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O R I G I N A L  A R T I C L E

Multi-Epoch 3D-Mapping-Aided Positioning using Bayesian 
Filtering Techniques

Qiming Zhong*  Paul D. Groves

1  INTRODUCTION

Navigation and positioning are indispensable in modern life, and GNSS is one 
of the most widely used technologies. The demand for and potential of navigation 
and positioning services in urban canyons are enormous. Location-based services 
and applications have penetrated many aspects of people’s lives, such as in travel, 
entertainment, and health (Usman et al., 2018). In recent years, positioning mod-
ules have been built into a wide range of consumer products such as smartwatches 
and smartphones, making it easy for people to access their location. The involve-
ment of location information has made many existing applications smarter and 
easier to use, while also giving rise to many new applications. Some sports apps on 
mobile phones, for example, record the trajectory of the runner and allow photos 
taken along the way to be attached. These services and applications, in turn, pro-
mote demand for positioning methods for consumer-level equipment that achieves 
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meter-level horizontal accuracy without additional computing resources and 
power consumption (European GSA, 2018). However, the performance of GNSS in 
cities is not satisfactory. According to a survey of Android customers in 2018, the 
low performance of positioning in cities has become a primary concern for users 
(van Diggelen, 2021b).

There are several reasons for the poor performance of GNSS in cities. In an 
environment known as an urban canyon, traffic circulates in the streets and many 
buildings stand on each side of the street. The complex environment makes the 
full capabilities of GNSS almost impossible to realize. Tall buildings, large vehicles, 
and leafy trees all affect satellite signals to varying degrees. Blocking and reflection 
by buildings are considered to be the main sources of deterioration in positioning 
accuracy (Groves et al., 2013; Ji et al., 2010; Nur et al., 2013). Blocking reduces 
the number of line-of-sight (LOS) satellites available. In a typical urban canyon, 
obstructions on each side of the road can block signals perpendicular to the street 
direction, leaving only a small portion of the sky overhead unobstructed, resulting 
in the majority of LOS satellites being distributed along the street. This unhealthy 
distribution often leads to a sharp increase in errors perpendicular to the street 
(Wang, 2015).

In addition to blocking, reflection effects interfere with GNSS positioning. In 
cities, especially emerging ones, large sheets of metallized glass are widely used 
on the outer surface of buildings. These are powerful radio reflectors that can 
easily reflect GNSS satellite signals. Users may receive a mixture of LOS sat-
ellite signals and corresponding reflected replicas from smooth buildings and 
the ground at the same time, which is known as multipath interference (Groves, 
2013; McGraw et al., 2020; Misra & Enge, 2010; Ward et al., 2017). When the 
direct and reflected signals are mixed, the resultant signal received by the 
receiver is distorted, resulting in a ranging error. The carrier phase, Doppler 
shift, and signal strength measurements may also be impacted. The phenom-
enon of non-line-of-sight (NLOS) reception is the simultaneous occurrence 
of reflection and blocking. In other words, the LOS signal is blocked, and the 
user can only receive the reflected replicas. Since reflection may significantly 
increase the signal propagation path, NLOS reception would introduce consid-
erable positive errors of tens of meters, or even hundreds of meters in some 
extreme cases. NLOS signal strength varies drastically. Some signals are weak, 
while others are as strong as ordinary LOS signals (Groves & Jiang, 2013; Groves 
et al., 2013; Wang, 2015). Multipath interference and NLOS reception, which 
occur frequently, are the two key causes of restricted conventional GNSS posi-
tioning performance in urban canyons.

The emergence of 3D-mapping data provides additional information for navi-
gation and positioning, and also enriches methods for dealing with issues such as 
multipath and NLOS reception that often occur in urban environments. Those 3D 
models are often used to predict, at any given location, which satellite signals are 
directly visible and which are blocked by obstacles, and even, in some implemen-
tations, to estimate path delays. It certainly provides additional useful information 
for positioning. The methods for implementing 3DMA GNSS are flexible and var-
ied. In the past few years, many different 3D mapping-aided (3DMA) GNSS tech-
niques (Groves et al., 2020; Hsu et al., 2016; Ng et al., 2020; Suzuki, 2016; Suzuki 
& Kubo, 2013; Wang et al., 2015; Ziedan, 2017, 2019) have been demonstrated to 
significantly improve the performance of GNSS in cities.

Location-based services typically use single-epoch positioning, while pedes-
trian and vehicle navigation applications use filtered solutions. Compared to 
single-epoch solutions, filtered solutions are less affected by noise-like errors that 
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occur during the measurement process. Currently, filtering algorithms commonly 
used in positioning and navigation include the extended Kalman filter (EKF) 
and the particle filter (PF), both of which can handle the non-linear distribution 
of state estimates. The involvement of 3D-mapping data may be able to further 
improve positioning performance. Based on the characteristics of University 
College of London’s (UCL) 3DMA GNSS core algorithm (Groves et al., 2020), this 
paper demonstrates two GNSS filters embedded within the 3DMA algorithms for 
a multi-epoch case, namely the 3DMA particle filter (PF) and the 3DMA grid filter 
(GF). The main difference between them is the method used to represent the state 
estimates. PFs use a fixed number of unevenly distributed particles, while GFs use 
a variable number of uniformly distributed particles.

Two GNSS data sets are used to test the algorithms mentioned in this paper. The 
signals in the first data set were collected with a u-blox EVK M8T GNSS receiver 
in the City of London, which represents a traditional European city with pre-
dominantly masonry buildings. The other data set was recorded with a Racelogic 
Labsat 3 GNSS front-end in the Canary Wharf area of London, which has many 
glass-covered tall buildings similar to those found in North American and Asian 
cities.

This paper starts with the problem of GNSS in urban positioning and briefly 
reviews the various 3DMA GNSS positioning techniques. Then, detailed descrip-
tions of multi-epoch 3DMA GNSS algorithms based on particle filtering and grid 
filtering are given in Section 3. Section 4 shows the positioning results from, respec-
tively, single-epoch conventional GNSS, single-epoch 3DMA GNSS, multi-epoch 
conventional filtering, and multi-epoch 3DMA filtering in two test environments, 
followed by a comparison and analysis of the results of these algorithms. Finally, 
conclusions are summarized in Section 5.

2  BACKGROUND

2.1  3D-Mapping-Aided GNSS

The additional information that 3D-mapping data can provide for positioning 
and navigation (including but not limited to terrain height, building location, 
building orientation, and roof height) enriches and enables new methods for deal-
ing with issues such as multipath and NLOS reception that often occur in urban 
environments.

Some studies (Amt & Raquet, 2006; Groves & Jiang, 2013) show that terrain 
height is a helpful supplement to the geometric distribution of satellites to improve 
the accuracy of positioning. The prerequisite for terrain height aid to be effective 
is that the accuracy of the terrain height obtained from the digital terrain model 
(DTM) must be higher than that of the pseudorange measurement.

In addition to terrain height data, 3D building models are often used to assist in 
positioning. These models can be used to not only predict the visibility of satellites 
at a given position (Bradbury et al., 2007; Suzuki & Kubo, 2015; Wang, 2015; Wang 
et al., 2012), but also estimate the distance traveled by the signal (Betaille et al., 
2013; Ercek et al., 2006; Gu & Kamijo, 2017; Hsu et al., 2015; Ng et al., 2020; 
Zhang et al., 2020). According to the different principles of solution 
determination, positioning and navigation algorithms using 3D-mapping data 
can be divided into shadow matching and 3DMA ranging. The former uses 
signal strength mea-surements, while the latter uses pseudoranges similar to 
the conventional GNSS method.



ZHONG and GROVES

Shadow matching adopts the idea of pattern matching and determines a solu-
tion by comparing received signal strength with satellite visibility prediction at a 
series of candidate positions. In early research (Wang et al., 2013), the measured 
satellite visibility was seen as a binary value obtained by a hard threshold on the 
carrier-to-noise density power ratio (C/N0) value. The degree of matching between 
the visibility prediction and measurement uses the exclusive-not or (XNOR) log-
ical operation that returns true if its inputs are the same, otherwise false. The 
position solution is determined by a weighted average of the coordinates of several 
candidate points with high scores. Some subsequent studies (Isaacs et al., 2014; 
Wang, 2015; Wang et al., 2015; Zhang et al., 2020) have shown better performance 
using probability-based satellite visibility and Bayesian theory-based matching 
determination. Some different research groups (Isaacs et al., 2014; Yozevitch & 
ben Moshe, 2015) have also demonstrated continuous positioning based on parti-
cle filtering.

There are many different approaches to 3DMA ranging. One of the most intu-
itive approaches is to exclude NLOS signals detected by using 3D models from 
the calculation (Ng & Hsu, 2021; Obst et al., 2012; Peyraud et al., 2013), which 
usually requires a fairly accurate initial position to enable subsequent NLOS 
detection algorithms to confidently predict satellite visibility without much time. 
These methods are mostly used in continuous positioning, as most positioning 
applications cannot provide a sufficiently accurate solution within a few seconds 
of launching.

Many research groups tend to use NLOS measurements instead of simply delet-
ing them. Hypothesis testing is one of the most commonly used methods. At a 
series of candidate positions generated around a rough position solution, the path 
delay of the NLOS signal can be estimated by its 3D building model. These can-
didate positions are then scored based on path prediction and the 
corresponding actual measurement (Gu & Kamijo, 2017; Hsu et al., 2015, 2016; 
Zhang et al., 2020). However, the primary limitation of using path delays is that 
the propagation path calculation requires a large amount of computing resources. 
A less computation-ally intensive method (Groves et al., 2020) exploits the 
difference in symmetry between the pseudorange error distributions of LOS 
and NLOS signals. It uses a different combination of error distributions at each 
candidate position based on the visibility predictions from 3D-mapping data, 
which enables those NLOS pseu-doranges to participate in the position 
calculation without explicitly computing the additional distance traveled by 
them. Recently, Google has incorporated 3DMA GNSS into their Android system 
to provide better location services for smartphone users in many cities (van 
Diggelen, 2021a).

2.2  UCL’s 3DMA GNSS Core Algorithms

UCL’s 3DMA GNSS algorithms consist mainly of shadow matching, 
likelihood-based ranging, and an integration algorithm, as shown in Figure 1. 
Both shadow matching and likelihood-based ranging are performed in the way 
of hypothesis testing on candidate positions. The candidate positions are a set of 
three-dimensional coordinates. For land positioning and navigation applications, 
in order to reduce the complexity of the problem, the height dimension is set to 
the sum of the terrain height at that horizontal position and the height of the user 
device above the ground.

3D-mapping data is used to predict the visibility of each satellite signal (i.e., 
LOS or NLOS) at each candidate position. This step is relatively computationally 
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intensive and time consuming. Therefore, an intermediate step called building 
boundaries has been introduced to achieve the goal of being able to operate in real 
time over a large number of candidate positions. The building boundary refers to the 
maximum elevation of all buildings within a certain distance at a given azimuth. In 
other words, it is the minimum elevation of a satellite that allows users to receive 
its signals directly in that direction. The building boundary is pre-computed and 
stored for each candidate position. When required, the signal can be classified as 
LOS or NLOS by simply comparing the satellite elevation with the building bound-
ary at the corresponding azimuth.

The shadow-matching algorithm (Wang et al., 2015) compares satellite visibility 
predictions with a counterpart determined by the received signal strength to cal-
culate the degree of matching at different candidate positions, thereby giving the 
optimal solution. The algorithm is comprised of the following steps (Groves et al., 
2020; Wang et al., 2015):

•	 The predicted visibility of each satellite signal at each candidate position is 
obtained.

•	 For each received signal, the probability that it is LOS is determined from 
the measurement of the carrier-to-noise density power ratio, C/N0, using an 
appropriate statistical model.

•	 A matching score is obtained by evaluating each satellite at each candidate 
position based on the match between its predicted visibility and measured 
C/N0.

•	 The final score for each candidate position is a combination of the matching 
scores for each satellite at that position.

The likelihood-based ranging algorithm (Groves et al., 2020) applies different 
statistical distributions to pseudorange errors according to satellite visibility pre-
dictions, and then evaluates the correspondence between the measured and pre-
dicted pseudoranges to give the positioning solution. The algorithm is comprised 
of the following steps (Groves et al., 2020):

FIGURE 1 Components of the 3DMA GNSS core algorithms
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•	 The predicted visibility of each satellite signal at each candidate position is 
obtained.

•	 At each candidate position, one of the satellites predicted to be LOS is selected 
as the reference.

•	 At each candidate position, the measurement innovation for each satellite is 
obtained by subtracting the LOS range and known errors, such as satellite clock 
errors, atmospheric delays, and inter-constellation offsets, from the measured 
pseudorange, and then differencing with respect to the reference satellite to 
remove receiver clock offset.

•	 At each candidate position, the cumulative probability of the measurement 
innovation on a skew-normal distribution is determined for each satellite 
predicted to be NLOS. These NLOS innovations are then replaced by 
corresponding LOS innovations with the same cumulative probability.

•	 The final score for each candidate position is calculated using the modified 
measurement innovations and their error covariance matrix.

The intention of shadow matching is to improve the accuracy in the direction 
perpendicular to the street, whereas likelihood-based ranging is considered to be 
more accurate in the direction along the street. Therefore, a hypothesis-domain 
integration algorithm is executed to give a comprehensive single score for each 
candidate position based on the scoring surfaces from shadow matching and 
likelihood-based ranging. Finally, the position solution is obtained using the com-
bined scores to weight the candidate positions.

Single-epoch positioning using the 3DMA GNSS core algorithms described 
above has been demonstrated in the high-density central area of Canary Wharf 
(Groves et al., 2020).

2.3  Conventional Multi-Epoch GNSS

All road and pedestrian navigation applications use filtered solutions. Filtering 
algorithms use new measurements to correct navigation solutions predicted from 
previous information. Specifically, the previous clock drift and drift rate are used to 
predict the current counterparts, and the previous position and velocity solutions 
are used to give predictions of current position and velocity. Finally, the current 
measurements are used to correct the predictions to obtain the final solution.

Filtered solutions mainly have the following three advantages. First, the code 
tracking noise can be smoothed, which also reduces the negative effects of mul-
tipath errors when moving. Second, since more information is available to com-
pare each measurement with, the sensitivity of outlier detection can be improved. 
Finally, when the number of satellite signals is insufficient to determine the solu-
tion, or even when all are shielded, the solution from the previous epoch can also 
maintain navigation with lower accuracy.

The extended Kalman filter and particle filter are the two most popular 
multi-epoch GNSS positioning techniques. The extended Kalman filter is a 
non-linear version of the Kalman filter, which linearizes the state transition and 
observation models using Taylor’s theorem (Groves, 2013). A particle filter is a 
sequential Monte Carlo estimation algorithm (Groves, 2013). It uses a set of par-
ticles to represent the estimated probability distribution of a set of states, regard-
less of the form of the distribution. Therefore, we expect filtering to also benefit 
3D-mapping-aided GNSS over multiple epochs.
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3  3D-MAPPING-AIDED MULTI-EPOCH GNSS

As with conventional multi-epoch GNSS filters, 3DMA GNSS filters need to be 
able to handle non-linear state estimation. In addition, the 3DMA GNSS algorithm 
from UCL is built on a hypothesis testing approach that requires the filter to pro-
vide a range of position candidates. We therefore propose two different schemes, 
namely the 3DMA GNSS particle filter and the 3DMA GNSS grid filter. Compared 
to the extended Kalman filter, which assumes a Gaussian position distribution, the 
particle and grid filters offer better flexibility. In addition, they are more convenient 
for generating position candidates.

To represent the estimates, the particle filter and the grid filter use different strat-
egies, which is one of their most significant differences. A set of particles are used 
by the particle filter in which the total weight of a small cluster of particles deter-
mines the likelihood of its location. Conversely, the particles in the grid filter are 
distributed uniformly in a grid form, which directly describes the probability of 
their corresponding position being the solution. Figure 2 visualizes the difference 
in the representation of position estimates between the particle filter and the grid 
filter, in which the colors of the particles represent their likelihood values and the 
blank areas represent buildings and locations outside the search area.

3.1  3DMA GNSS Particle Filter

As the name suggests, the 3DMA GNSS particle filter is an application of 
the conventional particle filter described in Groves (2013). The conventional 
particle-filtering scheme is naturally able to incorporate 3DMA GNSS algorithms 
as its particles can play the role of position candidates. Figure 3 illustrates the six 
stages of the multi-epoch 3DMA particle filter implemented in this paper. Three 

FIGURE 2 Different representations of position estimates by particle filtering and grid 
filtering
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of the components (i.e., system propagation, position measurement update, and 
resampling) remain consistent with conventional GNSS particle filtering, while the 
initialization, particle probability update, and velocity filtering are modified to use 
3D mapping data.

3.1.1  Initialization

Initialization is divided into two steps to initialize velocity and position, respec-
tively. For position initialization, a standard single-epoch 3DMA GNSS algorithm 
set (as detailed in Groves et al. [2020]) is used. The output of the 3DMA GNSS 
algorithm is a likelihood surface and does not need to be further converted to a 
position solution with covariance, as the particle filter is capable of representing 
any shape of the probability distribution. The likelihood surface is then directly 
sampled to generate a set of particles with equal weight. The number of particles, 
N, should be determined as appropriate, and the initial weight of each particle is 
assigned as 1/N.

Velocity initialization takes place after the initialization of the position. The least 
squares algorithm is used to estimate the velocity and clock drift from the pseudo-
range rate measurements. It weights the pseudorange rate measurements based 
on the measured signal strength and the average probability of the corresponding 
satellite being predicted to be LOS at all candidate positions, weighted according 
to the single-epoch 3DMA GNSS position solution. The velocity initialization pro-
ceeds as follows:

•	 At each candidate position, satellite visibility is predicted.
•	 The LOS probability for each satellite is estimated based on the satellite visibility 

predictions for each particle and the corresponding 3DMA likelihoods.

FIGURE 3 Components of a 3DMA GNSS particle filter
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•	 The satellite signals are weighted according to their signal strength and LOS 
probabilities.

•	 The velocity and clock offset solution are estimated by a least squares method.

Full details are given in Section 2.1 of Appendix A.

3.1.2  System Propagation

In the system propagation stage, the state estimate of each particle changes while 
its probability remains unchanged. The process is similar to conventional GNSS 
particle filtering. The particle state used here only contains the position (in easting 
and northing form), while the velocity is considered separately in Section  3.1.5. 
First, the sampling of the system noise is performed independently for each parti-
cle. Each particle, xp k, ,  is then propagated separately through the system propa-
gation model given by:

			   , 1 , 1 , 1( , )p k k p k p k− − −=x x wφ � (1)

where p denotes the p-th particle, k denotes the k-th epoch, 1k−φ  is the transition 
function, and wp k, −1  is the randomly generated system noise vector based on 
the known probability density function (PDF) of wk−1.  A simple system transi-
tion model that uses the velocity solution from the previous epoch to calculate 
the displacement is adopted in this paper. The displacement prediction is given by 
Equation (A30) and its corresponding error covariance is given by Equation (A31).

3.1.3  3DMA GNSS Scoring

The next step is to apply the 3DMA GNSS core algorithms. To reduce the computa-
tional load, particle coordinates rounded to the nearest integer multiple of the 1-meter 
grid spacing are used for satellite visibility prediction. Next, shadow matching and 
likelihood-based ranging algorithms are executed on each particle (whose coordinates 
are not rounded here). The scores from these two algorithms are then combined by 
hypothesis-domain integration to give the 3DMA likelihood for each particle, Λp k, .  
Note that the particle here is equivalent to the candidate position in the 3DMA GNSS 
algorithm description. Full details are given in Section 1 of Appendix A.

3.1.4  Position Measurement Update

In contrast to system propagation, the measurement update phase changes the 
probabilities but not the state estimates. This step is processed in the same way as 
its counterpart in conventional GNSS particle filtering. However, the observation 
likelihoods, Λp k, ,  are different from those in a conventional measurement update. 
Full details are given in Section 2.4 of Appendix A.

3.1.5  3DMA GNSS Velocity Filter

Similar to the initialization step, the position solution and the velocity solution 
are obtained separately. The velocity and clock drift are maintained by an extended 
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Kalman filter. It is a two-step process. In the prediction step, the velocity state esti-
mates between epochs remain unchanged as there is no information to propagate 
them, while their error covariance is increased to model the unknown acceleration 
between epochs and the unknown change in receiver clock drift. In the update 
step, the measurement errors are weighted based on the measured signal strength 
and the average probability of the corresponding satellite being predicted to be 
LOS, with smaller standard deviation being given to measurement errors with 
higher LOS probabilities and C/N0 values. In static positioning, the velocity filter 
can be omitted. Full details are given in Section 2.5 of Appendix A.

3.1.6  Resampling

The final phase of 3DMA particle filtering is resampling. As with conventional 
GNSS particle filters, many of the particle probabilities may degenerate to zero 
after several consecutive recursions, leaving only a few particles with relatively 
large weights. Those low-weighted particles crowd computational resources while 
reducing the number of particles used to represent the core features of the state esti-
mate distribution, resulting in a decrease in estimate performance and efficiency. 
Therefore, a resampling step is introduced to remove particles with small weights 
and duplicate particles with significant weights to mitigate the particle degeneracy 
problem. Resampling can be performed on every fixed number of epochs, or based 
on the degree of degeneracy, Neff, given by:

			     Neff p k
p

N
= ( )






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falling below a threshold. This paper adopts the latter option with a threshold of 
4N/5, below which resampling is performed. Finally, resampled particles are real-
located with equal weight, 1/N.

3.2  3DMA GNSS Grid Filter

Grid filtering uses a set of particles (also called samples) with different likeli-
hoods, uniformly distributed over a certain search space to represent the posterior 
distribution of some stochastic process given noisy and/or partial measurements. 
Focusing on the 3DMA grid filter used in this paper, the search space is a hor-
izontal plane represented by the Easting-Northing position coordinates, and the 
likelihoods of the particles are determined by the 3DMA GNSS core algorithm. 
A multi-epoch 3DMA grid filter has six phases, shown in Figure 4. The initializa-
tion, 3DMA GNSS scoring, and 3DMA velocity filter phases are equivalent to their 
3DMA particle filter counterparts.

3.2.1  Initialization

The initialization of the 3DMA grid filter is almost identical to the corresponding 
step in the 3DMA particle filter. A single-epoch 3DMA GNSS algorithm is executed 
to obtain a series of candidate positions and their likelihoods. The pseudorange rate 
measurements are then weighted by the satellite LOS probabilities derived from 
the likelihoods and satellite visibilities at these candidate positions to initialize the 
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overall velocity using the least squares method. Full details are given in Section 2.1 
of Appendix A.

3.2.2  System Propagation

Position propagation is the process of predicting the state estimate of the next 
epoch based on currently known information, which moves position candidates 
and reassigns their likelihoods. This is conducted in three steps as follows:

•	 Search area extension
•	 Motion-based likelihood redistribution
•	 Confidence-based likelihood redistribution

The candidates with high scores can be located anywhere in the search area. 
Updated position solutions for the current epoch are more likely to appear in and 
around these high scoring regions than others. Therefore, the search area needs 
to be expanded large enough to allow high-scoring candidates that fall far from 
the center and their surrounding areas to be taken into account in subsequent 
processing.

In motion-based likelihood redistribution, the movement of the candidate posi-
tions is carried out according to the system transition model, reflecting the motion 
of the receiver. It is less likely that the position translation of the receivers exactly 
conforms to the grid. The translation between epochs is therefore split into an inte-
ger grid space and a remainder in the east and north directions, respectively. For 
the integer part, the likelihood of each candidate position is inherited directly from 
its likelihood before the translation. For the remainder part, at each candidate posi-
tion, the likelihood is collectively determined by the likelihoods within a certain 
range around it.

FIGURE 4 Components of a 3DMA GNSS grid filter
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Confidence-based likelihood redistribution aims to add a small base likeli-
hood for all candidates in the search area, as all candidates have the potential to 
be the final solution. The base likelihood, in fact, models the error of the 3DMA 
GNSS core algorithms, with larger values indicating less confidence in the solu-
tion given by the 3DMA GNSS algorithm. Full details are given in Section 2.2 
of Appendix A.

3.2.3  Search Area Determination

In the previous system propagation step (Section  3.2.2), the search area was 
expanded and the number of candidate positions grew to about four times its 
original size. In this step, the search area is redefined according to the likelihood 
distribution in the expanded search area, which not only reduces the number of 
candidates, but also centers the search area around the high-scoring candidates. 
Full details are given in Section 2.3 of Appendix A.

3.2.4  3DMA GNSS Scoring

The 3DMA GNSS scoring process is the same as the corresponding process of 
the 3DMA GNSS particle filter. The standard single-epoch likelihood-based 3DMA 
GNSS ranging, shadow matching, and hypothesis-domain integration algorithms 
are used over the search area determined in the last step. The output is a set of 
likelihoods for each candidate position in the search area, Λp k, ,  where p denotes 
the candidate position p, and k denotes the k-th epoch. Full details are given in 
Section 1 of Appendix A.

3.2.5  Position Measurement Update

The position measurement is updated in a similar way to the equivalent part 
of the 3DMA GNSS particle filter. The position likelihood distribution is updated 
to incorporate new measurements from the current epoch, k. At each candidate 
position, the propagated likelihood, Λp k, ,−  is multiplied by the likelihood, Λp k, ,  
derived by the 3DMA GNSS algorithm based on the measurements of the current 
epoch k to obtain a composite likelihood. Either of the two likelihood surfaces with 
a higher confidence level will have a higher and narrower peak, making it more 
likely to dominate the composite distribution. In addition, a constant weighting 
parameter is introduced to adjust the dominance of the likelihood from the mea-
surement in the combined distribution, regulating the receptivity of the filter to 
the new measurements. Finally, the position solution is obtained using the com-
bined scores to weight the candidate positions. Full details are given in Section 2.4 
of Appendix A.

3.2.6  3DMA GNSS Velocity Filter

The receiver velocities in the 3DMA grid filter are also maintained by a Kalman 
filter, which is implemented in the same way as in the 3DMA particle filter. Full 
details are available in Section 2.5 of Appendix A.
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4  EXPERIMENTAL TESTS

The first data set consisted of a number of 2-minute GNSS records from the three 
constellations of GPS, GLONASS, and Galileo. They were collected at various loca-
tions in the City of London in July 2017 using a u-blox EVK M8T GNSS receiver at a 
recording frequency of 1 Hz. The antenna was maintained at a height of 1.1 meters 
above the ground. The experimental locations are marked in Figure 5. Note that at 
each test site, there were two sets of data collected in the morning and afternoon, 
which gave the satellites enough time in orbit to reach significantly different posi-
tions, allowing the morning and afternoon data to be independent of each other. 
Therefore, the afternoon data set was used for tuning the configurable parameters 
of the positioning and filtering algorithms, while the morning one was used for 
testing. The City of London is a typical European city. The roads in such cities are 
generally narrow, and the walls of the buildings are mainly made of masonry.

The other data set was collected in Canary Wharf in July 2019 by a van equipped 
with a Racelogic Labsat 3 GNSS front-end. The measurement data was made up of 
intermediate frequency samples and was subsequently processed by Focal Point 
Positioning Ltd. The data set consisted of 1,602 epochs of GPS and Galileo mea-
surements from conventional code tracking. Figure 6 illustrates the true trajectory 
of the trial vehicle provided by a Novatel iMAR INS/GNSS system. The vehicle 
departed from the lower-right corner of the map, moved clockwise on the path in 
the direction indicated by the orange arrows, and traversed the northern area twice 
before returning to the vicinity of the starting point from the road on the right of 
the map. The central area of Canary Wharf is marked by a red rectangle in Figure 6. 
There are many high-rise buildings with glass and steel surfaces in this area, which 
are common in some large cities in North America and Asia. The environmental 
characteristics in non-central areas of Canary Wharf are more open than those in 
the City of London.

In order to simulate navigation from different locations, the Canary Wharf 
data set was divided equally into eight segments of 200 one-second epochs each, 
marked with different colored dots in Figure 6. Three of the eight segments occured 

FIGURE 5 True positions in City of London. Background map ©Google Maps



ZHONG and GROVES

throughout the non-central areas, while the remaining five segments spanned both 
central and non-central areas, with two segments starting in the central area.

The statistics of the satellites in the two data sets are given in Table B4.
To evaluate the performance of multi-epoch 3DMA GNSS, the following six posi-

tioning algorithms were implemented, tested, and compared in the two test data 
sets mentioned above:

•	 Single-epoch conventional GNSS with outlier detection and terrain-height aid
•	 Single-epoch 3DMA GNSS
•	 Conventional extended Kalman filter (EKF) with terrain-height aid
•	 Conventional particle filter (PF) with terrain-height aid
•	 3DMA GNSS particle filter (PF)
•	 3DMA GNSS grid filter (GF)

The single-epoch conventional GNSS algorithm is described in Groves et al. 
(2020). The single-epoch 3DMA GNSS algorithm is described in both Groves 
et al. (2020) and Appendix A, and the parameters used can also be found in 
Appendix A. The implementation of the conventional extended Kalman and par-
ticle filters can be found in Groves (2013). The algorithms for 3DMA GNSS filter-
ing are summarized in Section 3 and detailed in Section 2 of Appendix A. Note 
that the 3DMA GNSS core algorithm already includes an implicit terrain-height 
aiding algorithm.

In general, it is better to separate the tuning and testing data. For the data set 
collected in the City of London, the data collected in the afternoon was used to 
tune the parameters of the algorithms, while the morning data was used to test 

FIGURE 6 True trajectory of van trial in Canary Wharf, London. Background map ©Google 
Maps
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and generate the results presented in this section. However, for the Canary Wharf 
data set, the same data was used to tune and test the algorithms due to the limited 
duration of the data set.

Figures 7 and 9 show the root-mean-square (RMS) position errors obtained from 
tests on the City of London and Canary Wharf data sets, respectively. As all meth-
ods include a terrain-height aiding technique, only errors in the horizontal radial 
direction were assessed. Figures 8 and 10 illustrate the maximum positioning error 
at different confidence levels for the solutions of the City of London and Canary 
Wharf data sets, respectively. The blue bars represent the maximum position error 
within the 90% confidence interval (i.e., the maximum error after excluding the 
10% of solutions with the largest absolute errors). Similarly, the orange bars show 
the maximum error within the 50% confidence interval. It is worth noting that a 

FIGURE 7 Horizontal radial position root-mean-square error in City of London (stationary)

FIGURE 8 Maximum horizontal radial position error at various confidence levels in City of 
London (stationary)



ZHONG and GROVES

very small number of faulty epochs were excluded from the single-epoch position-
ing in the vehicle test because the number of observed satellites did not meet the 
minimum requirements for running the least squares ranging algorithm. Detailed 
results are presented in Appendix B.

The results show that the conventional GNSS filtering algorithms performed 
better than the conventional single-epoch GNSS algorithm in most cases. In vehi-
cle tests, in particular, the overall root-mean-square (RMS) error in the position 
solution from even the worst performing multi-epoch GNSS algorithm (i.e., the 
conventional extended Kalman filter) was approximately 40% lower than that of 
the single-epoch conventional least squares. However, in the static positioning of 
the City of London data set, the RMS error of the filtered solution was just slightly 
reduced compared to the single-epoch GNSS, which is not as significant as in the 

FIGURE 9 Horizontal radial position root-mean-square error in Canary Wharf (vehicle)

FIGURE 10 Maximum horizontal radial position error at various confidence levels in 
Canary Wharf (vehicle)
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vehicle tests. It is clear that filtering has a greater impact on the vehicle results. 
One possible reason for this is that, for static positioning, the NLOS and multipath 
errors are largely correlated over successive epochs, whereas for mobile position-
ing, they vary more significantly and can thus be more easily mitigated by the fil-
tering process.

With the use of 3DMA GNSS techniques, the single-epoch positioning algorithm 
improved significantly in vehicle tests. The overall RMS error of the single-epoch 
3DMA GNSS position solution was reduced by about a quarter compared to the 
conventional one, while its maximum position error at 90% and 50% confidence 
levels was even lower than the conventional filtered results. It can be found from 
Table B6 in Appendix B that the single-epoch 3DMA GNSS performed better in 
segments with more epochs in the central region of Canary Wharf. This indi-
cates that 3DMA GNSS is more advantageous in denser environments than in the 
more open areas, which is also corroborated by the City of London results. In the 
City of London, the 3DMA GNSS techniques provided little improvement, with 
only an obvious reduction in error at the 50% confidence level compared to the 
conventional.

3DMA GNSS techniques and filtering algorithms benefit from each other. With 
the filtered solution providing a better initial position for the 3DMA GNSS algo-
rithms in the Canary Wharf data set, the position error of the filtered 3DMA 
GNSS solution was further reduced by more than 60% compared to that of the 
single-epoch 3DMA GNSS. Compared to the results of the conventional filter-
ing solutions, the filtered solutions with the 3DMA GNSS techniques showed a 
reduction of approximately 57% and 67% in, respectively, the overall RMS error 
and the maximum error at 90% confidence. Particularly in denser environments, 
such as epochs 1,001–1,200, 3DMA GNSS reduced the error in the filtered solu-
tion to approximately one third of the conventional filtered solution. In the City of 
London data set, where 3DMA GNSS performed unsatisfactorily, the introduction 
of 3DMA GNSS provided little benefit to the filtering.

To gain insight into the reasons behind the poor performance of the 3DMA fil-
ter in static positioning, a case study is presented using location C14_N in static 
positioning and epochs 401–600 in dynamic positioning. Figures 11 and 12 show 

FIGURE 11 Horizontal position error at Site C14_N, City of London (stationary)



ZHONG and GROVES

the position errors in the east and north directions. In static positioning, build-
ing geometry remains almost constant and the NLOS and multipath errors are 
largely correlated over successive epochs, resulting in position solutions not being 
improved by filtering. However, in dynamic positioning in which the building 
geometry changes with vehicle movement, the NLOS and multipath errors vary 
more significantly, allowing the filtering to mitigate the errors more easily.

Comparing the results from the filtered 3DMA GNSS algorithms, it can be seen 
that the overall accuracy of the filtered solutions from grid filtering and particle 
filtering are similar to each other for both static positioning in the City of London 
and vehicle navigation in Canary Wharf. This is in line with expectations that grid 
filtering essentially uses the likelihood of a grid of candidate points to represent 
the distribution density of particles at these candidate positions, which would not 
change the performance in terms of positional accuracy. Figures 8 and 10 show 
that the maximum position error of the grid filter solution at the 90% confidence 
level was slightly lower than that of the particle filter in both data sets, but not sig-
nificantly different at the 50% confidence level. Specifically, according to the solu-
tion error tables listed in the Appendix B, the difference in RMS error between the 
filtered solutions from these two filters remained within 1 meter in approximately 
50% of the segments in the data sets. The largest differences were found in the 
C10_E and C2_E data segments for the City of London, and in Epochs 200 to 600 
for Canary Wharf.

The difference between 3DMA GNSS grid filtering and particle filtering is more 
significant in terms of computational load. The computational load of the 3DMA 
GNSS filters depends mainly on the number of candidates to be computed in each 
epoch. The count of candidate positions can therefore be used to roughly evaluate 
the efficiency of these filters. For the 3DMA particle filter, the number of candidate 
positions is the number of particles maintained. Whereas for the 3DMA grid filter, 
the number of candidate points may vary, depending on the size and spacing of the 
grid and the proportion of buildings in the region. The shape and size of the grid 
can be specibed in advance or based on the uncertainty of the position solution 
from the previous epoch. For example, a circular grid with a radius of 20 meters 
and a spacing of 1 meter has approximately 1,256 candidate points. If the area 

FIGURE 12 Horizontal position error of Epochs 401-600 in Canary Wharf (vehicle)
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occupied by buildings is removed, then the actual number of candidates to be com-
puted is even less. Therefore, the average of the counts is suitable for comparison. 
The number of particles in the particle filter is determined by the minimum num-
ber (in steps of 500) that completely covers all the candidate positions in a search 
area spaced at 1 m and of the same radius.

The particle filter can benefit to some extent from an increase in the number of 
particles, while the grid filter can also benefit from a decrease in the spacing. In 
order to facilitate comparison of their computational loads, the number of par-
ticles in the particle filter was adjusted to achieve an accuracy similar to that of 
the 1-meter interval grid filter. For the Canary Wharf data set, the particle filter 
processed 5,000 candidate positions per epoch, while the grid filter processed an 
average of 3,604 candidate positions per epoch. For the City of London data set, the 
particle filter computed 1,000 candidates per epoch, while the grid filter computed 
an average of only 523 candidates per epoch. Therefore, extrapolating from the 
number of candidate positions in each epoch, 3DMA GNSS grid filtering should be 
approximately 40% to 50% faster than 3DMA GNSS particle filtering. However, this 
is not always true in a practical implementation. In the static positioning test (i.e., 
the City of London data set), the grid filtering was indeed almost twice as efficient 
as the particle filtering. However, in the vehicle navigation test at Canary Wharf, 
grid filtering consumed as much time as particle filtering, as it traversed all candi-
date locations (i.e. Equation [A36]) when performing the motion-based likelihood 
redistribution in the system propagation step, which took a significant amount of 
time and resources.

The problem of getting lost can happen with any filter, and the 3DMA GNSS 
filters are no exception. The error in the position solution given by a lost filter 
increases with time, while the uncertainty in the solution remains consistently 
smaller than the position error. For the 3DMA GNSS filters, the true position lying 
outside the search area can be defined as getting lost. The lost problem usually 
starts with an incorrect state estimate. In the specific case of the 3DMA GNSS fil-
ters shown in this paper, getting lost can originate from a position and/or velocity 
solution with large errors. The true position may be too far away from the position 
prediction given in the system propagation step to lie within the 3DMA GNSS 
search area in the current epoch. Due to the limitations of the 3DMA GNSS core 
algorithm itself, the true position must lie within the search area. Otherwise, it 
is impossible for the 3DMA GNSS algorithm to provide the correct position solu-
tion. Once the true position wanders outside the search area, it is difficult for the 
lost filter to get the correct position and velocity solution again, and thus difficult 
to recover in subsequent epochs. Therefore, improving the positioning accuracy 
of the 3DMA GNSS core algorithm can reduce the chances of the filter getting 
lost. However, any algorithm can fail in some situations. Artificially expanding 
the search area to include the true position retains the opportunity for a lost filter 
to recover in subsequent epochs. Other methods of detecting and recovering lost 
3DMA GNSS filters are worth investigating in future research.

5  CONCLUSION

The results show that filtering has a greater impact on the results of mobile 
positioning with significant movement compared to static positioning. In vehicle 
tests, the conventional GNSS filtering algorithms improved positioning accuracy 
by more than 40% compared to conventional single-epoch GNSS, while in static 
positioning they offered only a slight improvement. The advantages of 3DMA 
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GNSS are more apparent in denser environments than in more open areas. In the 
single-epoch positioning of the Canary Wharf data set, 3DMA GNSS improved the 
overall RMS position error by about a quarter. But in more open areas, such as the 
City of London and the non-central areas of Canary Wharf, it doesn’t bring much 
benefit.

3DMA GNSS techniques and filtering algorithms benefit from each other. The 
former provides the latter with a better position solution in the measurement 
update step, while the latter, in turn, rewards the former with a better initial posi-
tion and a smaller search area. In the Canary Wharf data set, the filtered 3DMA 
GNSS solution showed a further reduction in position error of approximately 68% 
compared to the single-epoch 3DMA GNSS. The filtered results with the 3DMA 
GNSS techniques reduced the overall RMS error and the maximum error at 90% 
confidence level by approximately 57% and 67%, respectively, compared to the con-
ventional filtering solution. It can be inferred that multi-epoch 3DMA GNSS filter-
ing should maximize the benefits for mobile positioning in dense environments.

3DMA GNSS grid filtering and particle filtering show similar performance in 
position accuracy. In terms of efficiency, 3DMA GNSS grid filtering is able to 
achieve solutions with fewer particles with errors comparable to those of 3DMA 
GNSS particle filtering. Theoretically, grid filtering should consume less resources 
and run faster than particle filtering. However, the grid filtering in the practical 
implementation may be slowed down by traversing all candidate positions in the 
system propagation.

There is still much room for improvement in the 3DMA GNSS filtering algo-
rithm. For example, any improvements to the 3DMA GNSS core algorithm could 
improve the performance of the 3DMA GNSS filtering algorithm to some extent. 
Potential topics include optimizing satellite visibility predictions, improving the 
scoring model for likelihood-based ranging and shadow matching, adding outlier 
detection, etc. The system propagation step in grid filtering could also be optimized 
to improve operational efficiency.

a c k n o w l e d g m e n t s
Qiming Zhong is funded by the China Scholarship Council and a UCL Engineering 

Faculty Scholarship. The authors also thank Focal Point Positioning for the con-
ventional pseudoranges generated by their software receiver and Imperial College 
London for use of their trials van and reference system.

r e f e r e n c e s
Amt, J. H., & Raquet, J. F. (2006). Positioning for range-based land navigation systems using 

surface topography. Proc. of the 19th International Technical Meeting of the Satellite Division of 
the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 1494–1505. https://www.ion.org/
publications/abstract.cfm?articleID=6773

Betaille, D., Peyret, F., Ortiz, M., Miquel, S., & Fontenay, L. (2013). A new modeling based on 
urban trenches to improve GNSS positioning quality of service in cities. IEEE Intelligent 
Transportation Systems Magazine, 5(3), 59–70. https://doi.org/10.1109/MITS.2013.2263460

Bradbury, J., Ziebart, M., Cross, P. A., Boulton, P., & Read, A. (2007). Code multipath modelling in the 
urban environment using large virtual reality city models: Determining the local environment. 
The Journal of Navigation, 60(1), 95–105. https://doi.org/10.1017/S0373463307004079

Ercek, R., De Doncker, P., & Grenez, F. (2006). NLOS-multipath effects on pseudo-range estimation 
in urban canyons for GNSS applications. 2006 First European Conference on Antennas and 
Propagation, Nice, France. https://doi.org/10.1109/eucap.2006.4584889 

European GSA. (2018). GNSS User Technology Report Issue 2. European Global Navigation 
Satellite Systems Agency. https://www.gsa.europa.eu/system/files/reports/gnss_user_tech_
report_2018.pdf

Groves, P. D. (2013). Principles of GNSS, inertial, and multisensor integrated navigation systems. 
Artech House. 

https://www.ion.org/publications/abstract.cfm?articleID=6773
https://www.ion.org/publications/abstract.cfm?articleID=6773
https://doi.org/10.1109/MITS.2013.2263460
https://doi.org/10.1017/S0373463307004079
https://www.gsa.europa.eu/system/files/reports/gnss_user_tech_report_2018.pdf
https://www.gsa.europa.eu/system/files/reports/gnss_user_tech_report_2018.pdf


ZHONG and GROVES

Groves, P. D., & Jiang, Z. (2013). Height aiding, C/N0 weighting and consistency checking for 
GNSS NLOS and multipath mitigation in urban areas. The Journal of Navigation, 66(5), 
653–669. https://doi.org/10.1017/S0373463313000350

Groves, P. D., Jiang, Z., Rudi, M., & Strode, P. (2013). A portfolio approach to NLOS and multipath 
mitigation in dense urban areas. Proc. of the 26th International Technical Meeting of the Satellite 
Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 3231–3247. https://
www.ion.org/publications/abstract.cfm?articleID=11264

Groves, P. D., Zhong, Q., Faragher, R., & Esteves, P. (2020). Combining inertially-aided extended 
coherent integration (supercorrelation) with 3D-mapping-aided GNSS. Proc. of the 33rd 
International Technical Meeting of the Satellite Division of the Institute of Navigation (ION 
GNSS+ 2020), 2327–2346. https://doi.org/10.33012/2020.17767

Gu, Y., & Kamijo, S. (2017). GNSS positioning in deep urban city with 3D map and double 
reflection. 2017 European Navigation Conference (ENC), Lausanne, Switzerland.  https://doi.
org/10.1109/EURONAV.2017.7954196

Hsu, L. -T., Gu, Y., & Kamijo, S. (2015). NLOS correction/exclusion for GNSS measurement 
using RAIM and city building models. Sensors, 15(7), 17329–17349. https://doi.org/10.3390/
s150717329

Hsu, L. -T., Gu, Y., & Kamijo, S. (2016). 3D building model-based pedestrian positioning method 
using GPS/GLONASS/QZSS and its reliability calculation. GPS Solutions, 20(3), 413–428. 
https://doi.org/10.1007/s10291-015-0451-7

Isaacs, J. T., Irish, A. T., Quitin, F., Madhow, U., & Hespanha, J. P. (2014). Bayesian localization and 
mapping using GNSS SNR measurements. 2014 IEEE/ION Position, Location, and Navigation 
Symposium (PLANS 2014), Monterey, CA. https://doi.org/10.1109/PLANS.2014.6851402

Ji, S., Chen, W., Ding, X., Chen, Y., Zhao, C., & Hu, C. (2010). Potential benefits of GPS/GLONASS/
GALILEO integration in an urban canyon – Hong Kong. The Journal of Navigation, 63(4), 
681–693. https://doi.org/10.1017/S0373463310000081

McGraw, G. A., Groves, P. D., & Ashman, B. W. (2020). Robust positioning in the presence of 
multipath and NLOS GNSS signals. In Y. T. Jade Morton, F. van Diggelen, J. J. Spilker Jr., B. 
W. Parkinson, S. Lo, & G. Gao (Eds.), Position, navigation, and timing technologies in the 21st 
century: Integrated satellite navigation, sensor systems, and civil applications, volume 1 (pp. 551–
589). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119458449.ch22

Misra, P., & Enge, P. (2010). Global positioning system: Signals, measurements, and performance. 
Ganga-Jamuna Press. 

Ng, H. -F., & Hsu, L. -T. (2021). 3D mapping database-aided GNSS RTK and its assessments in 
urban canyons. IEEE Transactions on Aerospace and Electronic Systems, 57(5), 3150–3166. 
https://doi.org/10.1109/TAES.2021.3069271

Ng, H. -F., Zhang, G., & Hsu, L. -T. (2020). A computation effective range-based 3D mapping aided 
GNSS with NLOS correction method. The Journal of Navigation, 73(6), 1202–1222. https://doi.
org/10.1017/S037346332000003X

Nur, K., Feng, S., Ling, C., & Ochieng, W. (2013). Integration of GPS with a WiFi high accuracy 
ranging functionality. Geo-Spatial Information Science, 16(3), 155–168. https://doi.org/10.1080
/10095020.2013.817106

Obst, M., Bauer, S., & Wanielik, G. (2012). Urban multipath detection and mitigation with 
dynamic 3D maps for reliable land vehicle localization. Proc. of the 2012 IEEE/ION Position, 
Location, and Navigation Symposium, Myrtle Beach, SC, 685–691. https://doi.org/10.1109/
PLANS.2012.6236944

Peyraud, S., Bétaille, D., Renault, S., Ortiz, M., Mougel, F., Meizel, D., & Peyret, F. (2013). About 
non-line-of-sight satellite detection and exclusion in a 3D map-aided localization algorithm. 
Sensors, 13(1), 829–847. https://doi.org/10.3390/s130100829

Suzuki, T. (2016). Integration of GNSS positioning and 3D map using particle filter. Proc. of the 
29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION 
GNSS+ 2016), Portland, OR, 1296–1304. https://doi.org/10.33012/2016.14857

Suzuki, T., & Kubo, N. (2013). Correcting GNSS multipath errors using a 3D surface model and 
particle filter. Proc. of the 26th International Technical Meeting of the Satellite Division of the 
Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 1583–1595. https://www.ion.org/
publications/abstract.cfm?articleID=11171

Suzuki, T., & Kubo, N. (2015). Simulation of GNSS satellite availability in urban environments 
using Google Earth. Proc. of the ION 2015 Pacific PNT Meeting, Honolulu, HI, 1069–1079. 
https://www.ion.org/publications/abstract.cfm?articleID=12782

Usman, M., Asghar, M. R., Ansari, I. S., Granelli, F., & Qaraqe, K. A. (2018). Technologies and 
solutions for location-based services in smart cities: Past, present, and future. IEEE Access, 6, 
22240–22248. https://doi.org/10.1109/ACCESS.2018.2826041

van Diggelen, F. (2021a). End game for urban GNSS: Google’s use of 3D building models. Inside 
GNSS. https://insidegnss.com/end-game-for-urban-gnss-googles-use-of-3d-building-models

van Diggelen, F. (2021b). Google’s use of 3D building models to solve urban GNSS. ION ITM/
PTTI 2021. 

https://doi.org/10.1017/S0373463313000350
https://www.ion.org/publications/abstract.cfm?articleID=11264
https://www.ion.org/publications/abstract.cfm?articleID=11264
https://doi.org/10.33012/2020.17767
https://doi.org/10.1109/EURONAV.2017.7954196
https://doi.org/10.1109/EURONAV.2017.7954196
https://doi.org/10.3390/s150717329
https://doi.org/10.3390/s150717329
https://doi.org/10.1007/s10291-015-0451-7
https://doi.org/10.1109/PLANS.2014.6851402
https://doi.org/10.1017/S0373463310000081
https://doi.org/10.1002/9781119458449.ch22
https://doi.org/10.1109/TAES.2021.3069271
https://doi.org/10.1017/S037346332000003X
https://doi.org/10.1017/S037346332000003X
https://doi.org/10.1080/10095020.2013.817106
https://doi.org/10.1080/10095020.2013.817106
https://doi.org/10.1109/PLANS.2012.6236944
https://doi.org/10.1109/PLANS.2012.6236944
https://doi.org/10.3390/s130100829
https://doi.org/10.33012/2016.14857
https://www.ion.org/publications/abstract.cfm?articleID=11171
https://www.ion.org/publications/abstract.cfm?articleID=11171
https://www.ion.org/publications/abstract.cfm?articleID=12782
https://doi.org/10.1109/ACCESS.2018.2826041
https://insidegnss.com/end-game-for-urban-gnss-googles-use-of-3d-building-models


ZHONG and GROVES

Wang, L. (2015). Investigation of shadow matching for GNSS positioning in urban canyons 
[Doctoral dissertation, University College London]. UCL Discovery. https://discovery.ucl.
ac.uk/id/eprint/1464060

Wang, L., Groves, P. D., & Ziebart, M. K. (2012). Multi-constellation GNSS performance evaluation 
for urban canyons using large virtual reality city models. The Journal of Navigation, 65(3), 
459–476. https://doi.org/10.1017/S0373463312000082

Wang, L., Groves, P. D., & Ziebart, M. K. (2013). Urban positioning on a smartphone: Real-time 
shadow matching using GNSS and 3D city models. Proc. of the 26th International Technical 
Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 
1606–1619. https://www.ion.org/publications/abstract.cfm?articleID=11339

Wang, L., Groves, P. D., & Ziebart, M. K. (2015). Smartphone shadow matching for better cross-
street GNSS positioning in urban environments. The Journal of Navigation, 68(3), 411–433. 
https://doi.org/10.1017/S0373463314000836

Ward, P. W., Betz, J. W., & Hegarty, C. J. (2017). GNSS Disruptions. In E. D. Kaplan & C. Hegarty 
(Eds.), Understanding gps/gnss - principles and applications (3rd ed., pp. 549–617). Artech 
House. 

Yozevitch, R., & ben Moshe, B. (2015). A robust shadow matching algorithm for GNSS positioning. 
NAVIGATION, 62(2), 95–109. https://doi.org/10.1002/navi.85

Zhang, G., Ng, H. -F., Wen, W., & Hsu, L. -T. (2020). 3D mapping database aided GNSS based 
collaborative positioning using factor graph optimization. IEEE Transactions on Intelligent 
Transportation Systems, 22(10), 6157–6187. https://doi.org/10.1109/tits.2020.2988531

Zhang, G., Wen, W., Xu, B., & Hsu, L. -T. (2020). Extending shadow matching to tightly-coupled 
GNSS/INS integration system. IEEE Transactions on Vehicular Technology, 69(5), 4979–4991. 
https://doi.org/10.1109/TVT.2020.2981093

Ziedan, N. I. (2017). Urban positioning accuracy enhancement utilizing 3D buildings model 
and accelerated ray tracing algorithm. Proc. of the 30th International Technical Meeting of the 
Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 3253–3268. 
https://doi.org/10.33012/2017.15366

Ziedan, N. I. (2019). Enhancing GNSS mobile positioning in urban environments through 
utilization of multipath prediction and consistency analysis. Proc. of the 32nd International 
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), 
Miami, FL, 3469–3483. https://doi.org/10.33012/2019.16929

How to cite this article: Zhong, Q., & Groves, P. D. (2022) Multi-epoch 
3D-mapping-aided positioning using Bayesian filtering techniques. 
NAVIGATION, 69(2). https://doi.org/10.33012/navi.515

APPENDIX A: A DETAILED DESCRIPTION OF 
ALGORITHMS

This appendix provides more details of the 3DMA positioning algorithms used 
to generate the results presented in the paper. As the equipment used differs in the 
two data sets mentioned in this paper, a set of tuning parameters is applied to each 
data set individually.

1  3DMA CORE ALGORITHMS

The input to the core 3DMA algorithm is a 3D city model of a region and a series 
of candidate positions within the region, and the output is a scoring surface (also 
known as likelihood distribution) over these candidates. The score for each candi-
date position is obtained by the following four algorithms.

https://discovery.ucl.ac.uk/id/eprint/1464060
https://discovery.ucl.ac.uk/id/eprint/1464060
https://doi.org/10.1017/S0373463312000082
https://www.ion.org/publications/abstract.cfm?articleID=11339
https://doi.org/10.1017/S0373463314000836
https://doi.org/10.1002/navi.85
https://doi.org/10.1109/tits.2020.2988531
https://doi.org/10.1109/TVT.2020.2981093
https://doi.org/10.33012/2017.15366
https://doi.org/10.33012/2019.16929
https://doi.org/10.33012/navi.515


ZHONG and GROVES

1.1  Visibility Prediction

Once a grid of candidate positions has been set up, the visibility of the satellites 
at these candidates can be predicted. The same set of predictions is used in all sub-
sequent algorithms including shadow matching and likelihood-based ranging. For 
each candidate position, the probability that the satellite is predicted to be direct 
line-of-sight (LOS), p(LOS|BB), is determined using the building boundaries pre-
computed from the 3D-mapping data. For the City of London data set, p(LOS|BB) 
was set to 0.85 where the satellite elevation was above the building boundary and 
0.15 otherwise. For the Canary Wharf data set, p(LOS|BB) was set to 0.8 and 0.2 for 
satellites predicted to be LOS and NLOS, respectively. These values account for the 
possibility that predictions may be wrong due to errors and resolution limitations 
in the 3D city model and unpredictable factors such as passing vehicles.

1.2  Shadow Matching

Once a set of candidate positions and the satellite visibility predictions at them 
have been determined, shadow matching is comprised of the following steps:

1.	 The probability, p(LOS|C/N0), that each received signal is LOS is determined 
from the GNSS receiver’s C/N0 measurements using the following statistical 
model:

	    p LOS C N
p C N s
f C N s C N s
p

o

o

( | / )
( / )

( / ) ( / )
min min

min max0

0

0 0=

≤

  < <
−

−− ≥









max max( / )C N s0

� (A1)

  where:

		    f C N a C N a C N a( / ) [( / )] ( / )0 2 0
2

1 0 0  = + + � (A2) 

  and the coefficients are given in Tables A1 and A2.

TABLE A1 
Tuning Parameters for Determining LOS Probability from Measured C/N0 in City of London

Elevation, θ Satellites smin,
dB-Hz

smax,
dB-Hz

Po–min a0 a1,
dB-Hz–1

a2,
dB-Hz–2

Po–max

0° ≤ θ ≤ 90° All 27 44 0.15 0.4549 -0.0444 0.0012 0.85

TABLE A2 
Tuning Parameters for Determining LOS Probability from Measured C/N0 in Canary Wharf

Elevation, θ Satellites smin,
dB-Hz

smax,
dB-Hz

Po–min a0 a1,
dB-Hz–1

a2,
dB-Hz–2

Po–max

θ ≤ 20° All 16 32 0.2 -0.4170 0.0374 0 0.8

20° ≤ θ ≤ 60° GPS 26 40 0.2 -0.8369 0.0406 0 0.8

20° ≤ θ ≤ 60° Galileo 21 34 0.2 0.6333 -0.0632 0.0020 0.8

θ ≤ 60° All 33 40 0.2 -2.7850 0.0897 0 0.8
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2.	 Each candidate position and satellite is then scored according to the match 
between the predicted and measured satellite visibility:

		    
p p LOS C N p LOS BB

p LOS C N p LOS BB
m = − −

+
1

2
0

0

( | / ) ( | )
( | / ) ( | )

� (A3)

3.	 An overall likelihood score, ΛSp ,  for each position, p, is obtained by 
multiplying the scores for each satellite.

1.3  Likelihood-Based Ranging

Once a set of candidate positions and the satellite visibility predictions at them 
have been determined, the likelihood-based ranging algorithm is comprised of the 
following steps:

1.	 For each candidate position, the satellites are ranked based on the elevation 
angle, measured C/N0, and surrounding buildings, and the one with the 
highest score is selected as the reference. The score is calculated by:

			   r
n

BB C Nj
p

j p
p

n

j

p

= −( )×( )
=
∑1
1

0θ / � (A4)

  �where j denotes the j-th satellite, C/N0 values are rounded to the nearest mul-
tiple of five; 1

1n p
n

j p
p

p BB∑ −= ( )θ  is the average value of the difference between 
the satellite elevation; θj, and the corresponding building boundary, BBp, at 
the candidate point, p = 1, and its immediate neighbors, p = 2,3, …, np. The 
neighbors whose distance to the candidate point is less than 1.5 times the grid 
spacing are considered.

2.	 At each candidate position, measurement innovations are obtained by 
subtracting the computed LOS ranges (refer to Groves [2013] for calculations) 
from the measured pseudoranges and then differencing with respect to the 
reference satellite to eliminate the receiver clock offset. Note that some 
known errors, such as atmospheric delays and satellite clock offsets, have 
been modeled in the calculation of the range to each satellite at the candidate 
positions.

3.	 The error standard deviation of all errors except for the NLOS path delay is 
computed as a function of C/N0 using:

			    σ j
C Na bj= × +−( )10 0 10/ / � (A5)

  �where a and b are empirically determined constants and are given in 
Table A3.

TABLE A3 
Parameters Used in the Likelihood-Based Ranging (LBR) Algorithm

Data set a, m2 b, m2 µN, m σN, m µL, m σr, m δ zmax, m

City of London 9.03 × 104 40.73 18.50 19.00 0 3.00 29.00

Canary Wharf 1.41 × 104 28.10 26.06 31.76 -5.25 2.36 30.00
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4.	 At each candidate position, the measurement innovations for satellites 
predicted to be LOS are modeled by a normal distribution with a mean of µL, 
while those for satellites predicted to be NLOS are modeled by a skew-normal 
distribution with the location, ξN, scale, ωN, and shape, αN, as follows:
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σ σ σ σ
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  �where µN and σN are the mean and standard deviation of the NLOS path delay, 
respectively, and σr is the error standard deviation of the reference satellite, 
given in Table A3. The cumulative probability, F, of the NLOS measurement 
innovation, δ zpj, is then computed using:
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  �where erf(x) is the integral of the normal distribution and T(x, α) is Owen’s 
T-function.

  �The modified measurement innovation, δ zpj′ ,  is then obtained by solving:
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  �For measurements predicted to be LOS, the measurement innovation remains 
unchanged (i.e., δ zpj′  = δ zpj).

5.	 To prevent excessively large innovations from producing very low likelihood 
scores, limiting is applied to each innovation:

			   δ δ δ δ µz z z zpj pj L
′ ′= − − 





max max, , � (A11)

  �where ⎣•⎦ and ⎡•⎤ are floor and ceiling functions, respectively, and δ zmax is 
given in the Table A3.

6.	 A likelihood score for each candidate position, p, is finally computed using:

			    ΛRp p p p= −( )′ − ′exp ,δ δδz C zz
T 1 � (A12)
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  �where δzp
′  is the vector of re-mapped measurement innovations and C zδ ,p  is 

the measurement error covariance matrix, given by:
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1.4  Hypothesis Domain Integration

Hypothesis domain integration combines the shadow matching and 
likelihood-based ranging scores to give a single score for each candidate position:

			       Λ Λ Λp Rp Sp
Wp= � (A14)

where Wp is the weighting factor, which is a value related to the number of LOS 
signals in the current epoch.

			    W
n

n np
LOS p

LOS p NLOS p
=

×

+

α ,

, ,
� (A15)

where nLOS,p and nNLOS,p are the number of satellites predicted to be LOS and NLOS 
at candidate position p, respectively, and α is an empirically determined constant. 
For the City of London data set, α takes a value of 4.6, while for the Canary Wharf 
data set, α is 3.6.

2  3DMA FILTERING ALGORITHMS

This appendix shows several important components of the 3DMA filtering algo-
rithm excluding the 3DMA core algorithm (described separately in Section 1). 
Some of these components (i.e., initialization, position measurement update, and 
velocity filtering) are applicable in both particle filtering and grid filtering, while 
others are only applicable in grid filtering as the equivalent components are avail-
able in conventional particle filtering. For example, 3DMA particle filtering can 
use the conventional system propagation scheme directly. Note that the velocity 
initialization and velocity filtering can be omitted in static positioning.

2.1  Particle and Grid Filter Initialization

The initialization is divided into position and velocity components, where the 
position is initialized by a standard singleepoch 3DMA GNSS algorithm set and 
the velocity is initialized by a weighted least squares method. For static positioning 
applications, the velocity is considered known and does not need to be initialized.

The single-epoch 3DMA GNSS for position initialization consists of three steps: 
the weighted least squares ranging is used to determine a rough position solution 
from which a grid of candidate positions are generated, and finally the core 3DMA 
GNSS algorithm scores these candidates to derive a position solution. The detailed 
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algorithm is described in Groves et al. (2020), and the 3DMA GNSS core algorithm 
and parameters can also be found in Section 1 of the appendix.

The velocity initialization is comprised of the following steps:

1.	 For each candidate position, predict the satellite visibility using building 
boundaries. Note that the predictions are already made in the 3DMA GNSS 
positioning algorithm and can, therefore, be used directly here without 
recalculation.

2.	 The overall LOS probability of a satellite over the search area is calculated by:

			     pLOS
j pp LOS p

j

pp
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∑
∑
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Λ
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,

0 0
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δ
� (A16)

  �where j denotes the satellite, Λp,0  is the likelihood of candidate position p, 
and δLOS p

j
, ,0  is a Boolean value representing the predicted visibility of satellite 

j at candidate position p.
3.	 The variance of the measurement error for each satellite is determined using:

			     σ σ σr j r j p r j C NLOS, , , , , /
2 2 2

0
= + � (A17)

  �where the LOS probability-based part is given by:

			    σ σ βr j p r LOS
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0 1 1 � (A18)

  �and the C/N0-based part is given by:

			   σ r j C N r
C N

ra bj
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/ /
0

010 10= × +−( ) � (A19)

  �where the coefficients σr0 = 0.2, β = 10, ar = 500m2/s2, and br = 0.015m2/s2 are 
determined empirically.

4.	 The measurement innovation, δz0− ,  is:
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  �where ��ρaj  is the measured pseudorange rate from satellite j, and âjr−  is the 
predicted range rate for satellite j after eliminating known errors such as the 
effect of Earth rotation, calculated using the method in Groves (2013).

  �The measurement matrix, HG
e
, ,0  is computed using:
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  �where , , ,ˆ ˆ ˆ ˆe e e e
aj aj x aj y aj zu u u =  u  is the LOS unit vector of satellite j, calculated 

using the method in Groves (2013).
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  �The measurement error covariance matrix, Cr, is given by:
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  �The velocity state vector consists of the velocity, ,0ˆ ,e
ea
+v  and the clock drift, 

,0
ˆ ,a

cδρ +
  and is obtained by:
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  �and the state estimation error covariance is initialized using:
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5.	 The east and north velocities are then given by:
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  �and their error covariance is:
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  �where P0 1 3 1 3, : , :
+  is the first three columns and rows of P0+ .

  �The north-east-down (NED) to Earth-centered, Earth-fixed (ECEF) coordi-
nate transformation matrix, Ce

n ,  in Equations (A25) and (A26) is given by:
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  �where the latitude, La, and longitude, λa, are obtained from the position solu-
tion, while C Cn

e
e
n= T  is the ECEF to NED coordinate transformation matrix.

2.2  Grid Filter System Propagation

System propagation predicts the state estimate of the next epoch based on cur-
rently known information, which moves position candidates and redistributes 
their likelihoods. The process is divided into the following three steps:

1.	 The search area is expanded to ensure that candidates with high scores from 
the previous epoch (or initialization) fall in the center of the search area in 
subsequent calculations. In the case of a circular search area, for example, the 
radius rp is increased to rq = 2rp with the same center.

  �Thus, likelihoods for the candidate positions within the expanded area, 
indexed by q, are initialized using:
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  �where Λp k q k, ,− =
+

1  is the likelihood at the preceding epoch, k − 1, following the 
position measurement update, of the point pk−1 that has the same coordinates 
as point qk, and Pk−1 is the set of candidate positions used for the position mea-
surement update at epoch k − 1. The likelihood of the newly added candidates 
is temporarily assigned zero, pending further processing in subsequent steps.

  �The coordinate notation of the candidate position is also updated after the 
search area extension to avoid confusion.
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2.	 The position estimate between epochs can be propagated by a velocity solution 
and its associated error covariance. The predicted displacement between 
epochs k − 1 and k is:
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  �where , , 1ˆn
eb E kv +

−  and , , 1ˆn
eb N kv +

−  are, respectively, the estimated east and north 
velocities at epoch k − 1, and τs is the time interval between epochs.

  �The error covariance of the predicted displacement is:
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  �where PvE vN k, , −
+

1  is the error covariance of the east and north velocities at the 
preceding epoch k − 1, SaE,k and SaN,k are the power spectral densities (PSDs) 
of the east and north accelerations, respectively, and SaEN,k is the cross-spectral 
density of the east and north accelerations. The same values as in the velocity 
filter, given by (A54), are used.

  �To facilitate alignment with the grid in the search area, the displacement is par-
titioned into integer grid space ˆ ˆ,k ke n− −  and remainder ˆ ˆ,k kE Nδ δ− −  components:
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  �where Δpg is the grid spacing, and the integer part is given by:
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  �The position likelihood is redistributed to account for the integer displace-
ment simply by changing the position associated with each likelihood. Thus:
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  �For the remainder part, the likelihoods are then redistributed using:
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  �where the weighting for each epoch is computed by:
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  �where:
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  �In static positioning, since the velocity of the receiver is known to be zero, 
the motion-based likelihood redistribution does not need to be performed. 
Thus, the coordinates and likelihoods of the candidate positions are inherited 
directly from the expanded search area:
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3.	 The confidence-based likelihood redistribution adds a minimum likelihood 
to all candidates in the search area. Let CP be the level of confidence in the 
position solution from the preceding epoch (or initialization), where 0 <CP < 1. 
The likelihoods are redistributed using:
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  �where Ap is the area of the search area calculated by:

				      A rp p=π 2 � (A44)

  �for a circular area with radius, rp, or by:

			        A a bp p p=π � (A45)

  �for an elliptical area with semi-major axis, ap, and semiminor axis, bp. CP takes 
a value of 0.99 in the City of London data set and 0.75 in the Canary Wharf 
data set.
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2.3  Grid Filter Search Area Determination

The center of the search area for the 3DMA GNSS position measurement cor-
responds to the weighted average position solution obtained from the propagated 
likelihood grid, giving by:
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The likelihood of the candidate positions remains unchanged within the newly 
defined search area. Thus, the notation is updated by:
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The size of the search area can be fixed or vary with the error covariance. In the 
City of London and Canary Wharf tests, the search area was fixed to a circular area 
of a 20-m and 40-m radius, respectively.

2.4  Particle and Grid Filter Position Measurement Update

At each candidate position, the likelihood is updated with the propagated likeli-
hood, Λp k, ,−  and the 3DMA scoring, Λp k, ,  by:
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where Wm is the empirically determined measurement weighting factor. A value 
greater than one gives more weighting to new measurement data while a value less 
than one gives less. Wm takes a value of one for both the City of London and Canary 
Wharf data sets. The overall likelihood is then normalized by:
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Finally, the updated position solution is obtained using:
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where Ep,k and Np,k are the easting and northing coordinates of candidate position p.

2.5  Velocity Filter (Used with Particle and Grid Filters)

The velocity filter includes prediction and update steps. In the propagation step, 
with no additional information, the velocity state estimates remain unchanged, 
while the error covariance increases. Thus:
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where Scfa  is the receiver clock frequency drift PSD, τs is the time interval between 
epochs, and Sa ke ,  is the acceleration PSD matrix that is given by:

		      S C Ca k
e

n
e

aN k aEN k

aEN k aE k

aD k

e
n

S S
S S

S
,

, ,

, ,

,

=

















0
0

0 0
� (A53)

where Ce
n  and Cn

e  are transformation matrices between NED and ECEF coordi-
nates as shown in Equation (A27), SaE,k is the east acceleration PSD, SaN,k is the 
north acceleration PSD, SaEN,k is the cross-spectral density of the east and north 
accelerations, and SaD,k is the vertical acceleration PSD.

For a typical vehicle, the acceleration is similar in the easting and northing direc-
tions, while the vertical acceleration is relatively small. The horizontal acceleration 
tends to be greater at lower speeds. Therefore, the acceleration PSD model is pro-
posed as follows:
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where the constant, Ka = 1.5m2/s3, is determined empirically.
In the measurement update step, the weighting model applied to the mea-

surement errors is similar to the one used in the velocity initialization shown in 
Equations (A16), (A17), (A18), and (A19).

The measurement noise covariance, Rk, is then obtained using:
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where σr,j is given by Equation (A17). The measurement matrix, HG k
e

, ,  is given by:
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where ,ˆ e
aj ku  is the line-of-sight unit vector of satellite j. 
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The Kalman gain is then computed using:
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The measurement innovation, δzk
− ,  is computed using:
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where ��ρa k
j
,  is the measured pseudorange rate from satellite j, ,âj kr−  is the modeled 

range rate from satellite j, and ,
ˆ a

c kδρ −
  is the predicted receiver clock drift.

The state estimate consisting of the velocity, ,ˆ ,e
ea k
+v  and clock drift, ,

ˆ ,a
c kδρ +
  is then 

updated using:
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The state estimation error covariance is updated using:
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The east and north velocity and their error covariance can then be obtained using 
Equations (A25–A27).

APPENDIX B: DETAILED EXPERIMENTAL RESULTS

TABLE B1 
Statistics of the Satellites

City of London Canary Wharf 
(central area)

Canary Wharf 
(non-central area)

Average signals per epoch 18.6 9.2 13.2

Average LOS signals per epoch 5.11 5.1 11.7

Mean elevation of LOS signals (°) 60.0 46.7 37.3

SD elevation of LOS signals (°) 18.0 19.9 20.8

Mean elevation of NLOS signals (°) 36.4 35.9 25.7

SD elevation of NLOS signals (°) 19.9 18.0 16.4

Mean C/N0 of LOS signals (dB-Hz) 43.3 35.3 34.1

SD C/N0 of LOS signals (dB-Hz) 5.7 8.1 8.0

Mean C/N0 of NLOS signals (dB-Hz) 31.2 26.0 25.4

SD C/N0 of NLOS signals (dB-Hz) 8.1 6.6 6.5

Note: SD stands for standard deviation.
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TABLE B2 
Horizontal Radial Position RMS Errors (in Meters) for Different Algorithms in City of London

Single-epoch Conventional Filtering 3DMA Filtering

Experiment ID Conventional 3DMA EKF PF PF GF

C1_W 8.13 7.60 4.42 7.30 6.37 7.82

C1_E 5.37 2.70 3.62 5.26 2.05 1.72

C2_W 13.47 14.38 7.21 10.71 10.50 7.86

C2_E 10.07 11.91 9.76 9.64 10.05 6.98

C3 13.69 2.74 2.97 7.37 4.54 4.15

C4 5.36 2.43 5.33 5.54 2.41 1.76

C5 6.13 4.28 5.04 5.91 4.33 3.09

C6 2.91 3.41 2.19 2.46 2.43 1.52

C7 6.10 4.74 3.37 5.30 1.77 2.05

C8 16.25 21.67 14.40 18.39 14.56 7.97

C9_W 14.07 4.87 12.14 14.53 5.86 8.45

C9_E 12.86 8.53 9.25 8.58 4.14 3.23

C10_W 11.23 5.79 12.63 10.37 3.87 2.64

C10_E 17.56 12.88 14.02 16.66 15.98 9.53

C11 12.89 1.82 6.93 9.96 2.78 3.46

C12_N 9.15 5.16 7.14 9.28 6.89 6.12

C12_S 9.32 3.92 5.76 10.01 3.83 4.35

C13_N 12.37 28.15 8.24 10.13 38.84 42.83

C13_S 23.88 10.14 27.32 22.85 15.03 16.15

C14_W 15.75 5.51 7.90 20.01 7.70 10.37

C14_E 13.33 6.72 6.26 12.40 6.68 6.69

C15_W 13.75 18.80 12.58 12.50 12.66 14.63

C15_E 32.68 21.31 28.77 23.91 11.99 11.12

TABLE B3 
Horizontal Radial Position RMS Errors (in Meters) for Different Algorithms in Canary Wharf

Single-epoch Conventional Filtering 3DMA Filtering

Epoch range Conventional 3DMA EKF PF PF GF

1–200 (0) 21.52 19.89 5.87 8.38 9.16 7.97

201–400 (0) 40.01 36.36 45.60 56.74 11.64 10.61

401–600(139) 66.83 26.58 29.80 16.91 16.27 15.74

601–800 (27) 14.86 18.34 26.93 19.22 15.60 16.88

801–1,000(144) 66.27 49.62 13.51 17.50 8.48 7.63

1,001–1,200(124) 84.52 68.28 39.95 33.60 9.35 8.59

1,201–1,400 (27) 12.48 15.14 24.20 18.08 13.29 13.84

1,401–1,602 (0) 4.79 5.71 5.77 7.68 4.72 4.43

Note: The numbers in brackets in the first column represent the counts of epochs where 
vehicles were located in the central area of Canary Wharf.
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TABLE B4 
Maximum Horizontal Radial Position Error (in Meters) for Different Algorithms in City of 
London, 90% of Confidence

Single-epoch Conventional Filtering 3DMA Filtering

Experiment ID Conventional 3DMA EKF PF PF GF

C1_W 13.29 14.08 5.66 11.82 10.61 9.88

C1_E 8.91 3.88 4.81 7.76 3.00 2.31

C2_W 19.95 16.48 9.22 15.82 16.96 12.21

C2_E 14.06 14.82 12.04 12.76 14.54 7.75

C3 21.73 4.12 4.13 11.31 6.42 5.63

C4 8.93 3.03 6.29 9.00 3.29 2.49

C5 8.41 6.60 6.47 7.53 6.00 4.78

C6 4.07 4.15 3.64 3.94 3.02 1.71

C7 10.10 6.16 5.22 8.52 2.63 3.11

C8 25.47 33.49 18.03 27.83 19.61 11.16

C9_W 18.99 5.78 13.75 19.48 4.78 17.49

C9_E 19.56 10.19 10.80 12.34 5.86 5.65

C10_W 15.99 7.22 14.70 15.37 5.47 3.56

C10_E 24.04 25.71 14.47 23.50 40.26 16.11

C11 19.16 3.27 10.33 15.49 4.55 4.24

C12_N 12.58 6.91 9.25 12.84 7.89 7.70

C12_S 13.64 5.32 8.25 14.65 5.57 6.51

C13_N 21.05 32.40 10.77 17.52 47.96 47.95

C13_S 31.84 21.26 28.47 28.13 32.00 31.42

C14_W 25.26 7.23 8.87 32.12 10.09 12.84

C14_E 19.81 8.81 7.75 17.67 8.14 9.04

C15_W 19.29 32.48 15.70 16.67 24.59 30.58

C15 E 44.10 28.87 38.97 40.96 17.23 15.51

TABLE B5 
Maximum Horizontal Radial Position Error (in Meters) for Different Algorithms in Canary 
Wharf, 90% of Confidence

Single-epoch Conventional Filtering 3DMA Filtering

Epoch range Conventional 3DMA EKF PF PF GF

1–200 (0) 22.26 22.85 9.47 13.99 13.49 12.09

201–400 (0) 76.77 51.58 82.27 104.03 14.17 13.66

401–600(139) 147.54 55.27 53.46 27.60 22.67 19.05

601–800 (27) 20.71 24.01 58.46 17.13 24.24 24.36

801–1,000(144) 74.82 29.49 24.23 31.44 12.99 11.41

1,001–1,200(124) 151.18 79.45 82.97 64.04 15.05 14.56

1,201–1,400 (27) 21.17 12.46 55.76 22.57 9.04 12.11

1,401–1,602 (0) 5.90 8.51 10.23 12.82 6.81 7.00

Note: The numbers in brackets in the first column represent the counts of epochs where 
vehicles were located in the central area of Canary Wharf.
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TABLE B6 
Maximum Horizontal Radial Position Error (in Meters) for Different Algorithms in City of 
London, 50% of Confidence

Single-epoch Conventional Filtering 3DMA Filtering

Experiment ID Conventional 3DMA EKF PF PF GF

C1_W 6.35 5.78 4.20 5.83 5.32 7.18

C1_E 3.86 2.42 4.05 4.75 1.76 1.56

C2_W 12.88 15.25 7.19 9.44 7.99 5.92

C2_E 9.52 11.87 8.50 9.86 9.84 6.90

C3 10.38 2.32 3.01 6.02 4.28 3.57

C4 4.68 2.33 5.69 4.45 2.28 1.15

C5 5.75 3.99 4.82 5.97 4.05 2.54

C6 2.63 3.51 1.64 2.11 2.40 1.50

C7 4.12 3.16 3.03 3.42 1.34 2.07

C8 13.64 18.18 14.59 15.34 13.53 8.53

C9_W 13.28 1.53 13.16 13.98 2.25 5.62

C9_E 10.90 8.62 8.95 8.77 4.04 2.40

C10_W 10.64 5.62 12.51 9.52 3.72 3.00

C10_E 16.76 6.03 14.15 15.31 7.77 5.82

C11 9.73 0.84 5.54 7.81 1.67 3.73

C12_N 8.53 5.16 7.26 8.29 6.46 6.87

C12_S 9.13 4.32 4.89 9.50 3.15 4.92

C13_N 8.44 30.74 8.98 7.65 34.58 47.38

C13_S 23.52 2.93 27.70 22.92 3.92 3.35

C14_W 11.57 5.30 7.84 16.09 7.48 9.69

C14_E 10.48 6.32 5.84 8.68 6.46 5.87

C15_W 10.82 12.94 10.97 9.44 7.87 10.47

C15 E 34.92 21.33 29.88 16.05 10.56 10.58

TABLE B7 
Maximum Horizontal Radial Position Error (in Meters) for Different Algorithms in Canary 
Wharf, 50% of Confidence

Single-epoch Conventional Filtering 3DMA Filtering

Epoch range Conventional 3DMA EKF PF PF GF

1–200 (0) 5.26 4.14 4.76 5.68 3.74 3.62

201–400 (0) 5.86 6.17 26.63 29.17 5.29 5.32

401–600(139) 12.45 9.85 6.99 10.99 6.78 6.68

601–800 (27) 3.85 3.38 10.80 5.12 2.48 3.02

801–1,000(144) 9.93 5.78 6.89 9.81 4.72 4.23

1,001–1,200(124) 15.34 7.58 7.04 8.26 6.50 6.42

1,201–1,400 (27) 3.01 4.28 9.70 9.03 4.03 4.79

1,401–1,602 (0) 2.55 3.71 4.86 5.57 3.08 3.24

Note: The numbers in brackets in the first column represent the counts of epochs where 
vehicles were located in the central area of Canary Wharf.
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