

Review of emergent behaviours of systems comparable to infrastructure systems and analysis approaches that could be applied to infrastructure systems

S. Neda Naghshbandi, L. Varga, T. Dolan¹

Civil, Environmental and Geomatic Engineering Dept, UCL

24 Apr 2020

Contents

1.	Summary	. 2
2.	Emergent failure	. 3
3.	Infrastructure characteristics	.7
4.	Sectors similar to infrastructure	.8
5.	Case studies	.9
6.	Approaches	28

Disclaimer: This report was produced to inform the National Infrastructure Commission's study on resilience. The views expressed and recommendations set out in this report are the authors' own and do not necessarily reflect the position of the National Infrastructure Commission.

¹ Naghshbandi identified cases and approaches and prepared case and approach descriptions, Varga led on emergent failure, characteristics of infrastructure and sectors similar to infrastructure, and supervised the work, Dolan conducted approaches' analytics. We are grateful for the excellent contributions from NIC, and in particular the constructive input and feedback from Eleanor Voss

1. Summary

This paper makes contributions to the understanding of emergent failure in economic infrastructure by considering case studies and approaches from sectors comparable to infrastructure. The review starts by identifying existing ways of thinking about emergent failure and narrows down the scope to system-of-systems' failures which are unexpected and arise when systems appear to be working normally. In order to target sectors similar to infrastructure, the characteristics of infrastructure sectors were identified; infrastructure scope was limited to energy, transport, water, and telecommunications. Other sectors were identified and assessed against infrastructure characteristics. The sectors most similar to infrastructure were then reviewed for cases and approaches, limiting our search to those outside the UK.

Multiple case studies and approaches were located initially via searches of academic articles (peer-reviewed) and grey literature (unpublished, informal papers). Through iteration with the National Infrastructure Commission (NIC) secretariat, in particular with a focus on how the case studies and approaches help to inform the challenges relating to emergent failure in infrastructure systems, we settled on five case studies and 11 approaches. Finally, we co-developed and agreed the templates for use for both the case studies and the approaches, and then populated the templates.

Each case study contains the following details: the sector in which the case arose, the particular failure that emerged, the interactions causing the failure, and their consequences. A narrative is included for each case describing: events during the failure, the background context to the failure, the emergent behaviour that arose, and latest understanding on the causes of the particular failure. Finally, the insights for infrastructure are noted by considering how the emergent failure could arise in infrastructure systems. The case studies heavily reinforce the dormant, or latent, systemic weaknesses that arise when multiple systems each with their own objectives, are connected and interdependent upon shared resources, flows, data.

The approaches relevant for analysis of failure, are described and analysed as follows: Name and Type, Rankings Summary (applicability to UK system of economic infrastructure, cross sector applicability, strategic relevance to NIC), Applications and Comparability Scores, Purpose, Key concepts, Data requirements and availability, Skills and resource requirements, Complementary approaches, Strategically relevant outputs. Overview and References.

The findings offer the UK Government insight into national infrastructure resilience from an international perspective.

The report is organised as follows: Section 2 discusses the scope of emergent failure for the purposes of this review. Section 3 sets out infrastructure characteristics. Section 4 identifies sectors similar to infrastructure. Sections 5 and 6 describe the search strategies and the results of the cases and approaches respectively.

2. Emergent failure

Engineered systems that stop delivering products and services, such as electricity, potable water, mobility, and wi-fi, are said to have failed. These failures are referred to as accidents, incidents and even disruptions and disturbances. Accidents, especially major ones, have been investigated, and when new forms of accidents arose in the past, new explanations of causes were introduced, fostering the belief that bad outcomes occur because something goes wrong, and if we can find and treat those causes, future accidents would be prevented². This has fostered an interest in looking only at failures which is important for critical services, as failures may lead to harm or loss of life and property. However, things can also go right, and indeed that is the purpose of design, construction and operation of built systems. There are four possible states, using dimensions: Positive vs Negative outcomes, and High vs Low probability as shown in Figure 1.

- "Positive outcomes that have a high probability. This subset represents the successes or 'normal' actions, i.e. the things that not only go right, but also that are expected to go right. In other words, everyday work or everyday functioning. These are essential for resilience, but rarely if ever considered by safety.
- **Positive outcomes that have a low probability.** This subset represents the 'good' things that happen unexpectedly. There is no commonly recognized terminology for these; when they happen they are simply accepted with gratitude. **Negative or unwanted outcomes that have a low probability**, i.e. things that go wrong and which are unexpected although not unimaginable. This is the subset of outcomes that traditionally is associated with safety (or rather, the lack of safety), particularly outcomes that cause significant losses and are hard to predict.
- **Negative or unwanted outcomes that have a high probability.** This basically means adverse outcomes that realistically must be expected to happen frequently or even regularly. The purpose of risk assessment and risk management is to identify how such outcomes can arise and prevent them from happening. This is usually done successfully; cf. the ANSI definition of safety as 'the freedom from unacceptable risks'. In practice this subset is therefore very small."

Figure 1 - From Hollnagel, E., 2014. Resilience engineering and the built environment. *Building Research & Information*, *42*(2), pp.225-226

The state of most concern due to the growing incidence of apparently low probability failures is **Negative or unwanted outcomes that have a low probability.** This state, as it stands, deals with imaginable or predictable outcomes that have low likelihood. To be predictable means that we can know causal pathways and deduce outcomes from low-level facts. This is also known as 'weak emergence.³ Another way to say this is that investigators have discovered, often through close examination, how the emergent

² Hollnagel, E (2014) Resilience engineering and the built environment. *Building Research & Information*, 42(2), pp.221-228

³ Fromm, J (2005), Types and Forms of Emergence, <u>https://arxiv.org/abs/nlin/0506028</u>

properties of a system (such as reliability and safety) were affected by the low-level organisation of its components.

Examples of explanations for predictable, weak emergent failures include:

- components or sub-systems have <u>degraded</u> over time (e.g. due to underinvestment or lack of adequate maintenance, or ignorance of degrading materials, or due to transfer of ownership/responsibility without due diligence of reliance placed on the component, or due to efficiencies through pooled resources, which reduce contribution toward maintenance)
- 2. components or sub-systems have changed in <u>criticality</u> (e.g. due to rising importance beyond design specification)
- components or sub-systems are subjected to <u>common mode failure</u>, due to lack of diversity in the system, (e.g. all engineers taught the same knowledge, but new knowledge on how integrated systems are working is absent)

When weak emergent failures occur, they take operators by surprise because they had not treated with risk of sufficiently high probability for the engineering systems to have taken precautionary interventions.

There is a growing class of **Negative or unwanted outcomes that have a low probability** and these arise where the causal pathways are *unimaginable* or *unpredictable*. The failure of the system comes as a complete surprise as components and sub-systems are working within design limits. Others have described these types of failure as 'Black Swans' or 'Strong Emergence', where the pathway to the emergent failure was totally surprising, arising through multiple feedbacks and adaptation in complex adaptive systems due to evolution.

Examples of explanations for unpredictable, strong emergent failures include:

- components or sub-systems have become (more) <u>coupled</u> and either depend on couplings or are depended upon by couplings which are outside the control of the system (e.g. coupled to a power grid which has other system demands, where control cannot be exercised as boundary of responsibilities are crossed)
- components or sub-systems are subject to <u>high impact exogenous threats</u> (hurricanes, seismic activity, ...) outside the design window of the built/engineered solution (i.e. there is 'theoretical' risk transfer which can't be managed in reality)
- 3. people and organisations **respond in totally unexpected ways** when components or subsystems fail (e.g. irrational protection of property, changed cultural norms have not been addressed by engineered/built systems, ...)

Emergent failure is thus concerned with surprise disruptions to systems of systems which have the capacity to kill or seriously injure people, and/or disproportionately damage assets. Failures may be large single events affecting many people, such as aeroplane crashes, or multiple events affecting few people, such as road accidents) but overall, the failure event(s) is large and noticeable.

Every outcome is emergent including positive ones. When the pathway to that outcome is predicable or imaginable it is called weak emergence. Systems are designed to achieve positive outcomes via particular pathways.

When the pathway to an outcome is *not* imaginable, it is called strong emergence. Unexpected good outcomes an also arise, so strong emergence can occur for both negative and positive outcome.

It is worth clarifying the distinction between *engineered* systems, such as roads and water mains, and engineering systems which are the organizational, technical, political, and soft systems that operate the engineered systems in order to deliver products and services.⁴ Engineered and engineering systems are organized in a way so as to attain emergent properties, such as security, resilience, affordability, reliability, safety, environmental friendliness, and social acceptability. These emergent properties have become increasingly well defined, and have grown in terms of theoretical understanding and validity of methods that justify our belief in their value to society. In fact, they have matured to an extent that we can measure and apply quality criteria as to society's and industry's minimum standards of performance, for example, security standards such as physical barriers, reliability guality such as proof that what is transmitted is received, and emissions limits that control air quality in urban areas. The emergence of these properties (and related guality levels) is achieved by the organization of components, processes and behaviours in engineered and engineering systems that produce and deliver infrastructure products and services. Changes in either engineered or engineering systems will affect whether or not these emergent properties arise and to what quality standard. Changes in the environment, both natural and socio-economical) can also cause emergent properties to change. Emergent properties arise in knowable, and unknowable ways. A failure may refer to either a failure of the engineered system, such as derailment, or the failure of an engineering system, such as a security breach. Both types of failure will limit or prevent the system being usable.

Information systems are typically large with many dynamics in network connection, lots of heterogeneity in components, and developed within time and cost constraints. Such systems have an implicit assumption that component behaviour and interactions are fully known, and great efforts go into verification and validation. But for complex systems, even if the functional behaviour of each single component of the system is known, their interactions can anyway produce unexpected situations leading to system failures. One source of ignorance about emergent failure is the use of 'Components off The Shelf' (COTS) as part of a larger solution; COTS are used in many engineered systems. Challenges arise due to lack of control and knowledge about the COTS: i) functionality, performance and evolution of COTS respond to market demand (not the needs of the COTS adopter); most COTS are not designed to interoperate with each other; iii) COTS vendor behaviour varies widely with respect to support, cooperation, and predictability⁵.

One or more of the components of the system may not be working as anticipated by the system of systems in which they are embedded, but they are working in a way intended by their design or developer. I.e. they may be sub-optimal in the system of systems. It is

 ⁴ Mayfield, M Punzo, G, Beasley, R, Clarke, G, Holt, N, Jobbins, S (2018), *Challenges Of Complexity and Resilience In Complex Engineering Systems*, Encore Network+ White Paper, EPSRC grant EP/N010019/1
 ⁵ Vinerbi, L, Bondavalli, A, Lollini, P (2010) Emergence: A new Source of Failures in Complex Systems 2010 Third International Conference on Dependability, DOI 10.1109/DEPEND.2010.28

the system-of-systems, e.g. an electricity network, which fails, and the sub-optimal component may not be even within the scope of an investigation.

This report uses the following definition of emergent failure:

"A non-linearly large (many small or one single) disruption (not necessarily an entire collapse) of a system-of-systems (SoS) due to interactions between systems or between systems and people, in particular contexts, where systems do NOT fail (but may be sub-optimal) but the SoS does fail"

3. Infrastructure characteristics

The starting point for characteristics of infrastructure is a discussion paper on "Characteristics of Infrastructure Sectors and Implications for Innovation Processes"⁶ This paper introduces five dimensions of economic infrastructure sectors such as energy, gas or water supply, waste water treatment and telecommunication. These are: capital intensity, asset durability, a key role of public organizations, regulation intensity and a high degree of systemness (or interconnectivity).

A further four dimensions of infrastructure characteristics, identified at the ITRC conference on national infrastructure and economic prosperity⁷ are included. These are: spill-over effects, investment leads to variety in economic growth, ramifications of failures, and uncontrollable demand. Infrastructure is not the same as other types of capital stock as it often exhibits features of a natural monopoly, tends to have public good characteristics, network effects and spillovers into other sectors⁸. In the event of a disruption to a critical infrastructure system, the impacts exert influence outside the system, specifically, on society, producing negative effects on national interests such as security, the economy, and basic human needs⁹. Urbanisation and city densification¹⁰ combined with population growth, aging, demographic and increasing wealth/middle-class are leading to demand beyond design windows.

Publishing. http://dx.doi.org/10.1787/225682848268

⁶ Markard, J (2009) Characteristics of Infrastructure Sectors and Implications for Innovation Processes, Discussion Paper for the Workshop on Environmental Innovation in Infrastructure Sectors, Karlsruhe Sep. 29 -Oct. 1, 2009

⁷ Varga, L (2014) Infrastructure, Growth and Sustainable Living, *ITRC conference: The future of national infrastructure systems & economic prosperity*, St Catharine's College, Cambridge, 28.03.2014

⁸ Égert, B., T. Kozluk and D. Sutherland (2009), "Infrastructure and Growth: Empirical Evidence", OECD, Economics Department Working Papers, No. 685, OECD

⁹ Rehak D, Markuci J, Hromada M, Barcova, K. Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system. International Journal of Critical

Infrastructure Protection. 2016;14:3-17. DOI: 10.1016/j.ijcip.2016.06.002

¹⁰ Esfahani, HS, Ramirez, MT (2003) Journal of Development Economics 70, 443–477

4. Sectors similar to infrastructure

A variety of sectors were considered for assessment of similarity to infrastructure. Other UK critical sectors¹¹ were the initial sectors: Chemicals, Defence, Emergency Services, Finance, Food, Government, Health, Space.

Next to be considered were **primary** (Materials (mining, forestry)), **secondary** (Industrials (defence, construction, manufacturing), Healthcare (biotech, medical devices), Consumer Staples (food, drink), and **tertiary** (Financials (banks, insurance, investment), Technology (electronics, IT)) stock market sectors¹².

Through a process of search for cases, and the requirement for a spread of sectors, five sectors, each with a strong case of emergent failure, were selected. Selected sectors are: Finance, Food, Healthcare, Industry and Natural systems. The sectors were evaluated, shown in Figure 2, using a scoring key from Markard (2009). Markard had previously scored various infrastructure sectors for the first five criteria in Figure 2. Given we have extended Markard's dimensions of economic infrastructure sectors (the first five criteria in Figure 2), and the scoring key was usable for both new criteria and for new sectors, we adopted Markard's key for assessment.

	Sector Criteria	Financials, banking, investment, insurance	Consumer staples (food, drink)	Healthcare	Industrials (defence, nanufacturing, construction)	Natural systems
1	Capital costs	2	2	2	2	1
2	Asset Durability	2	2	2	2	3
3	Dominance of public organisations	2	3	3	3	3
4	Regulation intensity	3	2	3	2	3
5	Degree of systemness	2	2	2	2	3
6	Spill-over effects	2	2	2	2	1
7	nvestment leads to variety in economic growth	2	2	2	2	1
8	Ramifications of failures	2	3	3	3	3
9	Uncontrollable demand	3	3	3	2	3
	Case study	Flash Crash	Moldova Agri-food	SARS	Car Configuration	Beached Whales

key: 3 very high, 2 high, 1 medium, 0 low

Figure 2: Five sectors comparable to infrastructure: Finance, Food, Healthcare, Industry, Natural systems.

¹¹ Cabinet Office (2018) Public Summary of Sector Security and Resilience Plans

¹² https://etfdb.com/etf-education/the-10-sectors-of-the-stock-market/

5. Case studies

Searches for cases were conducted in both academic and grey literatures for case studies from sectors similar to infrastructure but not infrastructure. The search for academic articles used the Scopus database. The search string shown in Figure 3 yielded 28 results.

TITLE-ABS-KEY (("case stud*")

AND (emergent OR emergence OR unexpect* OR unpredict* OR unforseen*)

AND (failure OR compromised)

AND (finance OR banking OR airspace OR aerospace OR pharmacy OR epidemic OR famine OR agriculture OR "foodmarket" OR stockpiling OR "perishable" OR "raw material" OR "catalytic converts")

AND NOT (infrastructure OR energy OR electricity OR transport OR road OR rail OR telecom OR water OR sewage))

AND (LIMIT-TO (LANGUAGE, "English"))

Figure 3: Search string for Scopus to locate cases of emergent failure

A general search in Google for "emergent failure case studies" returned 32.6 million results, and identifies a good source of example from NASA.¹³

By excluding cases where the cause of the failure is not described, i.e. all included cases can be scientifically explained; including cases where emergent failure as defined in section 2; and excluding cases on emergency or emergencies, we reduced the list to 13 cases as shown in Figure 4.

Case title	Sector
Hidden Hazards (Car Configuration)	Automotive design
Chaos and crisis: The Swiss bank case study	Banking
Methodological strategies in resilient health care studies: An integrative	Health Sector
review	
Storm Clouds Over Stonehenge	Defence
Pushing the Envelope of Flight Test Safety	Aeroplane testing
The Poldercrash; Turkish Airlines Flight 1951	Aeroplane
	operations
The Collapse of Lehman Brothers: A Case Study	Finance
Iceland's Banking Crisis	Banking operations
The 2007–2009 Financial Crisis: An Erosion of Ethics: A Case Study (finance)	Finance
Financial Failure Prediction in Banks: The Case of European Union Countries	Finance
Insurance Company Failure	Insurance
System weaknesses as contributing causes of accidents in health care	Health Sector
Overcoming supply chain failure in the agri-food sector: A case study from	Food
Moldova	

Figure 4: Long list of cases

¹³ <u>https://nsc.nasa.gov/resources/case-studies</u>

Through a process of discussion and honing in on five exemplary cases, the final five cases were identified: Flash Crash (2010), Moldova Agri-Food (2003), SARS (2002), Car Configuration (2014), and Beached Whales (2009). The cases highlight a variety of system-of-systems (SoS) characteristics relevant for infrastructure:

- a) A SoS weakness which arises from multiple independent and automated system interactions
- **b)** An automated system can be disrupted by unplanned human intervention and can experience rapid failure
- c) Systems that work in one social context may fail in another; the social environment is an important part of determining the success of a system
- d) Geographical spread of failure arises from tightly coupled and connected systems
- e) Information sharing and communication which leads to swift action can reduce escalation and contagion
- f) Sub-optimal, albeit working, systems may may lead to unwanted effects in the wider system
- g) Large numbers of small failures are comparable to single large system failures
- h) The magnitude of the failure will be context dependent

The headings for the case study template were agreed with NIC to include: Title, Summary With Key Points, The Events During The Failure, Background, Emergent Behaviour, Causes Of The Emergent Failure, Insights For Infrastructure, and References. The case studies appear on the following pages.

TITLE

2010 Flash Crash

SUMMARY

Sector: Finance, Stock Market

Emergent failure: Very fast and escalating failure/crash of a system stuck in a vicious positive feedback loop, with no ability to estimate the specific effects of the failure.

Interactions that caused failure: the detailed interactions of the automated transactions and their associated algorithms, caused an unexpected market scale failure. The behaviour of a single trader's activity triggered the cascade of interactions, but the interactions of the algorithms created the emergent behaviour.

Consequences: biggest stock market drop in the shortest period ever (\$1tr in 10 minutes) and only around 70% was recovered.

Insight for infrastructure: latent (dormant) system failures may be introduced through automation and the interaction of many independent systems, and triggered by unplanned for human action; evidence on causation may be impossible to collect without monitoring and recording mechanisms.

THE EVENTS DURING THE FAILURE

On 6th May 2010, the United States trillion-dollar stock market crashed. Dubbed the Flash Crash, it started at 2:32 p.m. EDT and lasted for approximately 36 minutes. The Flash Crash featured the biggest one-day point decline (998.5 points) in the history of the Dow Jones Industrial Average (DJIA). The DJIA index dropped over 1000 points in just 10 minutes, which was the biggest drop of its kind on record at the time. Futures were also affected, with the price of the E-mini S&P 500 futures collapsing by 5% between 2:30pm and 2:45pm, on top of the 2.97% it had already retreated intraday.

This price drop was accompanied by an unusually large volume of transactions. Between 2:30pm and 3:00pm, in excess of 1.1 million contracts were exchanged in E-mini S&P 500 June 2010 futures alone. Across both futures and equity markets, "there was a complete evaporation of liquidity in the marketplace". While US indices dropped by as much as 10%, some individual stocks plunged by much larger amounts. Overall, the Flash Crash is thought to have wiped off \$1 trillion in equity. While the DJIA recovered, it only managed to regain about 70% of the lost value by the end of the day – demonstrating the severe impact these events can have.

BACKGROUND

The primary contributing factors to the Flash Crash were high frequency and speed of trades by computer generated algorithms, along with high degree of coupling between the components of the system. These high frequency trades are powered by a technical development called quantitative trading in which "Quant analysts" use mathematical algorithms in computer programs to trade stocks. Sophisticated investment and hedge funds with thousands of computers are programmed to sell when certain events occurred. Program trading has grown to the point where it's replaced individual investors.

Different things can trigger a failure, **but computer trading programs make any crash worse.** These "bots" use algorithms that recognize aberrations, such as sell orders. They automatically react by selling their holdings to avoid further losses. When a world event, or a computer glitch, tell these programs that something unusual is happening, they automatically sell according to their code. These trading programs make any stock movement more intense, thus adding risk.

EMERGENT BEHAVIOUR

Vicious and very fast positive feedback resulted from automated, independent systems acting as expected and responding to systemic information. The system of systems (the stock market) had no means to detect spoof activity and trusted the information from independent trades.

In today's electronic financial markets, an electronic trader can execute more than 1000 trades in a single second. The actions of a multitude of human traders and automated trading systems at the micro-level cause the valuation of assets at the macro level which in turn influences the actions of the human traders and the algorithms of the automated trading systems, thus forming causal loops and cascade effects that can result in emergent misbehaviour.

Flash crashes are a systemic feature, the consequence of the interaction of system components. They are desirable if they reflect legitimate micro trades, and indeed we see mini crashes (and surges) all the time as stock prices oscillate based on buyer and seller behaviour.

However, the degree to which the stock market, or system of stock markets, can detect, contain and protect itself from rogue trades, which have the potential for unwarranted damage, is ambiguous. Loose coupling or verification of suspect trades may provide ways to avoid future spoofed crashes.

CAUSES OF THE EMERGENT FAILURE

On April 21, 2015, nearly five years after the incident, the U.S. Department of Justice laid "22 criminal counts, including fraud and market manipulation" against Navinder Singh Sarao, a trader. Among the charges included was **the use of spoofing algorithms**. Just prior to the Flash Crash, he placed orders for thousands of E-mini S&P 500 stock index futures contracts which he planned on cancelling later. These orders amounting to about "\$200 million worth of bets that the market would fall" were "replaced or modified 19,000 times" before they were cancelled.

Attempts to manipulate the market through an illegal method known as 'spoofing' (sometimes also known as 'dynamic layering') occurs when someone places large sell orders at a price far from the current market value and then quickly cancels them before the security hits that price. This gives the illusion that there is a large sell-off happening and prompts others to begin selling too in fear the price will decline.

And the rapid decline in price triggered large numbers of automated trading to take place as prices broke through pre-determined thresholds. As the majority of trading is done through automated programs, most high frequency traders end up trading with other high frequency traders, all of which have their own orders and limits in place. This means when those high frequency trading orders were triggered by Sarao's fraudulent sell orders, it went on to trigger orders from other high frequency traders – **causing a downward spiral**.

The person that placed the initial sell order also has orders to buy the same security at a value much less than the market value but cancels the order to sell the security before the security hits the price that would execute it. This means they can then buy the security at the bottom of the flash crash and sell it at a considerably higher price after it recovers – potentially allowing huge profits to be made in seconds.

The CFTC-SEC Staff Report on the market events of May 6 identifies **automated execution of a large sell order in the E-mini contract as precipitating the actual crash.** What then followed was "two liquidity crises – one at the broad index level in the E-mini, the other with respect to individual stocks." This generalized severe mismatch in liquidity was exacerbated by the withdrawal of liquidity by some electronic market makers and by **uncertainty about, or delays in, market data affecting the actions of market participants**.

Traders Magazine journalist, John Bates, argued that blaming a 36-year-old small-time trader who worked from his parents' modest stucco house in suburban area for sparking a trillion-dollar stock market crash is "a little bit like blaming lightning for starting a fire" and that the investigation was lengthened because regulators used "bicycles to try and catch Ferraris." Furthermore, he concluded that by April 2015, traders can still manipulate and impact markets in spite of regulators and banks' new, improved monitoring of automated trade systems.

A system weakness, the capacity for flash crashes, was exposed by human intervention. Sometimes human error plays its role with previous crashes being caused by accidental trading, when a trader or fund manager has unintentionally added an extra zero to their order or made an order at the wrong price, often referred to as a 'fat-finger' mistake.

INSIGHTS FOR INFRASTRUCTURE

Automation plays a significant role in infrastructure and most infrastructure services are provided through high speed computer algorithms, such as telecommunication services and smart transportation. Infrastructure operators cannot assume 'all is known' because **the timing**, **speed and severity of failures arising from multiple independent and automated system interactions**, is unknowable.

Human action, both the potential for mistakes and for malicious action, can trigger positive feedbacks in automated systems. Components, created by different developers may operate in unexpected ways, not necessarily due to poor design or implementation, but because of inappropriate use or context. A component may respond correctly to an interaction, but the consequence of the interaction may trigger a cascade of interactions leading to massive failure.

The Flash Crash raises difficult, policy-relevant questions of causation. As is the case with most market events, the circumstances of the Flash Crash cannot be reconstructed because a **detailed record of the precise temporal order of all relevant events is not available**. This "Flash Crash" occurred in the absence of fundamental news that could explain the observed price pattern and is generally viewed as the result of endogenous factors related to the complexity of modern equity market trading. Digital twins, or other means of collecting evidence trails through monitoring and recording, may provide insight into causation, for example via scenario modelling to examine the limits of system behaviours.

REFERENCES

2010 flash crash; https://en.wikipedia.org/wiki/2010 flash crash

Easley, D., De Prado, M.M.L. and O'Hara, M., 2011. The microstructure of the "flash crash": flow toxicity, liquidity crashes, and the probability of informed trading. The Journal of Portfolio Management, 37(2), pp.118-128.

Flash Crashes Explained; https://www.ig.com/us/trading-strategies/flash-crashes-explained-190503

Flash Crash Explained With Examples; https://www.thebalance.com/what-is-a-flash-crash-3306184

- Kopetz, H., Bondavalli, A., Brancati, F., Frömel, B., Höftberger, O. and Iacob, S., 2016. Emergence in Cyber-Physical Systems-of-Systems (CPSoSs). In Cyber-Physical Systems of Systems (pp. 73-96). Springer, Cham.
- Rainey, L. B., Jamshidi, M. 2018. Engineering Emergence: A Modeling and Simulation Approach; ISBN 9781138046160
- Stock Market Crash, Its Causes, Effects, and How to Protect Yourself; <u>https://www.thebalance.com/stock-</u> market-crash-examples-cause-impact-3305864
- Vinerbi, L., Bondavalli, A. and Lollini, P., 2010, July. Emergence: A new source of failures in complex systems. In 2010 Third International Conference on Dependability (pp. 133-138). IEEE.

TITLE

Moldova Agri-Food

SUMMARY

Sector: Agri-Food (milk supply chain)

Emergent failure: socio-economic regime change can bring down an entire supply chain system of systems when it challenges the viability of one of the systems.

Interactions that caused failure: transition from centrally planned to more market based economies in Central and Eastern Europe, led to land reform, food industry privatization, change in agricultural structures and asymmetric information between farmers and food processors.

Consequences: food processors could no longer operate a viable (quantity and quality) milk processing system leading to whole supply chain failure.

Insight for infrastructure: don't expect legacy systems to work in a new social context; transformational change may require more information to be shared; control and monitoring major upheaval to governance and regulation contexts is needed for systems to operate; expect to provide sufficient information and/or get feedback early on how existing incentives work.

THE EVENTS DURING THE FAILURE

The milk supply chain collapsed after over a decade of increasingly lower productivity and lower quality of milk. A restructuring of ownership of agricultural land, driven by privatisation, had created an increasingly large population of small dairy farmers in rural households. The inability of food processors and rural households to sustain milk production created fragmentation and ultimately failure of the milk supply chain.

The dairy sector was an important source of income for rural households. Milk was procured by collecting stations. Many issues arose. Firstly, such milk tended to have high total bacterial counts caused by contamination (dirty equipment, lack of mastitis control measures) and the absence of adequate cooling and cold storage facilities. Secondly, transaction costs were high as lots of small payments were made to a large number of actors. Thirdly, the output from small-scale producers was highly seasonal, so dairy collection would be highly erratic. Finally, many collecting stations in the Former Soviet Union (FSU) were poorly equipped to monitor the quality of milk purchased allowing small privatised dairies to sell poor quality milk. This led to asymmetric information between buyers and sellers regarding product quality. The costs of monitoring milk quality to avoid market failure from adverse selection were significant.

BACKGROUND

In 1990 most states in Central and Eastern Europe and the FSU embarked on the privatisation of formal agrifood channels. During the 1990s much of Moldova's agricultural land was transferred from state to private ownership. Over 1 million landowners were created by 2003 managing individual plots of 1.4 ha and further subdivided into separate plots based on land type (arable, orchard, and vineyard).

In the dairy sector this resulted in the break-up of most of the large livestock herds managed by the state and collective farms that previously supplied state-owned dairy processors. Preventing small-scale producers being marginalised from dairy supply chains was an important factor in safeguarding and improving rural livelihoods.

These reforms have meant that in Moldova there were two main types of milk producer: (a) relatively large private corporate farms and (b) rural households. Corporate farms sold directly to dairies while rural households, where they market their output, sell at village collecting stations. The corporate farms, despite having their origin in the former collectivised farms, operated on a smaller scale than the latter did in the FSU.

A large drop in milk production in the region was witnessed: from 1.5 (1991) to 0.6 (2003) million tonnes. Over the same time period the output of corporate farms (the collective farms and their successors) fell from 1.23

million tonnes to 34,000 tonnes, whilst household output doubled (.28 to .56 million tonnes). The drop in milk production reflected decreasing productivity: cow numbers reduced by 30% yet production reduced by 60%.

Slightly greater than 40% of rural households were engaged in milk production but the vast majority of these (81.7%) had just one cow. Only 12 households had more than five cows with largest herd size being 8. Households with 5 or more cows accounted for less than 0.5% of the total animal stock.

In many cases it was not possible to use these small plots efficiently. It reduced the extent of large scale mechanisation for food production. After privatisation the pattern of animal ownership was highly fragmented and there were very few organised animal based production units. 97% of milk was produced by smallholders with less than 5 cows, and milked by hand. As a result, a large drop in milk production in the region was witnessed.

EMERGENT BEHAVIOUR

Changes in agrarian structures (to a dual structure with a limited number of relatively large private corporate farms, and a large number of small-scale individual farms) **had a profound unexpected effect on the operational viability of food processors.**

Supply chain fragmentation occurred for food processors due to lack of supply as milk markets became subject to problems of adverse selection between good quality and bad quality milk that was sold by households. The dual agrarian structure could not develop successful relationships to exploit the inherent competitive advantages that many states appear to possess for some agricultural commodities.

An expected outcome of the post-privatization phase was that private landownership and secure property rights would promote an accelerated transfer of land from less efficient to more efficient producers or, more precisely, from passive landowners operating collectivised agricultural enterprises to energetic active operators. And it was **expected to lead to a more efficient and competitive agricultural sector, but it had a completely opposite effect.**

The collapse in output (milk quantity) was triggered by the disbandment of the sovkhozi and kolkhozi which were formal supply channels characterised by a high degree of vertical co-ordination, managed by central planners and linked large state (sovkhoz) and collective (kolkhoz) farms with state-owned food processing plants (kombinats) and retail co-operative and distribution systems.

Emergent behaviour of milk producers was: a lack of engagement with the new privatisation regime which meant they largely reduced their milk supply activity; and a reduction in quality of milk due to a lack of incentives in the new regime to continue to provide high quality product: quality was not checked so the cost to maintain high quality of milk could be avoided.

CAUSES OF THE EMERGENT FAILURE

A number of external parallel independent factors acted as triggers for the changes to agri-food production. The transition from centrally planned to more market based economies in Central and Eastern Europe, the disruption caused by land reform and privatisation programs, the greater international contestability of markets, a fall in real protection, a cost-price squeeze, supply chain disruption.

Supply chain disruption, with a high level of asymmetric information between farmers and processors led to market (food market/dairy) failure.

INSIGHTS FOR INFRASTRUCTURE

The agri-food industry in this case is similar to infrastructure in terms of delivering critical services, and ramifications of failure.

Quality of services and products are very important in both agri-food and infrastructure systems, and people's lives can be severely affected by poor quality products or services. Collaboration and cooperation both up and down stream between various players in the supply chain is critical to address public and private sector integration.

When a social context change occurs, a System of systems (SoS) approach should be taken to appraise the impact of change on different aspects. This would identify contextual considerations, allowing policies and existing mechanisms in related areas to become known.

When regime change is necessary, for example, on train timetables, **sufficient information is needed for everyone in the supply chain**. Early feedback on challenges to the implementation of a new regime would identify issues more quickly and provide evidence for decision making.

Changes to infrastructure benefit from an **understanding of the behaviour of the actors in the system and the incentives they act under**.

REFERENCES

- Cimpoies, L., 2015. The potential of Moldovan agri-food products on EU markets. Rural Areas and Development, 12(740-2019-3057), pp.21-33.
- FAO. Republic of Moldova to boost agrifood promotion, improve data collection; http://www.fao.org/europe/news/detail-news/en/c/1203376/
- Gorton, M., Dumitrashko, M. and White, J., 2006. Overcoming supply chain failure in the agri-food sector: A case study from Moldova. Food Policy, 31(1), pp.90-103.
- Millns, J., 2013. Agriculture and rural cooperation examples from Armenia, Georgia and Moldova. Policy Studies on Rural Transition, (2013-2).
- Newcastle University. Research Challenge: Integrated Infrastructure Systems; https://www.ncl.ac.uk/media/wwwnclacuk/instituteforsustainability/files/IIS.pdf
- Spoor, M. and Izman, F., 2008. Land reform and interlocking agricultural markets in Moldova. In The Political Economy of Rural Livelihoods in Transition Economies (pp. 111-134). Routledge.
- Stratan, A., Moroz, V. and Ignat, A., 2014. Modernization of the agri-food sector of the Republic of Moldova in the context of international trade development. In Agrarian Economy and Rural Development-Realities and Perspectives for Romania. 5th Edition of the International Symposium (pp. 55-60). Bucharest: The Research Institute for Agricultural Economy and Rural Development (ICEADR).

TITLE

Severe acute respiratory syndrome: SARS

SUMMARY

Sector: Health Sector, SARS Epidemic

Emergent failure: scale and pattern of progression unpredictable and so emergent.

Interactions that caused failure: Human contact with virus infected mammals or their faeces, and person to person contamination through sneezing or coughing. Symptoms arise only after incubation, so the infected person may travel and spread the virus into new places unknowingly; context is modern society.

Consequences: SARS pandemics (2002, 2004) with 774 deaths (8,098 reported cases) causing large social and economic effects through restricted movement, whilst the contagion is brought under control. Viruses are continuously mutating; it is normal and expected behaviour.

Insight for infrastructure: infrastructure networks provide channels to distribute people and things. If one or more parts of a tightly coupled network become infected, the infection needs early diagnosis, containment and purging. Contaminated water can be spread geographically over a large area; IT viruses can be spread over telecoms networks. Information sharing and communication are considered key tools for the coordination of prevention and management of unexpected outbreaks.

THE EVENTS DURING THE FAILURE

Between November 2002 and July 2003, an outbreak of SARS in southern China spread from Hong Kong to individuals in 37 countries. Because of the contagious nature of the disease and the delayed public-health response, the epidemic spread rapidly around the globe.

The SARS epidemic was not simply a public health problem. Indeed, it caused the most severe socio-political crisis for the Chinese leadership since the 1989 Tiananmen crackdown. Outbreak of the disease fuelled fears among economists that China's economy was headed for a serious downturn.

A fatal period of hesitation regarding information-sharing and action spawned anxiety, panic, and rumourmongering across the country and undermined the government's efforts to create a milder image of itself in the international arena. As Premier Wen Jiabao pointed out in a cabinet meeting on the epidemic, "the health and security of the people, overall state of reform, development, and stability, and China's national interest and international image are at stake (Zhongguo xinwen wang, 2003a)." The illness developed into an epidemic in Hong Kong, which proved to be a major international transit route for SARS.

Health Effects: The SARS outbreak infected thousands of people, causing widespread serious illness across a large population and many deaths. The psychological impact of SARS was also very serious. Studies show that the SARS outbreak also fostered negative impacts on people's mental health.

Social Impacts: SARS caused a very large impact on society, particularly in China. During the early period of the SARS outbreak, tension surged in the community. Due to a lack of trustworthy official information, rumours about the epidemic situation spread through word of mouth, mobile phone short messages, social media transmission, and other ways. The spread of misunderstandings exacerbated social panic, reflected in an escalation of panic buying of drugs in Guangdong province.

Economic Impacts: It was estimated that Asian states lost USD 12–18 billion as the SARS crisis depressed travel, tourism, and retail sales. SARS had a large impact on tourism and its related industries, and due to the spread of SARS, population movement in China and many counties decreased. Families reduced their demand for food, clothes, travel, and entertainment, and the numbers of guests in hotels declined sharply.

BACKGROUND

SARS-CoV likely originated in wild bats and then spread to palm civets or similar mammals. The virus then mutated and adapted itself in these animals until it eventually infected humans. There was ample opportunity

for the virus to come into contact with humans. Bats serve as a food source in parts of Asia, and sometimes used in folk medicines. The virus may have spread directly or indirectly through animals held in Chinese markets.

Civets are cat-like mammals that live in the tropics of Africa and Asia and produce musk from their scent glands, which is used in perfumes. Civets are also hunted for meat in some parts of the world. These animals could easily transmit the virus to humans.

When someone with SARS coughs or sneezes, infected droplets spray into the air. Breathing in or touching these particles transmits the virus. The SARS virus may live on hands, tissues, and other surfaces for up to several hours in these droplets. The virus may be able to live for months or years when the temperature is below freezing. Airborne transmission is a real possibility in some cases. Live viruses has even been found in the stools of people with SARS, where it has been shown to live for up to 4 days.

Symptoms mostly occur about 2 to 10 days after coming in contact with the virus. People with active symptoms of illness are contagious. But it is not known for how long a person may be contagious before or after symptoms appear.

EMERGENT BEHAVIOUR

Behaviour at all scales was such that it denied what was clearly being observed. Actual behaviour was therefore emergent, irrational, and contrary to reasonable expectations of citizens.

When first SARS patients were admitted to hospitals in Beijing and Inner Mongolia, doctors could not correctly diagnose the illness with only little information about the disease. Even as the traffic through emergency rooms began to escalate, major hospitals in Beijing took **few measures to reduce the chances of cross-infection**.

The unknown disease, originating in Guangdong province, was characterized by high fever, severe respiratory symptoms, and death. SARS had not been reported in humans before 2002. Health officials requested expert support, but their **report was marked "top secret," a security designation which prevented health authorities receiving information about the disease**, and consequently they were denied the knowledge they needed to prepare.

The initial **failure to inform the public** heightened anxieties, fear, and widespread speculation. In fact, there were media blackouts and a slow government response but there was little knowledge about the true cause of the disease and its rate and modes of transmission. The top-secret document did not even mention that the disease showed signs of being considerably contagious. Neither did it call for rigorous preventive measures. Through contagion, many victims were health care workers.

CAUSES OF THE EMERGENT FAILURE

There is no doubt that government inaction paralleled by the absence of an effective response to the initial outbreak resulted in the crisis.

Organizational barriers delayed the process of correctly **identifying the cause of the disease** including obstructions to information flow and the lack of interdepartmental cooperation during the crisis.

Government reaction to the emerging disease, was delayed by the problems of **information flow within the Chinese hierarchy** because of staff availability and 'Chinese new year' holidays. Furthermore, legislation prevented any physician or journalist reporting on the disease due to risk of being persecuted for leaking state secrets.

The continuing news blackout restricted the flow of information to the public which should could have reduced the spread of contagion.

The Law on Prevention and Treatment of Infectious Diseases contains a number of significant loopholes that disincentivise the government from effectively responding: including that atypical pneumonia is not listed as an infectious disease, and no procedures to add new diseases.

Other regulations **hampered cooperation between China and the World Health Organization:** only the Chinese CDC can be the legal holder of virus samples and attempts to get samples by other means were thwarted. Even the Chinese CDC in Beijing had to negotiate with local disease-control centres to obtain the samples.

INSIGHTS FOR INFRASTRUCTURE

In both health sector and infrastructure, outbreaks can have wide social and economic impacts, and political issues are involved in decision making when managing an outbreak.

SARS, in particular, highlighted that connected networks create the possibility of problems spreading geographically. Randomness and limited information means that they can spread in unpredictable ways. Infrastructure systems are **tightly coupled and connected**, the parallels between the SARs system and infrastructure systems means that it is possible that this risk of geographical spread can occur.

The **response to an outbreak should be swift and appropriately transparent to avoid escalation and contagion**. An effective and efficient emergency response can reduce avoidable spreads and reduce the economic, social, and security impacts of all outbreaks.

The effectiveness of emergency preparedness and responses is highly dependent on the quality and amount of information that is available at any given time, and quality communication and coordination among partners is crucial. **Information sharing and communication** are considered key tools for the coordination of prevention and management of unexpected outbreaks.

REFERENCES

- Cooper, K. China coronavirus: The lessons learned from the Sars outbreak <u>https://www.bbc.co.uk/news/world-asia-china-51221394</u>
- Gompf, S.G. Severe acute respiratory syndrome (SARS) <u>https://medlineplus.gov/ency/article/007192.htm</u>
- Huang, Y., 2004. The SARS epidemic and its aftermath in China: a political perspective. Learning from SARS: Preparing for the next disease outbreak, pp.116-36.
- Institute for Sustainability, Research Challenge: Integrated Infrastructure Systems https://www.ncl.ac.uk/media/wwwnclacuk/instituteforsustainability/files/IIS.pdf
- Medicinenet, Severe Acute Respiratory Syndrome (SARS) https://www.medicinenet.com/severe acute respiratory syndrome sars/article.htm
- Qiu, W., Chu, C., Mao, A. and Wu, J., 2018. The Impacts on Health, Society, and Economy of SARS and H7N9 Outbreaks in China: A Case Comparison Study. Journal of environmental and public health, 2018.
- Response to SARS-Like Virus an Improvement Over 2003 Outbreak
 https://abcnews.go.com/blogs/health/2012/09/25/response-to-sars-like-virus-an-improvement-over-2003-outbreak
- Reuters, The shadow of SARS: China learned the hard way how to handle an epidemic; <u>https://www.reuters.com/article/us-china-health-sars/the-shadow-of-sars-china-learned-the-hard-way-how-to-handle-an-epidemic-idUSKBN1ZL12B</u>

ScienceDirect data base for Severe Acute Respiratory Syndrome (SARS); https://www.sciencedirect.com/topics/medicine-and-dentistry/severe-acute-respiratory-syndrome

TITLE

Car Configuration

SUMMARY

Sector: Industry, Manufacturing, Design

Emergent failure: Unexpected and unexplored interactions: In this case, components functional dependencies impact on the system was not diagnosed for a long time. Functional dependencies might be clear or easy to be identified but dependencies impact on the system is not obvious and needs more analysis and consideration.

Interactions that caused failure: People using poorly configured system (Sensing Diagnostic Module (SDM) and Airbag System depended on the Ignition Switch positions and components), ignition switch fault created an airbag deployment problem; aggregated impact of faulty switch; focus on technical design rather than system use.

Consequences: isolated but avoidable injuries and death (include near misses, and the stalled cars also having potential for further accidents).

Insight for infrastructure: A System of Systems (SoS) approach is essential: to understand vulnerabilities created through coupling and interactions; to consider the effects of sub-optimal components; to recognise the true scale of system failure; and to understand failure in terms of the dependency on adverse contexts.

THE EVENTS DURING THE FAILURE

In March 2010, a 29-year-old shift nurse left her job in Atlanta, Georgia and headed to her boyfriend's house. She was driving her 2005 Chevy Cobalt on a two-lane road as she approached a half-mile downhill straight. As the road leveled after the straight, she approached an area where some rainwater had accumulated. Shortly after encountering this section of roadway, she apparently lost control of her Cobalt as it hydroplaned across the centre line. The rear passenger side of her car was struck by an oncoming Ford Focus, causing the Cobalt to spin off the road and fall 15 feet before landing in a large creek around 7:30 p.m. The impact of the crash broke the nurse's neck, an injury that led to her death shortly after she arrived at the hospital.

While this tragedy might sound like a typical crash scenario, it was particularly puzzling to the victim's parents. Her parents pushed for a detailed investigation but sadly, this unsettling question remained unanswered until several years later—after many more drivers suffered similar fates.

BACKGROUND

In March 2014, law firm Jenner & Block LLP was commissioned by GM to investigate over a decade of operational issues with an ignition switch used in several GM vehicles, including the Chevy Cobalt. According to the firm's Valukas report, drivers had problems with the ignition switch slipping out of position, stalling engines and cutting power to vehicle systems. In many cases, the stalling would disable the vehicle's airbags just as the car was about to crash. In April 2017, Forbes reported that the ignition switch had been associated with 124 deaths and 275 injuries. Since the initial product recall in February 2014, GM has recalled 30 million vehicles and paid over \$2 billion in fines, penalties and settlements.

Aside from the ignition switch's technical problems, the Valukas report identified several social (organizational) issues involving the relationship between GM's management and its engineering teams. These fundamental problems are not unique to GM. Any large, complex organization is vulnerable to poor communication and oversight.

During 2003–2004 customers had complained to GM about start and stalling issues. According to the Valukas report, the large volume of starter complaints caused GM to focus on fixing the ignition switch's starting issues instead of addressing the stalling issues. The report revealed that GM engineers considered the stalling problem to be a version of the starting problem.

However, the stalling issue was a completely different problem with the ignition switch. GM classified the moving stall as a non-safety issue. During March 2005 various GM committees considered possible fixes for the ignition switch problem. However, they rejected them as "too costly," since the ignition switch stalling issue was

not deemed a safety concern. GM closed the initial safety investigation regarding the stalling issue without taking action. None of the stalling complaints received adequate attention and they both stayed unsolved as they have been considered as a "convenience" issue rather than a "safety" issue. The impact of stalling failures on airbag functioning was not diagnosed.

EMERGENT BEHAVIOUR

Functional interdependency of components (airbag and ignition switch) in a vehicle resulted in the safety system not being deployed and severe accidents to arise.

Suboptimal performance of the ignition switch is exposed during driving by the proximity of the driver's knee which causes the engine to stall and disables the airbag. Poor technical design is exposed during operational use.

The failure is emergent: it is a result of unexpected and unexplored interactions in the technical configuration of an engineered system and is triggered by unintended user behaviour. The consequences are non-linear and severe (death and serious injury) but not quantifiable as the context in which the car stalls (e.g. at speed, or where the car cannot safely stop) are very varied.

It took a long time to diagnose during which many were killed and seriously injured. This is because of a second issue with the ignition switch which appeared more critical.

The ignition switch did not meet the mechanical specifications for torque and required less force to turn the key than its designers originally ordered. If the driver's knee hit the key fob, the car would often turn off, causing stalling at highway speeds and disabling the airbags. See Figure 1.

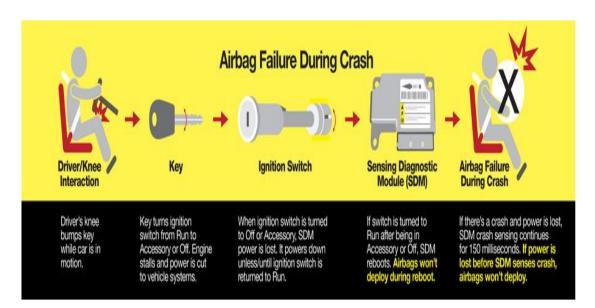


Figure 1: Chain of events leading to airbag failure during a car crash (Source: NASA Safety Centre)

Additional factors in the failure:

Organisation failure: people behaved in unexpected ways. The acceptance of "quality escapes" (nonconformance to specifications) and a lack of use of Systems Engineering and Integration (SE&I) principles prevented effective hazard communication. The organizational structure had no formal integrative roles and responsibilities that could have identified the hazards.

The technical system was sub-optimal; the management system was sub-optimal as well. Interaction of suboptimal design systems, as well as interaction of sub-optimal design system and management systems lead to the failures of a system of systems (SoS).

The bottom line is that a significant communication breakdown allowed the core technical issue involving the ignition switch and airbags to be concealed from anyone with technical oversight until 2013. Poor communication was responsible for partially blocking the flow of information throughout GM, affecting management's interpretation of the information.

CAUSES OF THE EMERGENT FAILURE

In addition to technical problems, the systemic failure was allowed to persist because of lack of understanding of the problem, inadequate communication, lack of urgency, lack of oversight, and company culture.

Technical Problem

The ignition system was acting only sub-optimally, but not completely failing. However, this did lead to a whole system failure. In fact, the ignition switch did not meet the mechanical specifications for torque and required less force to turn the key than its designers originally ordered. If the driver's knee hit the key fob, the car would often turn off, causing stalling at highway speeds and disabling the airbags.

Lack of Understanding of the Problem

For many years, GM personnel did not fully understand the primary safety issue related to the ignition switch. GM engineers on committees did not associate turning the key to Accessory or Off with disabling the airbags.

Further, the individuals involved in the initial investigation did not know the appropriate questions to ask to understand the technical problem. The information that was available regarding complaints, negative reviews and fatalities was not readily shared with all levels of the company.

Inadequate Communication

GM had no organizational arrangement in place to question or validate the designer's decision. Plus, no organizational check was in place to verify his actions or inactions.

Interaction of System of Systems (SoS): Interaction of different technical systems as well as interaction of a technical problem and organisational culture. Aside from the ignition switch's technical problems, the Valukas report identified several organizational issues involving the relationship between GM's management and its engineering teams including structural secrecy, a lack of urgency, inadequate oversight and a company culture characterized by low accountability, contributed to the ignition switch problems.

Lack of Urgency

The Valukas report revealed a lack of urgency at many stages of the evolution and investigation of the ignition switch problem. Because of this, GM personnel classified the problem as a customer convenience issue rather than a safety issue.

INSIGHTS FOR INFRASTRUCTURE

Any large, complex organization (like those managing infrastructure) is **vulnerable to coupled functionality**, **interaction of different technical systems**, and lapses in good communication and governance. Therefore, a SoS approach and geographically co-located implications assessment are essential for understanding emergent failure.

System weaknesses, created by complex vulnerabilities, may be life threatening especially when component systems (such as the ignition switch) are acting sub-optimally. **Sub-optimal systems** should not be allowed to operate in infrastructure without consideration of SoS effects.

Large numbers of small system failures (e.g. lone car fatalities) should be treated as comparable to single large system failures (e.g. aeroplane crashes), and are equally important. Rising numbers of individual failures should be reported and actions taken to escalate. Reporting should be transparent and products withdrawn until system failures are diagnosed.

The **magnitude of each failure is dependent on the 'wrong' context** (e.g. high speed, no safe place to shelter). The SoS consequences of a component failure must be assessed for adverse contexts.

REFERENCES

Basu, T. Timeline: A History of GM's Ignition Switch Defect. NPR. March 31, 2014.

Blau, M. No Accident: Inside GM's Deadly Ignition Switch Scandal. Atlanta. Jan. 2016.

Boudette, N. Supreme Court Rebuffs GM's Bid to Limit Ignition-Switch Lawsuits. New York Times. April 24, 2017.

Klayman, B. GM Restructures Engineering to Improve Vehicle Quality, Safety. Fox Business. April 22, 2014.

- Lilley, S. Hidden Hazards; Valukas Report Reveals, Social and Technical Issues Behind Faulty GM Ignition Switch: https://nsc.nasa.gov/resources/case-studies/detail/hidden-hazards
- Muller, J. Supreme Court Allows Ignition-Switch Lawsuits To Proceed Against GM In Pre-Bankruptcy Crashes. Forbes. April 24, 2017.
- Seeger Weiss LLP, GM Ignition Switches. <u>https://www.consumersafetyguide.com/automotive/gm-ignition-</u> <u>switches/</u> Accessed 06 Feb 2020
- Valukas, A. Report to Board of Directors of General Motors Company Regarding Ignition Switch Recalls. Jenner & Block. May 29, 2014. (redacted).

Vlasic, B. GM Settles Switch Suit, Avoiding Depositions. NY Times. March 13, 2015.

TITLE

Beached Whales

SUMMARY

Sector: Natural System

Emergent failure: group demise in unknown contexts.

Interactions that caused failure: regular behaviour, but in the wrong place.

Consequences: whole groups, shoals, flights of mammals and birds become stranded and die.

Insight for infrastructure: mass demise is possible in unknown contexts; contexts can change and may restrict the availability of resources to users that have not adapted and persist in traditional behaviours.

THE EVENTS DURING THE FAILURE

In December 2009, a pod of seven sperm whales were stranded along the coastline of the Gargano Promontory (Italy), in the Southern Adriatic Sea. Three animals were still alive but died within 48 hours after stranding.

When such mammals enter shallow waters most of them have a tendency to become disorientated. Whales are highly social and usually travel in tight groups or pods, which is why so many of them become stranded at once.

Sperm whales are considered to be vagrant or absent in the waters surrounding the stranding place, and particularly in the Central and Northern areas of the Adriatic Sea, where the habitat is not appropriate to this deep-diving species. Sperm whales in the Mediterranean Sea occur preferentially in deep continental slope waters where mesopelagic cephalopods are most abundant. In fact, they have been frequently encountered in the Ionian Sea, especially along the Hellenic Trench, as in the Ligurian Sea, where they mostly appear along the continental slope.

BACKGROUND

A multi-factorial cause underlying this sperm whales' mass stranding was proposed based upon the results of post-mortem investigations as well as detailed analyses of the geographical and historical background. The seven sperm whales **took the same "wrong way"** into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales. Seismic surveys should be also regarded as potential co-factors, even if no evidence of direct impact has been detected.

In this particular case, causes of death did not include biological agents, or the "gas and fat embolic syndrome", associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed prolonged starvation which likely caused the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions.

Despite all these observations, it was not possible to confirm that these stranded sperm whales formed a single stable group with a social hierarchy, although we would rather suggest that more than one loose male aggregation and/or several solitary individuals could have coalesced in a limited sea area, most likely in the lonian Sea, between summer and fall. From there they subsequently entered the Adriatic Sea for unknown reasons. No relevant unusual natural events (e.g. seaquake or weather storms) or noxious anthropogenic activities (military drills using sonar) that could have caused an avoidance behaviour occurred temporally and spatially associated with the event.

The only relevant anomaly reported by the marine data archives was the increased sea superficial temperature in November and December along the Hellenic Trench and Eastern part of the Adriatic Sea, possibly constituting a thermal front in which upwelling and/or downwelling could have been favourable to the development of cephalopod populations. Several studies have documented the influence of frontal zones on sperm whale distribution worldwide. This species and other teutophageous cetaceans (e.g. dwarf and pigmy pilot whales, Risso's dolphin, and Ziphiidae) appear in places forming thermal fronts because of the aggregation of main preys near these zones. Such places include abyssal depths, at the steepest sea superficial temperature gradients, at the periphery of a cyclone zone and in convergence zones.

The "Hellenic Trench", the likely winter aggregation area, is 600 km (Lefkada Island) to 1100 km (Crete) away from the stranding site (distance calculated on a straight way with no deviation due to marine currents). Considering the maximum horizontal speed reported for male sperm whales (90 km/day) it took no less than 7 days for these whales to reach the Gargano Promontory.

The low quantities of highly digested squid beaks found within the gastric cavities are in open contrast with the feeding habits and daily intake typical of the species, thus suggesting a starvation period of at least 3 to 7 days, an amount of time compatible with the traveling time. Furthermore, the mild portal hepatic steatosis observed at microscopic examination, along with the real body weights of the seven animals that were lower than the expected values, further support this hypothesis.

Foreign bodies (including fishing gears and hooks, ropes, and plastic objects) were found in all the examined stomachs, with an incidence higher than those reported for other mass stranding. Nevertheless, all the objects recovered from the whale stomachs cannot be proposed as a likely cause of stranding, given the absence of any evident obstructions.

EMERGENT BEHAVIOUR

A group of sperm whales, acting normally in their search for food or possibly to avoid one or more human or natural disturbances, entered an unsafe marine area. The cetaceans swam northward toward a dead end and soon found themselves starving. These animals took the same wrong way that already lead five other sperm whale pods to strand along the Adriatic Sea coastline in the past.

Prolonged starvation, environmental conditions improper for the species, along with breakdown of adipose body reserves and the consequent release into the bloodstream of chemical substances likely displaying neurotoxic and immunotoxic effects, altered the orientation and space perception of the whales, worsening their welfare and health. Prevailing meteorological conditions finally led the cetaceans to strand on the Gargano Promontory.

CAUSES OF THE EMERGENT FAILURE

Mass stranding of sperm whales remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes.

Other hypotheses have been considered and analysed, including natural factors, such as biologic disease agents; impairment of the navigation and echo-location systems due to bathymetric features, acoustic dead zones or anomalies of the Earth's geomagnetic field due to solar activity; the effects of lunar cycles; meteorological and oceanographic factors like local disturbances or basin-related temperature variations influencing prey distribution and large-scale climatic events.

Furthermore, anthropogenic factors like noise pollution or environmental contaminants have been also proposed as possible causes of stranding. A strong social component, which may prompt healthy animals to follow sick or disordered members of a pod, has been also considered as an additional relevant feature to be pondered in investigating the causes of mass stranding. Mass mortalities involving sperm whales are usually clustered in determined geographical areas, such as the North Sea and in the Southern Australian and New Zealand waters.

The morphology of the stranding location and the meteorological conditions registered during the days before the event (winds, currents and waves directed to the Gargano coasts) could explain why the seven sperm whales arrived on their stranding and beaching destination. Preliminary observations, in particular the distribution and the position related to the coastline, suggested that all animals were debilitated, possibly by a common pathological condition. The presence of copepods of the genus Pennella, that affected the skin of the seven whales, has been suggested as a reliable indicator of poor health in free-ranging cetacean populations.

INSIGHTS FOR INFRASTRUCTURE

Infrastructure systems are similar to natural systems in terms of the **potential scale of ramification of failure in diverse co-located groups which may be starved of resources**. Social and economic groups exposed to shortages in infrastructure services are especially vulnerable.

An example of new demand in transport systems is the introduction of connected autonomous vehicles (CAV). CAV promises to reduce road accidents, traffic congestion, traffic pollution and energy use, as well as to increase productivity, comfort and accessibility. However, the diversity of road infrastructure and connectivities to other modes of transport, were not designed for CAV and as the diffusion of CAV increases, it will create unknown and uncertain demand on aging infrastructure. Even the assumptions in CAV and the embedded machine learning which decides how the autonomous car will behave will be based on the driving contexts that it was trained on. The implications are that CAV **may expect the context to provide things not available in it, furthermore, the context may starve other groups, such as conventional users.**

The Beached Whales case demonstrates the risks of moving into **resource-poor contexts**, but similar risks arise when users do not adapt to changing context. Indeed, infrastructure change is a norm responding to climate change, globalisation, technology churn, continuous productivity improvement, etc.

An example of a changing context is the need to improve the UK's digital infrastructure as an essential prerequisite for the uptake of connected vehicles. Four key challenges related to connectivity will shape the speed and breadth of connected vehicles deployment in the UK: coverage, reliability, bandwidth and capacity. Ubiquitous coverage is the automotive industry's top priority, and the NIC recommend connectivity by 2025 of all motorways which carry 21% of all vehicle traffic, although being only 1% of the total UK road network length. Safe transitions and seamless communication between different environments is required for CAV. Vehicle manufacturers need to invest in technology and design that will exploit digital infrastructure way ahead of anticipated 5G roll-out.

REFERENCES

Alonso Raposo, M., Ciuffo, B., Makridis, M. and Thiel, C., 2017. The r-evolution of driving: from connected vehicles to coordinated automated road transport (C-ART). Part I: Framework for a safe & efficient Coordinated Automated Road Transport (C-ART) system, EUR, 28575.

Cetacean stranding; https://en.wikipedia.org/wiki/Cetacean stranding

Iceland pilot whales: Dozens of dead mammals found beached; <u>https://www.bbc.co.uk/news/world-europe-49048652</u>

Markolf, S.A., Chester, M.V., Eisenberg, D.A., Iwaniec, D.M., Davidson, C.I., Zimmerman, R., Miller, T.R., Ruddell, B.L. and Chang, H., 2018. Interdependent Infrastructure as Linked Social, Ecological, and Technological Systems (SETSs) to Address Lock-in and Enhance Resilience. Earth's Future, 6(12), pp.1638-1659.

Mazzariol, S., Di Guardo, G., Petrella, A., Marsili, L., Fossi, C.M., Leonzio, C., Zizzo, N., Vizzini, S., Gaspari, S., Pavan, G. and Podesta, M., 2011. Sometimes sperm whales (Physeter macrocephalus) cannot find their way back to the high seas: a multidisciplinary study on a mass stranding. PLoS One, 6(5).

Millbrook and RACE Develop Practical CAV Testing Infrastructure <u>https://www.millbrook.co.uk/press-office/news/millbrook-and-race-develop-practical-cav-testing-infrastructure/</u>

New Zealand whales: Why are so many getting stranded? <u>https://www.bbc.co.uk/news/world-asia-46400957</u>

National Infrastructure Commission (2016) Connected Future <u>https://www.nic.org.uk/our-work/connected-future/</u>

Once Again, a Massive Group of Whales Strands Itself; https://www.theatlantic.com/science/archive/2018/03/whales-mass-stranding-australia/556400/

Photos: Mass Pilot Whale Death in Snæfellsnes, West Iceland; <u>https://grapevine.is/news/2019/07/22/mass-whale-death-snaefellsnes-iceland/</u>

Pilot whales turned up again on a Georgia beach. 16 of them died; https://edition.cnn.com/2019/09/28/us/beached-whales-georgia-trnd/index.html

Scientists demand military sonar ban to end mass whale strandings;

https://www.independent.co.uk/environment/whales-sonar-ban-military-navy-stranding-beached-canaryislands-a8752611.html

SMMT, Connected and Autonomous Vehicles <u>https://www.smmt.co.uk/wp-content/uploads/sites/2/SMMT-CAV-position-paper-final.pdf</u>

What Is a Beached Whale? https://www.wonderopolis.org/wonder/what-is-a-beached-whale

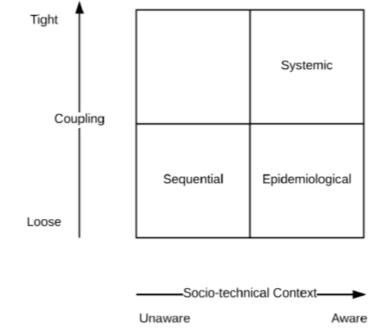
Why Do Whales Beach Themselves? <u>https://www.livescience.com/32818-why-do-whales-beach-themselves-_____html</u>

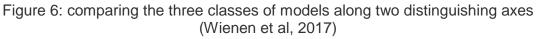
6. Approaches

In order to reveal approaches for the analysis of failures, disruptions and accidents from areas comparable to infrastructure, both academic and grey literatures were examined. The search for academic articles used the Scopus database. The search string shown in Figure 5 yielded 58 results.

TITLE-ABS-KEY ((approach* OR way*) AND (understand* OR recognis* OR "figure out" OR interpret* OR know* OR "find out") AND (emergence OR emergent OR unexpect* OR unpredict* OR unforseen*) AND (failure OR compromised) AND (finance OR banking OR airspace OR aerospace OR pharmacy OR epidemic OR famine OR agriculture OR "food market" OR stockpiling OR "perishable" OR "row material" OR "catalytic converts") AND NOT (infrastructure OR energy OR electricity OR transport OR road OR rail)) AND (LIMIT-TO (LANGUAGE, "English"))

Figure 5: Search string for Scopus to locate cases of emergent failure


A general search in Google for "(approach) AND (understand*) AND ("emergent failure") generated 5,470 results.


One of the leading results was a systematic literature review conducted by Wienen et al in 2017 which identified 63 approaches that fall into three different classes of approaches, analysis methods and models: Sequential, Epidemiological, and the Systemic¹⁴. **Sequential** accident models describe the accident as the end point of a string of causes. This category is called "sequential" by Hollnagel because originally, many methods restricted themselves to a sequential string of causes. However, in general, there may be several causes contributing to an incident or accident. **Epidemiological** models describe the accident as the product of the interaction among a set of entities and actors, some of which may be visible, and others invisible, similar to models of how diseases develop. A key factor in epidemiological types of analysis is the description of latent factors that contribute to the development of an unsafe act into an accident. **Systemic** accident models describe the accident as the result of the interaction within a system and between a system and its context. Feedback loops may play an important role in these models.

¹⁴ Wienen, H.C.A., Bukhsh, F.A. Vriezekolk, E. Wieringa, R.J. (2017), Accident Analysis Methods and Models — a Systematic Literature Review,

https://functionalresonance.com/onewebmedia/Accident_Analysis_Methods_and_Models_a_Systematic_Lite rature_Review.pdf

These classes of model can be distinguished along two dimensions: coupling and sociotechnical context awareness. Sequential and Epidemiological approaches are loosely coupled, only Systemic approaches are tightly coupled. Only Sequential approaches are unaware of socio-technical context. See Figure 6.

Based on the findings from grey and academic literatures, approaches, which sufficiently met criteria in Figure 7 representing the ability of the approach to produce strategic outputs, were included in a long list of 31 approaches.

1. Conceptual Mapping, and enhanced systemic understanding, of the individual components of the System of Interest (SoI)	6. Assessment of the potential impacts on Sol performance from distribution to parts fo the Sol
2. Identification and classification of Sol internal dynamics: dependencies, interdependencies and feedback loops	7. Assessment and diagnosis of the relative criticality of potential root cause(s) of emergent failures
3. Identification and classification of dynamics between SoI and external environment	8. Assessment of the expected type, scale, intensity, duration of disruptive impacts on Sol performance associated with changes to the Sol or the external environment
4. Identify Latent Vulnerabilities where disruption to specific components or interdependencies would initiate disproportionately large impact on Sol performance	9. Assessment of the overall impacts on the systemic resilience of the Sol associated with changes to the Sol or the external environment
5. Assessment of the relative criticality of individual component performance and specific interdependencies for normal operations of the Sol	10. Assessment of incertitude within the SoI or its external environment;11. Retrospective analysis and learning from past emergent failures

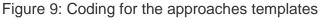
These 31 approaches were further reduced to 11 approaches which had the highest scores for strategic relevance to NIC work, based on whether the approach has been applied in at least one system with high or very high comparability to infrastructure, and has been used in cross sector applications. The 11 approaches which are included are in bold in Figure 8.

Ref	Approaches (alphabetically)	Example references (provided only for approaches <i>not</i> detailed later in this report)
1	AcciMap	
2	BREAM (Bridge Reliability and Error Analysis Method - Maritime)	Abujaafar (2012) Quantitative Human Reliability Assessment in Marine Engineering Operations <u>http://researchonline.ljmu.ac.uk/id/eprint/6115/1/564142.</u> pdf
3	Defect Elimination Techniques	Sondalini (2020) World Class Physical Asset Reliability Needs Failure Prevention, Problem Prevention and Defect Elimination Strategies <u>https://www.lifetime-</u> <u>reliability.com/cms/free-articles/work-quality-</u> <u>assurance/defect-elimination/</u>
4	Cognitive Systems Engineering	Hollnagel (2005) Joint Cognitive Systems: Foundations of Cognitive Systems Engineering ISBN 0-8493-2821-7
5	Corporate Governance and Risk Management	
6	Corporate Risk Management Framework	COSO (2017) Enterprise Risk Management <u>https://www.coso.org/Documents/2017-COSO-ERM-</u> <u>Integrating-with-Strategy-and-Performance-Executive-</u> <u>Summary.pdf</u> Grant Thornton (2017) Corporate risk frameworks (<u>https://www.grantthornton.co.uk/globalassets/1</u> <u>member-firms/united-kingdom/pdf/documents/corporate-</u> <u>risk-frameworks.pdf</u>
7	CREAM (Cognitive Reliability and Error Analysis Method)	
8	Crisis Prone Organisation Theory	Pearson & Mitroff (1993) From crisis prone to crisis prepared: a framework for crisis management <u>https://doi.org/10.5465/ame.1993.9409142058</u>
9	DREAM (Driver Reliability and Error Analysis Method)	Warner et al (2008) Manual for DREAM <u>http://publications.lib.chalmers.se/records/fulltext/80432.</u> <u>pdf</u>
10	EFM (Emergent Failure Modes)	
11	Error Analysis	Taylor (2016) Human Error in Process Plant Design and Operations, ISBN 978-1498738866
12	Extended FFIP	Seppo et al (2013) Common cause failure analysis of cyber- physical systems situated in constructed environments <u>https://link.springer.com/article/10.1007/s00163-013-</u> 0156-2
13	FFIP (Functional Failure Identification and Propagation)	

	FMEA (Failure Mode and	
14	Effects Analysis)	Carlese (2012) Esilves Made Effects and Oriticality Analysis
	FMECA - (Failure Mode, Effects, and Criticality	Carlson (2012) Failure Mode Effects and Criticality Analysis (FMECA)
15	Analysis)	https://doi.org/10.1002/9781118312575.ch12
13	FPTA (Failure propagation	<u>https://doi.org/10.1002/3781118512575.ch12</u>
	and Transformation	
16	Analysis)	
	• •	Wallace (2005) Modular architectural representation and
	FPTC (Fault Propagation and	analysis of fault propagation and transformation.
17	Transformation Calculus)	https://doi.org/10.1016/j.entcs.2005.02.051
		Fenelon and McDermid (1993) An integrated tool set for
	FPTN (Failure Propagation Transformation Notation)	software safety analysis
18		https://doi.org/10.1016/0164-1212(93)90029-W
	FRAM (Functional Resonance	
19	Accident Model)	
20	FTA (Fault Tree Analysis)	
	High Reliability Organisation	Roberts (1989). "New challenges in organizational research:
	Theory	High reliability organizations"
21		https://doi.org/10.1177/108602668900300202
		Calixto (2015) Human Reliability Analysis <i>in</i> Gas and Oil
	Human Reliability Analysis (HRA)	Reliability Engineering
22		https://www.sciencedirect.com/science/article/pii/B97801 28054277000051
		Goodrum et al (2018) Understanding cascading failures
		through a vulnerability analysis of interdependent ship-
	Network Analysis	centric distributed systems using networks
23		https://doi.org/10.1016/j.oceaneng.2017.12.039
		Perrow (1984) Normal Accidents: Living with High-Risk
24	Normal Accident Theory	Technologies ISBN 978-0691004129
	Drobobilistic Cofety	Verma et al (2010) Probabilistic Safety Assessment
	Probabilistic Safety	https://link.springer.com/chapter/10.1007/978-1-84996-
25	Assessment	<u>232-2_9</u>
	Quality Engineering	Phadke (1995) Quality Engineering Using Robust Design
26		ISBN 978-0-13-745167-8
		Kiran (2017) Reliability Engineering <i>in</i> Total Quality
	Reliability Engineering	Management <u>https://doi.org/10.1016/B978-0-12-811035-</u>
27		<u>5.00027-1</u>
		Sgobba et al (2018) System safety and accident prevention
20	Safety Engineering	in Space Safety and Human Performance
28	STAND System Theoretic	https://doi.org/10.1016/B978-0-08-101869-9.00008-X
	STAMP System Theoretic Accident Model and	
29	Processes	
30	Swiss Cheese Model	
- 50		Chang and Mori (2014) A Study of System Reliability
	System Reliability Study	Analysis Using Linear Programming
31	System Reliability Study	https://doi.org/10.3130/jaabe.13.179
71		<u></u>

Figure 8: Long list of approaches red indicates those ones which were removed in the final short-listing

The headings for the approach template were agreed with NIC. The codings for the various components of the approaches template are described in Figure 9 below.


A. Approach Name	The usual form of the name of the approach;		
and Type	Type is one of Sequential Methods Approach; Ep Approach or System Model Approach based on described above.	_	
B. Approach Rankings Summary:	Very High (6/6): The Approach has been applied to a Very High (6/6) comparability to economic infrast	-	
Applicability to UK System of Infrastructure:	High (5/6): The Approach has been applied to at least one system with High (5/6) comparability to economic infrastructure		
	Medium-High (4/6): The Approach has been applied with Medium-High (4/6) comparability to economic	-	
B. Approach Rankings Summary: Cross sector	High Cross-Sectoral Applicability: examples of cross provided in the approach literature AND the Appro High Applicability to Infrastructure (see row above	bach scored High or Very	
applicability	Medium Cross-Sectoral Applicability: examples of cross sector applications are provided in the approach literature AND the Approach scored Low or Medium Applicability to Infrastructure (see row above).		
B. Approach Rankings Summary: Strategic RelevanceHigh Strategic Relevance: the Approach can support one or n Strategically Relevant Outputs in Figure 7 AND the approach score Very High for Applicability to UK System of Infrastructure (two n AND the approach scored High Cross-Sectoral Applicability (row		approach scored High or ucture (two rows above)	
	Medium Strategic Relevance: the Approach can sup Strategically Relevant Outputs in Figure 7 ANE Medium for Applicability to UK System of Infrastruc above) AND the approach scored Medium Cross-Se above)	D the approach scored cture (Table 2) (two rows	
C. Approach	The systems in which the approach has been applied are listed.		
Applications and Comparability Scores by System	Each type of system has been assessed for Organisational, Operational Timeframe, and Socio-Te infrastructure. The Comparability Score reflects the s economic infrastructures	echnical comparability to	
	Businesses and corporations	Medium (3/6)	
	Economic Regulation	Medium-High (4/6)	
	Facilities: Hospitals	High (5/6)	
	Facilities: Industrial Plants	Medium (3/6)	
	Facilities: Nuclear Reactors	Medium (3/6)	
	Facilities: Offshore Platforms	Medium (3/6)	
	Facilities: The International Space Station	High (5/6)	
	Industrial: Chemical and pharmaceutical	Medium (3/6)	
	Industrial: Petrochemical and other high hazard industries	Medium (3/6)	

	Large Organisations	Medium (3/6)
	Systems: Area navigation (RNAV) systems	Medium-High (4/6)
	Systems: Civil Aerospace systems	Very High (6/6)
	Systems: Complex Electromechanical Systems,	Medium (3/6)
	Systems: Healthcare Systems	High (5/6)
	Systems: Military/Defence Systems	Medium-High (4/6)
	Systems: Power systems	Very High (6/6)
	Systems: Social Systems	Very High (6/6)
	Systems: Software Systems	Medium-High (4/6)
	Systems: Transport Systems (Road/ Rail/ Air/	_
	River/ Ocean)	Very High (6/6)
	The Economic system	High (5/6)
	The Public Sector	Very High (6/6)
	Vehicles: Space Shuttles	Medium (3/6)
	Activities: Led Outdoor Activities	Medium (3/6)
D. Approach Purpose	These are a list of purposes for which the approach are taken from the literature describing the approace	
E. Approach Key Concepts	These are statements of the key concepts, principl need to be understood prior to application of the ap	oproach.
F. Data Requirements and Availability	 Each approach has been assessed on a variety of dimensions relating to the type and availability of data needed to apply the approach. Type of data: Qualitative, Quantitative, Quantitative with a Qualitative foundation (Semi-Quantitative) or both Qualitative and Quantitative Whether data requirements are: formally specified as part of the approach or generic data requirements are not important Whether primary (i.e. new, relevant) data collection is: essential, ideal (but not essential), or not needed Whether secondary data¹⁵ is: available and described as part of the approach, additional secondary data collection is needed or it is not applicable Whether specialist knowledge of the system of interest is: essential, ideal (but not essential), or not needed NB: The information presented in this section is partial and based on research team judgement. In the first instance at least, data availability or the lack of 	
G. Skills and Resource Requirements	Each approach has been assessed on a variety of dimensions relating to the skills and resource requirements needed to apply the approach.	

¹⁵ Primary data is data collected first hand (could be by interview, survey, etc.) to try and resolve a particular research question. It will be up-to-date and specifically relevant to the research question being addressed. Secondary data may be out of date, and/or may have been collected for a slightly different purpose, but it may be good enough, and avoids primary data collection. Secondary data is often quantitative, e.g. location and size of installed solar panels. For literature, see for example Hox and Boeije (2005), Data Collection, Primary vs. Secondary, Encyclopaedia of Social Measurement, 1

https://dspace.library.uu.nl/bitstream/handle/1874/23634/hox 05 data+collection,primary+versus+secondar y.pdf?sequence=1

	 Specialist Software: Specialist Software is not needed, Specialist Software is essential or Specialist Software is Available Approach specific training: Approach specific training is recommended, the approach can be applied without specific training Sector/Discipline/Industry support: Sector/Discipline/Industry expertise to support data acquisition and validation is recommended, Multiple phases of cross-sectoral consultation with experts from multiple sectors are recommended, Cross sectoral collaboration between experts from multiple sectors is recommended Other resource requirements: Computing power
--	--

A visualisation of the key characteristics of the approaches using a red, amber, green (RAG) method is provided in Figure 10. Green status indicates a close match to economic infrastructure strategic policy needs; amber status indicates that some work is needed to make it useful; whilst red status indicates significant work is needed. Green ticks indicate reasonably easy to achieve green RAG status. Amber ticks indicate it is more tricky, but not impossible to achieve green RAG status.

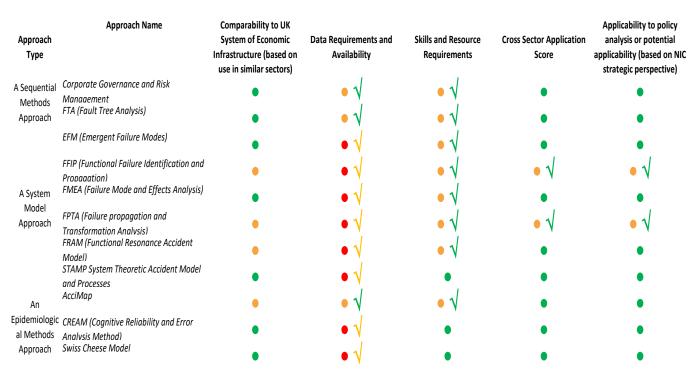
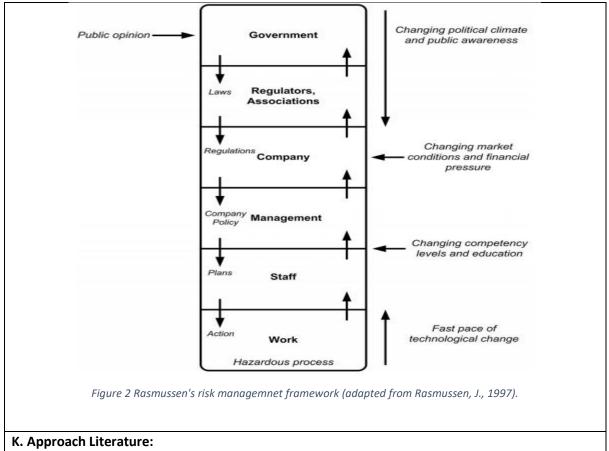


Figure 10: Approaches overview

A. Approach	AcciMap Model		
Name and Type	An Epidemiological Methods Approach		
	Γ		
B. Approach	Applicability to UK System of Infrastru	icture	Very High (6/6)
Rankings	Cross Sector Applicability		High
Summary	Strategic Relevance to NIC		High
	System		Comparability Score
	Activities: Led Outdoor Activities (e.g.	outdoor	
C. Approach Applications	education and recreation providers)		Medium (3/6)
and	Transport Systems: Road/ Rail/ Air/ Ri	ver/ Ocean	Very High (6/6)
Comparability			
Scores by System			
- yeseni			
	Risk Assessment		
	Safety and Accident Analysis		
	Situational awareness		
D. Approach	Reliability and/or safety: System Proce	esses	
Purpose	Hazards (external /internal/ human fa	ctors)	
	Risk Assessment		
Γ			
	Hierarchical Systems		
	Vertical Integration		
	Migration of work practises		
F Americant	System Levels (parts, units, assets,		
E. Approach Key Concepts	artefacts, sub-system, system)		
	Performance Variability (internal and external)		
		┨┎────	1
	<u></u>	J	
	A semi-quantitative approach		
	Data requirements are formally specit	fied	
F. Data Requirements	F. Data Primary data is essential		
and Availability	Sufficient secondary data is available		
· · · · ·	Specialist knowledge of the system of	interest is esser	ntial
[]			


[]	Specialist software is essential Approach specific training is recommended
G. Skills and Resource Requirements	Multiple phases of Cross-Sectoral Consultation with experts from multiple sectors are recommended
H. Complementary Approaches	Swiss Cheese Model

J. Approach Overview

Rasmussen's (1997) risk management framework is underpinned by the idea that work systems can be described as a hierarchy of multiple levels (e.g., government, regulators/associations, company, management, staff, work), as shown in the Figure 1. The actions and decisions of those operating within and across these levels interact, and contribute to the control of hazardous processes. Safety is maintained through a process referred to as "vertical integration," where decisions made at higher levels of the system (i.e., by government, regulators, and the company) are reflected in practices occurring at lower levels of the system, while information at lower levels (i.e., work, staff) informs decisions and actions at the higher levels of the hierarchy. A lack of vertical integration can result in a loss of control and accidents. The framework also describes how work practices constantly adapt and change in response to various external pressures and conditions. This process, referred to as "migration," causes accidents when changes in work practices erode existing control measures.

The accompanying AcciMap technique provides a methodological framework for analysing accidents from this perspective. The method enables analysts to graphically represent the contributing factors across all levels of the system in question, along with the relationships between them.

Rasmussen's framework also makes a series of predictions, regarding accidents and safety in complex sociotechnical systems. These predictions reflect the three core principles of accident causation underpinning the systems approach, and also describe the role that vertical integration and the migration of work practices play in accident causation.

[1] Qureshi, Z., 2007. A Review of Accident Modelling Approaches for Complex Sociotechnical Systems. Australian Computer Society, 47-59.

[2] Goode, N., Read, G.J., van Mulken, M.R., Clacy, A. and Salmon, P.M., 2016. Designing system reforms: using a systems approach to translate incident analyses into prevention strategies. Frontiers in psychology, 7, p.1974; https://www.frontiersin.org/articles/10.3389/fpsyg.2016.01974/full

[3] Rasmussen, J., 1997. Risk management in a dynamic society: a modelling problem. Safety science, 27(2-3), pp.183-213.

	Corporate Governance and Risk Management	
A. Approach	Accident Theory, High Reliability Organisation Theory, Crisis Prone Organisation Theory) Model	
Name and Type	A Sequential Methods Approach	
	A Sequential Methods Approac	,n
B. Approach	Applicability to UK System of Infrastructure	Very High (6/6)
Rankings Summary	Cross Sector Applicability	High
Summary	Strategic Relevance to NIC	High
	System	Comparability Score
	Facilities: Industrial Plants	Medium (3/6)
C. Approach	Facilities: Nuclear Reactors	Medium (3/6)
Applications	Facilities: Offshore Platforms	Medium (3/6)
and	Industrial: Chemical and pharmaceutical	Medium (3/6)
Comparability Scores by	Systems: Transport Systems (Road/ Rail/ Air/ River/]
System	Ocean)	Very High (6/6)
· · ·	Systems: Military/Defence Systems	High (5/6)
	Large Organisations	Medium (3/6)
	Public Sector Bodies	Very High (6/6)
D. Approach Purpose	Create Organisational capability to anticipate disruption and mitigate impacts Prevent Organisational Failures Systemic Mitigate the Effect of Unpredictable failures in Complex systems Systemic Analysis: Reasons for/cause of of system failure Risk Assessment and Risk Factor Analysis Systemic Analysis: Reliability	
	Systemic Analysis: Safety and Accident	
	Interactive complexity (linear vs complex interactions)	
E. Approach	Tight/loose coupling	
Key Concepts	Interdependency Dimensions	
	Incertitude Types (Risk vs uncertainty vs ambiguity vs ignorance)	
	Controls (systems/ structures / Levels / software)	
	Learning, Mindfulness and Reporting Culture	
	Accident Opportunities	
	Error-provoking conditions (and condition types)	

	A qualitative approach	
	Generic data requirements are not important	
F. Data	Secondary data is not applicable	
Requirements	Primary data is essential	
and Availability	Specialist knowledge of the system of interest is essential	
	Specialist software is not needed	
	Approach specific training is recommended	
G. Skills and Resource	Cross sectoral collaboration between experts from multiple sectors is recommended	
Requirements		
	Crisis Prone Organisation Theory	
н.	High Reliability Organisation Theory	
Complementary		
Approaches		
	Normal Accident Theory	
	Swiss Cheese Model	
	STAMP	
J. Approach Overvi	iew .	
This is a basket of a	approaches using analytical techniques, and are management focussed.	
Corporate Governa	ince and Risk Management	
	nce and Risk Management has been adapted to prevent organisational failures	
before they occur. Drawing on a number of conceptual traditions including Normal Accident		
Theory (why large complex organisational systems tend to fail), High Reliability Organisations (how some organisations minimise failure), and Crisis Prone Organisations, a capacity to anticipate		
failures and mitigate loss is theoretically possible as a result of enhanced and directed		
-	ce in Corporate Governance and Risk Management.	

Normal Accident Theory (NAT)

NAT emerged from analysis of a range of industrial disasters and accidents spanning a period of at least the last 40 years. It introduced the idea that in some technological systems, accidents are inevitable or 'normal'. It has two related dimensions - interactive complexity and loose/tight coupling - that defined organisational susceptibility to accidents.

The notion of interactive complexity includes two factors: Linear and complex interactions. Linear interactions are elements in expected or planned operational sequences. The attributes of linear systems generally behave in planned ways with single functions. Interactive complexities, however, derive from unfamiliar, unplanned or unique operational sequences that might not be visible or comprehensible to users of the system. According to theory, systems with interactive complexity and tight coupling have increased potential to experience accidents that cannot be foreseen or prevented. Perrow (1984) refers to these as 'system' accidents. When the system is interactively complex, inter-dependent failure events can interact in ways that cannot be predicted by the designers and operators of the system. If the system is also tightly coupled, the cascading of effects can quickly spiral out of control before operators are able to understand the situation and perform appropriate corrective actions. Systems accidents result from a gestalt of the processes not the component parts themselves.

High Reliability Organisations (HRO)

HRO as the words suggest, are closely linked to safety, regularity and accuracy. To achieve this HRO operate in a context of near full knowledge of the physical and technical aspects of the operational activities they carry out. People in these organisations know almost everything technical about what they are doing and aim at having prepared for nearly every conceivable contingency. The tendency to seek and require complete knowledge of a system or process by HRO's contrasts against the 'interactive complexity,' described by NAT where the interactions between components cannot be thoroughly planned, understood, predicted, or guarded against. Ideally for HRO's, it would be relatively easy to lower risk through standard system safety and industrial safety approaches. Unfortunately, most complex systems, particularly high technology and social systems, do not fall into this category.

Crisis Prone Organisations

Analyses of iconic organisational failures and their aftermath have shown that in addition to certain causal triggers of crises being unexpected and predisposing factors overlooked the capacity to respond quickly and appropriately once emergent signs appeared also seemed restricted. Specific organisational cultural patterns or 'operating rules' have been retrospectively linked to the genesis and amplification of well-known organisational crises. It has been strongly argued that the presence of such patterns in an operational repertoire increase vulnerability and the likelihood of accidents and crises (Perrow, 1984).

Corporate governance is grounded in the effective use of information management and control mechanisms. An adequate capacity for corporate governance therefore would require the existence of a variety of channels of information to senior decision makers. Effective corporate governance also requires capacities for coping with this phenomenon and structuring suitable internal control mechanisms. With suitable reporting mechanisms in place, enhanced variety in strategic information creation can be developed to generate increased capacity to attenuate corporate risk. Thus as organisations increase in complexity and opaqueness, so too must the sophistication and variety of acquisition of corporate information and regulatory control. While sophistication of the information in such circumstances is a given, it must be timely, be couched in forms that aid decision making and not impede it.

The below figure displays a possible operational structure designed to both minimise the emergence of the signs and symptoms of organsiational failure and identify them when they appear.

The framework comprises a standard internal control capacity embodied in an Internal Audit committee with an expanded governance capacity in the form of separate Legislative and Finance committees. It also includes a separate Corporate Risk Management Committee (CRMC). All four committees report in parallel to the Departmental Board of Governance. The Legislative Committee provides advice on legislative reform related to departmentally regulated matters and external legislation. The Finance Committee, as might be expected, ensures accurate and detailed reporting of financial statements to the Board. An eclectic view on the combined exposures would allow comprehensive and robust organisational mitigation strategies to be chosen and implemented. A key function related to this strategic view is the preparation of a Corporate Threat Register. The Corporate Threat Register (CTR) is used a decision-making aid by the Board of Governance to prioritise risk management activities, decision making and enhance governance generally.

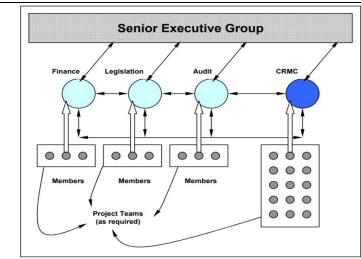


Figure 3 A corporate Risk Management Framework (adopted form Barnes, P.H., 2005)

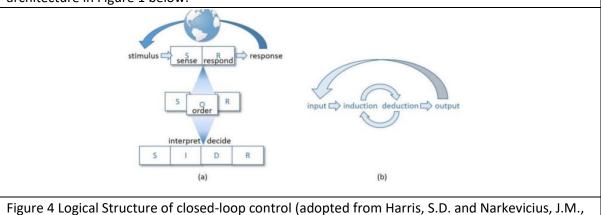
A higher order purpose of the Corporate Risk Management Framework shown in Figure 1 is to overcome any propensity of the department to become crisis prone and succumb to the many interactive complexity and coupling factors present in such a large and diverse public organisation. By engaging in a structured analytical process the benefits of strategic foresight, issue and scenario analysis and the engagement of expertise at all levels of the organisation, a capacity to recognise unexpected and usual changes in organisational functioning is part of the register's design goal.

K. Approach Literature:

[1] Barnes, P.H., 2005. Can Organisational Failures be prevented before They Occur?(A discussion about Corporate Governance and Risk Management). University. https://eprints.gut.edu.au/2120/1/2120_1.pdf

A. Approach	CREAM (Cognitive Reliability and Error Analysis Method) Model An Epidemiological Methods Approach	
Name and Type		
B. Approach Rankings	Applicability to UK System of Infrastructure Cross Sector Applicability	Very High (6/6) High
Summary	Strategic Relevance to NIC	High
C. Approach	System Facilities: Nuclear Reactors	Comparability Score Medium (3/6)
Applications and	Systems: Transport Systems (Road/ Rail/ Air/ River/]
Comparability Scores by System	Ocean) Facilities: Hospitals	Very High (6/6) High (5/6)
D. Approach Purpose	Error Mode Identification and Classification Task Analysis Error Reduction opportunities	
	Human performance for system safety Failure / disruptions: Anticipation or Prediction	
	Active Failures (and Active Failure types)	
E. Approach Key Concepts	Error-provoking conditions (and condition types)	
	Error Reduction opportunities Human Factors Functional and Behavioural Models Risk Factors (and Risk Factor types)	
	A semi-quantitative approach Generic data requirements are not important	
F. Data Requirements and Availability	Primary data is essential Secondary data is not applicable	
	Specialist knowledge of the system of interest is esse	ntial

	Specialist Software is not needed		
	Approach specific training is recommended Sector/Discipline/Industry expertise to support data acquisition and validatio		
G. Skills and			
Resource	is recommended		
Requirements			
		_	
	DREAM (driver Reliability and Error		
	Analysis Method)		
Н.	BREAM (Maritime Reliability and		
н. Complementary	Error Analysis Method)		
Approaches	Human Reliability Analysis (HRA)		
•• • • • • •	Error Analysis		
	Swiss Cheese Model		
	FRAM		
	Cognitive System Engineering		
J. Approach Overvie			
place Human Reliab HRA technique and reducing errors and system. Two versior Reliability and Error maritime accident a	ility Analysis (HRA) methods. It is the is based on three primary areas of w possibility to consider human perfor ns of CREAM have been developed fo Analysis Method) for analysis of traf analysis (Hollnagel 2006).	mance with regards to overall safety of a or accident modelling: DREAM (Driver fic accidents; and BREAM for use in	
analyse and quantif	y error. The CREAM technique consis	al human error, and retrospectively, to its of a method, a classification scheme ples the analyst to achieve the following:	
	se parts of the work, tasks or actions h therefore may be affected by variat	that require or depend upon human tions in cognitive reliability.	
		pility of cognition may be reduced, and	
	e actions may constitute a source of r		
3. Provide an a can be used in PRA/		nan performance on system safety, which	
	d specify modifications that improve gnition and reduce the risk.	these conditions, hence serve to increase	
	ned that FRAM approach (which app of cognitive systems engineering.	ears in our list of approaches) is also	
K. Approach Literat [1] Qureshi, Z., 2007 Systems. Australian	7. A Review of Accident Modelling Ap	proaches for Complex Socio-technical	
	/		


 [2] Cognitive Reliability and Error Analysis Method, <u>https://www.skybrary.aero/index.php/Cognitive_Reliability_and_Error_Analysis_Method_(CREA_M)</u>

[3] Hollnagel, E., 1998. Cognitive reliability and error analysis method (CREAM). Elsevier.
[4] Griebel, M., 2016. Applying the cognitive reliability and error analysis method to reduce catheter associated urinary tract infections (Doctoral dissertation, Kansas State University).
[5] De Felice, F., Petrillo, A., Carlomusto, A. and Romano, U., 2013. Modelling application for cognitive reliability and error analysis method. Int J Eng Technol, 5(5), pp.4450-4464.
[6] Hollnagel, Erik., CREAM - Cognitive Reliability and Error Analysis Method, https://erikhollnagel.com/ideas/cream.html

A. Approach	EFM (Emergent Failure Modes) Model A System Model Approach		
Name and Type		nouel Approach	
B. Approach	Applicability to UK System of Infrast	ructure	Very High (6/6)
Rankings	Cross Sector Applicability		High
Summary	Strategic Relevance to NIC		High
	System		Comparability Score
	Jystem		
C. Approach	Systems: Civil Aerospace systems		Very High (6/6)
Applications and	Power Systems		Very High (6/6)
Comparability	Vehicles: Space Shuttles		Medium (3/6)
Scores by	Facilities: The International Space St	ation	High (5/6)
System			
	Systemic Mitigate the Effect of Unpr	edictable failures	in Complex systems
	Systemic Analysis: Reasons for/caus	e of of system fai	lure
	Systemic Mitigate the Effect of Unpredictable failures in Complex systems		
D. Approach	Detect, diagnose and redress emergent failure		
Purpose	Improve situational awareness		
	Analysis of Component failures		
	Systemic Analysis: Failure Modes		
	Systemic Analysis: Active Failures (typically Human Factors) and Latent		
	Conditions		
	Situation awareness		
F Annual h	System Integrity		
E. Approach Key Concepts	Controls (systems/ structures /		
	Levels / software)		
	System Dynamics		
	closed-loop Control processes		
	Active Failures (and Active Failure types)		
	Human Factors (and latent		
	conditions)		
	A Quantitative approach		
F. Data	Data requirements are formally spe	cified	
Requirements	Primary data is essential		
and Availability	Significant additional secondary dat	a is required	

	T	
	Specialist knowledge of the system of interest is essential	
G. Skills and	Approach specific training is recommended Cross sectoral collaboration between experts from multiple sectors is	
Resource	recommended	
Requirements		
H. Complementary Approaches	Image: Second	
J. Approach Overvi	ew	
	nitigate the effects of unpredictable failures in complex systems. It outlines a	
formal analysis of c may be failure mod	omplex systems that focuses on emergent system dynamics, some of which les that are impossible to predict. The mathematical basis for the analysis, and plications of the mathematics are introduced in Harris, S.D. and Narkevicius,	
EFM are real artifac	ts of systems design and implementation. The analysis of complex systems	

EFM are real artifacts of systems design and implementation. The analysis of complex systems (including SOA/SoS) shows the unpredictable and nearly inevitable character of EFM. The Harris, S.D. and Narkevicius, J.M., 2016 outlined a principle-based approach that apportions aspects of control processes to human and machine components in a way that exploits human strengths to detect, diagnose and redress emergent failures provides an approach to solutions. The recommendation is to ensure that a proposed system architecture conforms to the process architecture in Figure 1 below.

2016)

The logical structure of any closed-loop control problem is illustrated in Figure 1. The top illustration in Figure 1 depicts the most elementary observations about control systems, that they have inputs and generate outputs, and that there must be some boundary between input and output processes, as the energy impinging on the system (the stimuli) differs from the energy emitted by the system (i.e., its responses).

The middle and lower illustrations in Figure 1 expand the boundary between input (S) and response (R) processes, to illustrate that of necessity, there must be processes that resolve induction. The middle illustration (S-O-R) expands the boundary between S and R processes in the depiction above, indicating that there must be some intervening organizing (O) processes between the S and the R processes. For example, the same S may elicit a different R as a result of intervening experience and feedback.

The bottom illustration of Figure 1 expands the O to reflect that it must comprise distinct components, as there are two separable mappings evident. Mapping from stimulus to an internal representation (often called an interpretation or situation awareness), and mapping from that internal representation to a response (also called decision making). The structure of both of these mappings is of the character of a logical induction.

K. Approach Literature:

[1] Harris, S.D. and Narkevicius, J.M., 2016, July. Emergent failure modes and what to do about them. In INCOSE International Symposium (Vol. 26, No. 1, pp. 1044-1058).

A. Approach	FFIP (Functional Failure Identification an	d Propagation) Model	
Name and Type	A System Model Approach		
B. Approach	Applicability to UK System of Infrastructure	Medium (3/6)	
Rankings	Cross Sector Applicability	Medium	
Summary	Strategic Relevance to NIC	Medium	
	System	Comparability Score	
C. Approach	Systems: Complex Electromechanical Systems,	Medium (3/6)	
Applications and	Facilities: Nuclear Reactors	Medium (3/6)	
Comparability			
Scores by			
System			
	System Dynamics: Information flows, feedback lo	pops, delays and abnormal	
	flows		
	System Dynamics: Physical flows, feedback loops	and delays	
	System Design		
D. Approach	System Dynamics: Critical interdependencies		
Purpose	Failures / Disruptions: Systemic Impacts		
	System Reliability		
	Component Reliability		
	Abnormal Flow States		
	Functional and Behavioural Models		
	Feedback Loops		
E. Approach	Interdependency Dimensions		
Key Concepts	Configuration Flow		
	System Levels (parts, units, assets,		
	artefacts, sub-system, system)		
1	SysML		
	Failure Logic		
	A qualitative and quantitative approach		
	Generic data requirements are not important		
F. Data	Primary data is essential		
Requirements	Significant additional secondary data is required		
	Significant additional secondary data is required Specialist knowledge of the system of interest is		
Requirements	Significant additional secondary data is required Specialist knowledge of the system of interest is		

	Specialist Software is essential		
	Approach specific training is recommended		
G. Skills and Resource Multiple phases of cross-sectoral consultation with experts from multi			
Requirements	sectors are recommended		
nequiencito	Other resource requirements: Computing power		
	Extended FFIP		
H.			
Complementary Approaches	FMEA		
Approacties	FMECA - (Failure Mode, Effects, and		
	Criticality Analysis)		
J. Approach Overvi	ew		
to infer emergent s advantage of FFIP is are made and befor	nework reveals the propagation of abnormal flow states and can thus be used ystem-wide behaviour that may compromise the reliability of the system. An s that it is used to model early phase designs, before high cost commitments re high fidelity models are available.		
the design stage an The simulation and reasoning. FFIP utili	d presenting the effect and propagation of faults in terms of functional losses. reasoning approach in FFIP has its roots in qualitative physics and qualitative izes a finite state representation of system behaviour, and performs reasoning e relationships between functional and behavioural models of system		
FFIP can use discrete set of flow state values and a simple behavioural logic; this has had the advantage of limiting the range of possible parameter values, but it has not been possible to model continuous process dynamics. So the extended FFIP framework supports continuous flow levels and linear modeling of component behaviour based on first principles. The extension further expanded the range of model parameter values, methods and tools for studying the impact of parameter value changes. The result is an evaluation of how the FFIP results are impacted by changes in the model parameters and the timing of critical events.			
	t ure: Interactions and emergent failure behaviour during complex system design. ng and Information Science in Engineering, 12(3), p.031007.		

A. Approach	FMEA (Failure Mod	e and Effect	<u>ts Analysis)</u>
Name and Type	A System Model Approach		
B. Approach Rankings	Applicability to UK System of Infrastr Cross Sector Applicability	ucture	Very High (6/6) High
Summary	Strategic Relevance to NIC		High
	System		Comparability Score
	Systems: Civil Aerospace systems		Very High (6/6)
C. Approach Applications	Vehicles: Space Shuttles		Medium (3/6)
and	Facilities: The International Space Sta	ition	High (5/6)
Comparability	Systems: Military/Defence Systems		Medium-High (4/6)
Scores by	Systems: Software Systems		Medium-High (4/6)
System	Systems: Medical/healthcare/clinical	Systems	High (5/6)
	Systems: Civil Aerospace systems		Very High (6/6)
	Vehicles: Space Shuttles		Medium (3/6)
D. Approach Purpose	Failure / disruptions: Prevention (Component Failures)Detect, diagnose and redress emergent failureSystemic Analysis: CriticalitySystemic Analysis: Root causes Analysis and potential Failure modesSystemic Analysis: ReliabilitySystemic Mitigate the Effect of Unpredictable failures in Complex systemsSystemic Analysis: Safety and Accident		
	Constraints		
E. Approach Key Concepts	control loops Controls (systems/ structures / Levels / software)		
[]	Process Model	_	
	Failure Modes	_	
	Failure Logic	_	
	Analysis types (functional, design, process)		
	Criticality Index	┥┝────	
	A qualitative and quantitative approa	ach	
F. Data Requirements	Data requirements are formally spec	ified	
and Availability	. Drimany data is assential		
· · · · · · · · · · · · · · · · · · ·	Significant additional secondary data	is required	

	Specialist knowledge of the system of interest is essential	
	Specialist Software is Available (ReliaSoft XFMEA or RCM++)	
G. Skills and Resource Requirements	Approach specific training is recommended Multiple phases of cross-sectoral consultation with experts from mu sectors are recommended	ıltiple
	Error Analysis	
Н.	Crisis Prone Organisation Theory EFM	
Complementary Approaches	Probabilistic Safety Assessment FMECA - (Failure Mode, Effects, and Criticality Analysis)	
	Reliability Engineering	
J. Approach Overvi	iew	
possible to identify causes and their eff i. process ma ii. Errors map	ed process of reviewing as many components, assemblies, and subsysty potential failure modes or error-prone situations in a system, as well fects. Broadly, this follows three distinct steps: apping – to identify all the steps that must occur for a given process to oping – to identify the ways in which each step of a process can go wro	as their o occur. ong; the
being detected. iii. Criticality In of detecting such fa This criticality index	ch error can be detected; and the consequences or impact of the erro ndex - The estimates of the likelihood of a particular process failure, t ailure, and its impact are combined numerically to produce a criticalit x provides a rough quantitative estimate of the magnitude of hazard p -risk process. Assigning a criticality index to each step allows prioritiza ement.	he chance y index. posed by
and potential impa	worksheet is produced for each component to record failure modes in acts on system performance. The FMEA process is flexible and FMEA w meet specific analytical needs. Indeed a few common types of FMEA a pesign and Process.	vorksheet
	ely qualitative analysis. Or FMEA can combine qualitative and quantit ple, through use of mathematical failure rate models and a statistical f se.	
EMEA is an inductiv	ve reasoning (forward logic) single point of failure analysis and is a cor	ro task in

A successful FMEA activity helps identify potential failure modes based on experience with similar products and processes—or based on common physics of failure logic. Effects analysis refers to studying the consequences of those failures on different system levels. It is widely used in development and manufacturing industries in various phases of the product life cycle as well as military systems. It also useful for high-risk industries, including health care as well as for computer/ software/hardware.

The classical safety engineering technique Failure Modes and Effects Analysis (FMEA) can be used for infrastructure to analysis of failure propagation behaviour from the system engineering perspective which is a process for identifying the failure modes of a system starting from an analysis of component failures. Generally, the process of failure analysis consists of several activities: identifying failures of individual components, modelling the failure logic of the entire system, analysing a failure's effect on other components, and determining and engineering the mitigation of potential hazards.

K. Approach Literature:

[1] Systems Approach, Patient Safety Network website, http://psnet.ahrq.gov/primer/systems-approach

[2] Failure Mode & Effects Analysis (FMEA), https://www.moresteam.com/toolbox/fmea.cfm
[3] Failure Mode and Effect Analysis (FMEA) and Failure Modes, Effects and Criticality Analysis (FMECA), https://www.weibull.com/basics/fmea.htm

A. Approach	FPTA (Failure Propagation and Transformation Analysis)Model		
Name and Type	A System Model Approach		
B. Approach	Applicability to UK System of Infrastruc	ture	Medium-High (4/6)
Rankings	Cross Sector Applicability		Medium
Summary	Strategic Relevance to NIC		Medium
	System		Comparability Score
C. Approach	Systems: Software Systems		Medium-High (4/6)
Applications and			
Comparability			
Scores by			
System			
			<u>ا</u> ــــــــــــــــــــــــــــــــــــ
	Failures / Disruptions: Systemic Impact		
	Failure / disruptions: systemic impact p	athways	
	System Dynamics: Critical components		
D. Approach	System Dynamics: Critical interdepende	encies	
Purpose	Component Reliability		
	Probabilistic Safety Assessment		
	Analysis of Component failures		
	Failure Mode Identification		
	Component Failure Types		
	(sequential, time and value)		
E. Approach Key Concepts	Cyber-Physical Systems		
Rey concepts	Cybersecurity		
_			
	A qualitative and quantitative approac	h	
	Generic data requirements are not imp		
F. Data	Primary data is essential		
Requirements	ements		
and Availability			ntial
· · · · · · · · · · · · · · · · · · ·	Constaliat Cofficients in anti-		
	Specialist Software is not needed		
G. Skills and	Approach specific training is recommer		and the former of the later
Resource Requirements	Multiple phases of cross-sectoral consusectors are recommended	litation with ex	perts from multiple
nequirements			

	FMEA	
	FMECA - (Failure Mode, Effects, and	
	Criticality Analysis)	
Н.	FPTA	
Complementary	FPTC	
Approaches	FPTN	
	FFIP	
	Extended FFIP	
J. Approach Overvie	ew	
Failure propagation	and transformation analysis (FPTA) – A System Approach	
	our analysis technique which derives the system level failure behaviour from	
	urs of its building elements and is particularly suitable for performing the	
	ages of component based development where the costs of correcting the	
	latively minor compared to the faults discovered at, for instance, testing phase	
of the development	t. It is a safety analysis technique, which automatically and quantitatively	
	sed on a model of failure logic. The technique integrates previous work on	
automated failure a	analysis with probabilistic model checking supported by the PRISM tool.	
	xtension of FPTC technique, that overcome the limitations existing system	
engineering analysis techniques such as FMEA, FPTN, FPTC.		
FPTC Analysis Techr	nique	
To represent the sys	stem as a whole, every element of the system architecture – both components	
and connectors – is assigned FPTC behaviour. Each model element that represents a relationship		
	ets of tokens (e.g., omission, late). The architecture as a whole is treated as a	
	rork, and from this the maximal token sets on all relationships in the model can	
	lculated, giving us the overall failure behaviour of the system. This calculation	
resolves to determin	ning a fix-point.	
	imitations	
FMEA, FPTN, FPTC Limitations		
 FMEA and FPTN generally provide manual or non-compositional analysis. Such analysis is expensive, especially in a typical component-based development process, because if changes are 		
made to components, the failure analysis has to be carried out again, and previous analysis results		
will be invalidated.		
– FPTC does not pro	ovide facilities for quantitative analysis, particularly in terms of determining	
the probability of sp	pecific failure behaviours. Such quantitative analysis can help to provide more	
fine-grained information to help identify and determine suitable (cost-effective) mitigation to		
potential hazards.		
1/ A		
K. Approach Literat	ure:	

[1] Ge, X., Paige, R.F. and McDermid, J.A., 2009, September. Probabilistic failure propagation and transformation analysis. In International Conference on Computer Safety, Reliability, and Security (pp. 215-228). Springer, Berlin, Heidelberg.

[2] Briesemeister, L., Denker, G., Elenius, D., Mason, I., Varadarajan, S., Bhatt, D., Hall, B., Madl, G. and Steiner, W., 2011, November. Quantitative fault propagation analysis for networked cyber-physical systems. In Proc. of 2nd AVICPS Workshop.

A. Approach	FRAM (Functional Resonance Accident Model)			
Name and Type	System Model Approach			
	Applicability to UK System of Infrastruc	ture	Very High (6/6)	
B. Approach Rankings	Cross Sector Applicability	luie	High	
Summary	Strategic Relevance to NIC		High	
			піві	
	System		Comparability Score	
C. Approach	Facilities: Offshore Platforms		Medium (3/6)	
Applications and	Organisations: Large Organisations		Medium (3/6)	
Comparability	Systems: Area navigation (RNAV) syste	ms	Medium-High (4/6)	
Scores by	Systems: Civil Aerospace systems		Very High (6/6)	
System	Transport Systems: Road/ Rail/ Air/ Riv	er/ Ocean	High (5/6)	
	Safety and Accident Analysis			
	Safety and Accident Analysis			
	System Dynamics: Critical components Reliability and/or safety: Components			
	, , , ,			
D. Approach	Reliability and/or safety: System Proces			
Purpose	Reliability and/or safety: Whole System			
	System Dynamics: Critical interdepend			
	Failure / disruptions: Anticipation or Pr			
	Failures / Disruptions: systemic root ca	luses		
	Approximate Adjustments	Functional vie	ew of systems	
F Annuash	Functional Resonance	Interdepende	encies	
E. Approach Key Concepts		Performance	nce Variability (internal	
Rey concepts	Emergence	and external) ccesses) Process Model		
	Equivalence (failures and successes)			
	A qualitative approach			
	Data requirements are formally specified Primary data is essential			
F. Data	Significant additional secondary data is required			
Requirements and Availability	Specialist knowledge of the system of interest is essential			
and Availability				
L	Specialist Software is not needed			
G. Skills and	Approach specific training is recommend	nded		
G. Skills and Resource	Cross sectoral collaboration between e		ultinle sectors is	
Requirements	recommended		anipie sectors is	

Н.							
Complementary	Cognitive Sys	tem Engine	ering				
Approaches			61118				
Approach Overview	N						
unctional Resonanc		el (FRAM) Ani	nroach System	nic Accider	t Models		
RAM is a qualitative						nonte mov r	oconato ar
nodels for safety and ngineering. FRAM is ariability are norma uch as aviation. he FRAM perspective e characterized by i	based on the pr l, in the sense th ye is that a system	remise that p lat performar m interacts w	erformance vance is never sta	through a and real-t	collection	riability and cio-technica of function viour. Funct	external I system s, which ca ions intera
nrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm	s. A functional v cal behaviour. It n four principles	is similar to t : the equivale	he view of sys	tems taker s and succe	by struct esses, the	central role	is for real- of
nrough these aspect oncentrates on logic me systems. he FRAM is based o	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are c a description of necessarily order	is similar to t the equivale of emergences happen in a the description derived from work-as-done ed in a prede	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess the rather than with	tems taker s and succo nal resona or that any ocuses on vary to ach vork-as-im h as hierar	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalit ents, ens in term n an are not
nrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor r ndividually, and the	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are c a description of necessarily order	is similar to t the equivale of emergences happen in a the description derived from work-as-done ed in a prede	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess the rather than with	tems taker s and succo nal resona or that any ocuses on vary to ach vork-as-im h as hierar	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	is for real- of to causalit ents, ens in term m an are not
nrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor r ndividually, and the	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are of a description of necessarily order relations betwee	is similar to t the equivale of emergences happen in a the description derived from work-as-done red in a prede en them are c	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess the rather than with	tems taker s and succo nal resona or that any ocuses on vary to ach vork-as-im h as hierar	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalit ents, ens in term n an are not
nrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor r ndividually, and the ependencies.	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are of a description of necessarily order relations betwee	is similar to t the equivale of emergence happen in a the description derived from work-as-done red in a prede en them are o	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess e rather than w fined way suc defined by emp	tems taker s and succe nal resona or that any ocuses on eary to ach vork-as-im h as hierar pirically est	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	is for real- of to causalit ents, ens in term m an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor r ndividually, and the ependencies. Describing a Temporal aspects	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are c a description of necessarily order relations betwee a FRAM fun	is similar to t the equivale of emergence happen in a the description derived from work-as-done ed in a prede en them are of action	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess the rather than we fined way suc defined by emp fined by emp	tems taker s and succe nal resona or that any ocuses on eary to ach vork-as-im h as hierar pirically est Safe thesis	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalit ents, ens in tern n an are not
Temporal aspect affect how the func-	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are c a description of necessarily order relations betwee a FRAM fun	is similar to t the equivale of emergence shappen in a the description derived from work-as-done en them are of action	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess the rather than we fined way suc defined by emp fined by emp	tems taker s and succe nal resona or that any ocuses on eary to ach vork-as-im h as hierar pirically est safe thesis regulation g., plane,	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causali ents, ens in tern n an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor r adividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are c a description of necessarily order relations betwee a FRAM fun	is similar to t the equivale of emergence shappen in a the description derived from work-as-done en them are c nction	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess the rather than we fined way suc defined by emp fined by emp	tems taker s and succe nal resona or that any ocuses on eary to ach vork-as-im h as hierar pirically est safe thesis regulation g., plane,	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causali ents, ens in tern n an are not
Temporal aspect affect how the func- carried out (const	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are of a description of v necessarily order relations betwee a FRAM fun tion is that tion is traint, purce). Time	is similar to t the equivale of emergence shappen in a the description derived from work-as-done en them are c nction	he view of systemce of failures ce, and functio specific way, of on. Instead it for what is necess to rather than we fined way suc defined by emp fined by emp fine supervision or of the function. E. procedures, guidel other functions.	tems taker s and succe nal resona or that any ocuses on sary to ach york-as-im h as hierar birically est safe thesis regulation g., plans, ines or	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalif ents, ens in tern n an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor n adividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const reso	s. A functional v cal behaviour. It n four principles nents, the reality mply that events must be part of the lved. These are of a description of v necessarily order relations betweet a FRAM function to that tion is traint, purce). Time	is similar to t the equivale of emergence shappen in a the description derived from work-as-done red in a prede en them are c	he view of system of failures ence of failures e, and functio specific way, of on. Instead it for what is necess e rather than we fined way suc defined by emp fine supervision or of the function. E. procedures, guidel other functions.	tems taker s and succe nal resona or that any ocuses on sary to ach york-as-im h as hierar birically est safe thesis regulation g., plans, ines or	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalif ents, ens in tern n an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor n adividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const reso	a FRAM functional was been a four principles and that events and that events are can be part of the second of the	is similar to t the equivale of emergence shappen in a the description derived from work-as-done en them are c nction	he view of systematic ence of failures the and function specific way, of the supervision or of the function of the function. En- procedures, guided other functions. The result of function for the function function function for the function for	tems taker s and succe nal resona or that any ocuses on sary to ach york-as-im h as hierar birically est safe regulation g., plans, ines or	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalit ents, ens in tern n an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor n ndividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const reso That which activate the function and/or used or transformed t produce the output	a FRAM functional was that tion is that ti on tion is that tion is that tion is that tion is that tion is tha	is similar to t the equivale of emergence shappen in a the description derived from work-as-done en them are c nction	he view of systemate of failures the and function specific way, of on. Instead it for what is necess the rather than we fined way such defined by emp fine supervision or of the function. E. procedures, guidel other functions. The result of function. Pr	tems taker s and succe nal resona or that any ocuses on sary to ach york-as-im h as hierar birically est safe regulation g., plans, ines or	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalit ents, ens in tern n an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor r ndividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const reso That which activate the function and/or used or transformed t produce the outpur Constitutes the link t	a FRAM functional were a functional were as that tion is traint, burge). Time that the traint, burge is that to be that that the traint, burge is that that the traint, burge is that that the traint is that t	is similar to t the equivale of emergence shappen in a the description derived from work-as-done en them are c nction	he view of systematic ence of failures the and function specific way, of on. Instead it for what is necessed what is necessed the supervision or of the function ence of the function. Encorrecedures, guidel other functions. The result of function. Pr links to dow functions.	tems taker s and succe nal resona or that any ocuses on ary to ach vork-as-im h as hierar birically est safe thesis regulation g., plans, ines or of the ovides the matream	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalit ents, ens in tern n an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor n ndividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const reso That which activate the function and/or used or transformed t produce the output	a FRAM functional were a functional were as that tion is traint, burge). Time that the traint, burge is that to be that that the traint, burge is that that the traint, burge is that that the traint is that t	is similar to t the equivale of emergence shappen in a the description derived from work-as-done en them are c nction	he view of systematic ence of failures the and function specific way, of on. Instead it for what is necessed the supervision or of the function of the function. Exprocedures, guided other functions. The result of function. Pr links to dow functions. What is needed of	tems taker s and succe nal resona or that any ocuses on rary to ach vork-as-im h as hierar birically est safe thesis regulation g., plans, ines or of the ovides the matream	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	is for real- of to causalit ents, ens in term m an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor r ndividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const reso That which activate the function and/or used or transformed t produce the outpur Constitutes the link t	a FRAM functional was been a four principles and that events the reality may that events and the state of the	is similar to t : the equivale of emergence s happen in a the description derived from work-as-done ed in a prede en them are c ICTION	he view of systematic ence of failures the and functions of the supervision or of the function. Encoded in the function of the function. Encoded ures, guided other functions. The result of function. Print links to dow functions. What is needed of consumed when the function of the function.	tems taker s and succe nal resona or that any ocuses on rary to ach vork-as-im h as hierar birically esi safe thesis regulation g, plans, ines or of the ovides the matream	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	of to causalit ents, ens in tern n an are not
hrough these aspect oncentrates on logic me systems. he FRAM is based o pproximate adjustm he FRAM does not i ntities, or relations f the functions invo ctivity, hence from a efined a priori nor n ndividually, and the ependencies. Describing a Temporal aspect affect how the func carried out (const reso That which activate the function and/or i used or transformed t produce the output Constitutes the link t upstream function	a FRAM functional v cal behaviour. It n four principles nents, the reality mply that events must be part of lved. These are of a description of necessarily order relations betwee a FRAM function that traint, purce). Time s that too is traint, purce is precondition one that before a	is similar to t : the equivale of emergence s happen in a the description derived from work-as-done ed in a prede en them are c ICTION	he view of systematic ence of failures the and functions of the supervision or of the function. Encoded in the function of the function. Encoded ures, guided other functions. The result of function. Print links to dow functions. What is needed of consumed when the function of the function.	tems taker s and succe nal resona or that any ocuses on rary to ach vork-as-im h as hierar birically esi safe thesis regulation g, plans, ines or of the ovides the matream	a by struct esses, the nce as a c predefine describing ieve an air agined. Bu chy. Instea	central role omplement ed compone what happ m or perforr ut functions ad they are	is for real- of to causalit ents, ens in term m an are not

K. Approach Literature:

[1] Qureshi, Z., 2007. A Review of Accident Modelling Approaches for Complex Socio-technical Systems. Australian Computer Society.

[2] Wienen, H.C.A., Bukhsh, F.A., Vriezekolk, E. and Wieringa, R.J., 2017, June. Accident analysis methods and models—a systematic literature review. In Centre for Telematics and Information Technology (CTIT).
[3] FRAM - the FUNCTIONAL RESONANCE ANALYSIS METHOD for modelling non-trivial socio-technical systems, https://www.functionalresonance.com/.

[4] Hollnagel, E. and Goteman, O., 2004. The functional resonance accident model. Proceedings of cognitive system engineering in process plant, 2004, pp.155-161.

[5] Hollnagel, Erik, Modelling transport systems with FRAM: Flows or functions? http://www.resoluteeu.org/images/media_centre/1st_workshop/EH_Firenze_DEC15-ferreira.pdf

A. Approach	STAMP (System Theoretic Accident Model and Processes)		
Name and Type	System Model Approach		
B. Approach	Applicability to UK System of Infrastrue	cture	Very High (6/6)
Rankings	Cross Sector Applicability		High
Summary	Strategic Relevance to NIC		High
			Common hilithe Coome
C. Approach	System		Comparability Score
Applications	Systems: Civil Assesses systems		V_{0}
and	Systems: Civil Aerospace systems Systems: Military/Defence Systems		Very High (6/6) Medium-High (4/6)
Comparability			
Scores by	Vehicles: Space Shuttles		Medium (3/6)
System			
	Failures / Disruptions: systemic root ca	auses	
	Safety and Accident Analysis		
	Systemic Impacts: Internal Change		
D. Approach	Risk Factor Analysis		
Purpose	Reliability and/or safety: System Processes		
	Human Factors		
	Hazards (external /internal/ human fac	ctors)	
	Systemic Risk Factors		
	Constraints		
	constraints		
	closed-loop Control processes		
	Feedback Loops		
E. Approach Key Concepts	Controls (systems/ structures /		
Rey concepts	Levels / software)		
	Risk Factors (and Risk Factor types)		
	System Levels (parts, units, assets,		
	artefacts, sub-system, system)		
]	System Dynamics		
	Emergence		
	A qualitative and quantitative approac	h	
	A process to Identify specific data requ	uirements is pai	rt of the approach
· · · · · · · · · · · · · · · · · · ·	Primary data is essential		
F. Data	Significant additional secondary data is	s required	
Requirements and Availability	Specialist knowledge of the system of	interest is esse	ntial
and Availability			

	Specialist Software is not needed
	Approach specific training is recommended
G. Skills and Resource	Cross sectoral collaboration between experts from multiple sectors is recommended
Requirements	
[
H.	FRAM
Complementary	Normal Accident Theory
Approaches	High Reliability Organisation Theory
J. Approach Overvio	ew
Systems Theoretic A	Accident Model and Processes (STAMP) Approach, Systemic Accident Models

Leveson (2004) proposes a model of accident causation that considers the technical (including hardware and software), human and organisational factors in complex socio-technical systems. According to Leveson, "The hypothesis underlying the new model, called STAMP (Systems-Theoretic Accident Model and Processes) is that system theory is a useful way to analyze accidents, particularly system accidents". In the STAMP approach, accidents in complex systems do not simply occur due to independent component failures; rather they occur when external disturbances or dysfunctional interactions among system components are not adequately handled by the control system. Accidents therefore are not caused by a series of events but from inappropriate or inadequate control or enforcement of safety-related constraints on the development, design, and operation of the system.

A STAMP accident analysis can be conducted in two stages: 1) Development of the Hierarchical Control Structure, which includes identification of the interactions between the system components and identification of the safety requirements and constraints; 2) Classification and Analysis of Flawed control (Constraint Failures), which includes the classification of causal factors followed by the reasons for flawed control and dysfunctional interactions.

In STAMP, systems are viewed as interrelated components that are kept in a state of dynamic equilibrium by feedback loops of information and control. A system in this conceptualization is not a static design—it is a dynamic process that is continually adapting to achieve its ends and to react to changes in itself and its environment.

The basic concepts in STAMP are constraints, control loops and process models, and levels of control.

K. Approach Literature:

[1] Qureshi, Z., 2007. A Review of Accident Modelling Approaches for Complex Socio-technical Systems. Australian Computer Society.

[2] Wienen, H.C.A., Bukhsh, F.A., Vriezekolk, E. and Wieringa, R.J., 2017, June. Accident analysis methods and models—a systematic literature review. In Centre for Telematics and Information Technology (CTIT).

[3] Zhou, Z., Zi, Y., Chen, J. and An, T., 2019. Hazard Analysis for Escalator Emergency Braking System via System Safety Analysis Method Based on STAMP. Applied Sciences, 9(21), p.4530.
[4] Leveson, N., 2004. A new accident model for engineering safer systems. Safety science, 42(4), pp.237-270.

Name and Type An Epidemiological Methods Approach B. Approach Rankings Applicability to UK System of Infrastructure High (5/6) Rankings Cross Sector Applicability High Summary Strategic Relevance to NIC High (5/6) C. Approach Applications and Comparability System: Medical/healthcare/clinical Systems High (5/6) Facilities: Hospitals High (5/6) High (5/6) Systemic Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety and Accident Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure E. Approach Purpose Defensive Layers (Defences, Barriers, Safeguards) Error-provoking conditions (and condition types) Latent Conditions Latent Conditions Reporting Culture Error Analysis and Management (reduce errors) Fror Analysis and Management (reduce errors) Reparach Key Concepts Generic data requirements are not important Fror Analysis and Management (limit error	A. Approach	Swiss Cheese Model			
Rankings Summary Cross Sector Applicability High Strategic Relevance to NIC High C. Approach Applications and Comparability Scores by System System Comparability Score High (5/6) Sector Solution Systems: Medical/healthcare/clinical Systems High (5/6) Scores by System Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents Systemic Analysis: Corganisational accidents Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) D. Approach Purpose Systemic Analysis: Safety and Accident Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reliability System conditions Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reliability System conditions (and condition types) Latent Conditions Error-provoking conditions (and Reporting Culture E. Approach Key Concepts Holes / weaknesses in Defensive layers (and types) Latent Conditions Error Analysis and Management (reduce errors) Error Analysis and Management (mit error impacts) Error Analysis and Management (reduce errors) Reputing At a is essential Significant additional secondary data is required <		An Epidemiological Methods Approach			
Rankings Summary Cross Sector Applicability High Strategic Relevance to NIC High C. Approach Applications and Comparability Scores by System System Comparability Score High (5/6) System Systems: Medical/healthcare/clinical Systems High (5/6) Sorres by System Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents Systemic Analysis: Corganisational accidents Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) D. Approach Purpose Systemic Analysis: Safety and Accident Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reliability System failure modes Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reliability System failure Systemic Analysis: Reliability Latent Conditions Defensive Layers (Defences, Barriers, Safeguards) Error-provoking conditions (and condition types) Learning, Mindfulness and Reporting Culture Error Analysis and Management (reduce errors) Accident Opportunities Error Analysis and Management (mit error impacts) Risk Factors (and Risk Factor types) Error Analysis and Management (reduce errors) Gene	D. Annroach	Applicability to LIK System of Infrastrue	cture	High (5/6)	
Summary Strategic Relevance to NIC High C. Approach Applications and Comparability Scores by System Systems: Medical/healthcare/clinical Systems High (5/6) Facilities: Hospitals High (5/6) High (5/6) Scores by System Systems: Medical/healthcare/clinical Systems High (5/6) Scores by System Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) D. Approach Purpose Systemic Analysis: Safety and Accident Systemic Analysis: Safety and Accident Systemic Analysis: Reliability Systemic Analysis: Reliability System Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reliability Error-provoking conditions (and condition types) Latent Conditions Defensive Layers (Defences, Barriers, Safeguards) Error analysis and Management (reduce errors) E. Approach Key Concepts Accident Opportunities Error Analysis and Management (mit error impacts) Bisk Factors (and Risk Factor types) Error Analysis and Management (mit error impacts) Generic data requirements are not important Primary data is essential Significant additional secondary data is required					
System Comparability Score Applications and Comparability Scores by System Systems: Medical/healthcare/clinical Systems High (5/6) Bill Scores by System Facilities: Hospitals High (5/6) Scores by System Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents D. Approach Purpose Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety and Accident Systemic Analysis: Reasons for/cause of system failure E. Approach Key Concepts Latent Conditions Defensive Layers (Defences, Barriers, Safeguards) Accident Opportunities Risk Factors (and Risk Factor types) Error analysis and Management (reduce errors) Error analysis and Management (reduce errors) Error analysis and Management (limit error impacts) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Significant additional secondary data is required	-				
C. Approach Applications and Comparability Scores by System Systems: Medical/healthcare/clinical Systems High (5/6) Source Start Facilities: Hospitals High (5/6) Source Start Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents Systemic Analysis: Corganisational accidents Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) D. Approach Purpose Systemic Analysis: Safety and Accident Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure E. Approach Key Concepts Accident Opportunities Risk Factors (and Risk Factor types) Error Analysis and Management (Imit error impacts) Error Analysis and Management (Imit error impacts) Error Analysis and Management (Imit error impacts) Bisk Factors (and Risk Factor types)					
Applications and Comparability Scores by System High (5/6) Secres by System Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents Systemic Analysis: Corganisational accidents Systemic Analysis: Corganisational accidents Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure E. Approach Key Concepts Holes / weaknesses in Defensive layers (and types) E. Approach Key Concepts Holes / weaknesses in Defensive layers (and types) Generic data requirements are not important Error maalysis and Management (Imit error impacts) Risk Factors (and Risk Factor types) Error analysis and Management (Imit error impacts) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Soncilit knowledge of the custom of interact is ercential	[]				
and Comparability Scores by System Instrict (9)0 Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents Systemic Analysis: Corganisational accidents Systemic Analysis: Organisational accidents Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety and Accident Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure E. Approach Key Concepts Holes / weaknesses in Defensive layers (and types) Error Analysis and Management (reduce errors) Error Analysis and Management (reduce errors) Error Analysis and Management (reduce errors) Bisk Factors (and Risk Factor types) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Sonciviit konviden of the curve of interact is preparial		Systems: Medical/healthcare/clinical Systems			
Comparability Scores by System		Facilities: Hospitals		High (5/6)	
System					
E. Approach Key Concepts Systemic Analysis: Error Identification, Classification and Management Systemic Analysis: Organisational accidents D. Approach Purpose Systemic Analysis: Active Failures (typically Human Factors) and Latent Conditions Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety and Accident Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Reasons for/cause of system failure Error-provoking conditions (and condition types) Defensive Layers (Defences, Barriers, Safeguards) Error Analysis and Management (reduce errors) E. Approach Key Concepts Accident Opportunities Risk Factors (and Risk Factor types) Generic data requirements are not important Error Analysis and Management (limit error impacts) F. Data Requirements Generic data requirements are not important	-				
Systemic Analysis: Organisational accidents Systemic Analysis: Active Failures (typically Human Factors) and Latent Conditions D. Approach Purpose Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety and Accident Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure Latent Conditions Defensive Layers (Defences, Barriers, Safeguards) Defensive Layers (Defences, Barriers, Safeguards) Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Error Analysis and Management (reduce errors) Brisk Factors (and Risk Factor types) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Sensibilit knowledge of the system of interact is generical	System				
Systemic Analysis: Organisational accidentsSystemic Analysis: Active Failures (typically Human Factors) and Latent ConditionsD. Approach PurposeSystemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons)Systemic Analysis: Safety and AccidentSystemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: ReliabilitySystemic Analysis: ReliabilitySystemic Analysis: Reasons for/cause of system failureLatent ConditionsDefensive Layers (Defences, Barriers, Safeguards)E. Approach Key ConceptsHoles / weaknesses in Defensive layers (and types)Accident Opportunities Risk Factors (and Risk Factor types)Generic data requirements are not important Primary data is essentialF. Data RequirementsF. Data RequirementsSensibilit knowledge of the system of intersect is generical.					
Systemic Analysis: Organisational accidentsSystemic Analysis: Active Failures (typically Human Factors) and Latent ConditionsD. Approach PurposeSystemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons)Systemic Analysis: Safety and AccidentSystemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: ReliabilitySystemic Analysis: ReliabilitySystemic Analysis: Reasons for/cause of system failureLatent ConditionsDefensive Layers (Defences, Barriers, Safeguards)E. Approach Key ConceptsHoles / weaknesses in Defensive layers (and types)Accident Opportunities Risk Factors (and Risk Factor types)Generic data requirements are not important Primary data is essentialF. Data RequirementsF. Data RequirementsSensibilit knowledge of the system of intersect is generical.		Systemic Analysis: Error Identification.	Classification a	and Management	
F. Data Generic data requirements F. Data Generic data requirements F. Data Generic data requirements					
D. Approach Purpose Systemic Analysis: Safety warning signs (mishaps, incidents, near misses, free lessons) Systemic Analysis: Safety and Accident Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Realiability Systemic Analysis: Realiability Systemic Analysis: Reasons for/cause of system failure Systemic Analysis: Reasons for/cause of system failure Image: Systemic Analysis: Reasons for/cause of system failure Image: Systemic Analysis: Reasons for/cause of system failure Systemic Analysis: Reasons for/cause of system failure Image: Systemic Analysis: Reasons for/cause of system failure Error-provoking conditions (and condition types) Defensive Layers (Defences, Barriers, Safeguards) Holes / weaknesses in Defensive layers (and types) Image: Systemic Analysis and Management (reduce errors) Error Analysis and Management (limit error impacts) Risk Factors (and Risk Factor type					
Purpose free lessons) Systemic Analysis: Safety and Accident Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Reliability Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure Example Error-provoking conditions (and condition types) Defensive Layers (Defences, Barriers, Safeguards) Learning, Mindfulness and Reporting Culture Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Exproach Key Concepts Accident Opportunities Error Analysis and Management (limit error impacts) Risk Factors (and Risk Factor types) Error analysis and Management (limit error impacts) F. Data Requirements Significant additional secondary data is required Sensibility knowledge of the system of interact is constrained					
Systemic Analysis: Safety and Accident Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure Error-provoking conditions (and condition types) Learning, Mindfulness and Reporting Culture Holes / weaknesses in Defensive layers (and types) Key Concepts Kaccident Opportunities Risk Factors (and Risk Factor types) Error Analysis and Management (limit error impacts) Generic data requirements are not important Primary data is essential Significant additional second	D. Approach		is (mishaps, inc	idents, near misses,	
Systemic Analysis: Root causes Analysis and potential Failure modes Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure Latent Conditions Error-provoking conditions (and condition types) Defensive Layers (Defences, Barriers, Safeguards) Learning, Mindfulness and Reporting Culture Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Error Analysis and Management (limit error impacts) Error Analysis and Management (limit error impacts) Risk Factors (and Risk Factor types) Error Analysis and Management Primary data is essential Significant additional secondary data is required Secondary data	Purpose				
Systemic Analysis: Reliability Systemic Analysis: Reasons for/cause of system failure F. Data Requirements Significant additional secondary data is required Significant additional secondary data is required					
Systemic Analysis: Reasons for/cause of system failure Error-provoking conditions (and condition types) Defensive Layers (Defences, Barriers, Safeguards) Holes / weaknesses in Defensive layers (and types) Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Error Analysis and Management (limit error impacts) Risk Factors (and Risk Factor types) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Specialit knowledge of the system of interpret is essential					
E. Approach Key Concepts Latent Conditions Error-provoking conditions (and condition types) Latent Conditions Learning, Mindfulness and Reporting Culture E. Approach Key Concepts Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Accident Opportunities Risk Factors (and Risk Factor types) Error Analysis and Management (limit error impacts) Generic data requirements are not important Primary data is essential F. Data Requirements Significant additional secondary data is required					
Latent Conditionscondition types)Defensive Layers (Defences, Barriers, Safeguards)Learning, Mindfulness and Reporting CultureE. Approach Key ConceptsHoles / weaknesses in Defensive layers (and types)Error analysis and Management (reduce errors)Accident Opportunities Risk Factors (and Risk Factor types)Error Analysis and Management (limit error impacts)Generic data requirements are not importantPrimary data is essentialF. Data RequirementsSignificant additional secondary data is required		Systemic Analysis: Reasons for/cause c	of system failur	e	
Latent Conditions condition types) Defensive Layers (Defences, Barriers, Safeguards) Learning, Mindfulness and Reporting Culture E. Approach Key Concepts Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Accident Opportunities Error Analysis and Management (limit error impacts) Error Analysis and Management (limit error impacts) Risk Factors (and Risk Factor types) Generic data requirements are not important Primary data is essential F. Data Requirements Significant additional secondary data is required Secondary data is essential			Frror-provok	ing conditions (and	
E. Approach Key Concepts Defensive Layers (Defences, Barriers, Safeguards) Learning, Mindfulness and Reporting Culture E. Approach Key Concepts Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Accident Opportunities Risk Factors (and Risk Factor types) Error impacts) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Specialist knowledge of the system of interest is essential		Latent Conditions		•	
E. Approach Key Concepts Safeguards) Reporting Culture Holes / weaknesses in Defensive layers (and types) Error analysis and Management (reduce errors) Accident Opportunities Error Analysis and Management (limit error impacts) Risk Factors (and Risk Factor types) Error analysis and Management (limit error impacts) Generic data requirements are not important Primary data is essential F. Data Requirements Significant additional secondary data is required					
Key Concepts layers (and types) (reduce errors) Accident Opportunities Error Analysis and Management Risk Factors (and Risk Factor types) Error impacts) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Specialist knowledge of the system of interest is essential			-		
Key Concepts Iayers (and types) (reduce errors) Accident Opportunities Error Analysis and Management Risk Factors (and Risk Factor types) Error Analysis and Management Generic data requirements are not important Primary data is essential F. Data Significant additional secondary data is required Specialist knowledge of the system of interest is essential	E. Approach	Holes / weaknesses in Defensive	Error analysis	s and Management	
Accident Opportunities (limit error impacts) Risk Factors (and Risk Factor types) (limit error impacts) Generic data requirements are not important Primary data is essential F. Data Significant additional secondary data is required Sequirements Specialist knowledge of the system of interest is essential		layers (and types)	(reduce erro	rs)	
Risk Factors (and Risk Factor types) Generic data requirements are not important Primary data is essential Significant additional secondary data is required Specialist knowledge of the system of interest is essential			-	-	
F. Data Generic data requirements are not important Primary data is essential Significant additional secondary data is required Requirements Specialist knowledge of the system of interest is essential			(limit error impacts)		
F. Data Primary data is essential Requirements Significant additional secondary data is required		RISK Factors (and RISK Factor types)			
F. Data Primary data is essential Requirements Significant additional secondary data is required					
F. Data Primary data is essential Requirements Significant additional secondary data is required					
F. Data Significant additional secondary data is required Requirements Specialist knowledge of the system of interest is essential		Generic data requirements are not important			
Requirements		Primary data is essential			
· I Specialist knowledge at the system at interest is accontial		Significant additional secondary data i	s required		
	and Availability	Specialist knowledge of the system of	interest is esse	ntial	

	Specialist Software is not needed
	Approach specific training is recommended
G. Skills and Resource Requirements	Cross sectoral collaboration between experts from multiple sectors is recommended
Н.	Error Analysis
Complementary	High Reliability Organisation Theory
Approaches	Normal Accident Theory

J. Approach Overview

Swiss Cheese Model, A System Model Approach

Defences, barriers, and safeguards occupy a key position in the system approach. High technology systems have many defensive layers: some are engineered (alarms, physical barriers, automatic shutdowns, etc), others rely on people (surgeons, anaesthetists, pilots, control room operators, etc), and yet others depend on procedures and administrative controls. Their function is to protect potential victims and assets from local hazards. Mostly they do this very effectively, but there are always weaknesses.

In an ideal world each defensive layer would be intact. In reality, however, they are more like slices of Swiss cheese, having many holes—though unlike in the cheese, these holes are continually opening, shutting, and shifting their location. The presence of holes in any one "slice" does not normally cause a bad outcome. Usually, this can happen only when the holes in many layers momentarily line up to permit a trajectory of accident opportunity—bringing hazards into damaging contact with victims Figure 1.

The holes in the defences arise for two reasons: active failures and latent conditions. Nearly all adverse events involve a combination of these two sets of factors.

Active failures are the unsafe acts committed by people who are in direct contact with the system. They take a variety of forms: slips, lapses, fumbles, mistakes, and procedural violations. Active failures have a direct and usually short lived impact on the integrity of the defences. At Chernobyl, for example, the operators wrongly violated plant procedures and switched off successive safety systems, thus creating the immediate trigger for the catastrophic explosion in the core. Followers of the person approach often look no further for the causes of an adverse event once they have identified these proximal unsafe acts. But, as discussed below, virtually all such acts have a causal history that extends back in time and up through the levels of the system.

Latent conditions are the inevitable "resident pathogens" within the system. They arise from decisions made by designers, builders, procedure writers, and top level management. Such decisions may be mistaken, but they need not be. All such strategic decisions have the potential for introducing pathogens into the system. Latent conditions have two kinds of adverse effect: they can translate into error provoking conditions within the local workplace (for example, time

pressure, understaffing, inadequate equipment, fatigue, and inexperience) and they can create long lasting holes or weaknesses in the defences (untrustworthy alarms and indicators, unworkable procedures, design and construction deficiencies, etc). Latent conditions—as the term suggests—may lie dormant within the system for many years before they combine with active failures and local triggers to create an accident opportunity. Unlike active failures, whose specific forms are often hard to foresee, latent conditions can be identified and remedied before an adverse event occurs. Understanding this leads to proactive rather than reactive risk management.

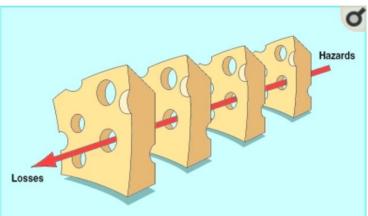


Figure 6 The Swiss Cheese model of how defences, barriers, and safeguards may be penetrated by an accident trajectory (adopted from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117770/)

K. Approach Literature:

[1] Systems Approach, Patient Safety Primer, U.S. Department of Health and Human Services,

http://psnet.ahrq.gov/primer/systems-approach

[2] Reason., James, Human error: model and management,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117770/

[3] Cross, S.R.H., 2018. The systems approach at the sharp end. Future healthcare journal, 5(3), p.176, <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502592/</u>

End of report