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;; Abstract. We investigate photoelectron holographyimbichromatic linearly polarized
23 fields of commensurate frequencies rw and »sw, with emphasis on the existing
24 symmetries and for which values of thetelative phase between the two driving waves
25 they are kept or broken. Using group-theorgtical me}hods, we show that, additionally
26 to the well-known half-cycle symumetry, which is broken for r+s odd, there are reflection
27 symmetries around the field zero crossings and maxima, which may or may not be kept,
28 depending on how both waves are dephased. The three symmetries are always present
29 for monochromatic fields, while for bichromatic fields this is not guaranteed, even if
30 r+sis even and the half-cycle symmetry is retained. Breaking the half-cycle symmetry
31 automatically breaks one of the.other two, while, if the half-cycle symmetry is retained,
32 the other two symmetries are eithersboth kept or broken. We analyze how these features
33 affect the ionization times and saddle-point equations for different bichromatic fields.
34 We also provide general expressions for the relative phases ¢ which retain specific
22 symmetries. As an application, we compute photoelectron momentum distributions
37 for w — 2w fieldsswithythe CGoulomb Quantum Orbit Strong-Field approximation and
38 assess how hglographic structures such as the fan, the spider and interference carpets
39 behave, focusingon the reflection symmetries. The features encountered can be traced
40 back to the field gradiént and amplitude affecting ionization probabilities and quantum
41 interference in different momentum regions.

42

43

44

45 1. Introduction

46

2; Resolvingrand steering electron dynamics in real time are key objectives of attosecond
49 science([1-4]. Imborder to realize these aims, several research avenues have been pursued,
50 such_as ‘attosecond pulses [5, 6], high-order harmonic spectroscopy [7], and ultrafast
g ; photoelectron holography [8]. Due to the high intensities involved, the external laser
53 field dictates the time scales and the dynamics. This is a consequence of strong-
54 field phenomena being laser-induced processes, in which an electron is freed from its
gg parentsion, propagates in the continuum and either reaches the detector or is brought
57 back by the field to its parent ion, with which it may recombine or recollide [9].
58 Recollision leads to high-energy photoelectrons in above-threshold ionization (ATTI)
>9 [10-12] or nonsequential double and multiple ionization (NSDI, NSMI) [13, 14], while
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recombination results in high-order harmonic generation (HHG) [15]. For that(reason,
tailored fields have been widely explored as subfemtosecond-control tools for éver three
decades (for reviews see, e.g., [16-18]). This interest led to a multitude of applications,
such as the in situ characterization of attosecond pulses [19-21], the,measurement
of tunneling times [22-35], probing chiral systems [36-39], angular features in HHG,
vortex-type interference [40] and the phase-of-the phase spectroscepy using collinear
[41-43] or circularly polarized [44, 45] two-color fields. Apart from the uSual linearly
polarized bichromatic fields [17] and few-cycle pulses [16], ellipfically, polarized fields
[46], orthogonally polarized two-color (OTC) [27, 33, 47-55] and bi¢ircular [35-40, 56—
62] fields have been proposed and studied, as well as chiral {63] and knotted fields [64].

Thereby, dynamical symmetries [55, 62, 65, 66] play a huge role, and may stem from
the field polarization, time profile, relative frequencies and relative phases. Symmetries
have been used, together with properties of the target, tordetermine selection rules in
a wide range of scenarios. Besides the seminal werk in [67],/in recent years selection
rules for HHG [68] and strong-field ionization [65)/in bicircular fields have been derived.
Further studies have focused on the role of the drbital angular momentum (OAM)
in photoelectron vortices [40, 69-71], mglecules [62, 72], and strong-field ionization in
circularly polarized fields [73, 74]. This buildsiup on early work, which shows that HHG
with two-color fields are dependent on the target |75, and that an electron’s angle of
return will manifest itself as dynamie shifts,in structural minima in HHG from diatomic
targets [49, 50, 76].

A two-colour field of linearpolarization, composed of a wave of frequency w and its
second harmonic, delayed by asrelative phase ¢, is among the simplest tailored fields.
Since the 1990s, they have been widely used to break the half-cycle symmetry of a
monochromatic wave. This®Symimetry means that, for a time translation ¢t — ¢ + 7'/2,
where T is the field cycle, the'elegtric field and corresponding vector potential will not
change apart from agspatial reflection in the plane perpendicular to the polarization axis,
that is, E(t) = —E(t4+T}/2) and A(t) = —A(t+7/2). Hence, for monochromatic driving
fields or long enough pulses,"photoelectron momentum distributions will be symmetric
with regard to momentum reflections py — —p| and p; — —p,, where p; and p, are
the momentum™céomponeénts parallel and perpendicular to the field polarization axis.
Inclusion of/a second harmonic wave will break the symmetry with regard to p;. For
high-harmenic¢ spectra, breaking the half-cycle symmetry with an w — 2w field will lead
to even/harmonics, which can be manipulated by altering the relative phase ¢. Breaking
this symmetry, /together with the phase dependence, has been hugely important for a
wide range.of applications, such as attosecond-pulse characterization [19], determining
ionization times [27, 35, 77] and the phase-of the phase spectroscopy [41-45]. Often, a
weak 2w wave is employed to minimally disrupt the continuum dynamics determined
by the low frequency wave. Stronger 2w fields will alter the electron propagation in the
continuum, and lead to a double plateau [78-80] or caustic-type structures [81-84] in
high-order harmonic generation. Another way of breaking this symmetry is to use few-
eycle pulses (see [85-88] for photoelectron holography). In contrast, a linearly polarized
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w — 3w field does not break the half cycle symmetry. One should note, however, thatia
linearly polarized bichromatic field may exhibit other, subtler symmetries, which have
been studied in lesser depth. Examples are temporal reflections with regard to the field
maxima or zero crossings, which depend on relative phases and frequencyratio,between
the two driving waves.

In the present work, we will investigate what symmetries exist fordinearly. polarized
two-color fields, under what conditions they are broken and what leffects they have on
specific holographic patterns. Examples are the fan-shaped fringes that form near the
ionization threshold [89-93], the spider-like fringes that form near the\polarization axis
[94-100], and the spiral-like structure that forms perpendicular to the field-polarization
axis and, in the high-energy region, leads to interference carpets,[101, 102]. We will
focus on how their contrast and prominence depends on su¢h symmetries and how they
can be manipulated by altering the field parameters. Theoretical and experimental
studies show that these features change for orthogenally [52,°53, 103, 104] and linearly
polarized [41, 77, 105-110] two-color fields.

Furthermore, in order to model the holographic pa’cterns and assess how they
form, one must employ an orbit-based/method that/incorporates both the residual
binding potential and the external laser field, and accounts for tunneling and quantum
interference. With that purpose in mind, we will use the Coulomb Quantum-Orbit
Strong-Field Approximation (CQSFA) [1ii}.. The CQSFA is a path-integral strong-field
approach that accounts for the driving field and the residual binding potential on equal
footing, and has been appliediby us to phetoelectron holography by monochromatic
fields [112-117]. Apart from exeellent agreement with experiments [101, 118, 119], the
CQSFA allows unprecedented control about what type of interference leads to specific
structures, as specific typesiof orbits may be switched on and off at will.

This article is organized/as follows. In Sec. 2, we briefly review the CQSFA and
state the main assumptions used in this work. Subsequently, in Sec. 3, we focus on
the symmetries identified for linearly polarized bichromatic fields of commensurate
frequencies, both by looking at the field and the saddle-point equations (Secs. 3.1 and 3.2,
respectively). Examples of how different symmetries affect the photoelectron momentum
distributions are provided in Sec. 4 for a specific case. Finally, in Sec. 5 we summarize
the paper and state the main conclusions to be drawn from this work.

2. Background

2.1. General expressions

We will foéus on the transition amplitude (¢p, (£)|U(t,t0)[t)) from a bound state [tg)
to a final continuum state [¢p, (¢)) with momentum py. The key difficulty is to calculate
the time evolution operator, which, in atomic units, reads

Ut o) = Texp i /t tH(t')dt'}, (1)
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where T denotes time-ordering, associated with the full Hamiltonian
H(t) = Ho + Hi (1), (2)
where
p2
H, = > + V(1) (3)

gives the field-free one-electron atomic Hamiltonian and H;(t) givés the coupling with
the field. In equation (3), r and p denote the position and momentum operators,
respectively. Throughout, we employ the length gauge, so that Hg(t)=r - E(t), use
atomic units and consider a Hydrogen atom, so that V' (r) = —1/J&|- The time-dependent
Schrodinger equation can be either solved numerically, such as, in?[120], or used for
constructing approximate, semi-analytic methods (for reviews see [8, 121]). Here, we
will state the key assumptions employed in the CoulombyQuantium Orbit Strong-Field
Approximation (CQSFA). As a benchmark, we use the freely available Schrodinger solver
Qprop [120, 122, 123]. We specifically consider thewversion 3.2, which is essentially that
in [123] with a few modifications. &
A convenient starting point is the integral equation

Ut to) = Ua(t,to) — i / UV () U (1) (4)

where U,(t,tg) = expl[iH,(t — to)]"is thestime-evolution operator associated with the
field-free Hamiltonian (3). Using equation (4), one may write the transition amplitude
from an initial bound state |fg(t')) to a finalasymptotic state |y, (t)) as

M(py) = i lind / s, (DU )L (1) in(1)) 5

with [¢o(t')) = exp[il,t'[|1o)s “where I, is the ionization potential and p; the final
momentum. We assume that(the electron is initially in the ground state, so that I, = 0.5
a.u. One should note that merapproximation has been made in the time propagation
described by equation, (5):

Using path-integral methods and time-slicing techniques [124, 125] in equation (5),
one obtains the expression

M(p;) = <y lim dt'/dpo/ D’~/ o)
Xezs(p”t (PolHi(t)[1ho) (6)

wheresD'Prand/ Dr are the integration measures for the path integrals, and the prime
indicates afrestriction. These represent a sum over all possible paths in position and
momentum, that the electron can take, between its start and end points. The tildes
over the initial and intermediate momenta indicate field dressing, i.e., pg = po + A(t')
and pr= p + A(7), with t < 7 < #. This is the transition amplitude employed in the
Coulomb Quantum-Orbit Strong-Field Approximation (CQSFA) [111-113]. One should
note that the unitary transformation from the velocity to the length gauge leads to
time-dependent momentum shifts that have been been incorporated in the intermediate
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momenta and in the matrix element from the bound state to the continuum. /For the
full derivation, together with the time-slicing techniques, see our previous puiblication
[111].
The action in equation (6) is given by
t

S, r,t,t") =Lt —/ p(7) - (1) + H(x(7),p(7), 7)|d7s (7)

and the Hamiltonian by t
H(x(r), p(r). 7) = 5 [p(r) + AT + V(x(r). g

One should note that, in equation (6), both the residual bindinggpotential and the

~

external laser field are fully incorporated in the electronédynamics.» Thus, in principle,
the CQSFA considers rescattering in its full extent Jiil].In the limit of vanishing
Coulomb potential, equation (6) reduces to the Strong-Field Approximation (SFA)
transition amplitude associated with direct ATII.

We solve the above-mentioned transition amplitude using a two-pronged contour in
time. In the first half of the contour, the real part of the time is fixed and the imaginary
part goes to zero. This means that the time integrals are performed from an initial
complex time t' = ¢/ + it} to a a real time ¢/, The second part of the contour is taken to
be along the real time axis, up to infinity, that is, from ¢ to a final time ¢ — co. This
choice of contour is widespread in appreaches'which incorporate the Coulomb potential
[134-137].

With such a contour choice, the action is written as

S@.r.t,1') = ST B, vyt + ST (D1, 1), (9)

)

where S™(p,r,t.. ') and” SPP(pyt,t,t/) give the contribution of tunneling and

’Vr

continuum propagation to the adtion, respectively. The coordinate r(7) in the first
part of the contour 4s.commonlyreferred to as “the tunnel trajectory”.

An approximation which makes finding the tunnel trajectory much easier is to
assume the momentum remains constant along the first arm of the contour. This yields

- / Apo+ A(")dt", (10)

so that S*™™(p,&, ., ") is simplified to

»Vr?

/

1.
S (B, 11, ¢) = I, (it]) / H(ro(), p(tL), 7)dr. (11)
t

1 The directh\ ATI transition amplitude describes a process in which an electron leaves the atom,
propagates in the continuum and reaches the detector without further interaction. It is obtained
by replaciiig the full time-evolution operator by the Volkov time-evolution operator UMV (¢, t) in (5).
The latter operator is associated with the Volkov Hamiltonian, in which the atomic binding potential
is neglected. For reviews on this widespread approach, see, e.g., [10, 121, 126, 127] and for seminal
papers see [128-130]. In the context of direct strong-field ionization, the SFA is also known as the
Keldysh-Faisal-Reiss (KFR) theory [131-133].
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Using saddle point methods to approximate the integrals in equation (6) deads to
the following system of saddle point equations:

(') + A())* = 21, (12)
i(7) = p(7) + A(7) (13)
p(r) = =V, V(x(r)). (14)

Equation (12) governs the tunneling time ¢ and has the form abovefdue to the
approximation that the sub-barrier momentum is constant. This appg)ximation leads
to the binding potential vanishing in the tunneling equation and has been discussed in
detail in [113]. Although, after these approximations, the CQSFA tunneling equation is
mathematically identical to that in the SFA, the ionization times and.the initial momenta
will differ from their SFA counterparts as they must be matehed at the tunnel exit with
the CQSFA results from the full Coulomb-distorted continuum propagation. For a
discussion of practical implementations see [111]. ‘Equations(13) and (14) determine
the continuum trajectory of each orbit and it can be.seen that the classical equations
of motion have been recovered. y

Assuming that the tunnel exit is restricted ‘to_the laser’s polarisation axis and
setting it to be real, it can be approximately defined as

29 = Re[ro)(t,)]. (15)

One should notice that this is an appreximation, and that, in a more rigorous setting,
complex equations of motion must be solved. Early studies for circularly polarized
fields have shown that the imaginary parts of electron orbits in the continuum lead to
electron deceleration [137], inagreement,with ab-initio computations [138]. For linearly
polarized fields, complex orbitsdn the continuum will require dealing with branch cuts
upon acts of rescattering [139; 140]. For details in the context of the CQSFA see |8,
116]. Semiclassical ;nethods from other research areas employing real orbits, such as
the Herman Kluk prepagator, will result in a dephasing for longer times due to the fact
that tunneling is n6t properly incorporated (for a discussion in the strong-field context
see our previousypublication [141]).
Within thisrapproximation, the CQSFA transition amplitude (6) reads

o B 37 {ae [ i a0

involving a sum over all orbits one would like to contribute to the final momentum

/

distributionsswhere ¢/

, Ps and ry are the stationary variables obtained by solving the
saddle-point equations. The term in brackets varies with the stability of the orbit while

the term

o) = \/ B P AIH) ) a7)

encodes the geometry of the initial electronic orbital, which, in the present publication,
we take to be 1s. For other types of orbitals in the CQSFA we refer to [101, 117-119].
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In practice, we employ the stability factor Ops(t)/0ps(t,) instead of #hat in
equation (16), which may be obtained with a Legendre transformation. This choice
will not influence the action if the electron starts from the origin [111]. Throughoutywe
will call the product of the stability factor with C(t.) “the prefactor”. The CQSFAis
solved as a boundary problem in which the initial conditions are writtefr-as functions of
the final momenta, that is, given a final momentum p; we seek an initial mementum py
at the tunnel exit such that the saddle-point equations are satisfied. The final time ¢ is
chosen to be at least 20 cycles long. More details about how the method. is implemented
can be found in our early publications [111-113]. .

For a monochromatic field, the saddle-point solutions‘will lead 4o four types of
orbits. An electron along orbit 1 leaves the atom and goes directly to the detector,
without changing direction. In contrast, an electron along erbit 2 will be released half
a cycle later or earlier, follow a field-dressed Kepler/yperbola and reach the detector
without changing its momentum component perpendicular to the laser-field polarization.
This behavior is similar to that of orbit 3, with«the difference that, in the latter case,
due to the residual potential the signs of thelinitial and' final transverse momentum
components will change. Finally, an electron along orbit 4 will be released on the same
side as orbit 1, but will go around the core before ultimately reaching the detector.
These orbits have been first identified in [142], and have been discussed extensively in
our previous publications. For bichromatie fields, this classification will change, but the
relevant orbit types will depend on the field parameters. An example will be provided
in Sec. 4 for the situation in“which the half:cycle symmetry is broken, but the high-
frequency wave is weak.

Finally, an important practical issue is that, due to the necessity of taking a finite
range of ionization times, there, will be some arbitrariness about the initial and final
times defining this range. This will lead to specific unit cells, which will influence the
resulting holographic patterns depending on how they are chosen. Considering many
cycles will overcome $higiarbitrariness, but a coherent sum will lead to strong ATT rings,
which will obfuscate the remaining interference patterns. This is particularly critical
if one is interested in intra-cycle interference. An incoherent sum over unit cells has
been employed®in our, previous publication [119], for a monochromatic field, in good
agreement with experiments in which ATI rings are filtered out.

For a-general polychromatic linearly polarized electric field

E(t) = ZEnfn(t)7 (18)

of amplitudes F, and time profiles f,(¢), shifting the unit cell is equivalent to taking
fa(E)v= filt + teen) in the above equation. An incoherent sum over t.,; will eliminate
this arbitrariness, and has been employed in our previous publication [119] for a linearly
polarized monochromatic field.
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2.2. Linearly polarized bichromatic fields

In the present work, we consider a two-color linearly polarized field composed of . waves
with commensurate frequencies rw and sw, where r, s are integers, phase{difference ¢,
and electric field amplitudes F,, F,. This gives an electric field of the form

E, ;4(t) = [E,sin(rwt) + Esin(swt — fgb)]en, (19)
r
and the vector potential of the form
Arsp(t) Er (rwt) + = (swt — 2¢) < (20)
s = cos(rw — cos(swt — —¢) | e
e rWw Sw T .

and the ponderomotive energy
B2 R
4r2w? 45202

We will adopt the notation (r, s) for the two frequeneies involved, whereby the first and

Up = (21)

second index relates to the first and second waveyTespeetively [55, 143] and refer to it
as a (r, s) field. y
Below we state the explicit expressions for the integral in the tunneling arm of the
contour, the tunnel exit and the saddle-point eéquation associated with tunnel ionization.
The action S™ (P, r,t.,t') along the tunneling, contour reads

~ 1 .
S Br, 1) = |1, P L 3L + p ()] )

iyt Ey

SR [sin (rwt)]r — % [sin (swt - %)]
¢

t/

T

t/

E?2 0 B2 so\1"
—m [sin(2rwt)],; — Gow)? [sm (ZSwt - ZT)L/ (22)

B, FE,
2rsw3

T

sin (wt(r +s5) — %) n sin (wt(s —r) — @)]ti«

r+ s sS—r
tl

- /t " V (ro(7))dr.

Equation (22) is important for determining the saddle-point equation for the ionization
times ¢/, whieh will be used to understand the symmetries governing the contrast
and preminence of specific holographic patterns. The action SP™P(p,r,¢,t.) in the
second arm of the contour will influence the continuum propagation and the interference
patterns of the photoelectron distributions, which, for the parameter range employed
here will only play a secondary role. The tunnel exit (15) is given by

r

zZ0 —

r2.92 S22

sin (rwt!.)(1—cosh (rwt}))+ Zs sin (swt; — §¢> (1—cosh (swt})).(23)
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3. Saddles and symmetries

3.1. Field symmetries

We will investigate what symmetries may be present in the external field (19)sand the
vector potential (20). With that aim in mind, let us start from a general formulation
and consider the field to be a periodic function in ¢ with period T« For simplicity, we
will omit the unit vector e as this is essentially a one-dimensional problem.

We define three operations on smooth functions, here deneted byuf(#). These can
be time reflection around 7 (7z(7)), a reflection with regard to.the time axis (F), and
time translation by 7 (77(7)) such that

Tr(T)f(T+1) = f(1 = 1), (24)
Tr(r)f(t)  =ft—7) (25)
Frt) = —f(), (26)

for real times, t. If E, ; 4(¢) and A, 5 4(t) have petiod T, th{s, is equivalent to saying that
E, s(t) and A, 5 4(t) have T7(T) symmetry, whichds broken by taking a short pulse of
light, but not by introducing a second colour.

There are three symmetries for monochromatic linearly polarized fields, which can
be broken by introducing a second colour. “A menochromatic field remains invariant
under:

(i) atranslation of half a cycle followed byna reflection with regard to the time axis, that
is, FTr (£) E(t) = E(t). This is known as the half-cycle symmetry, and usually
written as E(t £ T/2) = #E(t).

(ii) a time reflection around it&extrema, so that Tg (7..) E(t) = E(t), where 7., are the
times for which the extrema oeceur.

(iii) a time reflection around its zero crossings followed by a reflection with regard to
the time axis, thatwis, FTr (1) E(t) = E(t), where, similarly 7., are the times for
which the zere'crossingstake place.

All these properties hold for the electric field and the vector potential, but with 7.. and
Tex SWapped. An example is provided in Table 1 and illustrated in Fig. 1 for a sine field
of frequency w.

For astwo colour field, the above symmetries may be retained or broken. The set of
values of ¢ for which the field retains the symmetry defined by the symmetry operation
O(7).can be written as

D, (O(1)) = {9|Ersp = O(T)Eprs.0}- (27)
We can use this to write statements about which of the monochromatic symmetries
are retained when a second colour is added. For instance, for real times, 7 and 7

¢ € 5o (FTr(11)) N Crs(Tr(72)) = ¢ € Crs(FTr(T/2)), (28)

which states that if the field has symmetry under time reflection around its extrema as
well as its zero crossings then the half cycle symmetry must also exist for this field. One



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPHYSB-107278.R1

10

1.0

0.5

0.0

-0.5

Normalised Field strength

-1.0) === A(t)

B S . T

0.0 0.2 0.4 0.6 0.8 1.0
Time (T)

Figure 1: Time profile of a linearly polarized monochromaticfield and the corresponding
vector potential, which exhibit the three symmetries (i).- (iii). Black lines at (2n+1)T'/4
indicate the times that permit 7z symmetry for the elecgric field, while orange (light
grey) lines at n7T'/2 indicate the times that permit &F 7z symmetry for the electric field.
For the vector potential, these times are(interchanged

oo () Ao ()
Half-cycle symmetry FIr (%) FTr ( % )
Reflection around extrema Tr (W) Tr (%)

Reflection aroundzero crossings | FTr (%) FTrn (W)

3
Table 1: Symmetries satisfied/by a sinusoidal monochromatic linearly polarized electric
field of frequency w. #The first €olumn specifies the symmetry, while the remaining
columns provide information about the relevant times for the electric field and the
vector potential, vespectively. Throughout, n is an integer.

should note ghat 4f the half-cycle symmetry holds, this is no guarantee that the other
two are present.

Fordan (r, s)field, all combinations of (r,s) can be reduced either to the case in
which 7 and s have opposite parity or to both r and s being odd. One should note that
if (r5's) are mot coprimes, with regard to symmetry it will reduce to one of these cases
scaled by the multiplicative factor that transformed the indices.

For.# and s both odd, the half cycle symmetry is preserved so for a given ¢
either both of the other time reflection symmetries hold or neither do. For r and s
with opposite parity, the half cycle symmetry is broken, so only one of the other time
reflection symmetries may be satisfied for a given ¢. This is because the statement (28)
is true if one interchanges the operations. This is due to the structure of the symmetry
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group. The symmetry group of the temporal evolution of the monochromatic field
has only 4 subgroups which describe the symmetries of periodic mathematical objects:
These correspond precisely to the objects described: the periodic field with no further
symmetry, the field with just time reflection, the field where time reflegtion eombined
with reflection along the time axis is a symmetry, and the field withyjust half cycle
symmetry. The symmetry groups here are simply 5 of the 7 Frieze groups [144].

For a given ¢, if the field is symmetric with regard to FTg(7) or Tr(T), then this
symmetry will also hold for FTg(7+4nT'/2) and Tr(7+nT/2) respectively where n € Z.
Thus, it makes sense to view symmetric points separated by nl’/2 as\equivalent SO we
only need to consider symmetries which exist within a half-eycle of the field. This is
not to be mistaken with the half cycle symmetry.

Figure 2: This schematic shows the ways in which the two additive components of the
bichromatic field must be aligned to permit a symmetry. By varying the phase ¢, the alignment
of these constituent fields can be varied. The green dashed line indicates that fields where the
two constituent fields have zeroes at the same time will have symmetric gradient around this
field zero crossing. The red dashed line indicates that fields where the constituent fields have
extrema svhich coincide will have symmetry around this extreme point.

The symuietries FTz(7) and Tr(7) for two-color fields may be understood in terms
of overlapping field maxima or zero crossings. For a field as defined by equation (19), all
possible combinations of field zero crossings coinciding as in Fig. 2 can be enumerated.
This gives the condition that for

2
Ps = 2—S(ns —mr), (29)
where n,m € 7Z, there exists some 7 such that the FTz(7) symmetry holds.
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Likewise, the same can be done for the phases ¢ such that the field extrema goincide.

For

2
ds = 7-((2n+ s — (2m + 1)r), (30)
where n,m € Z, there exists 7 such that the Tg(7) symmetry holds.

These conditions can be simplified to equations
O = g—ﬁ where ¢ € 27, (31)
s

and

k
o= 2—7T where k € (32)

S

27 for r and s both edd
27 + 1 for r and s of opposite parity ’

respectively. The latter formulations consider the cases.for which (r,s) are both odd
or of opposite parity separately where necessary. The same reasoning in Fig. 2 can be
generalized for N-colour fields so the conditions for eagh of the relative phases to give a
field with a certain symmetry can be found in the same way.

Fig. 3 illustrates all of the possible symmetry ¢onfigurations (except a field with no
symmetry) by showing a cycle of the electric field and vector potential for a selection
of the parameters r, s and ¢. The top two panels [Fig. 3(A and B)] are for (1,2)
fields. From equation (31), takingsg.= 0 means that the ¢ = 0 field [Fig. 3(A)] has
FTr symmetry. If we consider equation (32) and let £ = 1, then the ¢ = /4 field
[Fig. 3(B)] has T symmetry., The lower two panels [Figs. 3(C) and (D)] are for (1,3)
fields. Therefore, ¢ and k fromiequations (31) and (32), respectively, must be even.
This means that, for ¢ which are multiples of 7/3 as in Fig. 3(C), there exists both FTg
and Tr symmetries so this field has all of the symmetries of the monochromatic field
as described in Table 1. Bor otherivaltes of ¢ [Fig. 3(D)], only the half-cycle symmetry
holds. Throughout Fig. 3, /= 1, which means that the times acting as the symmetry
axis in each case coiméide pregisely with those in Table 1. For some combinations (r, s)
where r > 1, the axis.about which the field is symmetric can vary non-trivially with the
relative phase ¢ as is discussed in section 3.2.2. In Appendix A, we propose parameters
to quantify the degrees of asymmetry in a two-color field using the relative phase.

3.2. Saddle-pount equations

In section 3.1, ghe real time symmetries of the electric field E, ;4(t) (19) have been
investigated. However, the saddle point time ¢ is complex, as tunneling is not a
clagsically allowed process. The imaginary part Im[t'] is particularly relevant as it is
an‘indicator of the importance of the orbit which tunnels at ¢’. This is because the
most significant term in equation (22) is the first, which is linear in Im[t']. In the case
of two,interfering orbits i and j, Alm[t;;] = |[Im[t;] — Im[t}]| will indicate the level of
¢ontrast to be expected in the interference pattern. Alm[t;;] = 0 implies maximum
contrast as orbits 7 and j are equally relevant. Therefore, not only are there symmetries
i Re(t'), but also symmetries in Im(#') which are arguably more important. This can
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Figure 3: The electric field is shown by the blue (solid grey) line and the vector potential
by a red (dashed grey) line. In panels A and B bi-chromatic fields with frequency (1,
2) are plotted while in panels C and D, bi=chromatic fields with frequency (1, 3) are
shown. The vertical dotted lines représent.the possible lines of symmetry. Black lines at
(2n+1)T/(4r) represent the times thatipermit T symmetry for the electric field, while
orange (light grey) lines at WZ'/(2r) represent the times that permit F7x symmetry
for the electric field. Varying thewphase ¢ can change around which axis the field is
symmetric and whether it is the electrie, field or the gradient of the electric field which
is symmetric. For clarity here the intensity ratio I, /I, = 10 while in the remainder of
the paper much weaker second fields are considered.

be investigated by looking at,the symmetries of the saddle point times from equation
(12).

In this sectiony, we will focus on the symmetries caused by the field only. Therefore,
in the results that follow we display complex ionization times computed within the
SFA. A properreatment of the saddles in the CQSFA framework is non-trivial and
has beenfdone approximately in [116]. A more rigorous treatment is work in progress.
Nonetheless, under the present approximations the CQSFA equation describing tunnel
ionization is formally identical to its SFA counterpart, so that it can be used for an
approximafe study of the existing symmetries. One should note, for the CQSFA, the
initial,momenta and ionization times will differ due to the influence of the Coulomb
potential; see, e.g., [111]. In the plots that follow, namely Figs. 4 and 5, we will present
the saddles for the upper half plane of ¢/, as they are physically significant [116, 140].
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3.2.1. Complex ionization times To establish the saddle point symmetriestand to
determine for which ¢ they occur, it helps to write saddle point equation (12).for the
general bichromatic electric field (19). This can be shown in a similar manner to 143
to be equation (33) where the variable substitution x = €** has been made.

Es s ei¢s/r Er . 1 )
? [W + ?:| + 7 |:.CE + ;:| — 2w |:p0|| j:z\/ ZIP +pg_l_:| =0 (33)

The phase ¢ = nw/(2s) for n € Z covers all phases whichsadmit a symmetry in
equations (31) and (32) when r and s have opposite parity. ([For(#, §) with opposite
parity and such that r and s are co-prime, the following syunmetries/exist for saddle
point times such that, for each p € [2s]§, there is a v € [25]

Reft ] =5 [ +.€ (2= 1) | el ana (30

Imt), (poy)] = Imft, ((—1)"poy)]- (35)
Here, S
o= ¥ (36)

with 7! representing the multiplicative inverse of. r modulo s. It was specified before
that r» and s were co-prime as thig emsures that such a multiplicative inverse actually
exists.

Conversely, for (r,s) which are bothhodd we additionally have the half cycle
symmetry for all ¢. In this casepfor p € [2s], there is v € [2s] so that the saddle
point times have the symmetries

Relt, (po))] 75 PRefth{ )] and (37)

Tml[t], (poy)] = Imt, (=-poy)]- (38)

Additionally, fof @= nm/2s such that n € 2Z, each p € [2s] can be paired with
another v € [2s] so thatithe symmetries

Relf” %5 | + 5] - Reltl(-12mp) and (30
1, 89, 1% Tl (1) ) (a0

hold. The combination of symmetries in equations (37), (38), (39) and (40) can be used
to show that two further symmetries exist. These are

Reft o] =5 [+ 5] - ~ R0 w4
T, (o) = Tnft (—(— 1) 2pop)]. (12)

Further details and the derivation of these symmetries can be found in Appendix B.

§ The notation [2s] here represents the set of integers between 1 and 2s. It is just a labelling system
for the 2s distinct saddles so any set with cardinality 2s will be sufficient.
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Figure 4: The saddle point times, ¢/, as détermined by equation (12), are plotted for nine
distinct parallel momenta, uniformly distributed, between py = —2 and py = +2 atomic
units (increments of 0.5 atomic units), while the peérpendicular component is kept constant
at pg1 = 0.1 atomic units. The black@rrows drawn on the figure illustrate the direction that
the saddle points will move as the parallel component of momentum is increased. It would
be unclear if every saddle was labelled in terms of py as has been done for a pair of saddles
in panel (A). Therefore, the arrowshead indicates which end of the sequence of scatter points
is the saddle for pg; = +2 atomie¢ units. The four panels show the same selection of field
type (r,s) and phase ¢ as in Fig. 3, so as te directly compare how the field symmetry affects
the saddle symmetry. Howeyery the intemsity ratio is I, /I; = 100 for panels (A) and (B) so
that it matches the physical example which is explored in section 4. Panels (C) and (D) use
I./I; = 50 instead, for the saké of saddle distinguishability.

For the field /of type (17 2) we derive the following very simple symmetries from
equations (34) and (35). For (1, 2), ;! = 1 so C = 0 and this gives the transformations

S

Reff, (= - — Reltl((~1)"poy)] and (43)

Im[t, (po))] = Imt, ((—1)"poy)] (44)
for phases which are of the form ¢ = nmw/4. The only distinct cases are for n odd and
n eyen. Forneven, ¢ € {...,—m, —5,0,5, 7, ...}

Relt,,(poy)] =T — Rel[t, (po)] and (45)

Im(t,,(poy)] = Imlt], (poy )] (46)

This ean be seen to hold in Fig. 4(A) by looking at the saddle point times for a range
po- The FTr(T/2) symmetry leads to reflection symmetry of the saddles along the axis
Re[t'] = T'/2. In particular, the beige (light grey) saddles are the mirror image of the
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Im(t') (T)

! 0.
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Figure 5: Ionization times in the complex plane, together with steepest descent/ascent
contours, for a model atom in several linearly polarized bichromatic fields, within the SFA
framework. The sub barrier semi-classieal action (22) is shown by the colourmap scaled by
the function sinh (S). The black dots mark the'saddle point times calculated from equation
12 for pgy = 0 and pp; = 0.1 atomic units.;}The coloured lines through the saddles are the
contours of steepest descent/ascent,and the white arrows indicate the direction of integration
along the contours to be used forrthe method of steepest descent. The panels (A), (B), (C)
and (D) are calculated using the same field parameters as the respective panels in Fig. 5.

A S

green (dark grey) saddles while the pink (lightest grey) saddles are the mirror image of
the dark blue (darkest grey) saddles.

For n odd, ¢ €ds.., == —% LR
Re[t (Po))] = = —Re[ v(=poy)] and (47)
Tm 8, (po)l, = Im[t (=po)] (48)
This is visiblein Fig. 4(B) as the Tr(T'/4) symmetry leads to saddles with reflection

symmetry alongthe axis Re[t'] = T'/4 when combined with a momentum transformation
Po|| —>.—Poj- The momentum transformation is necessary as the reflection reverses the
diréction of the black arrows in Fig. 4(B). It should be noted that for the field parameters
used.in Fig. 4(B), the equations (47) and (48) are satisfied by setting i = v. This means
that each'saddle has the same colour as its mirror image. However, this will not be the
casesfor arbitrary choice of the field parameters E, and F,. This is because the steepest
descent contours shown in Fig. 5 undergo changes in topology as we move through the
space of parameters, which can be associated to changes to the symmetry relations of the
saddle points. A good example can be discussed by looking at Fig. 4(C) and Fig. 5(C).
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In this case, the field has all the same symmetries as the monochromatic field. /Despite
this, the saddles do not satisfy the same symmetry relations as the monog¢hromatic
saddle points do. The equations are of the same form, (39) and (40), but their indicesjt
and v differ. For a monochromatic field, equation (40), for the saddles’ gymmetry with
regard to the axis Re[t'] = T'/4 is satisfied when p = v. This is visibly not the case
for every set of saddles in Fig. 4(C). For instance, the dark blue (darkest grey) saddles
do not have reflection symmetry around the axis Re[t']| = T'/4. [Instead{ the mirror
image of the dark blue (darkest grey) saddles around Re[t'] = T/4"is the pink (lightest
grey) saddles with the additional momentum inversion as before.«This means that if
we label the dark blue saddles t}, the green saddles ), andithe pinkésaddles ¢}, then
equation (40) is satisfied for the pair 4 = 1, v = 3 and for 4 == 2. The symmetry
relation differs because the steepest descent contour topelegy shown in Fig. 5(C) is
different to that of the monochromatic case. As I,/[ is inereased, the topology of the
contours in Fig. 5(C) will undergo a transformation such that the symmetry relation
of the saddles becomes identical to the monochromatic ease (u = v for all saddles). In
this case saddles #)(0) and #5(0) will merge at a crifical value of I,/I, and beyond this
point will satisfy equation (40), with 4 =%,= 1 and x = v = 3. In the remaining panel,
Fig. 4(D), the half cycle symmetry of the field means that the saddle points repeat
identically every half cycle. Therefore, there will be no resulting asymmetry in the final
momentum distributions of tunneléd eléétrons [55]. Having the other symmetries broken
means that the sub half cycle saddles have no symmetry, which can lead to changes to
the contrast of holographic intexference patterns.

By looking at how the saddle peints differ between the panels in Fig. 5 it becomes
clear why there is difficulty in devising a fully general orbit classification for arbitrary
bichromatic fields. In panelf(A)for ¢ = 0, the reflection symmetry across Re[t'] = T'/2
means that we must have anfidentical number of saddles in each half cycle and each
saddle is paired with another in/the next half cycle. When the symmetry has been
broken as in panel (B)y.for ¢ = 7/4, the saddles are unpaired and there can be a
different number of saddles in each half cycle. In this case, there are now three saddles
in one half cyclesand just one in the other. This difference alone means that a general
orbit classification must«depend on ¢, as the half cycle in which an orbit begins in will
significantly’ alter itstbehaviour. Another parameter to be considered when classifying
orbits is the ratio E;/FE,. In Figs. 5(A) and (B), there are a total of 2s = 4 saddles in
the upper half plane per field cycle. However, because of the large value of E;/FEs, only
the two of them with smaller Im[t'] will be physically significant. This has been utilised
in the orbit classification used for the discussion of holographic interference patterns in
section 4, which is valid in the regime E;/F, large. This will change when E;/FE, is
decreased and the way this changes will depend on ¢.

For example, if ¢ = 0 [Fig. 5(A)], the field symmetry requires that the steepest
descent contour has fixed topology and will not vary by changing F;/Es or pg, in the
sense that it prevents the saddles from merging. There will just be a point that F;/FEs
becomes so small that the contribution of the two (nearly coalescent) saddles with the
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Figure 6: Schematic representation of phases and axes of Symmetry for (r, s) fields, with r and
s of opposite parity. The black dashed circles represent the times-around which the field could
have a symmetry. Each red line segment represents the,phase ¢ of the field being incremented
by 7/2s and shows how the symmetry of the field changes,imder this increment, alternating
between Tr and FTg. The yellow (light gray) and purple (dark gray) dots denote F7xr and
Tr, respectively.

higher imaginary part may no longersbe neglected, however this is a rather ill defined
point. Conversely, for ¢ = w/4 [Fig. 5(B)], the symmetry around Re[t'] = T'/4 enforces
that the steepest descent contour topologymust vary with E;/F,. In fact, for po; = 0
there exists a line in the plane ((By/E») x poy) corresponding to the points where two
saddles coalesce. At such points the standard saddle point approximation breaks down
as one of the assumptions is tQat saddles are well separated. In its place a uniform
asymptotic expansion will besrequired (see [145] for an example), which is yet to be
developed for the CQSFA. For this reason, the example in this article uses parameters
where all important saddle point times are nicely separated. Even for the simple example
of (1, 2) fields, theredssignificant variety in the behaviour of the saddle point times across
the parameter space, such that it appears difficult to provide a uniformly applicable orbit
classification. Hewever, it is possible to utilise our understanding of saddle symmetries
to systematicallyamap out the contour topology, which can help to uncover usable orbit
classificationsion a case by case basis. This is outside the scope of the present paper
and will'be discussed in detail elsewhere.

3.242. Phasexdiagrams In Fig. 6, the phase dependence of equations (34) and (35) is
illustrated., The black circle represents a half cycle of the field and the information from
equationy(34) translates to the position of the dot on the circle. Concretely, the dot is at
the point corresponding to (n1'/4) [r;* + C (£ — 1)] where C is given by equation (36)
and means that for this specific value of ¢ there is a symmetry around this time. For a
field of type (r,s), there are 2r possible axis of symmetry within the interval [0,7/2),
such that:
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e Each of these axes become a symmetry axis for some value of the phase ¢

e As the phase is incremented by 7/(2s) the axis of symmetry is shifted by acenstant
factor, L [r;* 4+ C (2 — 1)], as given by equation (34).

The previous two points combine to ensure that, as the phase is varied continuously over
an interval of width 77 /s, each axis must become a symmetry axis in turn exactly once.
This is the phase which shifts the s-colored driving wave by a full half cycle. Therefore,
if the zero crossings of the r and s driving waves are aligned for.¢ = ¢y, they will be
aligned again at ¢ = ¢y + r7/s and this will lead to the same f@xis of symmetry. For a
detailed discussion, see Sec. 3.1 and Fig. 2. This means that

% [7“5_1 +C (% - 1)] — %G, (49)

where G must be one of the generators of the cyclic groupsZ/2¢Z. A similar statement
can be made in the case where r and s are both odd

T[C 1 T
1 [? + 51 ¢ . (50)
using the factor, (17'/4)[C/r + 3] from equation (39).The analogous symmetry circles
for (7, s) both odd will slightly differ from thoseiin Fig. 6 as there will be a contribution
from both equation (39) and (41), which will'lead %6 two concurrent orbits separated by
a quarter of a field cycle. The specific symmetry is indicated by the colour of the dot
in Fig. 6 and this corresponds to information derived from equation (35). In particular,
if n is even (orange dots), the ETr symmetry holds for the electric field E(t), while
for odd n (purple dots), the T& symmetry is present. For instance, for the (1, 2) field
[Fig. 6(A)], G = 1 so that as we increment ¢ by 7/4, the axis of symmetry shifts by 7'/4
each time. In this case thé axi$ of.symmetry shifts back and forwards between ¢ = 0
(FTg symmetry) and ¢t = T'/4 (T symmetry). For r = 1, the only possible value of G
is 1 since this is thefouly generator of Z/27Z. However, for r = 4 the generators of Z/87Z
are G = 1, 3, 5 and 7 so.the_patterns we see in Fig. 6 can vary depending on s. For
s = 5 [Fig. 6(B)]/as theyphase is incremented by /10 the axis of symmetry shifts by
T/16.

The situation in Fig. 6(C) can be better understood by looking at the specific (4, 7)
electric field shown in Fig: 7. Here, s = 7 means that G = 3 and as the phase is
incrementéd by w/14, the axis of symmetry changes by 37/16. This field has ¢ = 7/14,
so the axis of sygmmetry can be read from Fig. 6 by traversing one blue line segment in
the direction of the arrow from zero. This means that the electric field is Tz symmetric
att = 3T /46 and in Fig. 7 this is represented by a green vertical line. The axes which
can be arrived at in Fig. 6 from a single blue line segment from 37'/16 are indicated in
Fig. 7 by orange dashed vertical lines. These axes are located at t = 0 and ¢t = 37'/8.
Theywould be FTxr symmetry axes for relative phases ¢ = 0 [n = 0 in Fig. 6(C)] and
¢ = /7 [n = 2in Fig. 6(C)], respectively. Similarly, the axes of maximal asymmetry are
indicated in Fig. 7 by the red dotted vertical lines at t = 77/16 and ¢t = 157/16. Starting
at 37/16 in Fig. 6(C), 4 line segments must be traversed to be reach the axis at 77"/16.
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Figure 7: The temporal profile of the (4,7) field with phase ¢ = /14 is shown with its
symmetry axes marked with green solid vertical liness, This is a specific case of the (4,7) field
represented by the symmetry circle in‘the far right of Fig. 6. The orange vertical dashed lines
represent axes which can become symmetry axes'of the field under a shift of ¢ by 7/14. The
red dotted vertical lines represent axes which,require the phase to be shifted the maximum
amount of 47 /14 in order to become axes of symmetry for the field. This information can be
read from Fig. 6 by counting the mtimber of blue line segments between different points on the
circle.

A S

In Fig. 6(C), the final axis of symmetry ¢ = 77/16, where a phase value ¢ = 5r/14
means that 7Tz will hold is diametrically opposed to those in the starting point. The
same arguments will-holdyforathe second half cycle of the field (see right-hand-side of
Fig. 7), although' the field shape is different as there is no half cycle symmetry. On
inspection of Fig. 7 the field looks “more” symmetric around the orange axes than it
does around/the red ones. This is because the procedure discussed above, counting line
segments needed to reach'a symmetry (a dot in Fig. 6), is an indicator of the value of
any reagonably defined asymmetry parameter of the field for this symmetry. A more
quantitative explanation can be found in Appendix A.

In casesboth r and s are odd, both symmetries or none exist. However, they occur
at [ different  times. For instance, for ¢ = 0, FTr occurs for ¢ = 0 mod T/2, while
Tr exists for t = T//4 mod T/2. Increasing the phase by 7/s will shift both axes of
symmetry simultaneously according to equation (50). This is exemplified in Fig. 8, in
which the diagram for a (1,3) field is shown in panel A. This is the simplest case and as
¢ is increased by 7/3, the field will become symmetric around exactly the same times.
The diagram for a (3,5) field is shown in Fig. 8(B). It should be noted that in this case
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Figure 8: The black dashed circles and orange and purple'dets havethe same meaning as in
Fig. 6. However, in the case of r and s both odd, the coloured line segments must be interpreted
differently. Each line segment (or circle) represents shifting ¢ by 7 /s. Furthermore, we always
have either 0 or 2 symmetries so the two cycles in eachypanel of Fig. 8 must be traversed
concurrently. The starting point at ¢ = 0 is 0 for the yellow’ cycle and T'/4 for the purple
cycle.

for equation (50) G=1, however the figure shows cycles which makes 4 steps clockwise
for each 7/3 increment of the phases, This'is because here the diametrically opposed
points represent the same phase but different times, while in Fig. 6 this does not hold.
Therefore, we can equivalently represent the two cycles as making steps of G + r when
we have r and s both odd.

The analysis of the example studied in Section 4 takes into consideration the
existence or non existence/©f syﬁmetries of Im[t']. This perspective provides an in-depth
understanding of how the photoelectron momentum distribution differs for bichromatic
fields compared to menochromatic fields in the scenario for which F,/E; is large.

4. Photoelectron momentum distributions

In the following, we will'provide an example of how the above-stated symmetries and the
breaking thereof influence the photoelectron momentum distributions in the presence of
the residual’Coulonib potential. We will focus on a bichromatic (1,2) field with relative
phases @ = 0 atid ¢ = 7/4, and intensity ratio I; /I, = 100 between the low and high-
frequency wave. These are illustrative examples for which the half-cycle symmetry is
broken, buty which are symmetric with regard to FTr(T/2) and Tr(T'/4), respectively.
The former symmetry will ensure that the field peaks in successive half cycles are equal in
magnitude, while the latter will guarantee that the fields gradient around its maximum
are of'equal magnitude. Due to the presence of the Coulomb potential, the arguments
used here are approximate.

We start by comparing the CQSFA results with the outcome of a time-dependent
Schrodinger equation (TDSE) computation, performed using the freely available
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Figure 9: Photoelectron momentum distributions calculated for hydrogen ionising from a 1s
orbital (I, = 0.5 a.u.) using the ,CQSFA and the freely available TDSE solver Qprop[120] (left
and right columns, respectively).“For Qprop, the distributions are created from four cycles
of the field with a flat pulse shape andsa half cycle on/off period, while for the CQSFA we
have considered ionisation events up to four cycles. In order to eliminate residual asymmetries
and avoid overpowering ATIrings,vin the CQSFA computation we have also performed an
incoherent averaging over differént unit cells as well as a coherent sum over four cycles (for
a discussion see [119]). In the first row the field is monochromatic, while in the bottom two
rows the field is bichromatic of type (1, 2) in equation (19). The relative phase differs such
that the middle rowdssfor ¢=40 and the bottom row is for ¢ = 7/4. The frequency of the
monochromatic field and of the fundamental of the bichromatic field is w = 0.057 a.u. (A = 800
nm). The intensity of the monochromatic field is 0.0214 a.u. or 1.4 X 1014\7\//cm2 and the
bichromatic field intensity‘is set such that the total ponderomotive energy is the same as that
of the monochromaticifield: The ratio between the intensities of the two constituent waves is
I, /1, = 100, which means that the 2w wave has an intensity of I = 1.4 x 1012W/cm2. The
figures are plotted to a logarithmic scale and each panel has been normalized to its maximum
value.

software Qprop [120, 122], for one- and two-color fields [type (1,0) and (1,2) in
the present notation]. These results are displayed in Fig. 9 as functions of the
final"momentum components py,ps. parallel and perpendicular to the driving-field
polarization, and employ the coherent sum of ionization events over four field cycles.
For the CQSFA, we also perform an incoherent sum over unit cells in order to
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eliminate residual asymmetries due to artifacts||. All panels show clear above-thiresheld
ionization (ATI) rings stemming from inter-cycle interference, as well as intra-cycle
holographic patterns such as the fan near the ionization threshold, the spider-like fringes
near the polarization axis and the interference carpet near the perpendicular momentum
axis. The classical ridge associated with rescattering is also present throughout.” If a
monochromatic field is taken [Figs. 9(A) and (B)], all features are symmetrie upon the
reflection pg — —py with regard to the perpendicular momentum axis. Fot(1,2) fields,
this symmetry is lost even for a weak 2w wave, and the contrast and,intensity of the
holographic features is influenced by the relative phase between the two driving waves.
For instance, for relative phase ¢ = 0, there is a good contrast, in the spider and in the
interference carpets, while for ¢ = /4, the carpets become blurred.and the spider loses
contrast in the negative momentum region. There are also,differences in intensity for
the rescattering ridge, which is approximately symmetrie for ¢ = 0, but is suppressed
for positive momenta if ¢ = 7/4 is taken. This suppression is‘more pronounced for the
CQSFA, but is present in all cases.

In order to highlight these asymmetries, in Fig. M0 we plot the differences
between the bichromatic and the monochrematic field,/both for the CQSFA and TDSE
computations. Although the results are meore pronounced for the CQSFA than for
Qprop, overall one can see that the spider; whichyis symmetric for a monochromatic
driving field, is stronger on the leftfor ¢=:0.and on the right for ¢ = 7/4. Furthermore,
the rescattering ridge is stronger for negative (positive) parallel momentum for ¢ = /4
(¢ = 0), and the carpet is nomonger symmetric for the (1,2) field. For the CQSFA,
there are abrupt changes closesto the caustic determined by orbit 3, which extends
from the perpendicular momentum ‘axis, around (pg,psi) = (0,1.25) to roughly
(ps1:prL) = (£1.5,0), whileforQprop the corresponding shaded areas end almost below
the rescattering ridge (seg, forfinstance, blue regions in the negative parallel momentum
regions close to thegspiderlegs indFigs. (C) and (D)). These discrepancies and those in
Fig. 9 are due to additienal orbits which coalesce near the rescattering ridge and the
caustic around the spider and spiral. Their interference leads to additional structures.
These orbits canmnot be yet taken into consideration in the CQSFA, as they are likely to
require different’asymptotic expansions. This is still work in progress and beyond the
scope of the present paper.

Nextyin Fig. 114 we have a closer look at intra-cycle interference for fields of different
parameters focusing on the CQSFA only. For clarity, we omit the prefactors associated
with the stability of the orbit and the geometry of the 1s state as they lead to additional
momentum. biases. They improve the agreement with ab-initio methods, but sometimes

|| In'the CQSFA, the ionization times must be restricted to finite ranges. This may lead to artifacts
depending how the unit-cell is chosen. In principle, summing over many cycles eliminates this
arbitrariness, but also leads to an over-enhancement of ATI rings due to their tending to a Dirac
delta comb for monochromatic fields [11]. A way of overcoming such artifacts and retaining the ATI
rings without this over-enhancement is to resort to a coherent sum over four cycles of the field and an
incoherent average over unit cells similar to that in our previous work [119], but modified to incorporate
coherent sums over an arbitrary number of cycles.
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Figure 10: Normalised difference (M (ps)agiPo—"1 (ps)a0l*)/ (1M (ps)al* +
|M(ps)a,0l?), where M(py) is given by Eq. (6), between the transition probability for
a (1,2) bichromatic field and its monochromatic ¢ounterpart, where the plot is scaled
by the function f(x) = arcsinh(sign(z)+/x)and computed for the same field and atomic
parameters as in Fig. 9. The upper and the bottom row were calculated for the relative
phases ¢ = 0 and ¢ = 7/4, respectivelyrand the left and the right columns correspond
to the CQSFA and the TDSE, respectively.

make the effect of quantum interference harder to dissect. We also restrict the ionization
events to a single cycle, as the ATT rings can mask some holographic features. The figure
shows holographic patterns for memochromatic fields [top row], and bichromatic (1,2)
fields with the same relative phases as in the previous figures [middle and bottom rows].
In the left column, we considersa fixed unit cell starting at t..; = 0, while in the right
column we perform.an inéoherent unit-cell averaging. This eliminates asymmetries due
to including a finite range, of ionization times, without leading to ATT rings, while fixed
unit cells are useful for visualizing specific patterns. The value of t.. determines the
range of time'from which saddle points are considered in the coherent sum by introducing
an additional phase to thefield. Saddle points from the range [0,2N7/w) are taken for
a field defined by, , 4(t) = [Eo sin(rwt + rwicen) + Ey sin(swt — 2¢ + swicen)|e)| where
N is the number of field cycles included.

Owerallyin’ comparison with the monochromatic field, we see an enhancement of the
spiral and $pider around the py; axis and in the negative parallel momentum region for
relative phase ¢ = 0 [Fig. 11(C)]. For ¢ = 7/4 [Fig. 11(E)], there is loss of contrast in the
spiral and an enhancement in the spider for py > 0. If unit-cell averaging is performed,
ohe sees that, for monochromatic fields, all patterns are symmetric with regard py = 0
[see Fig. 11(B)]. This includes the interference carpet around the py, axis, which can be
scen in the high-energy region of Fig. 11(B), the spider-like fringes close to the py| axis,
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and the fan-shaped distributions. This also holds for several features stemming from
multi-path interference, such as the structures near the threshold where the fan and the
spiral intersect. Once the second field is included, the patterns are no longer symmetric
with regard to a reflection around py, as a consequence of breakingsthe half-cycle
symmetry. Moreover, for ¢ = 0 the carpet and other spiral-related features shift to the
left, with an enhancement of the spider in the negative momentum region [Fig. 11(D)],
while for ¢ = 7/4 these patterns shift to the right and the spider is more ptominent for
positive parallel momenta [Fig. 11(F)]. Furthermore, the interference,carpet has high
contrast for ¢ = 0 but not for ¢ = w/4 [Figs. 11(E) and (F)], while the\spider is sharper
for ¢ = m/4 and py > 0. Including prefactors mainly suppresses the spiral and enhances
the yield near the polarization axis (see Figs. 9 and 10).
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Figure 11: Photoelectron momentum distributions with a linear normalised scale calculated
for the CQSFA omitting the prefactors and using either a fixed unit cell with t.;; = 0 (left
column), or averaging over unit cells according to [119] (right column). The upper row [panels
(A)sand (B)]shas been calculated for a monochromatic field, and the remaining rows for a
bichromati€ (1,2) field. In the middle row [panels (C) and (D)] we considered the relative phase
¢ =0y and/in the lower row [panels (E) and (F)] we took ¢ = 7/4. The field and potential
parameters are the same as in Figs. 9 and 10. In order to highlight the interference patterns,
we display the momentum ranges for which they occur and omit part of the rescattering ridge.
The white dashed line in panel (B) indicates the range of momenta used to produce Fig. 13.

Due to the half-cycle symmetry being broken for the (1,2) field, we will employ



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPHYSB-107278.R1

26

Orbit  pyizo pripor Py

1 +
X + + -
2 B _
2/ T +
3 B B _
3 +
1 R + -
4 a —~

Table 2: Orbit classification for the linearly polarized (1,;2) bichromatic field used in
this work, generalized from [142]. For orbits 1 and 44 thefinal'parallel momentum has
the same sign as the tunnel exit, while for orbitss2 and 3 they have opposite signs.
Furthermore, for orbits 3 and 4 the transverse.momentum component changes sign,
while for orbits 1 and 2 they remain unaffected. The last €olumn specifies whether the

final momentum is negative or positive, and the prime indicates orbits starting in the
first half cycle of the field.

a different orbit classification thantin ourfprevious publications [111, 113]. This
classification is stated in Table 2, in whieh the orbits starting in the first half cycle
will be indicated by a prime after their number, while for the orbits starting in the
second half cycle this prime avill beremitted. This classification will be used in the
subsequent analysis. In Fig."12, we plot the contributions from specific orbit pairs,
working under the same assurﬁtions as in Fig. 11. As a further approximation, we
consider a specific unit cell starting at t.; = 0. This sheds more light on how specific
patterns are affected.

The upper panels of\Fig, 12 display the fan-shaped pattern obtained with the
interference of orbits 1 and 2. The intensity of the fan is asymmetric with regard
to py; = 0, being\stronger on the left for ¢ = 0 [Fig. 12(A)], and on the right for
¢ = 7w/4 [Fig. 12(B)]. However, this is a subtle effect, especially for ¢ = m/4. The
intermediate panels show far more radical changes for the spider, which arises from the
interferenee of orbits 2 and 3. For ¢ = 0, the spider is slightly weaker for positive parallel
momentum, but visible throughout [Fig. 12(C)], while for ¢ = /4 it is vanishingly small
for negative parallel momentum and very strong for pg > 0 [Fig. 12(D)]. Finally, the
main difference in the spiral-like fringes that result from the interference of orbits 3 and
4, when changing the relative phase from ¢ = 0 to ¢ = 7/4, is the loss of contrast,
which happens throughout but is more pronounced in the negative momentum region.
This ean be related to the fuzzy interference carpets that occur for ¢ = 7/4 in the
averaged unit cell case [see Fig. 11(F)]. One should note that the carpet, or the spiral,
is due to the interference of orbits that start at different half cycles. Changing the unit
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Figure 12: Photoelectron momentum distributions computed with the CQSFA for (1,2) fields
considering specific pairs of orbits, mo prefactor, unit cells starting at t..;; = 0 and the same
field and potential parameters are the same as in Fig. 9. In the left column, ¢ = 0 and in the
right column ¢ = /4. For panels (A) and (B), orbits 1 and 2 are coherently summed to give
the fan holographic patternd In panels{(C) and (D) the interference of orbits 2 and 3 leads
to the spider pattern. Finally i panels (E) and (F) orbits 3 and 4 lead to a spiral pattern.
For a more precise notation 6f how the interfering orbitals are taken into consideration in
each momentum region, see Table 3, where a slightly different classification was introduced to
indicate pathways starting atydifferent half cycles.

cell or considéring anmincoherent sum of unit cells just means that the start and end
times for ionisation are being shifted. However, the ionisation probabilities and the time
differencesfor events starting at different half cycles are still different. This difference
will cause a lossiof contrast.

The specifie orbits, as classified in Table. 2, which contribute to each holographic
pattern, ims different momentum regions are tabulated in Table. 3. As in Table . 2,
the prime jindicates the orbits which start in the first half cycle. In order to clarify
the behaviour of these interfering orbits, in Fig. 13, we plot the temporal profiles of
the electric field, together with the imaginary parts of the ionization times (left and
right columns, respectively) as functions of the final parallel momentum keeping the
perpendicular momentum component fixed.

These times can be associated with the dominant term in Im[S], which dictates
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Structure Sign of py;  Orbits

2/ /

Spider i_ 5 33
. + 3 4
Spiral B 5
+ 12

Fan _ 9

~

Table 3: Holographic structures (first column), parallel momentumegion for which
they occur (second column) and the interfering orbits leading to that structure (third
column) for the (1,2) fields used in Figs. 12 and 13. Here, wéemploy the prime to name
the orbits starting in the first half cycle of the (1,2) field.“Absence of a prime indicates
that the orbits start in the second half cycle.

L

the ionization probability associated with a specific electron pathway. Because the
ionization probability scales with exp[—2Im[S]], and the dominant term in the action is
proportional to it’, the smaller Im[t'] is, the more,probable tunneling will be. This will
lead to a particular quantum pathwaysbeing prominent. For examples see [113, 114] in
the context of photoelectron holography, as well as our previous work on laser-induced
nonsequential double ionization [146-149] and molecular high-order harmonic generation
[150]. For interpreting the following picture, it is useful to note that an electron leaving
at the peak of the field is expected toshave vanishing momenta. In the SFA, py = 0
also gives the most probable Ikomentum for ionization to occur. However, due to the
presence of the Coulomb /potential the conservation of momentum is lost. This means,
for instance, that an electron leaving with vanishing momentum along orbit 1 would be
decelerated and trapped by the potential, while an electron leaving along orbit 2 or 3
would be accelerated by it:n.A'more complete analysis of the final to initial momentum
mapping is proyided in“our early work [111, 113, 114] (see also [151] for a forward
momentum mapping, albeit with a different orbit classification). Here, however, we are
interested in' the final moementa as they will determine which trajectories contribute to
the interferenee patterns.

For' comparisen, in the upper row of Fig. 13 the monochromatic-field scenario is
displayed. The most pronounced feature is that, for a monochromatic field, the curves
aresymmetric’around the py; axis. This is a consequence of the half-cycle symmetry of
the field: the reflection p; — —py corresponds to events displaced by half a cycle, for
which,iapart from a minus sign, the field and its gradient are identical [see Fig. 13(A)].
Still, the curves in Fig. 13(B) behave in distinct ways: For orbit 1, Im[S] exhibits a single
winimum at py = 0, orbits 2 and 3 exhibit minima at non-vanishing momenta and orbit
4 has a much flatter behaviour. These features have been discussed elsewhere [113] and
are due to the orbits’ dynamics. Orbit 1 reaches the detector directly, and is decelerated
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by the binding potential, thus behaving similarly to its SFA counterpart. Orbits2 and:3
are field-dressed hyperbolae, so that they are accelerated by the Coulomb potential when
they are near the core. This renders the most probable final momentum non-vanishing.
Finally, for orbit 4 Im[t'] is very small and much flatter, with regard to the,electron
momenta, than those for the other orbits. This happens because thedonization times
associated with this orbit are located within a very narrow range around themaxima of
the field. Therefore, the ionization probability associated with it will be high and vary
much less with the electron momentum. For details see our recent manuscript [152].

The half-cycle symmetry is broken when the 2w field is added (r(;naining panels),
so that the imaginary parts Im[t'] associated with the orbitgistartingiat different half
cycles are no longer degenerate. Nonetheless, this behavior is different for ¢ = 0 and
¢ = /4. For ¢ = 0 [Fig. 13(D)], this degeneracy is broken itwo main ways. First, there
are vertical shifts, due to the effective potential barriers being different, and a ‘tilting’
around py = 0 associated to the field gradients being different‘around a field extremum,
with trajectories starting at different half a cyclé leading to strikingly different slopes
in for Im[t']. These features can be spotted very clearly “round ps = 0, and can be
associated with the fields and corresponding ranges for Re[t'], displayed in Fig. 13(C)].
The figure shows that, due to the reflection symmetry around the field zero crossing
(Re[t'] = T'/2), the field extrema remain the same up to a minus sign, while the field
gradients around each field maxima or'minima differ. This will lead to the different
slopes in the imaginary parts of ¢', but'mot so pronounced vertical shifts. In contrast,
for ¢ = m/4, the vertical shiftsiin Im[t'] are'much larger [Fig. 13(F)]. This is caused by
the field extrema at consecutiveshalf.cycles having different amplitudes [see Fig. 13(E)].
However, the curves Im[t'] agsociated with processes starting at different half cycles
look very similar, apart from aseflection around py; = 0. This is due to the reflection
symmetry around T'/4, which leads the field having the same gradient, in absolute
value, around maximaser minimal The smaller displacement in Im[t'] for orbits starting
at consecutive half eyeles explains why the differences in intensity observed for the
holographic patterns are subtler in the ¢ = 0 case.

Next, we amalyse the behavior of specific holographic structures using Fig. 13.
Fig. 13(F) suggests thatyfor ¢ = 7/4, the contributions starting in the second half cycle
will be stronglysuppressed due to Im[t'] being large. This will lead to an extremely
weak spider for p /< 0, as it is associated with orbits 2 and 3 in Fig. 13(F). It will
also cause a loss of contrast in the fan and the spiral, as those patterns result from the
interferemce of pathways starting at different half cycles. For instance, in the py < 0
region, the.contributions of orbit 2 and 3 are very weakened. This means that, when
orbit, 2 interferes with 1’ to form the fan, or when orbit 3 interferes with 4’ to form
the spiral, the interference fringes will be blurred. A similar argument can be used for
thenweakened orbit 1 interfering with 2’ and for the suppressed orbit 4 interfering with
3, in the py > 0 region. The suppression of the rescattering ridge for the positive
parallel momentum region is also associated with Im[t'] being large for orbit 4. For
¢ =0, Fig. 13(D) shows that the asymmetries are subtler as they are caused by smaller
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shifts and by the field gradients around its extrema being different. For instance, the
spiral and the spider are sharp and comparable throughout, with the spidér (spiral)
slightly stronger on the left (right). A noteworthy feature is the suppression of the fan’s
contrast and strength for ps > 0, due to the steeper gradients of orbits, 1 and 2" and
larger differences in Im[t'] in this region. Flatter, almost merging Inift'] for 1"and 2
leads to a sharper contrast and a stronger fan for py < 0.

Due to the presence of the Coulomb potential, the above discussion only holds
approximately. The interplay between the driving field and the Coulemb’ potential is
highly non-trivial, and even small changes in the electron’s binding erErgy can lead to
qualitatively different behaviors for the CQSFA (for a recentiexamplesee [117]).

5. Conclusions

In the present work, we perform a systematic analysis of the symmetries present in
strong-field ionization with linearly polarized rw—s@w bichromatic fields of commensurate
frequencies, and for what field frequency ratios and'relatiVe phases they are broken or
retained. Apart from the well-known halfsgycle symmetry, which is broken if r+s is odd,
there are temporal reflection symmetries around the field maxima and zero crossings.
These three symmetries are always present for linearly polarized monochromatic fields.
However, for (r,s) fields this is not always. the case. For instance, if r + s is even, the
half-cycle symmetry will not be broken,sbut, depending in the dephasing between both
waves, the above-mentioned feflections mayyor may not hold. On the other hand, if
the half-cycle symmetry is brokemsas in the case where r + s is odd, at least one of
the other two is broken as well. We provide explicit values for the relative phase ¢
for which symmetries existgfor a _general linearly polarized (r,s) field, together with
the corresponding times/for svhich they occur. This is performed in a saddle-point
framework, and entails, not‘only the real parts of the ionization times, but also their
imaginary parts. This will have direct consequences in the contrast and prominence of
holographic patterns.

We analyzethese effects in the theoretical framework of the Coulomb quantum-orbit
strong-field appreximation (CQSFA), using saddle-point methods and investigating how
the symmetries influencesthe existing ionization times and subsequent orbits. Saddle-
point equations provide valuable insight not only on the real parts of the ionization
times, which can be associated with electron orbits and their interference, but also on its
imaginary. parts, which are related to ionization probabilities and therefore clarify how
prominent a specific process is. Furthermore, we provide an example of how symmetry
breaking influence specific holographic patterns, such as the fan, the spider and the
spiral, for w — 2w fields. Throughout, we considered a weak high-frequency wave, so
that.the propagation in the continuum is minimally disrupted. Together with breaking
the half-cycle symmetry, breaking at least one of the reflection symmetries mentioned
above causes changes in contrast and/or strength for specific holographic patterns. If
the reflection FTr(7'/2) with regard to field zero crossing is unbroken, the field gradients
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Figure 13: The left column shows the temporal profile of the electric field over a single field
cycle. For the non-monochromatic fields the monochromatic field is included as a red dashed
line for comparisen. The range of Re[t’] for each orbit is shown by the width of the coloured
blocks. The blue (darkest grey), green (light grey), orange (lightest grey) and pink (dark grey)
blocks correspend to orbits'1, 2, 3 and 4 respectively. In the figure, blocks which are above
the electrie field represent orbits with positive final py while those below the electric field
have negative finial p||. The right column shows the dependence of I m|t'] on final p 7| for each
orbit.For (1, 2) fields, the half cycle symmetry is broken. Therefore, in panels D and F dashed
and solid lines are used to distinguish between orbits which originate from the first and second
half eycles, respectively (see Table 3). For all panels, the ionisation times considered are those
for whichsthe final momentum lies on the radial lines at 7/4 and 37 /4 radians, with |ps| < 1,
as.represented by white dashed lines in Fig. 11(B). The fields represented in the left column
have the same parameters as those used in the Fig.9. The saddle point times in this figure are
also determined using the same parameters.
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will be different but the peaks will not differ in absolute value. This means that patterns
starting in different half cycles will mostly retain their sharpness, but the spider will
lose contrast, as it stems from orbits starting in the same half cycle.” On the other
hand, breaking the reflection Tr(7'/4) with regard to the field peaks, will lead to loss
of contrast in the fan and spiral, but the spider will remain sharp. However, it will lose
intensity for the half cycle in which the field is weaker. These resultsalso show that the
orbit classification introduced in [142] is not sufficient to deal with linearly polarized
fields that are not monochromatic or cannot be approximated by amonechromatic wave,
and will depend on the field frequencies, relative intensities and relative phase. In the
specific example provided here, eight types of orbits werefnecessary/to interpret the
CQSFA outcome.

A previous publication [77] has also reported alterations in the contrast of
holographic patterns in two-color (1,2) fields, which  resulted from critical changes in
tunnel ionization probabilities. These features weré&observed éxperimentally for argon
atoms using a fundamental laser field with a wavelength of A = 788 nm and an intensity
I = 1.3 x 101 W/cm®. However, therein the méin émphasis was on breaking the
half-cycle symmetry, its influence on thefspider and how this can be used for inferring
ionization times. Furthermore, the standard SEA was used and the 2w field was treated
as a perturbation. Interestingly, similar effects to those in our work are reported,
which suggest that the influence in ionization comes mainly from the laser field and
its properties. Nonetheless, we show that the residual Coulomb potential plays an
important role in determining the relevant sets of orbits and holographic patterns. We
anticipate that, for bichromatigsfields with driving waves of comparable intensities, the
Coulomb potential will become even more important due to the presence of secondary,
less prominent field maxima:s They. are expected to lead to other types of relevant orbits,
which will be more critically affected by the potential. However, a detailed study of such
features is beyond the scope of the present work. A key issue is to deal with the changes
in the saddle-point contours and number of relevant orbits that occur in this parameter
range, for a Coulomb-distorted approach such as the CQSFA. This may require the
development of novel asymptotic approaches, apart from the uniform approximation for
two nearly coaleseentisaddles that is widespread in strong-field physics [145]. Therefore,
it is not clear whether the number, relevance and types of orbits can be determined
for a general linearly polarized (r,s) field of arbitrary frequency and intensity ratios,
and relative phase. For experimental studies of photoelectron holography in two colour
fields of ‘@emparable intensity see [105, 108].

Other important questions, which will be the topic of further investigations, are
whether one may use tailored fields to manipulate holographic structures and thus
extract information about the target which will not be available otherwise. A key
difficulty is that some holographic patterns obfuscate others, so that the features of
interest may be difficult to extract. For instance, the spider is quite prominent, such
that, in early experiments, it was necessary to subtract its influence in order to see a
subtler, fishbone structure [153-155]. The spider also obscures a spiral-like structure
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except close to the perpendicular momentum axis. The spiral arises from orbits that
strongly interact with the core, and therefore is a promising holographic tool {101, 156]:
Orthogonally polarized fields are potentially powerful tools for disentangling different
types of intra-cycle interference, but their influence has been mostly interpreted using
the Coulomb-free, standard SFA [51, 54]. The same holds for the understanding of
dynamical symmetries of the field and the target: although there is as€onsiderable body
of work in this direction [55], the influence of the residual potential remains largely
unexplored.

A key challenge is that the presence of residual potentials leads to deviations from
the simple mapping po = —A(¢#') dictated by the SFA. Thisshas been pointed out for
orthogonal two color fields [47], but is expected to happen as soon as the acceleration
caused by the potential in the continuum becomes signifiecant. Therefore, many of the
arguments employed in the present work are approximate. lf one is dealing with highly
directional states or non-isotropic potentials, this becomes a non-trivial matter. In the
SFA framework, aligning an axis of symmetry of the system with the field will guarantee
that this symmetry is retained [55], while in the presence%f the residual potential this
will not necessarily hold. It is not yetfelear how, it will affect targets with specific
geometries and/or internal degrees of freedomy which, per se, cause phase changes and
modulations in holographic structures [100, 157-160].

For instance, recently, we have foundsthat .the presence of a central potential may
move the electron dynamics away from the polarization axis for orbit 4 [117], which led
to a prominent rescattering ridge for excited’ Helium even if the initial bound state 2p
was oriented perpendicular to the driving-field polarization. This effect was extremely
sensitive to the binding energy and thetunnel exit, and went against what one would
expect from the physical intuition provided by the SFA. Furthermore, depending on
the parity of the initial orbitals, some holographic structures will pick up extra phase
differences. In ordemntorassess that, one must minimize the continuum phase differences
and Coulomb distortions, by using a molecule and a companion atom with very similar
ionization potentials [118].

If this is unelear for mon-isotropic excited states in atoms, for molecules we expect
this to be even'more,extreme. A molecular potential and also molecular orbitals are
in general highly diréctional, with an angular dependency, symmetry axes, and other
issues thatseriticallyaffect holographic patterns. For instance, in [100] it was shown that
the holggraphigistructures are very sensitive with regard to the molecular orientation,
which_can_be used to generate phase offsets. Signatures of different bound states
[159] and nuclear-electronic coupling [160] also have a strong influence on photoelectron
momentum distributions. A forward-backward asymmetry along the polarization vector
for photoelectron spectra in H, can also be caused by the population of degenerate
continuum states with opposite parities [157].

Specifically with regard to molecular systems and trajectory-based models, there
may be intramolecular trajectories, which may move from one center to the other
without reaching the continuum. Early high-order harmonic studies have shown that,
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even within the SFA these orbits may lead to quite prominent features [161]4 In"the
presence of the binding potential, these orbits are expected to be chaotic ér lead to
resonances, population trapping and threshold effects. Other types of orbits may leave
from one center and rescatter off the other [150, 162]. This may require asdifferent orbit
classification for the CQSFA orbits than that employed here. Finally,4one should'bear
that the issues mentioned above are based on a highly simplified, oné=electron picture.
In reality, however, the core dynamics and multielectron effects must also be taken into
consideration [163]. The present work is intended as a step towards the understanding
of symmetry in a Coulomb-distorted context, an in providing a théoretical framework
for a generic (r, s) two-color linearly polarized field.
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useful discussions. This work was partly funded by gramt, No. FEP/J019143/1, from
the UK Engineering and Physical Sciences Research Council (EPSRC). The authors
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L
Appendix A. Quantifying field asymmetries

In the specific case of a two-colour field, one may define asymmetry parameters in terms
of how greatly the phase ¢ differs from the value of ¢s when the symmetry holds, or by
using the corresponding electric field.

An example of a reasonable asymmietry parameter for the transformation Tg(7) is

Asym(¢p) = /o 7r(E,«,s,(z,(zf) — E(T)ET787¢(t))2dt. (A.1)

This parameter vanishes if the field is symmetric upon Tz(7), and is equivalent to a
parameter defined just from the'phase 0,

Ad(¢) = minge (|6 = ¢s|) (A.2)

where ¢g is the set of‘¢@such that a specific symmetry holds, in the sense that inequalities
are preserved when the parameters are interchanged [Fig. A1]. This means that for all

¢1a ¢2>
Asym (). < Asym(po) <= Ad(d1) < Ad(ha). (A.3)

This_must’ hold' by considering the conditions for symmetries to exist in Fig. 2
and the'fact that sinusoidal functions vary monotonically between their zeroes and the
midpoint,of that zero and the adjacent zero. We illustrate both asymmetry parameters
in Fig. Al, taking into consideration Tr(37/16) and a (4,7) field. The figure shows
that, these parameters vanish for relative phase ¢ = n/14 and ¢ = 97/14, which is
consistent with the symmetry upon the reflection 7z(37/16) holding for these phases.
The, parameter also reaches its maximum for ¢ = 57 /14, which is consistent with the
discussion of Fig. 7.
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Figure Al: Two normalised asymmetry parameters are shown for the (4, 7) field. The
specific symmetry being measured is that asseciated with the reflection 75(37/16) which is
the symmetry that holds for the field in Fig. 7. The asgymmetry parameters are equivalent in
that they preserve inequality.

Appendix B. Determining saddle symmetries

The best way to discuss symmetries of the saddle-point solutions is to take some solution
of equation (33), x,, and find some, transformation of this solution such that the result
of such transformations, &,, i§ equally a solution of equation (33).

First consider just'the case where the pair (r, s) have opposite parity so we consider

give

phases ¢ = nm/2s suchithat n € Z. Take the complex conjugate of equation (33) to
Es |: jzs/ z¢5/r:|

L Er
—igs/r |: :|
s e r (B.1)

—2w |:p0|| +14/21, —l—pm} 0,

where the tilde denotes complex conjugation. By introducing the number d, we can

construct eimud=s)/re=imn(d=1)/rgimn(s=1)/r — 1 For d such that (d —1)/s = q € Z, ™

and emnd 1)/s

ezﬂ'n(d 1)/s

are equal to either plus or minus one. Likewise, if (d —s)/r = k € Z,
will be either plus or minus 1. By multiplying by 1, equation (B.1) can be
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manipulated into the form

E )

Ls inn/(an)
Sl

_I_eznﬂ'/r —inm(d— )/r(a7 eznw/re—inﬂ'(d—l)/(’rs))—s]

fyeinw/re—inw(d—l)/(rs) )seinﬂ'(d—s)/r

E"" ~ inm/r _—inm(d— rs)\r ,—inm/r inm(d— s

+einﬁ/r€—inﬂ(d—1)/(s) ( ~ znwe—zmr(d 1)/(7"5))—7"]

—2w [Pon +i4/21, —|—p34 =0. ~

where d, k and ¢ are a solution to the Diophantine equations
d—1=sq (B.3)
d—s=rk (B.4)

By using the parities of r and s to determine $he parities of k£ and q for the cases
r odd, s even andr even, s odd separately, we can determme in each case whether

e™(d=1/s and e™d=1/s are plus or minus one, By adJustmg the form of the solution,
(B.2) can be returned to the form of (33)5The transformation of the solution required

to do this is given by equation (B.5).
2 (poy) = (=1)" D (1), (1) poy e ™/ e~ @D/ ), (B.5)

This can be returned to an expression which ineludes the saddle point time, by making
the substitution z, = exp(iwth). After someumanipulations, we obtain

Rt )] = 5~ F bl ok 1) = Relr ((-1)"m)] (B0

Imlt,,(poy)] = Tnift,, ((—1)"poy)], (B.7)

where u, v are integer numberssEquation (B.6) and (B.7) can be simplified further by

solving the diophantine equations (B.3) and (B.4) in terms of the multiplicative inverse

of r modulo s, r L.

wely i " |14 +.C (3 ~1)] = Relt (1)) (B5)

Lt (poy )] = Tmft, ((—1)"poy )] (B.9)
where @'= (1 —r;'r)/s.
Similar arguments can be made for (r, s) which are both odd. However, in this case
we/additionally have the half cycle symmetry for all ¢ and the simple transformation

zu(poy) = =2 (=po)) (B.10)

is_also a solution to equation (33). In terms of saddle point times equation (B.10)

becomes
Relt, (po))] = 5 + Relt,(~po)] (B.11)
Im[t], (poy)] = Imlt;,(—poy)] (B.12)
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Now, for ¢ = nm/2s such that n € 2Z the following transformation gives@nother
solution of equation (33), namely

xu(pOH) _ (_1)71/217’/((_1)71/2]90“)eiﬂn/re—zﬁrn(d—l)/(rs)‘ (B]_?))

This is found in the same way as the (r, s) opposite parity case by multiplying by one
and introducing the same d, k, and ¢ as before. This strategy can.be used to define
the transformation of z, in equation (B.13), which leaves equation/(33) invariant. This
corresponds to the saddle point times having the symmetries

e Rt () B

T, ()] = Tn[£, ((—1)"poy)] (B.15)
which as before can be simplified to

Refy )] = - |+ + 5| - Relt (&g ¥ and (.16

Imlt), (poy)] = Imlt,,((—=1)"*poy)]- y (B.17)
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