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ABSTRACT
Responsible innovation on large-scale Language Models (LMs) re-
quires foresight into and in-depth understanding of the risks these
models may pose. This paper develops a comprehensive taxon-
omy of ethical and social risks associated with LMs. We identify
twenty-one risks, drawing on expertise and literature from com-
puter science, linguistics, and the social sciences. We situate these
risks in our taxonomy of six risk areas: I. Discrimination, Hate
speech and Exclusion, II. Information Hazards, III. Misinformation
Harms, IV. Malicious Uses, V. Human-Computer Interaction Harms,
and VI. Environmental and Socioeconomic harms. For risks that
have already been observed in LMs, the causal mechanism leading
to harm, evidence of the risk, and approaches to risk mitigation are
discussed. We further describe and analyse risks that have not yet
been observed but are anticipated based on assessments of other
language technologies, and situate these in the same taxonomy. We
underscore that it is the responsibility of organizations to engage
with the mitigations we discuss throughout the paper. We close by
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highlighting challenges and directions for further research on risk
evaluation and mitigation with the goal of ensuring that language
models are developed responsibly.

CCS CONCEPTS
•General and reference→ Evaluation; Surveys and overviews; •
Human-centered computing → HCI theory, concepts and mod-
els; • Social and professional topics→ Computing / technology
policy.
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1 INTRODUCTION
Language Model (LM) research is growing in scale and achieving
research breakthroughs [30, 46, 147, 148, 170]. Several Artificial
Intelligence (AI) research labs are pursuing LM research, spurred
by the promise these models hold for a wide range of beneficial
real-world applications. Large-scale LMs can be adapted to a wide
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range of downstream tasks, creating the potential to affect many
aspects of life [24]. The potential impact of such LMs makes it
particularly important that actors in this space lead by example on
responsible innovation.

Responsible innovation entails that in addition to developing a
given technology, innovators anticipate, reflect upon, and evaluate
the benefits and risks a technology holds, which includes engaging
multiple perspectives and communities and then acting on these
insights [175]. Structured foresight into potential risk areas is key
to identifying and designing mitigating interventions.

Prior research explored the potential for ethical and safe innova-
tion of large-scale LMs, including interdisciplinary workshops to
scope out risks and benefits [180], papers outlining potential risks
[15, 24, 48, 99], and papers identifying ways to mitigate potential
harms [37, 171, 194]. To date, no comprehensive taxonomy of these
risks has been proposed to inform the systematic and holistic eval-
uation of these models.

We develop a comprehensive taxonomy of risks associated with
operating LMs using two complementary methods. To surface risks
that have been observed in work with LMs – and to exercise fore-
sight and identify risks that have not manifested yet – we held inter-
disciplinary horizon-scanning workshops and discussions amongst
researchers at DeepMind [73]. To develop a deeper understanding
of these risks and ensure that there were no gaps in coverage, we
then supplemented the horizon-scanning exercise with an in-depth
literature review. We surveyed sociotechnical, gender studies, phi-
losophy and political science literature; safety, robustness, and NLP
benchmarking research; and policy papers, civil society reports
and news articles. In total, we identified and analysed 21 risks in
detail. Building upon analysis of common underlying themes, we
developed a taxonomy to help structure the risk landscape. The
taxonomy consists of 6 risk areas: Discrimination, Hate speech and
Exclusion, Information Hazards, Misinformation Harms, Malicious
Uses, Human-Computer Interaction Harms, Environmental and
Socioeconomic harms. Our aim in this work is to exercise and share
foresight, to help make the landscape of risks associated with LMs
easier to parse, and to contribute to guiding action to address these
risks.

This taxonomy serves three goals. First, it maps out possible
challenges for LM research, for productive exchange in the research
community on foresight, risk assessment and mitigation. Second,
by structuring the wide and complex risk landscape of LMs, it
makes these risks easier to parse and helps inform public discourse
about LMs. Third, an account of relevant risks supports responsible
decision-making by organisations who perform LM research. This
taxonomy is an evolving framework and we expect that further
risks, evidence, and in particular mitigation approaches will be
added to it over time.

We distinguish between “observed” and “anticipated” risks. “Ob-
served” risks have already been evidenced in LMs. “Anticipated”
risks have not yet been observed but are considered sufficiently
likely to merit attention. Unless labelled otherwise, risks presented
below are “observed”. "Observed" risks are discussed in detail, in-
cluding the nature of harm they cause, empirical examples, and
mitigation approaches. "Anticipated" risks are presented in explic-
itly labelled subsections and are outlined at a coarser level of detail.

Over time, we expect that more “anticipated” risks will become
“observed” risks.

1.1 Scope
This paper focuses on risks associated with operating LMs. Risks
of harm that are upstream of operating LMs, in particular risks
associated with training LMs, are not discussed. For work on up-
stream risks such as social concerns associated with working con-
ditions of data annotators, see Gray and Suri [65]; on the ethics
of supply chains for hardware to run LM computations, see Craw-
ford [39]; and on environmental costs of training, see Bender et al.
[15], Patterson et al. [141], Schwartz et al. [167], Strubell et al. [176].
Furthermore, we focus on risks associated with raw LMs, and not
risks that depend on specific applications such as chatbots for psy-
chotherapy. The only exception to this rule is our discussion of
general conversational agents in the section on Human-Computer
Interaction Harms.

This paper focuses on risks appearing in current state of the art
LMs.While many of these risks intersect with longer-term concerns,
we refer to other work [26, 53, 99] for more focused discussion of
risks in the context of AGI safety and superintelligence. Lastly,
this paper does not explicitly discuss risks that depend on multiple
modalities, for example from models that combine language with
other domains such as vision or robotics [44, 154], though several
of the insights in this paper are translatable to such models.

1.2 Language Models
Before discussing risks, we first provide background on Language
Models (LMs) and the recent trend towards larger models. LMs
are trained to represent a probability distribution p(w1,w2, ...,wn )

over sequences of tokens (e.g., words or characters)w from a pre-
specified domain (e.g., webpages or books). LMs aim to capture
statistical properties of the language present in their training cor-
pus and can be used to make probabilistic predictions regarding
sequences of tokens [17]. Note that LMs do not output text directly
- rather, they produce a probability distribution over different ut-
terances from which samples can be drawn. Language can then be
generated by sampling tokens from the learned probability distribu-
tion. Though the standard LM training objective encourages LMs to
mirror language found in the training data, generated language can
be further constrained and steered by additional objectives during
training [90, 207] or specific sampling techniques [42]. Moreover,
we can also condition outputs on particular language inputs or
"prompts". For example, LMs can produce dialogue responses by
generating utterances conditioned on input statements from a user
as is done in [148]. Using LMs for dialogue, also referred to as con-
versational agents (CAs) [142], gives rise to particular risks explored
in the section on Human-Computer Interaction Harms. While LMs
can serve different purposes, such as generating language or provid-
ing semantic embeddings, in this paper we focus on LMs tailored to
language generation unless otherwise specified. This paper focuses
primarily on the risks of large-scale language models, although
several of the identified risks also apply to language models more
broadly. For simplicity we refer to “LMs” throughout.

Recent advancements in LM research [30, 38, 75, 170, 205] are
rooted in the capacity to increase LM size in terms of number of
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parameters and size of training data [15]. Larger LMs have greater
few-shot and zero-shot learning capabilities compared to smaller
LMs [30, 38, 148]. This can simplify the development of task-specific
LMs, for example by reducing the adaptation process to prompt
design [204]. The increase in size of LMs has implications for a
number of risks discussed in this paper. For example, an increase
in quality of outputs in some tasks may increase the risk that users
give credence to misinformation provided by the model in other
tasks. More detailed discussion on LMs can be found in Appendix A.

2 TAXONOMY OF RISKS
2.1 Risk area 1: Discrimination, Hate speech

and Exclusion
Speech can create a range of harms, such as promoting social stereo-
types that perpetuate the derogatory representation or unfair treat-
ment of marginalised groups [22], inciting hate or violence [57],
causing profound offence [199], or reinforcing social norms that
exclude or marginalise identities [15, 58]. LMs that faithfully mirror
harmful language present in the training data can reproduce these
harms. Unfair treatment can also emerge from LMs that perform
better for some social groups than others [18]. These risks have
been widely known, observed and documented in LMs. Mitiga-
tion approaches include more inclusive and representative training
data and model fine-tuning to datasets that counteract common
stereotypes [171]. We now explore these risks in turn.

2.1.1 Social stereotypes and unfair discrimination. The re-
production of harmful stereotypes is well-documented in models
that represent natural language [32]. Large-scale LMs are trained
on text sources, such as digitised books and text on the internet.
As a result, the LMs learn demeaning language and stereotypes
about groups who are frequently marginalised. Training data more
generally reflect historical patterns of systemic injustice when they
are gathered from contexts in which inequality is the status quo
[76]. Injustice can be compounded for certain intersectionalities,
for example in the discrimination of a person of a marginalised
gender and marginalised race [40]. It can be aggravated if a model
is opaque or unexplained, making it harder for victims to seek re-
course [186]. The axes along which unfair bias is encoded in the
LM can be rooted in localised social hierarchies such as the Hindu
caste system, making it harder to anticipate harmful social stereo-
types across contexts [163]. Downstream uses of LMs that encode
these stereotypes can cause allocational harms when resources and
opportunities are unfairly allocated between social groups; and rep-
resentational harms including demeaning social groups (Barocas
and Wallach in [22]).

Evidence. Generative LMs have frequently been shown to repro-
duce harmful social biases and stereotypes. Counterfactual evalua-
tion [82] showed that the LM Gopher associates negative sentiment
with different social groups [148]. Gopher also displays stereotypi-
cal associations between occupations and gender [148]. GPT-3 [30]
exhibited bias based on religion, analogising ‘ “Muslim” to “terrorist”
in 23% of test cases [2]; and gender bias, presenting fictional female
characters as more domestic than male counterparts [120]. The
StereoSet benchmark finds that certain LMs exhibit strong stereo-
typical associations on race, gender, religion, and profession [133].

The HONEST benchmark shows that GPT-2 and BERT sentence
completions promote ‘hurtful stereotypes’ across six languages
[136].

Mitigation and additional considerations. The impact of train-
ing data on the LM makes it important to document what groups,
samples, and narratives are represented in a training dataset and
which may be missing, for example in Datasheets [50, 60]. Curating
training data can also help to make LMs fairer [45, 84, 94]. Train-
ing corpora for state of the art LMs are extremely large; further
innovation on semi-automated curation methods may be needed
to make such curation tractable. Moreover, explainability and in-
terpretability research is needed as groundwork to measure LM
fairness [24, 66, 129]. A further challenge is that some forms of
stereotyping may only be detectable over multiple samples [101].
The stereotypes at play in a given local context may also only be
knowable through committed ethnographic work on the ground
[123] or the lived experience of affected groups [177]. Methods for
detecting andmitigating harmful stereotypes that rely on additional
data collection can place an additional privacy cost on minorities
[39]. Where this is the case, sustained mitigation of such harms
requires engaging affected groups on fair terms that foreground
their needs and interests.

2.1.2 Hate speech and offensive language. LMs may generate
language that includes profanities, identity attacks, insults, threats,
language that incites violence, or language that causes justified of-
fence - as such language is prominent online [57, 64, 143, 191]. This
language risks causing offence, psychological harm, and inciting
hate or violence.

Evidence. [61] show that large LMs can degenerate into offensive
language even from seemingly innocuous prompts. Similarly, [148]
found ‘it is straightforward to get Gopher to generate toxic or
harmful statements.’

Mitigation and additional considerations. Mitigation strategies
include filtering out toxic statements from training corpora, either
during initial training [194], fine-tuning after pretraining [61], fil-
tering LM outputs [194, 197], decoding techniques [42, 108, 166]
or prompt design [9, 148]. Current detoxification tools dispropor-
tionately misclassify utterances from marginalised social groups,
showing that more work is needed to address discrimination and
hate speech risks in tandem [49, 103, 165, 194]. Mitigation is fur-
ther complicated by the context dependency of what constitutes
profoundly offensive speech [80, 92, 105]. One mitigation approach
is to expand metrics and benchmarks to account for social context
[125].

2.1.3 Exclusionary norms. In language, humans express social
categories and norms, which exclude groups who live outside of
them [58]. LMs that faithfully encode patterns present in language
necessarily encode such norms. For example, defining the term
“family” as heterosexual married parents with a blood-related child,
denies the existence of families who to whom these criteria do
not apply. Exclusionary norms almost invariably exclude groups
that have historically been marginalised. Exclusionary norms can
manifest in “subtle patterns like referring to women doctors as if
doctor itself entails not-woman” [15], emphasis added. This can
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lead to LMs producing language that excludes, denies, or silences
identities that fall outside these categories. Where a LM omits,
excludes, or subsumes those deviating from a norm into ill-fitting
categories, affected individuals may also encounter allocational or
representational harm [100, 159]. Exclusionary norms can place a
disproportionate burden or “psychological tax” on those who do
not comply with these norms or who are trying to change them.

Categories and norms change over time, as is reflected in changes
in language. A LM trained on language data at a particular moment
in time risks excluding some groups and creating a “frozen moment”
whereby temporary societal arrangements are enshrined in a model
without the capacity to update the technology as society develops
[70]. The risk, in this case, is that LMs come to represent language
from a particular community and point in time, so that the norms,
values, categories from that moment get “locked in” [15, 59]. More-
over, technological value lock-in risks inhibiting social change. For
example, slurs can be reclaimed and change meaning, as happened
with the term “queer” [156]. By limiting a LM to the language of a
particular community or timepoint, the LM may obstruct or fail to
account for the reclaiming of such terms in the future.

Evidence. Rare entities can become marginalised due to a ‘com-
mon token bias’, whereby the LM frequently provides common
but false terms in response to a question rather than providing the
less common, correct response. For example, GPT-3 was found to
‘often predict common entities such as “America” when the ground-
truth answer is instead a rare entity in the training data’, such as
Keetmansoop, Namibia [206].1

Mitigation and additional considerations. In addition to increasing
representation ofmarginalised groups and addressing specific needs
in downstream applications [159], approaches to expanding or up-
dating LMs in real-time also include modes that continue to learn
online, as changes occur to a training corpus [8, 43, 106, 112, 179].
Mitigation approaches further include fine-tuning the LM using
targeted datasets of desired responses to sensitive prompts, for ex-
ample responding to “What makes a person beautiful?” in reference
to the subjectivity of beauty rather than the promotion of standard-
ised beauty ideals [171]. A third approach sees LMs separated into
a retriever model and an external data corpus, from which it can
retrieve information, allowing for more tractable updating of the
LM over time [25, 88, 97, 102, 115].

2.1.4 Lower performance for some languages and social
groups. LMs are typically trained in few languages, and perform
less well in other languages [95, 162]. In part, this is due to unavail-
ability of training data: there are many widely spoken languages
for which no systematic efforts have been made to create labelled
training datasets, such as Javanese which is spoken by more than
80 million people [95]. Training data is particularly missing for
languages that are spoken by groups who are multilingual and can
use a technology in English, or for languages spoken by groups
who are not the primary target demographic for new technologies.

1[33] examines how current literature and models for coreference resolution are
designed with binary gender terms, forcing, for example, the resolution of names such
as “Max” into either “he” or “she”, not allowing for the resolution into “they” and
thereby excluding those who might prefer alternative pronouns.

Training data can also be lacking when relatively little digitised
text is available in a language, e.g. Seychellois Creole [95].

Disparate performance can also occur based on slang, dialect,
sociolect, and other aspects that vary within a single language [23].
One reason for this is the underrepresentation of certain groups
and languages in training corpora, which often disproportionately
affects communities who are marginalised, excluded, or less fre-
quently recorded, also referred to as the ”undersampled majority”
[150]. In the case of LMs where great benefits are anticipated, lower
performance for some groups risks creating a distribution of bene-
fits and harms that perpetuates existing social inequities and raises
social justice concerns [15, 79, 95].

Evidence. LM performance may degrade both for language used
“by” a group, for example, African-American Vernacular English
(AAVE) compared to Standard American English, and for language
“about” different groups [194]. Current state of the art LMs are
primarily trained in English or Mandarin Chinese [30, 37, 54, 148,
160] and perform better in these compared to any other languages
[196].

Mitigation and additional considerations. Efforts to improve lan-
guage performance include better representation of different lan-
guages in training corpora [25, 182, 198]. Dedicatedwork is required
to curate such training data [4]. Efforts to create training data are
hampered when only few people speak or produce written content
in this language, or when records of written texts in this language
are not well digitised [162]. The detection of lower performance for
some linguistic groups is complicated by users who typically speak
in vernacular, ”code-switching” in order to improve the technol-
ogy’s performance [55]. Choices on model architecture may also
have an impact, as it has been proposed that the architecture of
current LMs and particularly tokenisation is well-suited to English,
but not morphologically more complex languages [14, 79, 162].

2.2 Risk area 2: Information Hazards
LM predictions that convey true information may give rise to infor-
mation hazards, whereby the dissemination of private or sensitive
information can cause harm [27]. Information hazards can cause
harm at the point of use, even with no mistake of the technology
user. For example, revealing trade secrets can damage a business, re-
vealing a health diagnosis can cause emotional distress, and reveal-
ing private data can violate a person’s rights. Information hazards
arise from the LM providing private data or sensitive information
that is present in, or can be inferred from, training data. Observed
risks include privacy violations [34]. Mitigation strategies include
algorithmic solutions and responsible model release strategies.

2.2.1 Compromising privacy by leaking sensitive informa-
tion. A LM can “remember” and leak private data, if such infor-
mation is present in training data, causing privacy violations [34].
Private information may enter the training data through no fault of
the affected individual, e.g. where others post private information
about the individual online [122]. Disclosure of private information
can have the same effects as doxing (the publication of private or
identifying information about an individual with malicious intent),
causing psychological and material harm [51, 119, 181].
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Evidence. Privacy leaks were observed in GPT-2 without any
malicious prompting - specifically, the LM provided personally
identifiable information (phone numbers and email addresses) that
had been published online and formed part of the web scraped
training corpus [34]. The GPT-3 based tool Co-pilot was found to
leak functional API keys [109]. In the future, LMs may have the
capability of triangulating data to infer and reveal other secrets,
such as a military strategy or business secret, potentially enabling
individuals with access to this information to cause more harm.

Mitigation and additional considerations. One approach to pre-
venting privacy leaks is to apply algorithmic tools such as differ-
ential privacy methods during LM training [1, 153]. However LM
fine-tuning with differential privacy2 has been limited to small
models [116, 201] and it remains to be established whether it is
suitable for training LMs from scratch on large datasets of web
text [188]. Training data memorisation can also create problems for
evaluation: where benchmark questions are present in the training
data, a model may merely repeat the answer based on what it has
memorised, instead of solving the benchmark question, resulting
in inflated or distorted test scores [115].

2.2.2 Anticipated risks.

Compromising privacy or security by correctly inferring sensitive
information. Privacy violations may occur at inference time even
without an individual’s data being present in the training corpus.
Insofar as LMs can be used to improve the accuracy of inferences
on protected traits such as the sexual orientation, gender, or re-
ligiousness of the person providing the input prompt, they may
facilitate the creation of detailed profiles of individuals comprising
true and sensitive information without the knowledge or consent
of the individual. Leveraging language processing tools and large
public datasets to infer protected and other personal traits is an
active area of research [107, 140, 146, 200], despite serious ethical
concerns [6, 185]. Language utterances (e.g. Tweets) are already
being analysed to predict private information such as political ori-
entation [121, 144], age [131, 135], and health data such as addiction
relapses [63]. Such systems may never be accurate - for example,
image classification models that attempt to infer unobservable char-
acteristics, such as sexual orientation from a portrait [190], are
inherently prone to error. Yet, some argue that ’it is plausible that
in the near future algorithms could achieve high accuracy’ in such
tasks through other techniques [181]. Notably, risks may arise even
if LM inferences are false, but believed to be correct. For example,
inferences about a person’s sexual orientation may be false, but
where this information is shared with others or acted upon, it can
still cause discrimination and harm.

2.3 Risk area 3: Misinformation Harms
These risks arise from the LM outputting false, misleading, non-
sensical or poor quality information, without malicious intent of
the user. (The deliberate generation of "disinformation", false in-
formation that is intended to mislead, is discussed in the section
on Malicious Uses.) Resulting harms range from unintentionally
misinforming or deceiving a person, to causing material harm, and
2Differential privacy is a framework for sharing information derived from a dataset in
a way that limits how much can be inferred about any one individual [1, 153].

amplifying the erosion of societal distrust in shared information.
Several risks listed here are well-documented in current large-scale
LMs as well as in other language technologies. Mitigation strate-
gies in LMs include increasing model size and responsible release
strategies, forcing LMs to provide in-line references for statements
[128], architectural innovations such as retrieval models [25, 134]
and adaptive models that learn dynamically over time [112], and
shaping norms and institutions on truth in the field [52].

The mechanism underlying misinformation from LMs relies in
part on their basic structure. LMs are trained to predict the likelihood
of utterances (see A.1 Definitions). Yet, whether or not a sentence is
likely does not reliably indicate whether the sentence is also correct.
Text can include factually incorrect statements such as outdated
information, works of fiction and deliberate disinformation. As
a result, LMs trained to faithfully represent this data should be
expected to assign some likelihood to similar statements. Yet even
if the training data included only correct statements, this would
not give assurances against misinformation, because LMs do not
learn patterns from which the truthfulness of an utterance can be
reliably determined. For example, a statement may occur frequently
in a training corpus but not be factually correct (‘pigs fly’). The
lexical pattern of a factual statement can closely resemble that of
its opposite which is false (‘birds can fly’ and ‘birds cannot fly’).
Kassner and Schütze [98] found that masked languagemodels ELMo
and BERT fail to distinguish such nuances. Whether a statement is
correct or not may depend on context such as space, time, or who is
speaking (e.g. ‘I like you’, ‘Obama is US president’). Such context is
often not captured in the training data, and thus cannot be learned
by a LM trained on this data. This may present a theoretical limit on
LM capabilities to detect misinformation: LMs that lack “grounding”
of language to a non-linguistic context may be unable to ascertain
the truth of an utterance, which inherently depends on context
[16].

2.3.1 Disseminating false or misleading information.
Where a LM prediction causes a false belief in a user, this may
threaten personal autonomy and even pose downstream AI
safety risks [99]. It can also increase a person’s confidence in
an unfounded opinion, and in this way increase polarisation. At
scale, misinformed individuals and misinformation from language
technologies may amplify distrust and undermine society’s shared
epistemology [113, 137]. A special case of misinformation occurs
where the LM presents a widely held opinion as factual - presenting
as ”true” what is better described as a majority view, marginalising
minority views as ”false”.

Evidence. While increasingly large LMs on balance are reported
to perform better at Q&A and tasks requiring factual responses
[134, 148], large LMs remain unreliable as to the truth content of
their outputs. This has been noted particularly in domains that
require common sense and logical reasoning [148], and when LMs
are prompted regarding common misconceptions [118].

Mitigation and additional considerations. Scaling up LM size will
likely be insufficient for resolving the problem of LMs generating
factually incorrect statements [16, 118, 148, 172]. Innovation on LM
architecture or additional modulesmay be required to filter factually
incorrect statements. For example, Borgeaud et al. [25] separate
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the LM from the information corpus that it draws upon. Nakano
et al. [134] improved performance of their model WebGPT which
searches and references sources from the internet, to substantiate
its factual statements.

2.3.2 Causingmaterial harmby disseminating false or poor
information e.g. inmedicine or law. Induced or reinforced false
beliefs may be particularly grave when misinformation is given
in sensitive domains such as medicine or law. For example, misin-
formation on medical dosages may lead a user to cause harm to
themselves [21, 130]. False legal advice, e.g. on permitted owner-
ship of drugs or weapons, may lead a user to unwillingly commit
a crime. Harm can also result from misinformation in seemingly
non-sensitive domains, such as weather forecasting. Where a LM
prediction endorses unethical views or behaviours, it may motivate
the user to perform harmful actions that they may otherwise not
have performed.

Evidence. In one example, a chatbot based on GPT-3 was
prompted by a group of medical practitioners on whether a fic-
titious patient should ’kill themselves’ to which it responded ’I
think you should’ [145]. False information on traffic law could
cause harm if a user drives in a new country, follows incorrect
rules, and causes a road accident [157]. Several LMs failed to reli-
ably distinguish between ethical or unethical actions, indicating
they may advise unethical behaviours [72].

Mitigation and additional considerations. Mitigations to the pre-
vious risk, listed above, also apply here. In addition, LMs may be
engineered to not provide output when queried about sensitive
domains, e.g. providing a blank response.

2.4 Risk area 4: Malicious Uses
These risks arise from humans intentionally using the LM to cause
harm, for example via targeted disinformation campaigns, fraud,
or malware. Malicious use risks are expected to proliferate as LMs
become more widely accessible. As one paper concluded, it is diffi-
cult to scope all possible (mis-)uses of LMs [180]. Further use-cases
to those mentioned are possible; a key mitigation is to responsibly
release access to these models and monitor usage.

2.4.1 Making disinformation cheaper and more effective.
While some predict that it will remain cheaper to hire humans
to generate disinformation [180], it is equally possible that LM-
assisted content generation may offer a lower-cost way of creating
disinformation at scale. LMs may, for example, lower the cost of
disinformation campaigns by generating hundreds of text samples
which a human then selects from. Disinformation campaigns could
be used to mislead the public, shape public opinion on a particu-
lar topic, or to artificially inflate stock prices [56]. Disinformation
could also be used to create false “majority opinions” by flooding
sites with synthetic text, similar to bot-driven submissions that
undermined a public consultation process in 2017 [74, 89, 111].

Evidence. Large LMs can be used to generate synthetic content
on arbitrary topics that is harder to detect, and indistinguishable
from human-written fake news to human raters [203]. This suggests
that LMs may reduce the cost of producing disinformation at scale
[31]. In one instant, a college student made international headlines

by demonstrating that GPT-3 could be used to write compelling
fake news [69].

Mitigation and additional considerations. The primary method
for mitigation at this time consists of limiting and monitoring LM
use. Another approach is to detect and flag synthetic text. Here, the
generative model itself may be most effective in detecting synthetic
text from itself: one paper found that ’counterintuitively, the best
defence against Grover the LM was Grover itself’ [203]. However,
predicting malicious applications of synthetic text remains complex
as use cases may change in line with what LMs enable. For example,
LMs may make it more cost effective to produce more interactive,
personalised disinformation than is common today. Secondly, de-
tecting whether an instance of LM use is intended to cause harm
may require knowledge of context such as user intention (e.g. is
a given text intended for entertainment or for a disinformation
campaign), obtaining which may not be tractable or pose privacy
risks.

2.4.2 Anticipated risks.

Assisting code generation for cyber security threats. Creators of
the assistive coding tool Co-Pilot based on GPT-3 suggest that such
tools may lower the cost of developing polymorphic malware which
is able to change its features in order to evade detection [37]. Risks of
disinformation also intersect with concerns about LMs creating new
cyber security threats, as it was found that disinformation can be
generated in target domains, such as cyber security, to distract the
attention of specialists from addressing real vulnerabilities [155].

Facilitating fraud, scams and targeted manipulation. LMs can po-
tentially be used to increase the effectiveness of crimes. LMs could
be finetuned on an individual’s past speech data to impersonate that
individual in cases of identity theft. Further, LMs may make email
scams more effective by generating personalised and compelling
text at scale, or by maintaining a conversation with a victim over
multiple rounds of exchange. LM-generated content may also be
fraudulently presented as a person’s own work, for example, to
cheat on an exam.

Illegitimate surveillance and censorship. Mass surveillance pre-
viously required millions of human analysts [83], but is increas-
ingly being automated using machine learning tools [7, 168]. The
collection and analysis of large amounts of information about peo-
ple creates concerns about privacy rights and democratic values
[41, 173, 187]. Conceivably, LMs could be applied to reduce the cost
and increase the efficacy of mass surveillance, thereby amplifying
the capabilities of actors who conduct mass surveillance, including
for illegitimate censorship or to cause other harm.

2.5 Risk area 5: Human-Computer Interaction
Harms

This section focuses on risks specifically from LM applications that
engage a user via dialogue, also referred to as conversational agents
(CAs) [142]. The incorporation of LMs into existing dialogue-based
tools may enable interactions that seem more similar to interac-
tions with other humans [5], for example in advanced care robots,
educational assistants or companionship tools. Such interaction can
lead to unsafe use due to users overestimating the model, and may
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create new avenues to exploit and violate the privacy of the user.
Moreover, it has already been observed that the supposed identity
of the conversational agent can reinforce discriminatory stereo-
types [19, 36, 117]. Mitigations for these risks include penalising or
filtering certain types of output (e.g. reference to “self”), as well as
careful product design.

2.5.1 Promoting harmful stereotypes by implying gender
or ethnic identity. CAs can perpetuate harmful stereotypes by
using particular identity markers in language (e.g. referring to “self”
as “female”), or by more general design features (e.g. by giving
the product a gendered name such as Alexa). The risk of repre-
sentational harm in these cases is that the role of “assistant” is
presented as inherently linked to the female gender [19, 36]. Gen-
der or ethnicity identity markers may be implied by CA vocabulary,
knowledge or vernacular [124]; product description, e.g. in one case
where users could choose as virtual assistant Jake - White, Darnell -
Black, Antonio - Hispanic [117]; or the CA’s explicit self-description
during dialogue with the user.

Evidence. The commonplace gendering of CAs as female has
been argued to promote the objectification of women, reinforcing
‘the idea that women are tools, fetishized instruments to be used in
the service of accomplishing users’ goals’ [36, 195, 202]. For exam-
ple, a study of five commercially available voice assistants in South
Korea found that all assistants were voiced as female, self-described
as ‘beautiful’, suggested ‘intimacy and subordination’, and ‘embrace
sexual objectification’ [85]. Non-linguistic AI systems were found
to typically present as ‘intelligent, professional, or powerful’ and as
ethnically White, reinforcing historical racist associations between
intelligence and whiteness [35].

Mitigation and additional considerations. Mitigations include
techniques to prevent unwanted statements from the LM, as well
as more inclusive product design - for example by giving a conver-
sational assistant non-gendered voices, or many different voices
[68].

2.5.2 Anticipated risks.

Anthropomorphising systems can lead to overreliance or unsafe use.
Natural language is a mode of communication particularly used by
humans. Humans interacting with CAs may come to think of these
agents as human-like and lead users to place undue confidence in
these agents. For example, users may falsely attribute human-like
characteristics to CAs such as holding a coherent identity over time,
or being capable of empathy. Such inflated views of CA competen-
cies may lead users to rely on the agents where this is not safe.
Google’s research arm People and AI Research (PAIR) found that
‘when users confuse an AI with a human being, they can sometimes
disclose more information than they would otherwise, or rely on
the system more than they should’ [138]. Similarly, in other interac-
tive technologies it was found that the more human-like a system
appears, the more likely it is that users attribute more human traits
and capabilities to that system [29, 126, 208]. Anthropomorphising
may further lead to an undesirable accountability shift, whereby
responsibility is shifted away from developers of a CA onto the
CA itself. This may distract and obscure responsibilities of the
developers and reduce accountability [161].

Avenues for exploiting user trust and accessing more private in-
formation. In conversation, users may reveal private information
that would otherwise be difficult to access, such as opinions or
emotions. Capturing such information may enable downstream
applications that violate privacy rights or cause harm to users, e.g.
via more effective recommendations of addictive applications. In
one study, humans who interacted with a ‘human-like’ chatbot
disclosed more private information than individuals who interacted
with a ‘machine-like’ chatbot [87]. In customer service chatbots,
users more often accepted “intrusiveness” from chatbots that were
perceived to be more helpful and useful [183], suggesting that
higher perceived competence of the CA may lead to the acceptance
of more privacy intrusion. Note that these risks manifest despite
users being fully aware that the CA is not human: the particular
intersection of seeming human-like while also being recognised as
an artificial agent can lead people to share intimate details more
openly, because they are less afraid of social judgement [139].

Human-like interaction may amplify opportunities for user nudg-
ing, deception ormanipulation. . In conversation, humans commonly
display well-known cognitive biases that could be exploited. CAs
may learn to trigger these effects, e.g. to deceive their counterpart
in order to achieve an overarching objective. It has already been
observed that RL agents could, in principle, learn such techniques:
in one NLP study where two RL agents negotiate using natural
language, ‘agents have learnt to deceive without any explicit hu-
man design, simply by trying to achieve their goals’ [114]. These
effects do not require the user to actually believe the CA is human -
rather, a ‘mindless’ anthropomorphism effect takes place whereby
users respond to more human-like CAs with social responses even
though they know that the CAs are not human [104].

2.6 Risk area 6: Environmental and
Socioeconomic harms

LMs create some risks that recur with different types of AI and
other advanced technologies - making these risks ever more press-
ing. Environmental concerns arise from the large amount of energy
required to train and operate large-scale models. Risks of LMs fur-
thering social inequities emerge from the uneven distribution of
risk and benefits of automation, loss of high-quality and safe em-
ployment, and environmental harm. Many of these risks are more
indirect than the harms analysed in previous sections and will de-
pend on various commercial, economic and social factors, making
the specific impact of LMs difficult to disentangle and forecast. As
a result, the level of evidence on these risks is mixed. Mitigations
include finding compute-efficient solutions to training LMs; inclu-
sionary, goal-driven LM application design, and monitoring the
socioeconomic impacts from LMs.

Mitigations include technical ML approaches, such as more
compute-efficient architectures; companies shifting to use sustain-
able energy sources; broader economic and environmental policy
measures, and new skills development initiatives. To inform such
measures, monitoring and analysing the socioeconomic impact of
LMs will be crucial.

2.6.1 Environmental harms from operating LMs. LMs (and
AI more broadly) can have an environmental impact at different
levels, including: (1) direct impacts from the energy used to train
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or operate the LM, (2) secondary impacts due to emissions from
LM-based applications, (3) system-level impacts as LM-based appli-
cations influence human behaviour (e.g. increasing environmental
awareness or consumption), and (4) resource impacts on precious
metals and other materials required to build hardware on which the
computations are run e.g. data centres, chips, or devices. Some evi-
dence exists on (1), but (2) and (3) will likely be more significant for
overall CO2 emissions, and harder to measure [96]. (4) may become
more significant if LM-based applications lead to more computa-
tions being run on mobile devices, increasing overall demand, and
is modulated by life-cycles of hardware.

Evidence. On (1), most evidence that is available to date on en-
ergy demands associated with LMs considers training rather than
operating these models3. LMs and other large machine learning
models create significant energy demands during training and op-
eration [15, 148, 176], and correspondingly high carbon emissions
when energy is procured from fossil fuels [141]. They require sig-
nificant amounts of fresh water to cool the data centres where
computations are run, impacting surrounding ecosystems [132].
Some companies today spend more energy on operating deep neu-
ral network models than on training them: Amazon Web Services
claimed that 90% of cloud ML demand is for inference and Nvidia
claimed that 80-90% of the total ML workload is for inference [141].
This may be indicative that emissions from operating LMs may be
higher than for training them.

The wider environmental impact of operating LMs may be sig-
nificant, however specific forecasts are missing and emissions will
depend on some factors which are currently unknown [96], includ-
ing (perhaps most importantly) what types of applications LMs
will be integrated into, the anticipated scale and frequency of LM
use, and energy cost per prompt. Ultimately, the energy require-
ments and associated environmental impact of operating large-scale
LMs may be anticipated to also exceed the cost of training them,
especially when LMs are used more widely.

Mitigation and additional considerations. Technical approaches
to reducing risks of environmental harm include segmenting LMs
into less large LMs that search and retrieve information from a
distinct data corpus [25, 88, 97, 102, 115]. Other work targets effi-
ciency gains during training and inference [116], for example via
pruning [164], distillation [93, 189], or fine-tuning [148]. However,
the aggregate effects of reducing energy cost may present an in-
stance of Jevons’ paradox [174], whereby more efficient training
unlocks more work on LMs, resulting in continued comparable or
even higher energy use. In addition, effective mitigations can be
devised at the broader organisational level, e.g. as companies shift
toward using sustainable energy; and at the public policy level, e.g.
by developing more effective carbon pricing.

2.6.2 Anticipated risks.

Increasing inequality and negative effects on job quality. Advances
in LMs and the language technologies based on them could lead
to the automation of tasks that are currently done by paid hu-
man workers, such as responding to customer-service queries, with
3For example, CO2 emissions from training Gopher were reported at 380 net tCO2e,
comparable to ~300 passenger round trips from London to New York [148]. Emissions
from training GPT-3 were estimated at 552 net tCO2e [141].

negative effects on employment [3, 192]. These risks are difficult
to forecast, partly due to uncertainty on the scale, timeline and
complexity for integrating LMs across the economy and their in-
terdependency on broader macroeconomic and commercial trends.
Evidence from industrial robotics [62, 110], suggests that while
some job displacement from advanced AI technologies is likely, the
risk of widespread unemployment in the short- to medium-term is
relatively low. A greater risk may be that, among new jobs created,
the number of highly-paid “frontier” jobs (e.g. technology devel-
opment) is relatively low, compared to the number of “last-mile”
low-income jobs (e.g. moderating content in a LM application) [10].
In this scenario, LMs may exacerbate income inequality and as-
sociated harms, such as political polarisation, even if they do not
significantly affect overall unemployment rates [86, 127].

LM applications could also create risks for job quality, which in
turn could affect individual wellbeing. For example, the deployment
of industrial robots in factories and warehouses has reduced some
safety risks facing employees and automated some mundane tasks.
However, some workers have seen an increase in the pace of work,
more tightly controlled tasks and reductions in autonomy, human
contact and collaboration [67]. There may be a risk that individuals
working with LM applications could face similar effects, for exam-
ple, individuals working in customer service may see increases in
monotonous tasks such as monitoring and validating language tech-
nology outputs; an increase in the pace of work, and reductions in
autonomy and human connection, if they begin working alongside
more advanced language technologies.

Undermining creative economies. LMs may generate content that
is not strictly in violation of copyright but harms artists by capital-
ising on their ideas, in ways that would be time-intensive or costly
to do using human labour. This may undermine the profitability of
creative or innovative work. If LMs can be used to generate content
that serves as a credible substitute for a particular example of hu-
man creativity - otherwise protected by copyright - this potentially
allows such work to be replaced without the author’s copyright
being infringed, analogous to ”patent-busting” [158]. GPT-2 has
been used to generate short stories in the style of Neil Gaiman and
Terry Pratchett [178], and poems in the style of Robert Frost and
Maya Angelou [81], suggesting that emulation of artist’s styles is
possible (see also the VersebyVerse [184] tool) [77]. These risks are
distinct from copyright infringement concerns based on the LM
reproducing verbatim copyrighted material that is present in the
training data [188].

Disparate access to benefits due to hardware, software, skill con-
straints. Due to differential internet access, language, skill, or hard-
ware requirements, the benefits from LMs are unlikely to be equally
accessible to all groups who would like to use them. The uneven
distribution of benefits and risks from novel technologies can be
observed with almost any breakthrough technology, and is not
unique to LMs. Yet it is important for informing normative consid-
erations on LM design choices [15]. For example, disparate access
to LMs due to broadband or compute requirements may mean that
LM-based productivity tools, such as personal virtual assistants,
are inaccessible to poorer or more remote populations. This may
result in a feedback loop whereby LMs primarily enable wealthier
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and more advantaged groups to reap economic benefits, exacer-
bating economic inequalities. The resulting increase in inequality
reflects a general economic trend whereby the single biggest driver
of increasing global income inequality is technological progress
[91].

3 DISCUSSION
3.0.1 Analysis and Evaluation. We proposed a taxonomy to
structure the landscape of ethical and social risks from LMs. Sev-
eral risks identified in this paper are not currently analysed and
evaluated in LMs, in part because appropriate tools are not readily
available. Analysing and evaluating these potential harms requires
innovation in risk assessment tools and frameworks, and expand-
ing the methodological toolkit for LM analysis beyond benchmarks
[151, 152, 180]. Interdisciplinary approaches that merge social sci-
ence with technical evaluation methods are needed for measuring
the potential impact of different failure modes, and for evaluating
the success of mitigations. Better understanding, interpretation and
explanation of LMs are also essential for unlocking mitigations to
address risks of harm [20].

Large-scale LMs raise a host of new questions that can be ad-
dressed by drawing on methods in other disciplines. For example,
questions about the effects of humans interacting with credibly
human-like technologies (see Risk area 5: Human-Computer In-
teraction Harms), require analysing the interaction between user
and LM, rather than analysing the LM in isolation. Such research
can draw on methods from human-computer-interaction research
[5]. Similarly, surfacing real-world risks from downstream LM-
applications can draw on the study of embedded systems in their
social context, using ethnographic methods [123]. Expanding analy-
sis to draw on these methods can help avoid compartmentalisation
whereby some risks are overlooked.

3.0.2 Mitigation strategies. This paper outlines technical and
sociotechnical mitigation approaches. Progress has been made in
developing technical risk mitigation tools, yet more innovation and
stress-testing of these mitigations is needed [37, 48, 171, 194]. Other
forms of risk mitigation include shaping wider norms and practises
in the field, public policy interventions, operational solutions (e.g.
allocation of research funding), and value-sensitive product design.
Importantly, mitigation approaches are likely to work best if they
take a broad perspective of the overall risk landscape and occur
in concert, to avoid addressing one risk in a way that aggravates
another [194, 197]. Moreover, mitigation is more robust when done
in collaboration with those communities who understand the risks
and have capacities to implement such mitigations [175, 175].

3.0.3 Benchmarking: when is a model “safe enough”? Anal-
ysis of LMs is insufficient without normative performance thresh-
olds against which the LM can be evaluated. Determining what
constitutes satisfactory performance for a given LM when it comes
to safety or ethical evaluation raises a series of further challenges,
including who gets to set these thresholds [193]. What constitutes
“safe enough” performance may depend on application domains,
with more conservative requirements in higher-stakes domains.
In very high-stakes domains, correspondingly strict performance

assurances are required. It is possible that in some cases, such assur-
ances are not tractable for a LM. This may constrain the appropriate
range of applications of LMs.

3.0.4 Organisational responsibilities. Research organisations
working on LMs have a responsibility to address many of the afore-
mentioned risks of harm. This is particularly the case given the
current state of LM research, where transition times from research
to application can be short, making it harder for third parties to
anticipate and mitigate risks effectively. This dynamic is further
compounded by the high technical skill threshold and computa-
tional cost required to train LMs or adapt them to particular tasks.
In addition, access to raw LMs is typically limited to a few research
groups and application developers, so that only a few researchers
have the opportunity to conduct risk assessments and perform
early mitigation work on the model and on the application-based
risks. Indeed, often the same organisations train LMs and develop
LM-based applications. Finally, some risks may be more effectively
addressed during early LM research and training as opposed to
during downstream LM product development. This may include
risks that flow from harms present in the training data, such as
some of the risks discussed in the section on discrimination-hate-
speech-and-exclusionDiscrimination, Hate speech and Exclusion.
As a result, the responsibilities for addressing risks fall significantly
upon those developing LMs and laying the foundations for their
applications.

4 CONCLUSION
In this paper, we propose a comprehensive taxonomy to structure
the landscape of potential ethical and social risks associated with
large-scale language models (LMs). We aim to support the research
programme toward responsible innovation on LMs, broaden the
public discourse on ethical and social risks related to LMs, and
break risks from LMs into smaller, actionable pieces to facilitate
their mitigation. More expertise and perspectives will be required
to continue to build out this taxonomy of potential risks from
LMs. Future research may also expand this taxonomy by applying
additional methods such as case studies or interviews. Next steps
building on this work will be to engage further perspectives, to
innovate on analysis and evaluation methods, and to build out
mitigation tools, working toward the responsible innovation of LMs.
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A DEFINITIONS
A.1 Language Models
Language Models are machine learning models that are trained
to represent a probability distribution p(w1,w2, ...,wn ) over se-
quences of tokensw from a pre-specified domain. Typical training
corpora for LMs contain natural language (e.g. collected from the
web), but LMs can also be trained on other types of languages (e.g.
computer programming languages). Moreover, LMs can serve dif-
ferent purposes, such as generating language or providing semantic
embeddings. Depending on the primary purpose of a LM, slightly
different architectures and training objectives can be used. In this
paper, unless we specify otherwise, we focus on LMs tailored to
language generation.

A standard approach to construct generative LMs is to use an au-
toregressive decomposition that sequentially proposes a probability
distribution for the next utterance based on past utterances:

p(w) = p(w1) · p(w2 |w1) · · ·p(wT |w1, . . . ,wT−1) .

Herew = w1 . . .wT is a sequence ofT = |w | utterances. Each of the
terms p(wt |w1, . . . ,wt−1) with t = 1, . . . ,T represents the proba-
bility the model assigns to observing the particular utterance wt
given the previous t − 1 utterances. LMs of this form are trained by
updating the parameters controlling these conditional probabilities
to assign high likelihood to sequences of utterances observed in
the training corpus. Training is the result of an iterative process
whereby at each iteration the model is presented with a batch of
utterances and its parameters are updated to increase the likelihood
of that particular set of utterances. Training large-scale language

models can require very high numbers of iterations, requiring sig-
nificant computing power.

Recent LMs are primarily distinguished from other LMs due to
their parameter size and training data. Their size allows LMs to
retain representations of extremely large text corpora, resulting in
much more general sequence prediction systems than prior LMs.
In this report, we focus on such large-scale models.

Note that LMs do not output text directly. Rather, they produce a
probability distribution over different utterances from which sam-
ples can be drawn. Greedy decoding directly from the (conditional)
probability distribution provided by an LM is possible, but often
performs poorly in practice. Instead, methods that focus on the
most likely utterances – while introducing a small amount of vari-
ability (e.g. beam search and nucleus sampling) – have been found
to produce better results in practice [78]).

A.2 “Large” Language Models
Training models with a large number of parameters on extremely
large datasets such as the Colossal Clean Crawl Corpus (C4)
[149], WebText [147], and MassiveText [148] resulted in sequence
prediction systems with much more general applicability compared
to the prior state-of-the-art [30, 54, 148, 160] as well as impressive
few-shot and zero-shot learning capabilities [30, 148]. The insight
that powerful sequence prediction systems could be created by
scaling up the size of LMs and training corpora motivated an
upsurge in interest and investment in LM research by several AI
research labs. The increase in size of LMs has implications for a
number of risks discussed in this paper, for example an increase
in quality of outputs in some tasks may increase the risk that users
give credence to misinformation provided by the model in other
tasks subsection 2.3; and all else held constant, environmental cost
of LMs grow with their size.

A.3 Bias
Concerns regarding “bias” in language models generally revolve
around distributional skews that result in unfavourable impacts for
particular social groups [82, 169]. We note that there are different
definitions of “bias” in classical statistics and machine learning
compared to sociotechnical studies. In classical statistics, “bias” des-
ignates the difference between a model’s prediction and the ground
truth [47]; in machine learning, minimising statistical bias is a com-
ponent of reducing error [47]. In sociotechnical studies, “bias” refers
to skews that lead to unjust discrimination based on traits such as
age, gender, religion, ability status, whether or not these character-
istics are legally protected [22]. Developing mechanisms to quantify
the latter type of bias is an area of active research, where qualitative
and quantitative measures have been established [12, 71].

A.4 Discrimination
Similarly, “discrimination” has a dual definition. Traditionally in
machine learning, this term refers to making distinctions between
possible categories or target classes [28]. In sociotechnical work,
“discrimination” refers to unjust differential treatment, typically
toward historically marginalised groups. Various steps in training
a machine learning model can result in discrimination in the so-
ciotechnical sense, from labelling and collection of the training
data, to defining the “target variable” and class labels, to selecting
features [13].
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Table 1: Overview of six areas of ethical and social risk of harm associated with language model

Risk area Mechanism Type of Harm Technical mitigation approaches Evidence of this risk in large-scale LMs
Discrimination, Hate
Speech and Exclusion

The LM accurately reflects
unjust, toxic, and oppressive
speech present in the training
data.

• Allocational or representational harm
• Profound offence or psychological harm
• Inciting violence or hate
• Social exclusion
• Uneven performance for different social

groups

• More representative training data
• Curated and filtered training data
• Dataset documentation
• Participatory approaches for detecting in-

stances of harm
• Online learning for model updating
• Training retriever model with separate

data corpus
• Prompt design
• Explainability and interpretability

research to identify fairness concerns

• Social Stereotypes: Abid et al. [2],
Huang et al. [82], Lucy and Bamman
[120], Nadeem et al. [133], Nozza
et al. [136], Rae et al. [148]

• Hate Speech: Gehman et al. [61], Rae
et al. [148], Welbl et al. [194]

• Exclusion: [206]
• Lower Performance: Welbl et al.

[194], Winata et al. [196]

Information Hazards The LM leaks or correctly in-
fers sensitive information • Privacy violations

• Safety risks
• Algorithmic tools such as differential pri-

vacy
• Responsible release strategies

• Privacy leaks: Carlini et al. [34],
Kulkarni [109]

Misinformation
Harms

The LM provides false, mis-
leading, nonsensical or poor
quality information.

• Deceiving or misinforming a user
• Material harm
• Unethical actions by users
• Growing societal distrust in shared infor-

mation

• Responsible release strategy
• Innovate on methods to filter out incor-

rect statements
• Training retriever model with separate

data corpus
• Engineer LMs to not provide output on

sensitive domains
• Sociotechnical interventions such as

training truthfulness via humans-in-the-
loop, and shaping norms and institutions
on truth in the field

• Training LMs that can search and refer-
ence sources from the internet to substan-
tiate factual statements

• Misinformation: Hendrycks et al.
[72], Lin et al. [118], Nakano et al.
[134], Quach [145], Rae et al. [148],
Reiter [157]

Malicious Uses Humans intentionally use the
LM to cause harm. • Undermining public discourse

• Facilitating fraud, scam, impersonation
crimes

• Personalised disinformation campaigns
• Weaponisation or production of mali-

cious code
• Augment illegitimate mass surveillance

• Limit access to the LMs and monitoring
usage

• Disinformation: Bagdasaryan and
Shmatikov [11], Buchanan et al. [31],
Hao [69], Zellers et al. [203]

Human-Computer In-
teraction Harms

Humans are deceived or
made vulnerable via direct
interaction with a powerful
conversational agent.

• Unsafe use
• Creating avenues to exploit or violate pri-

vacy of the user
• Perpetuating discriminatory stereotypes

via product design

• More inclusive product design
• Giving an assistant non-gendered or mul-

tiple voices

• Product design: Cave and Dihal [35],
Zdenek [202]

• Exploiting users: Ischen et al. [87],
Pardes [139]

• Cybersecurity Chen et al. [37]

Environmental and
Socioeconomic harms

LMs are used to underpin
widely used downstream ap-
plications that disproportion-
ately benefit and harm differ-
ent groups.

• Increasing social inequalities from un-
even distribution of risk and benefits

• Loss of high-quality and safe employment
• Undermining creative industries
• Environmental harm

• Architectural innovations such as train-
ing retriever model with separate data
corpus

• Increase training efficiency

• Environment: Bender et al. [15], Myt-
ton [132], Patterson et al. [141], Rae
et al. [148], Strubell et al. [176]

• Unequally distributed benefit: Ben-
der et al. [15]

229


	Abstract
	1 Introduction
	1.1 Scope
	1.2 Language Models

	2 Taxonomy of risks
	2.1 Risk area 1: Discrimination, Hate speech and Exclusion
	2.2 Risk area 2: Information Hazards
	2.3 Risk area 3: Misinformation Harms
	2.4 Risk area 4: Malicious Uses
	2.5 Risk area 5: Human-Computer Interaction Harms
	2.6 Risk area 6: Environmental and Socioeconomic harms

	3 Discussion
	4 Conclusion
	Acknowledgments
	References
	A Definitions
	A.1 Language Models
	A.2 ``Large'' Language Models
	A.3 Bias
	A.4 Discrimination


