β1,l ≥ 0, β2,l ≥ 0}Ll=1 are the slack variables, and πl = ḡHl

(
ΞT ⊗ θ̃θ̃H

)
ḡl+σ2

e,l−Eth−
β1,lχ

2
R,l−β2,lχ

2
T,l. By combining these steps, we formulate the following problem w.r.t. {wk}Kk=0

max
wk,κ

κ (21a)

s.t. (8f), (9d), (11), (15), (16b), (18), (19), (20), (21b)

which is convex and can be solved by the toolbox CVX [41].

B. Phase Shifter Optimization

Here, we will solve the subproblem w.r.t. θ̂. Due to symmetry, the proposed approach can be

used to optimize θ̂ conveniently. Specifically, we need to reformulate (12), (13), (8d), and (8e)

into convex constraints w.r.t. to θ̂. Firstly, by denoting T = θ̂θ̃
H

+ θ̃θ̂
H − θ̃θ̃H , we have the

following approximation of (12)

hHk

(w̃kw̃
H
k −

W̃−kW̃
H
−k

s̃k

)T

⊗T

hk ≥
σ2
i,k

s̃k
. (22)

Then, by denoting Υ̃k = w̃kw̃
H
k −

W̃−kW̃
H
−k

s̃k
and using Lemma 2, we have the following LMI Υ̃T

k ⊗T + ϑ1,kI1 + ϑ2,kI2

(
Υ̃T
k ⊗T

)
h̄k

h̄Hk

(
Υ̃T
k ⊗T

)
ξk

 � 0, (23)

where ξk = h̄Hk

(
Υ̃T
k ⊗T

)
h̄k −

σ2
i,k

sk
− ϑ1,kε

2
R,k − ϑ2,kε

2
T,k.

Similarly, by denoting Φ̃k,l
∆
= W̃−kW̃

H
−k−

w̃kw̃
H
k

p̃k,l
, where p̃k,l is the value of pk,l in the previous

iteration, we have the following LMI Φ̃T
k,l ⊗T + α1,k,lI1 + α2,k,lI2

(
Φ̃T
k,l ⊗T

)
ḡl

ḡHl

(
Φ̃T
k,l ⊗T

)
ρk,l

 � 0, (24)

where ρk,l = ḡHl

(
Φ̃T
k,l ⊗T

)
ḡl+σ

2
e,l−α1,k,lχ

2
R,l−α2,k,lχ

2
T,l. Similarly, by denoting Ξ̃

∆
= W̃0W̃

H
0 ,

we have the following LMI Ξ̃T ⊗T + β1,lI1 + β2,lI2

(
Ξ̃T ⊗T

)
ḡl

ḡHl

(
Ξ̃T ⊗T

)
πl

 � 0, (25)

where πl = ḡHl

(
Ξ̃T ⊗T

)
ḡl + σ2

e,l − Eth − β1,lχ
2
R,l − β2,lχ

2
T,l.

Thus, we have formulated the following problem

max
θ̂,κ

κ (26a)

s.t. (8e), (23), (24), (25), 1 ≥ tks̃k, 1 + tk ≥ eRw,k , Rw,k ≥ κ,∀k, (26b)

w.r.t. θ̂, which is convex except the UMC (8e).
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Next, we adapt the PDD method to handle (8e), which decouples the original problem into

several individual subproblems and iteratively solve these subproblems. To be specific, we

introduce the auxiliary variable ϕ ∈ C(M+1)×1 and reformulate (26) as

max
θ̂,ϕ,κ

κ (27a)

s.t. θ̂ = ϕ, (27b)

|ϕm| = 1, (27c)∣∣∣θ̂m∣∣∣ ≤ 1, (23), (24), (25), 1 ≥ tks̃k, 1 + tk ≥ eRw,k , Rw,k ≥ κ,∀k. (27d)

Then, by penalizing the equality constraint, the following AL of (27) can be obtained

min
θ̂,ϕ,κ,τ

−κ+
1

2λ

∥∥∥θ̂ −ϕ∥∥∥2

2
+ <

{
τH
(
θ̂ −ϕ

)}
(28a)

s.t. (27c), (27d), (28b)

where λ ≥ 0 and τ ∈ C(M+1)×1 are the penalty coefficient and the dual variable associated with

(27b), respectively.

The PDD method needs a two-layer iteration procedure, where the inner layer optimizing θ̂

and ϕ alternatively, while the outer layer optimizing τ and λ. Specifically, for the inner layer

iteration, when ϕ is fixed, we obtain the following subproblem w.r.t. θ̂

min
θ̂,κ

−κ+
1

2λ

∥∥∥θ̂ −ϕ∥∥∥2

2
+ <

{
τH
(
θ̂ −ϕ

)}
(29a)

s.t. (27d), (29b)

which is convex and can be solved by CVX.

Then, when θ̂ is given, we formulate the following subproblem w.r.t. ϕ

min
ϕ

1

2λ

∥∥∥θ̂ −ϕ∥∥∥2

2
+ <

{
τH
(
θ̂ −ϕ

)}
(30a)

s.t. |ϕm| = 1, (30b)

Due to (30b), we have 1
2λ
‖ϕ‖2

2 = M+1
2λ

. Hence (30) is reduced to

max
|ϕm|=1

<
{(
θ̂ + λτ

)H
ϕ

}
, (31)

and the optimal solution is ϕ? = e∠(θ̂+λτ).

The inner layer alternatively updates θ̂ and ϕ until convergent. While for the outer layer

problem, the following criterions are applied to design τ and λ [35]:

1) when θ̂ = ϕ approximately holds, τ can be obtained by τ ← τ + λ−1
(
θ̂ −ϕ

)
, which is

similar to the alternative direction method of multipliers (ADMM) technique.

2) when θ̂ = ϕ is far from “being true”, we inflate λ−1 to force the equality constraint θ̂ = ϕ

be met in the next iteration.
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The PDD algorithm is given in Algorithm 1 and the whole AO method is summarized in

Algorithm 2, where νi is a parameter sequence converging to 0, c is a scaling factor, which is

commonly choose in [0.8 0.9] [35], and $1, $2 denote the stopping criterion.
Algorithm 1 The PDD Algorithm to Problem (27).

1: Initialize
{
θ̂

0
,ϕ0, τ 0, λ0

}
and set i = 1;

2: repeat

3: Set θ̂
i−1,`

= θ̂
i−1

, ϕi−1,` = ϕi−1, ` = 0;

4: repeat

5: Update θ̂
i−1,`+1

via solving (29);

6: Update ϕi−1,`+1 via ϕ = e∠(θ̂+λτ), `← `+ 1;

7: until Convergence

8: Set θ̂
i

= θ̂
i−1,`

, ϕ̂i = ϕ̂i−1,`;

9: if
∥∥∥θ̂i −ϕi∥∥∥

2
≤ νi, then τ i+1 = τ i + 1

λi

(
θ̂
i −ϕi

)
, λi+1 = λi;

10: else τ i+1 = τ i, λi+1 = cλi; end if

11: i← i+ 1;

12: until
∥∥∥θ̂` −ϕ`∥∥∥

2
≤ $1

Algorithm 2 The AO Algorithm to Problem (8).

1: Initialize
(
{w0

k}
K
k=0 , θ̂

0
)

and set ` = 0;

2: repeat

3: Obtain
{
w`
k

}K
k=1

and κ` with fixed
(
{w̃k}Kk=0 , θ̃

)
by solving (21);

4: Update {w̃k}Kk=0 ←
{
w`
k

}K
k=0

;

5: Obtain θ̂
`

with fixed
(
{w̃k; }Kk=0 , θ̃

)
by solving (27) with the PDD method;

6: Update θ̃ ← θ̂
`
;

7: `← `+ 1;

8: until κ` − κ`−1 < $2

9: Output
(
{w?

k}
K
k=0 , θ̂

?
, κ?
)

;

It should be pointed out that since (27) is non-convex, the PDD algorithm generally generates

a sub-optimal solution. As for the convergence of the PDD algorithm, according to [35] and

[43], we have the following Theorem:

Theorem 1: Assume that
{
θ̂
i
,ϕi
}

is obtained as a limit point of the sequence
{
θ̂
i,`
,ϕi,`

}∞
`=1

,

∀i ∈ {1, 2, . . .} in Algorithm 1, then the PDD algorithm is guaranteed to converge when
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1
λi

(
θ̂
i −ϕi

)
+ τ i is bounded, and any limit point of the sequence

{
θ̂
i
,ϕi
}

is a Karush-Kuhn-

Tucker (KKT) point of (27).

Proof: Please refer to Appendix A.

C. Feasibility discussion of problem (8)

The feasibility of (8) can be checked by the following problem

Find
(
{wk}Kk=0 , θ̂

)
(32a)

s.t. (8c)− (8f), (32b)

which can be solved via the proposed AO method, by removing the associated constraints asso-

ciated with (8b). And the AL problem is now given by min
θ̂,ϕ,τ

1
2λ

∥∥∥θ̂ −ϕ∥∥∥2

2
+<

{
τH
(
θ̂ −ϕ

)}
,

s.t. (27c),
∣∣∣θ̂m∣∣∣ ≤ 1, (24), (25). We omit the detail here since this is straightforward. If (32) is

feasible, we treat the obtained
(
{wk}Kk=0 , θ̂

)
as an initial point of the proposed AO algorithm

for problem (8). Otherwise, (32) is infeasible, which is mainly due to the QoS constraints are

too strict to be satisfied for the current channel realization and system parameters. In this case,

we can remove certain constraints by removing some users in practice.

IV. THE OUTAGE CONSTRAINED ROBUST DESIGN

In this section, we investigate the outage constrained robust design. Mathematically, the

problem is given as

max
wk,θ̂,Ro,k

minRo,k (33a)

s.t. Pr {ln (1 + Γk) ≥ Ro,k} ≥ δk,∀ {∆hT,k,∆HR,k} ∈ Hp,k,∀k, (33b)

Pr {ln (1 + Γl,k) ≤ γo,k} ≥ ηk, ∀ {∆gT,l,∆GR,l} ∈ Gp,l,∀k, ∀l, (33c)

Pr {El ≥ Eth,l} ≥ ζl,∀ {∆gT,l,∆GR,l} ∈ Gp,l, ∀l, (33d)

(8e), (8f), (33e)

where δk ∈ (0, 1] denotes the information rate outage probability for the k-th IR, Ro,k is the

associated outage rate threshold, ηk ∈ (0, 1] denotes the information rate outage probability for

the l-th ER, when this ER try to decode the information send to the k-th IR, and ro,k is the

associated outage rate threshold, respectively. In addition, ζl ∈ (0, 1] denotes the HP outage

probability for the l-th ER, and Eth,l is the corresponding HP threshold.
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A. Active BF and AN Optimization

Here, with fixed
(
{w̃k}Kk=0 , θ̃

)
, we formulate the subproblem w.r.t. {wk}Kk=0 as

max
wk,κ

κ (34a)

s.t. Pr

{∣∣∣θ̃HHkwk

∣∣∣2 ≥ tk

(∥∥∥θ̃HHkW−k

∥∥∥2

2
+ σ2

i,k

)}
≥ δk,∀k, (34b)

Pr

{∣∣∣θ̃HGlwk

∣∣∣2 ≤ pk,l

(∥∥∥θ̃HGlW−k

∥∥∥2

2
+ σ2

e,l

)}
≥ ηk,∀k,∀l, (34c)

Pr

{∥∥∥θ̃HGlW0

∥∥∥2

2
+ σ2

e,l − Eth,l ≥ 0, ∀l
}
≥ ζl,∀l, (34d)

(8f), (9d). (34e)

The main difficulty lies in the constraints (34b)-(34d). In fact, (34b) is equivalent to

Pr

{∣∣∣θ̃HHkwk

∣∣∣2 ≥ 1

sk

(∥∥∥θ̃HHkW−k

∥∥∥2

2
+ σ2

i,k

)}
≥ δk, (35a)

1 ≥ tksk. (35b)

Furthermore, (35a) can be turned into
Pr
{

h̄Hk

(
ZT
k ⊗ θ̃θ̃

H
)

h̄k + ∆hHk

(
ZT
k ⊗ θ̃θ̃

H
)

∆hk

+2<
{

h̄Hk

(
ZT
k ⊗ θ̃θ̃

H
)

∆hk

}
≥
σ2
i,k

sk

}
≥ δk.

(36)

Next, we will handle the CSI uncertainty based on the following BTI.

Lemma 3 [42]: For any {A,u, c} ∈ HN×CN×R, q ∼ CN (0, I) and β ∈ (0, 1], the following

inequalities holds:
Pr
q

{
qHAq + 2<

{
qHu

}
+ c ≥ 0

}
≥ 1− β

⇐



Tr (A)−
√
−2 ln (β)x+ ln (β) y + c ≥ 0,∥∥∥∥∥∥
 vec (A)
√

2u

∥∥∥∥∥∥
2

≤ x,

yI + A � 0, y ≥ 0,

where x and y are slack variables. Moreover, BTI is jointly convex w.r.t. all the variables.1

In fact, we have
[
vec (∆HR,k) ; ∆hHT,k

]
=
[
R

1
2
R,kpR,k; R

1
2
T,kpT,k

]
= BlkD

(
R

1
2
R,k,R

1
2
T,k

)
[pR,k; pT,k],

where R
1
2
R,k and R

1
2
T,k are the square root of RR,k and RT,k, respectively. In addition, pR,k ∼

CN (0, I) and pT,k ∼ CN (0, I). Thus, by denoting R
1
2
k

∆
= BlkD

(
R

1
2
R,k,R

1
2
T,k

)
and pk

∆
=

1In fact, there exists another effective method to handle the outage constraint, e.g., the large deviation inequality (LDI), which

can be seen as a simplified BTI method. Readers can refer [42] for more details.
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[pR,k; pT,k], we have pk ∼ CN (0, I) and ∆hHk

(
ZT
k ⊗ θ̃θ̃

H
)

∆hk = pHk R
1
2
k

(
ZT
k ⊗ θ̃θ̃

H
)

R
1
2
kpk.

Then, we denote Ak = R
1
2
k

(
ZT
k ⊗ θ̃θ̃

H
)

R
1
2
k , ak = R

1
2
k

(
ZT
k ⊗ θ̃θ̃

H
)

h̄k, and ak = h̄Hk

(
ZT
k ⊗ θ̃θ̃

H
)

h̄k−
σ2
i,k

sk
. By utilizing the BTI, the probabilistic constraint (36) can be formulated as

Tr (Ak)−
√
−2 ln (1− δk)ϑ1,k + ln (1− δk)ϑ2,k + ak ≥ 0, (37a)∥∥∥∥∥∥

 vec (Ak)
√

2ak

∥∥∥∥∥∥
2

≤ ϑ1,k, ϑ2,kI + Ak � 0, (37b)

where {ϑ1,k, ϑ2,k ≥ 0}Kk=1 are the auxiliary variables.

Similarly, we have
[
vec (∆GR,l) ; ∆gHT,l

]
=
[
C

1
2
R,lqR,l; C

1
2
T,lqT,l

]
= BlkD

(
C

1
2
R,l,C

1
2
T,l

)
[qR,l; qT,l],

where C
1
2
R,l and C

1
2
R,l are the square root of CR,l and CR,l, respectively. In addition, qR,l ∼

CN (0, I) and qT,l ∼ CN (0, I). Thus, by denoting C
1
2
l

∆
= BlkD

(
C

1
2
R,l,C

1
2
T,l

)
and ql

∆
= [qR,l; qT,l],

we have ql ∼ CN (0, I) and ∆gHl

(
ΦT
k,l ⊗ θ̃θ̃

H
)

∆gl = qHl C
1
2
l

(
ΦT
k,l ⊗ θ̃θ̃

H
)

C
1
2
l ql.

Thus, by denoting Bk,l = C
1
2
l

(
ΦT
k,l ⊗ θ̃θ̃

H
)

C
1
2
l , bk,l = C

1
2
l

(
ΦT
k,l ⊗ θ̃θ̃

H
)

ḡl, and bk,l =

ḡHl

(
ΦT
k,l ⊗ θ̃θ̃

H
)

ḡl + σ2
e,l, (34c) can be formulated as

Tr (Bk,l)−
√
−2 ln (1− ηk)α1,k,l + ln (1− ηk)α2,k,l + bk,l ≥ 0, (38a)∥∥∥∥∥∥

 vec (Bk,l)
√

2bk,l

∥∥∥∥∥∥
2

≤ α1,k,l, α2,k,lI + Bk,l � 0, (38b)

where {α1,k,l, α2,k,l ≥ 0}K,Lk=1,l=1 are the auxiliary variables. Then, by denoting Dl = C
1
2
l

(
ΞT ⊗ θ̃θ̃H

)
C

1
2
l ,

dl = C
1
2
l

(
ΞT ⊗ θ̃θ̃H

)
ḡl, and dl = ḡHl

(
ΞT ⊗ θ̃θ̃H

)
ḡl + σ2

e,l −Eth,l, (34d) can be turned into

Tr (Dl)−
√
−2 ln (1− ζl)β1,l + ln (1− ζl) β2,l + dl ≥ 0, (39a)∥∥∥∥∥∥

 vec (Dl)
√

2dl

∥∥∥∥∥∥
2

≤ β1,l, β2,lI + Dl � 0, (39b)

where {β1,l, β2,l ≥ 0}Ll=1 are the auxiliary variables. Combining these steps, the convex subprob-

lem w.r.t. {wk}Kk=0 is formulated as

max
wk,κ

κ (40a)

s.t. (8f), (9d), (11), (15), (16b), (37), (38), (39). (40b)

As such, we have solved the outage constrained subproblem w.r.t {wk}Kk=0. Next, we will

solve the subproblem w.r.t. θ̂.

B. Phase Shifter Optimization
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Similarly with the previous method, the probability constraint w.r.t. θ̂ is given by

Pr

{
hHk

(
Υ̃T
k ⊗T

)
hk ≥

σ2
i,k

s̃k

}
≥ δk, (41a)

Pr
{

gHl

(
Φ̃T
k,l ⊗T

)
gl + σ2

e,l ≥ 0
}
≥ ηk, (41b)

Pr
{

gHl

(
Ξ̃T ⊗T

)
gl + σ2

e,l − Eth,l ≥ 0
}
≥ ζl. (41c)

Then, we denote Ak = B
1
2
k

(
Υ̃T
k ⊗T

)
B

1
2
k , ak = B

1
2
k

(
Υ̃T
k ⊗T

)
h̄k, ak = h̄Hk

(
Υ̃T
k ⊗T

)
h̄k −

σ2
i,k

s̃k
, Bk,l = C

1
2
l

(
Φ̃T
k,l ⊗T

)
C

1
2
l , bk,l = C

1
2
l

(
Φ̃T
k,l ⊗T

)
ḡl, bk,l = ḡHl

(
Φ̃T
k,l ⊗T

)
ḡl + σ2

e,l,

Dl = C
1
2
l

(
Ξ̃T ⊗T

)
C

1
2
l , dl = C

1
2
l

(
Ξ̃T ⊗T

)
ḡl, and dl = ḡHl

(
Ξ̃T ⊗T

)
ḡl +σ2

e,l−Eth,l. Thus,

(41b) and (41c) can be handled by (38) and (39), respectively. As a result, we have the following

subproblem w.r.t. θ̂

max
θ̂,κ

κ (42a)

s.t. (8e), (37), (38), (39), 1 ≥ tks̃k, 1 + tk ≥ eRw,k , Rw,k ≥ κ,∀k. (42b)

Then, the previously proposed PDD method can be used to optimize θ̂ conveniently. In addition,

the feasibility of problem (33) is similar to problem (8), and thus we omit the detail for brevity.

V. STOCHASTIC SCA METHOD TO THE STATISTICAL CSI DESIGN

In this section, we propose a stochastic SCA method to handle the robust optimization in the

statistical CSI model. Firstly, the problem can be formulated as

max
wk,θ̂,Ro,k

minRo,k (43a)

s.t. Pr {ln (1 + Γk) ≥ Ro,k} ≥ δk,∀ {hT,k,HR,k} ∈ Hs,k,∀k, (43b)

Pr {ln (1 + Γl,k) ≤ γo,k} ≥ ηk,∀ {gT,l,GR,l} ∈ Gs,l,∀k,∀l, (43c)

Pr {El ≥ Eth,l} ≥ ζl,∀ {gT,l,GR,l} ∈ Gs,l,∀l, (43d)

(8e), (8f), (43e)

and the definition of these parameters are similar to those of problem (33).

Then, we observe that Pr {ln (1 + Γk) ≥ Ro,k} ≥ δk ⇔ Pr {ln (1 + Γk) ≤ Ro,k} ≤ 1 − δk,

however no closed-form expression can be obtained for this probability constraint. An alternative

method is to replace the probability constraint by a expected condition, e.g., Pr {ln (1 + Γk) ≤ Ro,k} =

EHk

{
Iln(1+Γk)≤Ro,k

}
, where Iln(1+Γk)≤Ro,k is the step function of event ln (1 + Γk) ≤ Ro,k [38].

Then, to tackle the non-smooth property of the step function, we utilize the following smooth
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approximated function

ûa (x) =
1

1 + e−ax
, (44)

where x = Ro,k − ln (1 + Γk) and a is the parameter to control the approximation error, i.e.,

larger a leads to less error. Then, by applying ûa (·) and relaxing the UMC to a power constraint

temporarily, we obtain the following approximated problem:

max
wk,θ̂,κ

κ (45a)

s.t. E
{
ûa

(
rk

(
{wk}Kk=0 , θ̂;Hs,k

))}
≤ 1− δk,∀k, (45b)

E
{
ûa

(
yk,l

(
{wk}Kk=0 , θ̂;Gs,l

))}
≤ 1− ηk,∀k,∀l, (45c)

E
{
ûa

(
zl

(
{wk}Kk=0 , θ̂;Gs,l

))}
≤ 1− ζl,∀l, (45d)

(8f),
∣∣∣θ̂m∣∣∣ ≤ 1, (45e)

where rk
(
{wk}Kk=0 , θ̂;Hs,k

)
∆
= (eκ − 1)

(∥∥∥θ̂HHkW−k

∥∥∥2

2
+ σ2

i,k

)
−
∣∣∣θ̂HHkwk

∣∣∣2,

yk,l

(
{wk}Kk=0 , θ̂;Gs,l

)
∆
=
∣∣∣θ̂HGlwk

∣∣∣2 − (eγo,k − 1)

(∥∥∥θ̂HGlW−k

∥∥∥2

2
+ σ2

e,l

)
, and

zl

(
{wk}Kk=0 , θ̂;Gs,l

)
∆
= Eth −

∥∥∥θ̂HGlW0

∥∥∥2

2
− σ2

e,l.

Here, we denote a composite variable xxx ∆
=
[
wH

1 , . . . ,w
H
K ,w

H
0 ,θ

H
]H

, and selection matri-

ces Ak ∈ {0, 1}Nt×((K+1)Nt+M),∀k ∈ {0, . . . , K} and B ∈ {0, 1}M×((K+1)Nt+M) that satisfy

{Akxxx = wk}Kk=0 and Bxxx = θ. Thus, rk
(
{wk}Kk=0 , θ̂;Hs,k

)
can be rewritten as r̄k (xxx;Hs,k)

∆
=

(eκ − 1)

 K∑
j=0,
j 6=k

∣∣(xxxHBHHR,k + hHT,k
)
Ajxxx

∣∣2 + σ2
i,k

−∣∣(xxxHBHHR,k + hHT,k
)

Akxxx
∣∣2. Similarly, we

denote ȳk,l (xxx;Gs,l)
∆
=
∣∣(xxxHBHGR,l + gHT,l

)
Akxxx

∣∣2−(eγo,k − 1)

 K∑
j=0,
j 6=k

∣∣(xxxHBHGR,l + gHT,l
)
Ajxxx

∣∣2 + σ2
e,l

,

and z̄l (xxx;Gs,l)
∆
= Eth −

(
K∑
j=0

∣∣(xxxHBHGR,l + gHT,l
)
Ajxxx

∣∣2)− σ2
e,l.

(45) is a stochastic optimization problem. Here, we propose a stochastic SCA method to ad-

dress (45), mainly based on the framework in [44]. Firstly, we denote fk (xxx)
∆
= E {ûa (r̄k (xxx;Gs,l))},

gk,l (xxx)
∆
= E {ûa (ȳk,l (xxx;Gs,l))}, and hl (xxx)

∆
= E {ûa (z̄l (xxx;Gs,l))}. Then, in the i-th iteration,

convex surrogate functions of
{
f̄ ik (xxx)

}
are constructed to approximate {fk (xxx)}k∈K, which can

be expressed as

f̄ ik (xxx)
∆
= f ik + 2<

{(
f ik
)H (

xxx− xxxi
)}

+ ιk
∥∥xxx− xxxi∥∥2

2
, (46)

where ιk > 0 is a constant and ιk‖xxx− xxxi‖
2 is included to ensure the convexity of f̄ ik (xxx), f ik
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is an approximation of E {ûa (r̄k ({xxx;Hs,k}))}, and f ik is an approximation of the gradient

∇xxx†E {ûa (r̄k ({xxx;Hs,k}))}. Besides, f ik and f ik are iteratively updated by

f ik =
1

T1

T1∑
t=1

ûa
(
r̄k
({
xxxi;Ht

s,k

}))
, (47)

and

f ik =
(
1− vi

)
f i−1
k + vi

1

T2

T2∑
t=1

∇xxx†ûa
(
r̄k
({
xxxi;Ht

s,k

}))
, (48)

where f−1
k = 0, f−1

k = 0, T1 and T2 denote the numbers of channel realizations utilized to

approximate E {ûa (r̄k ({xxx;Hs,k}))} and ∇xxx†E {ûa (r̄k ({xxx;Hs,k}))}, respectively, vi ∈ (0, 1] is

a sequence properly designed following Assumption 5 in [44]. In fact, the stochastic optimization

method can be seen as a online learning approach with vi been the learning parameter.

Note that in (47) and (48), multiple channel realizations are generated to improve the ap-

proximations f ik and f ik in each iteration. Besides, according to [44], as i → ∞, we have

limi→0

∣∣f̄ ik (xxxi)− fk (xxxi)
∣∣ = 0, limi→0

∣∣∇xxx† f̄ ik (xxxi)−∇xxx†fk (xxxi)
∣∣ = 0,∀k ∈ K, which indicates

that f̄ ik (xxxi) and ∇xxx† f̄ ik (xxxi) can converge to the true values of fk (xxxi) and its gradient w.r.t. xxx,

respectively. Thus, the convergence of the proposed method is guaranteed. For each channel

realization, ∇xxx†ûa (r̄k ({xxx;Hs,k})) is obtained by [34]:

∇xxx†ûa (r̄k ({xxx;Hs,k})) =
ae−ar̄k({xxx;Hs,k})(

1 + e−ar̄k({xxx;Hs,k})
)2 r̄′k ({xxx;Hs,k}) , (49)

where r̄′k ({xxx;Hs,k}) = 2 (eκ − 1)

 K∑
j=0,
j 6=k

rkj (xxx;Hs,k)

 − 2rkk (xxx;Hs,k), and rkj (xxx;Hs,k) =

BHHR,kAjxxxxxx
HAH

j HH
R,kBxxx+xxxHBHHR,kAjxxxAH

j HH
R,kBxxx+AH

j hT,kh
H
T,kAjxxx+BHHR,kAjxxxxxx

HAH
j hT,k+

xxxHBHHR,kAjxxxAH
j hT,k + hHT,kAjxxxAH

j HH
R,kBxxx.

Similar methods can be utilized to handle {gk,l (xxx)}k∈K,l∈L and formulate the surrogate function{
ḡik,l (xxx)

}
k∈K,l∈L, where the associated gradient is given by

∇xxx†ûa (ȳk,l ({xxx;Gs,l})) =
ae−aȳk,l({xxx;Gs,l})(

1 + e−aȳk,l({xxx;Gs,l})
)2 ȳ′k,l ({xxx;Gs,l}) , (50)

where z̄′l ({xxx;Gs,l}) = 2ykk,l (xxx;Gs,l) − 2 (eγo,k − 1)

 K∑
j=0,
j 6=k

ykj,l (xxx;Gs,l)

, and ykj,l (xxx;Gs,l) =

BHGR,lAjxxxxxx
HAH

j GH
R,lBxxx+xxxHBHGR,lAjxxxAH

j GH
R,lBxxx+AH

j gT,lg
H
T,lAjxxx+BHGR,kAjxxxxxx

HAH
j gT,l+

xxxHBHGR,lAjxxxAH
j gT,l + gHR,lAjxxxAH

j GH
T,lBxxx. Surrogate function

{
h̄il (xxx)

}
l∈L can be obtained

in a similar way.
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Thus, with fixed κ, in the i-th iteration, we solve the following feasibility-check problem

xxxi = Find xxx (51a)

s.t. f̄ ik (xxx) ≤ 1− δk,∀k, (51b)

ḡik,l (xxx) ≤ 1− ηk,∀k, ∀l, (51c)

h̄il (xxx) ≤ 1− ζl,∀l, (51d)

K∑
k=0

xxxHAH
k Akxxx ≤ Ps, [Bxxx]m ≤ 1, (51e)

which is convex w.r.t xxx.

Then, we handle the relaxed constraint [Bxxx]m ≤ 1 by the PDD technique. Similar to Section

III, we formulate the following AL of (51)

min
xxx,ϕ,τ

1

2λ
‖Bxxx−ϕ‖2

2 + <
{
τH (Bxxx−ϕ)

}
(52a)

s.t. (51b)− (51e), |ϕm| = 1. (52b)

In fact, similar to the previously proposed PDD procedure, a two-layer algorithm is utilized

to handle (52). Here, for the inner layer problem, with fixed ϕ, xxxi can be obtained by solving

(52) using CVX. Then, with fixed xxxi, ϕ can be obtained in a closed form as ϕ = e∠(Bxxxi+λτ).

Besides, the proposed criterions in Section III are applied to update τ and λ.

Then, according to [44], xxx is updated by

xxxi+1 =
(
1− ri

)
xxxi + rixxxi, (53)

where {ri ∈ (0, 1]} is a sequence satisfying ri → 0,
∑

i r
i =∞, and

∑
i (r

i)
2
<∞.

In addition, according to [44, Theorem 1], the SCA algorithm can converge to the set of

stationary solutions to (45), almost surely. Moreover, the following remark is useful to handle

the so-called “vanishing gradient” problem for (44).

Remark 1: As mentioned in [34], when |r̄k ({xxx;Hs,k})| is too large, ∇xxx†ûa (r̄k ({xxx;Hs,k}))

may close to zero due to the term ae
−ar̄k({xxx;Hs,k})(

1+e
−ar̄k({xxx;Hs,k})

)2 in (49). To tackle this obstacle, a modified

gradient is given as:

∇xxx†ûa (r̄k ({xxx;Hs,k})) =
ae−r̃k({xxx;Hs,k})(

1 + e−r̃k({xxx;Hs,k})
)2 r̄′k ({xxx;Hs,k}) , (54)

where

r̃k ({xxx;Hs,k}) =


q, if ar̄k ({xxx;Hs,k}) ≥ q,

−q, if ar̄k ({xxx;Hs,k}) ≤ −q,

ar̄k ({xxx;Hs,k}) , otherwise,

(55)
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and q > 0 is a constant which is chosen based on a. More details can refer to [34].

The whole bisection search method is summarized in Algorithm 3.
Algorithm 3 The Bisection Search Algorithm to Problem (43).

1: Initialize xxx, set the bound
[
κl, κu

]
and the accuracy $3;

2: repeat

3: Calculate κ =
(
κl + κu

)/
2;

4: Solve (52) by the proposed statistics SCA method;

5: If (52) is feasible, set κl = κ, otherwise set κu = κ;

6: until
∣∣κl − κu∣∣ < $3

7: Output {xxx?, κ?};

VI. SIMULATION RESULTS

Here, simulation results are provided to evaluate the proposed design. As shown in Fig. 2,

there exists one Tx, one IRS, 3 IRs and 3 ERs. A three-dimensional (3D) coordinate is utilized,

where Tx and the IRS are located at (10 m, 0 m, 10 m) and (0 m, 50 m, 10 m), respectively.

Besides, we assume that the IRs are randomly located in a circle centered at (10 m, 50 m, 2 m)

with radius of 5 m. While the ERs are deployed closer to Tx than IRs to enhance the EH, which

are randomly located in a circle centered at (10 m, 20 m, 2 m), with radius of 5 m.

IRS

IRs area

y

Tx

z

m

10m

m

10m
10 m

x

m ERs area

50

20

50

Fig. 2. The simulation scenario.

The simulation settings are assumed as: Nt = 4, M = 10, Ps = 20 dB, σ2
i,k = σ2

e,l =

−70 dBm,∀k, ∀l. Besides, the QoS requirement is assumed to be the same value among these

users, i.e., γw,k = γo,k = 1 bit/s/Hz, El = −10 dBm, δk = 0.9, ηk = 0.9, ζl = 0.9,∀k,∀l. Here,

we set a relatively large HP constraint to activate the EH circuit [2]. The path loss is given by

PL = PL0 − 10αlog10

(
d
d0

)
, where d is the link distance, α is the path loss exponent. Here,

we set PL0 = −30 dB and d0 = 1 m [12]. The path loss exponents of the IRS-related links

are set as αR = 2.2 [30], while the path loss exponents between Tx and the IRs/ERs are given
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by αT = 3.5 [32]. As for the small-scale fading, taking F as an example, which is modeled as

F =
√

β
β+1

FLoS +
√

1
β+1

FNLoS, where β is the Rician factor, FLoS is the line of sight (LoS)

component, and FNLoS is the non-LoS (NLoS) component which is modeled as Rayleigh fading.

Besides, FLoS is given by FLoS = abH , where a =
[
1, ej

2πdr
λ

sin υA
, · · · , ej 2πdr

λ
(Dr−1) sin υA

]T
, and

b =
[
1, ej

2πdt
λ

sin υD
, · · · , ej

2πdt
λ

(Dt−1) sin υD
]T

, λ is the wavelength, Dr and Dt are the number of

antennas at Rx and Tx, respectively, while dr and dt are the relevant antenna separation distance,

υD and υA are the angles of departure and arrival, respectively. Similar to [32], we set β = 5

for all these links, and dr/λ = dt/λ = 0.5, υA = tan−1
(
yIRS−yTx

xIRS−xTx

)
, υD = π− υA, respectively.2

In addition, for the probabilistic CSI error, the covariance of ∆hT,k and vec (∆HR,k) are

defined as ε2
T,k = ε2

T

∥∥h̄T,k∥∥2

2
and ε2

R,k = ε2
R

∥∥vec
(
H̄R,k

)∥∥2

2
, respectively, where εT ∈ [0, 1)

and εR ∈ [0, 1) measure the relative number of the CSI errors and are set as ε2
T = 10−4 and

ε2
R = 10−4, respectively. Moreover, according to [30], a fair performance comparison between

the two CSI uncertainty models can be obtained when the bounded uncertainty radii are set

as εT,k =

√
ε2T,k

2
F−1

2MNt
(1− ρ), and εR,k =

√
ε2R,k

2
F−1

2Nt
(1− ρ), where F−1

2MNt
and F−1

2Nt
denote

the inverse cumulative distribution function (CDF) of the Chi-square distribution with degrees

of freedom (DoF) 2MNt and 2Nt, respectively, and ρ denotes the corresponding probability.

Similar way can be used to set ∆gT,l and vec (∆GR,l).

A. Convergence Behaviour

Firstly, the convergence behaviour of the inner layer PDD algorithm with different transmit

antenna number Nt and phase shifter number M are tested. Both the worst case design and outage

case design are examined. From Fig. 3, we can see that both the worst case information rate

(WCIR) and the outage case information rate (OCIR) increase with the number of iterations, and

gradually converge, almost in 10 iterations, which validates the efficiency of the PDD method.

Besides, it can be found that we draw this figure from the zeroth iteration, i.e., start from the

initial point. As expected, the RIR for both the outage case and the worst case obtains the same

value at the zeroth iteration.

Then, we evaluate the convergence behaviour of the outer layer AO algorithm. Fig. 4 shows

the WCIR and the OCIR versus the number of iterations with different Nt and M . From Fig.

4, we can see that both WCIR and OCIR increase with the number of iterations, and gradually

converge. Moreover, larger Nt or M leads to higher complexity and slower convergence, since

more variables need to be optimized. However, for different values of Nt and M , both WCIR

2In the simulation, besides the variable in x-axis, all the other parameters are fixed to the some values.
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Fig. 3. The convergence behaviour of the PDD algorithm.

0 5 10 15
The number of iterations

0.5

1

1.5

2

2.5

3

T
he

 r
ob

us
t i

nf
or

m
at

io
n 

ra
te

 (
bi

t/s
/H

z)

Probabilistic CSI error, Nt=5, M=12
Bounded CSI error, Nt=5, M=12
Probabilistic CSI error, Nt=4, M=8
Bounded CSI error, Nt=4, M=8

Fig. 4. The convergence behaviour of the AO algorithm.

and OCIR always converge in 15 iterations, which confirms the practicality of the AO method.

Besides, given the same Nt, M and the channel condition, the probabilistic CSI design can attain

high RIR than the bounded CSI design, since the bounded CSI design is more strict than the

probabilistic CSI design, thus leading to lower information rates. In addition, similar to Fig. 3,

the RIRs for both the outage case and the worst case are the same at the zeroth iteration.

Lastly, we evaluate the convergence behaviour of the stochastic SCA algorithm, where we

set T1 = 105, T2 = 200, vi = (1 + i)−0.5, ri = (1 + i)−0.6, a = 100, and q = 8, respectively

[34]. Similar to [35], here we assume that both the estimated CSI and the CSI error follow

the CSCG distributions. Fig. 5 shows the obtained objective value of problem (52) versus the

number of iterations with different Nt and M . From this figure, we can see that the stochastic

SCA method converges not monotonic due to the stochastic nature, depending on the random

channel generations in each iteration. However, it is able to converge in about 100 iterations.

B. RIR versus the System Parameters

Here, we assess the effect of the system parameters on the RIR. In addition, we compare

the proposed methods with several baselines: 1) the perfect CSI case, which can be seen as the

performance bound of the proposed method; 2) the penalty based method in [25]; 3) the no IRS-

aided design; 4) the IRS-aided design but without AN. Note that this comparison can indicate

which of the IRS and AN plays a more important role in improving the secrecy performance.

These methods are labelled as “Bounded CSI error”, “Probabilistic CSI error”, “Statistical CSI”,

“Perfect CSI”, “Penalty method”, “No IRS”, and “No AN”, respectively. In addition, all the

results are obtained over 100 channel average.

First, we show the RIR versus the total power budget Ps for Tx, and the result is shown

in Fig. 6. From this figure, we can see that the RIR reaches a saturation with the increase of
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Fig. 5. The convergence behaviour of the SCA algorithm.
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Fig. 6. The RIR versus Tx transmit power.
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Fig. 7. The RIR versus the number of IRS elements.
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Fig. 8. The RIR versus the Tx-IRS horizontal distance.

Ps, since when Ps is relatively small, the RIR metric is mainly determined by Ps. By contrast,

when Ps tends to be large, the effect of the imperfect CSI increases gradually, and thus the

RIR tends to decrease. Furthermore, we can see that the performance gap between the bounded

CSI error and the probabilistic CSI error model is more pronounced in high Ps region, while

the stochastic SCA method suffer certain performance loss due to lack of instantaneous CSI.

However, the proposed AO-SCA method outperforms the other baselines. In addition, the no

AN method obtains much better performance than the no IRS-aided method, which indicates

that IRS plays a major role in improving the security than AN.

Then, we show the RIR versus the number of IRS elements M in Fig. 7. From this figure, we

can see that in the perfect CSI case, the information rate increases with the increase of M , since

higher spatial DoF can be achieved with larger M . However, for other cases, due to the CSI

error, when M becomes large, the RIR tends to decrease due to the increased CSI uncertainty.
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Fig. 9. The RIR versus the direct channel error level.
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Fig. 10. The RIR versus the cascaded channel error level.

Hence, whether to utilize IRS should depend on the CSI uncertainty level.

Lastly, we plot the RIR versus the Tx-IRS horizontal distance in Fig. 8, where we as-

sume that the IRS moves along the y-axis. It is observed that when IRS moves from Tx

to IRs (about yIRS ≤ 50 m), the RIR decreases than increases. On the other hand, when

IRS moves away from IRs (about yIRS ≥ 50 m), the RIR decreases rapidly due to large

channel fading. Actually, the large-scale channel gain of the cascaded link can be estimated

by PL = PL2
0(d/d0)−αR((D − d)/d0)−αR , where d and D denote the distances from Tx to the

IRS, and that from Tx to the center of the IRs area, respectively. Thus, the cascaded channel

gain obtains the minimum value when d = D/2, e.g., the IRS is located close to the middle

point. Hence, to improve the performance, it is beneficial to deploy the IRS close to Tx or IRs.

C. RIR versus the CSI Uncertainty Level

To further show the effect of the imperfect CSI, we evaluate the RIR versus the direct channel

uncertainty level and the cascaded channel uncertainty level, in Figs. 9 and 10, respectively. From

these results, we conclude the following facts: 1) the RIR tends to decrease with the increase

of the CSI uncertainty, for both the direct and cascaded CSI uncertainty level; 2) the cascaded

CSI uncertainty plays a more important role in the RIR than the direct CSI uncertainty.

D. RIR versus the User’s QoS Requirement

Here, we evaluate the secrecy performance versus the QoS requirement. Firstly, we show the

RIR of these schemes versus the outage probabilities δk and ζl in Figs. 11 and 12, respectively.

From the two figures, we can see that the RIR decreases with the increase of δk and ζl. Since

with the increase of δk or ζl, stricter constraints are imposed on the rate and the achieved rate

tends to decrease to satisfy these constraints.
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Fig. 11. The RIR versus the rate outage probability.
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Fig. 12. The RIR versus the HP outage probability.
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Fig. 13. The RIR versus the HP constraint.
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Fig. 14. The CCDF versus the IRs’ target SINR threshold.

Then, we show the RIR versus the HP threshold Eth,l in Fig. 13. From this figure, we can see

that for all these methods, the RIR decreases with the increase of the HP threshold. This is mainly

due to the fact that with higher HP requirements, more transmit signals need to align to the ER’s

channel, and thus the ER has higher probability to eavesdrop the confidential information, hence

decreasing the rate. Besides, when the HP threshold exceeds a certain value (about −5 dBm),

the RIR decreases dramatically. This is because in this case, the HP constraint is hard to be

satisfied in many channel realizations.

E. Complementary CDF Performance

Moreover, to show the effect of the robust design, we show the complementary CDF (CCDF)

of these methods versus the users’ QoS parameters in Figs. 14–16, which is defined as the

probability of the achieved Γk, Γk,l, and Eth,l that below the target threshold. In addition,
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Fig. 15. The CCDF versus the ERs’ target SINR threshold.
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Fig. 16. The CCDF versus the ERs’ target HP threshold.

the non robust design is provided for performance comparison, which is labelled as “Non

robust”, where {wk}Kk=0 and θ are obtained based on the estimated CSI without considering

the outage constraints. From these figures, we can see that the robust methods achieve better

CCDF performance than the non robust design, since the robust methods can provide more

opportunities to obtain higher SINR at the IRs, or lower SINR at the ERs, or more HP at the

ERs, thus to improve the outage performance.

VII. CONCLUSIONS

In this work, we investigated the secrecy design in IRS-aided SWIPT networks, where the BF,

the AN and the phase shifters are optimized to maximize the minimum RIR. Specifically, for the

bounded CSI error model and the probabilistic CSI error model, we utilized the AO and SCA

method to reformulate the non-convex problem, and then an PDD based iterative algorithm was

proposed to obtain the solutions. While for the statistical CSI model, we propose a stochastic

SCA method to handle the robust design. Simulation results demonstrated the performance of

the proposed design and reveal some useful insights.

APPENDIX A

PROOF OF THEOREM 1.

Firstly, we denote the constraint set of θ̂ for problem (27) as X =
{
θ̂
∣∣∣∣∣∣θ̂m∣∣∣ ≤ 1 , (23), (24), (25)

}
,

and rewrite the constraints (23)–(25) in functional forms as
{

Fn

(
θ̂
)}K+KL+L

n=1
. In addition, the

Lagrangian dual matrices associated with these constraints are denoted as {Xn}K+KL+L
n=1 , and

the dual variable associated with
∣∣∣θ̂m∣∣∣ ≤ 1 is denoted as ωm.
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Since θ̂
i

is bounded by
∣∣∣θ̂m∣∣∣ ≤ 1, and ϕ is updated via continuous function ϕ = e∠(θ̂+λτ) of

θ̂
i
, there exists limit point of the solution. Without loss of generality, we denote

{
θ̂
i
,ϕi
}

as the

limit point, i.e.
{
θ̂
i
,ϕi
}
→
{
θ̂,ϕ

}
. For any i ∈ {1, 2, . . .}, assume that

{
θ̂
i
,ϕi
}

is the limit

of the convergent subsequence
{
θ̂
i,`j
,ϕi,`j

}
of
{
θ̂
i,`
,ϕi,`

}
. Denote the objective function of

(28) as h
(
θ̂,ϕ

)
. Since for any λ, the objective sequence of (28) updated via the BCD method

is decreasing and bounded from below [35]. Thus, according to [43], the proposed algorithm is

guaranteed to converge to a stationary point of (27).

Suppose the limit point ϕi,`j−1 → ϕ̂, since ϕi,`j = arg min
|ϕm|=1

h
(
θ̂
i,`j
,ϕ
)

, so h
(
θ̂
i,`j
,ϕi,`j

)
≤

h
(
θ̂
i,`j
,ϕ
)

. Then taking j → ∞, we have h
(
θ̂
i
,ϕi
)
≤ h

(
θ̂
i
,ϕ
)

. Hence ϕi is the optimal

solution to the problem min
|ϕm|=1

h
(
θ̂
i
,ϕ
)

. Besides, since the objective sequence
{
hi,`
}∞
`=1

con-

verges, we have h
(
θ̂
i
,ϕi
)

= h
(
θ̂
i
, ϕ̂
)

. Therefore ϕ̂ is also an optimal solution to the problem

min
|ϕm|=1

h
(
θ̂
i
,ϕ
)

, thus we conclude that ϕi = ϕ̂.

Since θ̂
i,`j is the solution to the problem min

θ̂∈X
h
(
θ̂,ϕi,`j

)
, and the Slater’s condition is

commonly satisfied, therefore it satisfies the Robinson’s condition [43]. Then, according to

Lemma 3.26 of [45], the dual variables
{

X
i,`j
n

}
and ωωωi,`j are bounded. Then, by taking j →∞

and restricting to a subsequence of {Xi
n} and ωωωi, we obtain the KKT conditions for problem

min
θ̂∈X

h
(
θ̂,ϕi,`j

)
at
{
θ̂
i
,ϕi
}

as follows:

1

λi

(
θ̂
i −ϕi

)
+ τ i +

K+KL+L∑
n=1

Xi
n

∂Fn

(
θ̂
i
)

∂
(
θ̂
k
)† +

M+1∑
m=1

ωim
∂

∂
(
θ̂im

)† (∣∣∣θ̂im∣∣∣− 1
)

= 0, (56a)

Fn

(
θ̂
i
)
� 0,Xi

nFn

(
θ̂
i
)

= 0,Xi
n � 0,∀n, (56b)∣∣∣θ̂im∣∣∣ ≤ 1, ωim

(∣∣∣θ̂im∣∣∣− 1
)

= 0, ωim ≥ 0,∀m. (56c)

Denote µi ∆
= 1

λi

(
θ̂
i −ϕi

)
+ τ i, and assume µi is bounded. Then, by taking i → ∞ and

restricting to a subsequence of
{
X̄j

}
and ω, we obtain

∂

∂θ̂
†<
{
µ̄H
(
θ̂ − ϕ̄

)}
+

K+KL+L∑
n=1

X̄n

∂Fn

(
θ̂
)

∂
(
θ̂
)† +

M+1∑
m=1

ω̄m
∂

∂θ̂
†

m

(∣∣∣θ̂m∣∣∣− 1
)

= 0, (57a)

Fn

(
θ̂
)
� 0, X̄nFn

(
θ̂
)

= 0, X̄n � 0,∀n, (57b)∣∣∣θ̂m∣∣∣ ≤ 1, ω̄m

(∣∣∣θ̂m∣∣∣− 1
)

= 0, ω̄m ≥ 0,∀m. (57c)

Since µi is bounded, then τ i is also bounded. Thus, at least one of the two possible cases is

performed. That is either 1): λi → 0 with µi−τ i bounded, or 2): µi−τ i → 0 with λi bounded.
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Hence we always have θ̂
i −ϕi = λi (µi − τ i)→ 0.

Then taking i→∞ and restricting to a subsequence of µ, we obtain

θ̂ − ϕ̄ = 0,<
{
µ̄† ◦

(
θ̂ − ϕ̄

)}
= 0,<

{
µ̄ ◦

(
θ̂ − ϕ̄

)}
= 0. (58)

At the same time, when θ̂
i,`j is given, ϕ is updated by solving (31). According to previous

discussion, θ̂
i,`j is optimal to (31) if and only if it is optimal to (30), whose KKT condition is

− 1

λi

(
θ̂
i,`j −ϕi,`j

)
− τ i +

M+1∑
m=1

ς i,`jm

∂

∂
(
ϕ
i,`j
m

)† (∣∣ϕi,`jm

∣∣− 1
)

= 0, (59a)

ς i,`j ◦
(∣∣ϕi,`j − 1

∣∣) = 0,ϕi,`j = 1. (59b)

In fact, by (59a), we can obtain ς i,`j =
(
ϕi,`j

)−1 ◦
(

1
λi

(
θ̂
i,`j −ϕi,`j

)
+ τ i

)
, which is a

continuous function in θ̂
i,`j and ϕi,`j . By taking j →∞, i→∞ and restricting to a subsequence

of ς , we obtain
∂

∂ϕ̄†
<
{
µ̄H
(
θ̂ − ϕ̄

)}
+

M+1∑
m=1

ς̄m
∂

∂ϕ̄†m
(|ϕ̄m| − 1) = 0, (60a)

ς̄† ◦ (|ϕ̄− 1|) = 0, ϕ̄ = 1. (60b)

Combining the equations (57), (58) and (60), we conclude that the Lagrangian multipliers{
X̄j, ω̄, µ̄, ς̄

}
satisfying the KKT conditions of (27), thus completes the proof.
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