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Abstract—We present new data-dependent characterizations
of the generalization capability of deep neural networks based
data representations within the context of regression tasks. In
particular, we propose new generalization error bounds that
depend on various elements associated with the learning problem
such as the complexity of the data space, the cardinality of
the training set, and the input-output Jacobian of the deep
neural network. Moreover, building upon our bounds, we propose
new regularization strategies constraining the network Lipschitz
properties through norms of the network gradient. Experimental
results show that our newly proposed regularization techniques
can deliver state-of-the-art performance in comparison to estab-
lished weight-based regularization.

I. INTRODUCTION

Deep neural networks (DNN) have led to remarkable per-
formance in various machine learning tasks [1]. These net-
works consist of multiple layers of simple linear affine trans-
formations followed by point-wise non-linearities, therefore
exhibiting huge capacities making them prone to significant
overfitting as shown in a recent landmark paper [2]. How-
ever, considerable empirical evidence continues to showcase
counter-intuitively that very deep models generalize remark-
ably well in various applications [3] .

Significant efforts are therefore being devoted by the scien-
tific community to characterize the learning properties of deep
neural networks in highly over-parameterized settings [4]. On
the one hand, a number of theoretical oriented works have
focused on characterizations of the generalization properties of
DNNs by offering bounds on their generalization error [5]- [7].
On the other hand, empirical oriented works have also been
conducted via a series of carefully crafted experiments to study
the inductive bias of stochastic gradient descent algorithms [3].
Most of these works, however have focused on deep learning
classifiers, with less attention being paid to the performance of
deep neural networks for regression problems. In this paper,
we make progress on this front whereby – by building upon
the robustness and generalization framework [8] – we offer
new characterizations of the generalization ability of deep
neural networks, when used to learn functions applicable to
regression tasks. In particular:

• We derive new generalization error guarantees applicable
to such tasks under the `p-loss.

• Then, building upon our proposed generalization error
guarantees, we design new a regularizer allowing to learn
deep neural network based data representations appli-
cable to regression settings. Such regularizers explicitly
constrain the operator norm of the network input-output
Jacobian matrix.

• We also present computationally efficient methods to es-
timate the spectral norm of the aforementioned Jacobian
matrix in order to accelerate the neural network learning
process and test their performance on classical denoising
tasks.

• Finally, we demonstrate empirically that our bounds –
which, in contrast with existing ones, alleviate the ex-
ponential dependence of generalization error on network
depth – lead to a regularization strategy offering superior
generalization results in comparison with existing regu-
larization strategies enforcing Lipschitz continuity.

Of particular relevance, Jacobian regularization has already
been shown to result in an improved generalization perfor-
mance in deep learning classifiers [9], [10]. However, the
fact that this phenomenon extends to regression tasks as well
has not been explored before in literature to the best of our
knowledge.

Notation: Lower case boldface characters denote vectors,
upper case boldface characters represent matrices and sets
are represented using calligraphic fonts. ‖.‖p,q represents the
operator norm induced by `p and `q vector norms of the matrix
argument. In turn, the operator ‖.‖p denotes the `p norm of a
vector argument. ND (ψ/2, ρ) represents the covering number
of a metric space (D, ρ) using balls of radius ψ/2.

II. PROBLEM SETUP

We are interested in problems involving the estimation of a
functional relationship between data points x ∈ X and target
points y ∈ Y based on a set of examples S = {(xi,yi)}i≤m
drawn i.i.d. from the space D = X × Y according to an
unknown probability measure µ. In this setting, we restrict



our attention to learning problems associated with regression
tasks where the input data points x ∈ X ⊆ RNx and the
output data points y ∈ Y ⊆ RNy . We assume that X and Y
are compact and we use `q and `p to measure distances in X
and Y respectively. We also assume that the space D = X ×Y
is compact with respect to the product metric ρ [11].

In this supervised learning setting, we restrict our attention
to the use of deep neural networks fS : RNx → RNy that
are trained on the training set S to learn the underlying map
between X and Y . Such a feed forward deep neural network
can be represented as a composition of d layer-wise mappings
delivering an output fS(x) ∈ RNy , given the input x ∈ RNx

as follows:

fS(x) = (fθd ◦ . . . fθ1) (x; Θ)

Our goal is to characterize the quality of such learnt deep
neural network using a well-known measure quantifying the
generalization capability of a machine learning models. In
particular, we will use the generalization error (GE) associated
with the learnt deep neural network given by:

GE(fS) = |lexp(fS)− lemp(fS)| (1)

corresponding to the difference between the expected and
empirical losses given by:

lexp(fS) = E(x,y)∼µ[l(fS , (x,y))],

lemp(fS) =
1

m

∑
i

l(fS , (xi,yi))

where l(·, ·) is the pre-specified loss function. For the purpose
of our analysis, we will characterize the performance of a deep
neural network regressor fS(·) with respect to the standard `p-
loss function, which – for an input x ∈ X and ground-truth
y ∈ Y – is given by:

l(fS(·), (x,y)) = ‖y − fS(x)‖p (2)

Our ensuing analysis offers bounds to the generalization error
in (1) of deep feed-forward neural networks based regressors
as a function of a number of relevant quantities. These
quantities include the covering number of the sample space D,
the size of the training set S, and properties of the network
encapsulated in its input-output Jacobian matrix given by:

J(x) =


∂fS(x)1
∂x1

· · · ∂fS(x)1
∂xNx

...
. . .

...
∂fS(x)Ny

∂x1
· · · ∂fS(x)Ny

∂xNx


III. MAIN RESULTS

We now develop bounds to the generalization error associ-
ated with deep neural networks by leveraging the algorithmic
robustness framework in [8]. The following definition intro-
duces the notion of a robust learning algorithm.

Definition 1 (Algorithmic Robustness ). A learning algorithm
is said to be (K, ε(S))-robust if the space D can be partitioned

into K disjoint sets Kk, k = 1, . . . ,K, such that for all
(xi,yi) ∈ S and all (x,y) ∈ D

(xi,yi), (x,y) ∈ Kk =⇒
|l(fS , (xi,yi))− l(fS , (x,y))| ≤ ε(S) (3)

The algorithmic robustness framework has already been
used to derive generalization bounds for deep learning classi-
fiers [9], [12]–[14]. However, these works consider uniformly
bounded loss functions in their analyses and therefore the
obtained bounds do not carry over immediately to regression
problems due to additional technical difficulties arising from
the use of unbounded loss functions. We therefore re-purpose
existing analyses in order to understand how deep neural net-
works can underlie the construction of input-output functional
relations for regression tasks under `p loss functions.

Our analysis – which generalizes a key result in [9] – builds
upon a simple characterization of the Lipschitz continuity of a
deep neural network, based on the use of `p and `q norms to
measure distances on the network input and output respectively
as follows:

‖fS(x′)− fS(x′′)‖p ≤ sup
x∈conv(X )

‖J(x)‖p,q‖x′ − x′‖q (4)

where conv(.) is the convex hull of a set.
We can now describe the robustness of a deep neural

network regressor trained under an `p-loss.

Theorem 1. (Robustness under `p loss) A DNN fS(·) trained
on a training set S under the `p-loss in (2) is(

ND (ψ/2, ρ) ,

(
1 + sup

x∈conv(X )

‖J(x)‖p,q

)
ψ

)
− robust

for any ψ > 0 and ND (ψ/2, ρ) <∞.

Proof. See Appendix.

Finally, leveraging Theorem 3, we can also describe a GE
bound for a deep neural network regressor trained under a
`p-loss.

Theorem 2. A DNN fS(·) trained on the training set S under
the `p-loss in (2) obeys with probability 1− ζ, for any ζ > 0,
the GE bound given by:

GE(fS) ≤

(
1 + sup

x∈conv(X )

‖J(x)‖p,q

)
ψ

+M

√
2ND (ψ/2, ρ) log(2) + 2 log (1/ζ)

m

for any ψ > 0 and M <∞.

Proof. See Appendix

A. Discussion

Some comments about the nature of this bound are in order.
The bound in Theorem 2 consists of two terms:
• The second term captures the interplay between the

cardinality of the training set S and the complexity



Algorithm 1: Esitmation of the spectral norm of J
Input: Mini-batch B, number of power iterations n.
Output: Maximum singular value, σ, of the matrix J.
for (y,x) ∈ B do

Initialize {u} ∈ RNx

i← 0
while i < n do

v← vjp(f(y),y,u)
u← jvp(f(y),y,v)
i← i+ 1.

σ ← ‖u‖2/‖v‖2

of the data space measured via its covering number.
Intuitively, the generalization error decreases with the
increase in the cardinality of the training set, and it also
decreases with the decrease in the covering number of
the data space. It is generally recognized that real-world
data is associated with spaces exhibiting small intrinsic
dimension – hence bounded covering numbers [9] –
where the optimal covering ball radius can be evaluated
using network characteristics [9], [14].

• The first term is associated with the Lipschitz constant
of the loss function that, in turn, is proportional to the
Lipschitz constant of the deep neural network for the
loss function. This – in sharp contrast with existing
parameter dependent bounds [15] – then suggests that the
generalization capability of a deep neural network does
not deteriorate exponentially with the network depth, in
view of the fact that the Lipschitz constant of a deep
neural network depends on a network input-output Jaco-
bian operator norm. In fact, in agreement with empirical
results reported in [10] for DNN classifiers, we also show
experimentally that the generalization error for DNN
regressors tends to be directly proportional to the operator
norm of the network input-output Jacobian matrix.

Overall, in view of a direct dependence between the gener-
alization ability and the operator norm of the network input-
output Jacobian matrix, our bounds also suggest an entirely
new regularization strategy that can outperform existing neu-
ral network regularization techniques such as weight decay,
weight orthogonalization [12] and penalizing the frobenius
norm of the jacobian [9], [16] as shown in the sequel.

IV. JACOBIAN BASED REGULARIZATION

Building upon the insights associated with our bound,
we now propose a new regularization strategy applicable to
scenarios where one adopts an `2-metric both on the network
input and output.

In particular, by adopting such an Euclidean metric, the
bounds suggest that the generalization ability of a deep neural
network depends on the maximum value of the spectral
norm of the network input-output Jacobian matrix over the
convex hull of the input space. We therefore propose a new
regularization technique that penalizes the sum of the spectral
norm of the network Jacobian matrix evaluated at the various

Algorithm 2: Computation of the jvp.
Input: Mini-batch B, model outputs f(y), vector v.
Output: Jv
Initialize a dummy tensor d.
g← vjp(f(y),y,d)
u← vjp(g,p,v)
return u

training samples within the training set, leading immediately
to the training objective given by

1

m

m∑
i=1

l(fS , si) + β

m∑
i=1

σmax(J(xi))
2 (5)

where σmax(·) represents the spectral norm of its matrix
argument. The hyper-parameter β balances between the desire
to minimize the empirical error and the desire to minimize the
spectral norm of the network Jacobian1.

Note that this new training objective encourages the network
to explore solutions in regions in the parameter space associ-
ated with Jacobians with small spectral norms which – owing
to the nonlinear nature of a deep neural network – allows for
a broader parameter search space. This is contrast to more
restrictive techniques such as (1) weight decay that constrains
the network weights to exhibit small norms (hence, these
techniques do not take into account the correlation between the
rows of weight matrices) or else (2) weight orthogonalization
that constrains the weights to lie on Stiefel manifold [12], [14].

A. Efficient Computation of the Jacobian Based Regularizer
The challenge associated with the use of the training ob-

jectives in (5) relates to the computation of the Spectral norm
of the Jacobian matrix J because computing and storing the
Jacobian matrix of deep neural networks incurs huge cost. A
computationally efficient algorithm to approximate the spectral
norm of the Jacobian has already been proposed and is given
in Algorithm 1 [17]. We however, provide them here for the
sake of completeness.

The procedure leverages the power method [18] to approx-
imate the spectral norm of the Jacobian based regulariza-
tion term in (5). It starts by choosing (randomly) an initial
(nonzero) approximation of the left singular vector u in RNx

associated with the highest singular value of the matrix J.
It then leverages the automatic differentiation to iteratively
compute the Jacobian vector product and vector Jacobian
product as follows:

v←
[
df(y)

dy

]T
u, u←

[
df(y)

dy

]
v

We fix the number of iterations to n = 3 since these result in
sufficiently accurate numerical approximations of the spectral
norm. The spectral norm σ is then equal to ‖u‖2/‖v‖2.

1Note that the Rectified Linear Unit (ReLU) defined as φ(x) = max(0, x)
is the non-linearity of choice in most DNNs. It has an undefined derivative
for x = 0. However it should be noted that the nondifferentiable points lie in
a set of measure zero and gradient based optimization algorithms never reach
such points in reality and therefore the Jacobian matrix and the its norms can
be computed almost every realizable point [9].



TABLE I
TEST PSNR (DB) AND SSIM FOR A 3-LAYER DNCNN, TRAINED

FOR 140 EPOCHS ON BSD300.

40 samples 200 samples 400 samples

PSNR SSIM PSNR SSIM PSNR SSIM

Wdecay 25.56 0.52 27.11 0.61 28.17 0.68
Wortho 25.42 0.51 26.91 0.61 27.72 0.67

Jfro 26.78 0.53 26.92 0.63 27.55 0.68
Jspectral 27.22 0.58 27.26 0.64 27.94 0.70

The algorithm exploits the reverse and forward mode auto-
matic differentiation to compute the vector Jacobian product
vjp(·, ·, ·), and the Jacobian vector products jvp(·, ·, ·) respec-
tively. All major deep learning frameworks offer support for
the computation of reverse mode vector Jacobian product.
The forward mode Jacobian vector product can easily be
computed via the reverse mode automatic differentiation using
the method described in Algorithm 2 [19].

Note again that the merit of Algorithm 1 lies in computing
the spectral norm of Jacobian without explicitly computing the
Jacobian itself that is prohibitive in high-dimensional settings.

V. EXPERIMENTS

We now conduct experiments to gauge the effectiveness
of the proposed regularizer on the classical image denoising
problem involving the reconstruction of a clean image given a
noisy version of the image (corrupted with additive Gaussian
noise with mean 0 and variance 0.01). We use the 3-layer
version of the classical DnCNN model from [20] with 32
filters of size 3 × 3 followed by ReLU in first layer, 32
filters of dimension 3 × 3 followed by batch normalization
and ReLU in the second layer and 1 filter of size 3× 3 in the
third layer. We use 64 × 64 cutouts of the greyscale images
taken from BSD300 dataset [21] for training, validation and
testing. Three different training sets of size 40, 200 and 400
samples are considered. For each of these training sets we fix
the validation and test sets of size 1750 samples each. An SGD
based opimizer is used for trainig and the hyperparamter β is
tuned on the validation set using grid search.

We compare the performance of our proposed gradient
based regularizer (5) (referred to as Jspectral) with Frobenius
norm of the Jacobian (Jfro) [9], [16] and other conventional
weight based regularizers such as weight decay (Wdecay) and
weight orthogonalization (Wortho) [12]. The performance
of the network trained with these regularization methods is
reported in Table I. Our results show that Jspectral outbeat
the competing regularizers both in terms of Peak Signal to
Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM). Note that, although, for large training samples the
PSNR of the reconstructed images achieved using Jspectral
and Wdecay regularization eventually becomes comparable
if the network is trained for sufficiently large number of
epochs. However, our results (not included in the paper due
to the shortage of space), show that Jacobian based regular-
izers converge much faster than Weight based regularization

techniques2. A visual comparison of the reconstruction quality
with various regularizers can be seen in Figure 1.

To conclude, in line with our analysis, we offer one ad-
ditional result showcasing that generalization indeed appears
to be intimately related to the spectral norm of the network
Jacobian. In particular, Figure 2 compares the value of the
network input-output Jacobian spectral norm for a deep neural
network trained under standard SGD with no regularization
(referred to as Vanilla) and a deep neural network trained
under SGD for various regularization strategies. It can be
seen that in all the cases the spectral norm of the Jacobians
decreases gradually with the increase in the number of training
epochs. Therefore, Jspectral regularization has the potential to
improve generalization further. These trends apply not only
to this denoising tasks but also other regression tasks such as
compressed sensing [22].

VI. CONCLUSIONS

We have studied the generalization behaviour of deep neural
networks by building upon the robustness framework. In
particular, we have offered new generalization bounds appli-
cable to regression problems – that encapsulate key quantities
associated with the learning problem, including the complexity
of the data space, the cardinality of the training set, and the
network Lipschitz constant. Notably, our bounds have also
led to an entirely new regularization strategy – based on the
penalization of the spectral norm of the network Jacobian –
that clearly outperform existing regularizers.

APPENDIX

Proof of Theorem 1. We can establish a ψ/2 cover of D such
that K ≤ ND (ψ/2, ρ) such that ∀(x′,y′) ∈ S and (x′′,y′′) ∈
D, if (x′,y′) and (x′′,y′′) correspond to the same partition,
then ρ((x′,y′), (x′′,y′′)) ≤ ψ.

Let us now consider two data points (x′,y′) ∈ S and
(x′′,y′′) ∈ D associated with one of the partitions. Then

|l(fS , (x′,y′))− l(fS , (x′′,y′′)|
=
∣∣‖y′ − fS(x′)‖p − ‖y′′ − fS(x′′)‖p

∣∣
(a)

≤ ‖y′ − fS(x′)− y′′ + fS(x′′)‖p
(b)

≤ ‖y′ − y′‖p + ‖fS(x′)− fS(x′′)‖p
(c)

≤ ‖y′ − y′′‖p + max
conv(X )

‖J(x)‖p,q‖x′ − x′′‖q

(d)

≤

(
1 + sup

x∈conv(X )

‖J(x)‖p,q

)
ρ((x′,y′), (x′′,y′′)) (6)

The inequalities (a), (b) and (c) hold due to reverse triangle
inequality, Minkowski-inequality and eq. (4), respectively,
where (d) holds trivially because sup metric ρ upper bounds

2The networks regularized using Jspectral converge in relatively fewer
number of epochs (≈ 50) as compared to the Wdecay (≈ 100).



Fig. 1. Sample results of the denoised images for m = 40 using a 5-layer DnCNN [20]. (Left to Right) Wdecay (PSNR = 28.57), Wortho (PSNR = 28.02),
Jfro (PSNR = 29.89), Jspectral (PSNR = 30.36).

Fig. 2. Sum of the spectral norms of the network input-output Jacobian
evaluated on training samples

∑m
i=1 σmax(J(xi))

2 versus number of training
epochs. The neural network is trained using SGD under different regularizers,
for the image denoising task.

the distance metric on data space. It now follows immediately
from (3) that

|l(fS , (x′,y′))−l(fS , (x′′,y′′))|≤

(
1+ sup

x∈conv(X )

‖J(x)‖p,q

)
ψ

and the theorem follows.

Proof of Theorem 2. The GE of a robust deep neural net-
work based classifier follows immediately from the robustness
result. In particular, it has been shown in [8], that with
probability greater than 1− ζ

GE ≤ ε(S) +M

√
2K log(2) + 2 log(1/ζ)

m
(7)

where M represents the maximum value of loss over all
the samples in the sample space D that can be shown
to be finite for a Lipschitz continuous deep neural net-
work [22]. Now, Theorem 1 shows that K can be up-
per bounded by ND (ψ/2, ρ), it also shows that ε(S) ≤(

1 + supx∈conv(X ) ‖J(x)‖p,q
)
ψ, leading immediately to the

result.
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