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Abstract
DNA methylation (DNAm) has been reported to be associated with many diseases 
and with mortality. We hypothesized that the integration of DNAm with clinical risk 
factors would improve mortality prediction. We performed an epigenome-wide asso-
ciation study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). 
During a mean follow-up of 10 years, there were 4314 deaths from all causes including 
1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified 
meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) 
and 17 in African ancestry (AA) participants at p < 1 × 10−7, of which 41 (EA) and 
16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer 
death. We built DNAm-based prediction models for all-cause mortality that predicted 
mortality risk after adjusting for clinical risk factors. The mortality prediction model 
trained by integrating DNAm with clinical risk factors showed an improvement in 
prediction of cancer death with 5% increase in the C-index in a replication cohort, 
compared with the model including clinical risk factors alone. Mendelian randomiza-
tion identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. 
For example, cg06885782 (in KCNQ4) was positively associated with risk for pros-
tate cancer (Beta =  1.2, PMR  =  4.1 ×  10−4) and negatively associated with longev-
ity (Beta = −1.9, PMR = 0.02). Pathway analysis revealed that genes associated with 
mortality-related CpGs are enriched for immune- and cancer-related pathways. We 
identified replicable DNAm signatures of mortality and demonstrated the potential 
utility of CpGs as informative biomarkers for prediction of mortality risk.
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1  |  INTRODUC TION

Despite substantial evidence of heritability of human longevity (h2 = 
10–30%), genome-wide association studies (GWAS) have reported 
few loci associated with human longevity (Deelen et al., 2019; Pilling 
et al., 2017; Timmers et al., 2019; van den Berg et al., 2017). DNA 
methylation (DNAm), the covalent binding of a methyl group to the 5′ 
carbon of cytosine- phosphate-guanine (CpG) dinucleotide sequences, 
reflects a wide range of environmental exposures and genetic influ-
ences at the molecular level and altered DNAm has been shown to 
regulate gene expression (Jones & Takai, 2001). Recent studies have re-
ported DNAm patterns associated with age in humans (Hannum et al., 
2013; Horvath, 2013; Levine et al., 2018; Lu et al., 2019). Estimates 
of biological age based on DNAm referred to as "epigenetic age" or 
"DNAm age" have been validated in numerous studies, although the 
functions of these age-associated CpGs are largely unknown (Horvath 
et al., 2015; Lu et al., 2019; Marioni et al., 2015; Marioni et al., 2015). 
DNAm age also has been shown to be predictive of many age-related 
diseases and of all-cause mortality (Chen et al., 2016; Dugué et al., 
2018; Levine et al., 2018; Lu et al., 2019; Marioni et al., 2015).

Despite the association of DNAm age with a variety of age-
associated outcomes, age-related CpGs are different from those that 
are most strongly associated with mortality. Relatively few DNAm 
studies have focused on mortality as the primary outcome (Colicino 

et al., 2020; Svane et al., 2018; Zhang et al., 2017). Moreover, due to 
sample size limitations, most DNAm mortality studies have not typi-
cally investigated cause-specific mortality such as death due to cardio-
vascular disease (CVD) and cancer. Additionally, little is known about 
the prediction performance of DNAm-based mortality models and 
whether or not such approaches improve mortality prediction above 
and beyond established clinical risk factors.

We hypothesized that inter-individual variation in DNAm is asso-
ciated with all-cause mortality risk and with cause-specific mortality, 
and that we could build models incorporating CpGs that would im-
prove mortality prediction beyond established clinical risk factors. In 
this study, we report the results of a meta-analysis of epigenome-wide 
association studies (EWAS) of all-cause mortality and cause-specific 
mortality including death from CVD and cancer in up to 15,013 in-
dividuals from 15 prospective cohort studies in which DNAm was 
measured in whole blood. We built all-cause mortality risk prediction 
models using penalized regression and machine learning methods and 
integrated DNAm and established mortality clinical risk factors and 
validated the models’ performance. Additionally, using Mendelian 
randomization, we identified putatively causal CpGs for mortality. 
Last, we investigated the downstream gene expression and pathway 
changes of the mortality-related CpGs by testing associations be-
tween DNAm and gene expression. Figure 1  summarizes the multi-
step study design.
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2  |  RESULTS

2.1  |  Study population

Table 1 presents the major clinical characteristics of the 15,013 study 
participants including 11,684 European ancestry (EA, mean age 65, 
55% women) and 3329 African ancestry (AA, mean age 59, 70% 
women) participants from 15 cohorts (Table S1 summarizes additional 
clinical characteristics). Most studies had fewer than 15 years of mean 
follow-up (mean values ranged from 6.4 to 13.7 years), except ARIC 
(mean follow-up of 20.0 years in ARIC EA and 18.6 in ARIC AA par-
ticipants, respectively). During follow-up of EA participants, 2907 died 
of any cause, 688 of CVD, and 546 of cancer; among AA participants, 
1407 died of any cause, 547 of CVD, and 322 of cancer.

2.2  |  Ancestry-stratified epigenome-wide meta-
analysis of all-cause mortality

At Bonferroni-corrected p < 1 × 10−7 (~0.05/400,000), we identified 
163 CpGs whose differential methylation in whole blood was asso-
ciated with all-cause mortality in EA participants, and 17 CpGs in 
AA participants, after adjustment of age, sex, lifestyle factors, clini-
cal risk factors, white blood cell types, and technical covariates (e.g., 
batch). Tables S2–S3 present the results for all CpGs at p < 1 × 10−5. 
Overall genomic inflation in meta-analysis (λ) was estimated at 1.15 
or less, indicating low inflation and low risk of false-positive findings. 
Even though cohort-specific analysis showed slightly higher genomic 
inflation in some cohorts (λ > 1.5 in two cohorts, Table S4), forest 
plots show that the results were not driven by results from one or 
several cohorts (Fig. S1). Sensitivity analysis results including meta-
analysis after correcting for λ in each cohort, meta-analysis after 
excluding results from two cohorts with λ > 1.5, and meta-analysis 
after excluding RS cohort are included in Tables S5 and S6. Results 
of the sensitivity analysis remained consistent with the main results 
in terms of direction and effect estimates with Pearson's correlation 
r = 0.99 (in EA, corrected for λ in each cohorts), r = 1.00 (in EA, after 
removing two cohorts with λ > 1.5), r = 1.00 (in EA, after removing 
RS) and r = 1.00 (in AA, corrected for λ in each cohorts).

Among the 177 all-cause mortality-related CpGs (union set of 
EA and AA results at p < 1 × 10−7), the vast majority of significant 
CpGs (151, 85%) were inversely associated with mortality, with haz-
ards ratios (HRs) <1 (range 0.72 to 0.89 per standard deviation [SD]). 
Methylation at the remaining 26 (15%) CpGs was positively associ-
ated with mortality, with HRs >1 (range 1.13 to 1.32). The 177 CpGs 
are annotated to 121 genes and 43 intergenic regions.

2.3  |  Transethnic replication and 
sensitivity analysis

Of the 163 all-cause mortality-related CpGs in EA participants, 18 
(11%) had p < 0.0003 (0.05/163) in AA participants; of the 17 CpGs 

in AA participants, 12 (71%) had p < 0.004 (0.05/17) in EA partici-
pants. Table 2 displays the transethnic replicated CpGs including 27 
unique CpGs. The top 3 transethnic replicated CpGs in EA partici-
pants remained the top 3 in AA participants, including cg16743273 
for MOBKL2A, cg18181703 for SOCS3, and cg21393163 at an inter-
genic region (Chr.1: 12217629).

Because ARIC had longer follow-up than the other cohorts, in 
sensitivity analysis, we truncated ARIC follow-up at 15 years. The 
HRs for the significant CpGs (at p < 1 × 10−5) remained consistent 
with the main results in terms of direction and effect estimates with 
Pearson's correlation r = 1.00 and r = 0.99 in EA and AA participants, 
respectively (Tables S2–S3 and Fig. S2).

2.4  |  Associations of DNAm with CVD death and 
cancer death

In comparison with results for all-cause mortality, fewer CpGs were as-
sociated with CVD death (at p < 1 × 10−7, n = 4 in EA, and n = 15 in AA) 
and cancer death (n = 0 in EA, and n = 1 in AA); Tables S7–S8 report 
the corresponding results at p < 1 × 10−5. Among the 163 all-cause 
mortality-related CpGs identified in EA participants at p < 1 × 10−7, 
41 CpGs were associated with CVD death, 16 with cancer death and 
5 with both (at p < 0.05/163, Table S2). Among the 17 CpGs identi-
fied in AA participants at p < 1 × 10−7, 15 were associated with CVD 
death, 9 with cancer death and 8 with both (at p  <  0.05/17, Table 
S3). Figure 2 shows the effect sizes and direction of effect for the top 
CpGs associated with all-cause mortality, and their consistency with 
the results of analyses of CVD death and cancer death. If a CpG was 
positively correlated with all-cause mortality, it also was positively cor-
related with CVD death and cancer death, and vice versa.

2.5  |  Mortality prediction model

To investigate whether DNAm can be used to predict mortality risk, we 
constructed prediction models for all-cause mortality and evaluated 
their prediction of all-cause mortality, CVD death, and cancer death. To 
ensure unbiased validation, we split the EA cohorts into separate dis-
covery and replication sets (Figure 1 shows the analysis flowchart). The 
discovery cohorts consisted of 8288 participants (including 2173 deaths 
from all causes) from 10 cohorts, excluding FHS (n = 2427) and ARIC 
(n = 969), which were used as replication cohorts. The meta-analysis 
of the discovery set identified 74 CpGs at p < 1 × 10−7, 158 CpGs at 
p < 1 × 10−6, 357 CpGs at p < 1 × 10−5, 931 CpGs at p < 1 × 10−4, 2717 
CpGs at p < 1 × 10−3, and 28,323 CpGs at p < 0.05. We evaluated three 
types of input features: (a) clinical risk factors only (i.e., clinical risk factor 
models); (b) CpGs identified in the meta-analysis of the discovery set 
(i.e., CpG models); and (c) the input features including both CpGs and 
clinical risk factors (i.e., integrative models). We also compared four pre-
diction methods including Elastic net-Cox proportional hazards (Elastic-
coxph; Friedman et al., 2010), Random survival forest (RSF) (Ishwaran 
et al., 2008), Cox-nnet (Ching et al., 2018), and DeepSurv (Katzman et al., 



6 of 22  |     HUAN et al.

2018) (see Methods for details). In general, the four prediction methods 
did not show major differences in predicting mortality outcomes as as-
sessed by multiple evaluation metrics (Table S9 lists the evaluation met-
rics across all four methods). To simplify the presentation of results, we 
focused on the Elastic-coxph method (Figure 3).

2.5.1  |  Clinical risk factors strongly predict all-cause 
mortality and CVD death

The C-index of the clinical risk factor models (age, sex, and 12 clini-
cal risk factors) was 0.80 for all-cause mortality, 0.81 for CVD death 

F I G U R E  1 Overall analytic workflow



    |  7 of 22HUAN et al.

TA
B

LE
 1
 
C
lin
ic
al
 c
ha
ra
ct
er
is
tic
s 
th
e 
15
,0
13
 s
tu
dy
 p
ar
tic
ip
an
ts

Pr
ev

al
en

t d
is

ea
se

s

Co
ho

rt
To

ta
l N

N
o.

 o
f a

ll-


ca
us

e 
de

at
h

N
o.

 o
f C

V
D

 
de

at
h

N
o.

 o
f 

ca
nc

er
 

de
at

h

Ti
m

e 
to

 d
ea

th
/l

as
t 

fo
llo

w
-u

p 
ye

ar
s,

 
m

ea
n 

(S
D

)
A

ge
, m

ea
n 

(S
D

)
Se

x 
(F

, 
%

)
BM

I, 
m

ea
n 

(S
D

)

Ty
pe

 2
 

D
ia

be
te

s 
(n

)

Co
ro

na
ry

 
H

ea
rt

 
D

is
ea

se
 

(n
)

H
ea

rt
 

Fa
ilu

re
 

(n
)

St
ro

ke
 

(n
)

H
yp

er
te

ns
io

n 
(n

)
C

an
ce

r 
(n

)

Eu
ro

pe
an

 a
nc

es
tr

y

A
RI
C

96
9

33
1

95
94

20
.0
 (5
.2
)

59
.8
 (5
.5
)

59
26
.2
 (4
.5
)

86
44

29
16

23
3

10
2

C
H

S
41
9

37
3

13
2

12
.7
 (6
.1
)

75
.0
 (4
.9
)

60
26
.8
 (4
.9
)

72
16

11
5

22
4

78

D
TR

87
0

29
8

74
40

9.
3 
(3
.4
)

69
.4
 (7
.9
)

52
25
.9
 (3
.9
)

46
a

37
26

9
12

9

ES
TH

ER
10

00
26

5
94

90
13
.7
 (3
.5
)

62
.1
 (6
.5
)

50
27
.8
 (4
.3
)

15
4

14
4

11
0

28
57

2
77

FH
S

24
27

40
3

91
15

5
9.
1 
(2
.2
)

66
.3
 (9
.0
)

55
28
.3
 (5
.3
)

27
9

22
6

53
11

6
10

7
38

9

In
C
H
IA
N
Ti

48
8

10
4

10
.0
 (1
.6
)

62
.4
 (1
5.
8)

52
27
.0
 (3
.9
)

42
31

9
10

23
2

KO
R
A
 F
4

17
27

89
31

35
6.
4 
(0
.9
)

61
.0
 (8
.9
)

51
28
.1
 (4
.8
)

15
8

10
5

41
47

78
9

15
4

LB
C 

19
21

41
8

36
6

9.
8 
(4
.7
)

79
.1
 (0
.6
)

60
28
.2
 (4
.0
)

19
70

33
17

0

LB
C 

19
36

90
0

19
2

10
.2
 (2
.4
)

69
.6
 (0
.8
)

50
27
.7
(4
.4
)

72
22

1
46

36
4

N
A
S

64
0

22
1

12
3

72
10
.5
 (3
.3
)

72
.8
 (6
.8
)

0
28
.1
 (4
.0
)

11
7

18
1

42
44
7

31
6

RS
73

1
73

6.
8 
(1
.5
)

59
.9
 (8
.2
)

54
27
.4
 (4
.5
)

74
45

30
38

5
76

W
H
I

10
95

19
2

48
60

11
.5
 (3
.5
)

62
 (6
.9
)

10
0

28
.8
 (5
.9
)

60
20

5
11

46
9

14

A
fr
ic
an
 a
nc
es
tr
y

A
RI
C

24
46

10
69

42
4

32
2

18
.6
 (6
.6
)

56
.5
 (5
.8
)

64
30
.1
 (6
.2
)

64
3

12
0

16
3

75
13

73
87

C
H

S
32

5
26
4

96
12
.9
 (6
.6
)

73
.1
 (5
.5
)

62
28
.6
 (5
.2
)

68
2

0
2

23
5

36

W
H
I

55
8

74
27

10
.6
 (3
.7
)

61
 (6
.8
)

10
0

31
.5
 (6
.1
)

76
18

11
12

36
9

2

N
ot

e:
 T
he
 c
lin
ic
al
 ri
sk
 fa
ct
or
s 
w
er
e 
as
ce
rt
ai
ne
d 
at
 th
e 
tim
e 
of
 b
lo
od
 d
ra
w
 fo
r D
N
A
m
 m
ea
su
re
m
en
ts
. B
M
I w
as
 c
al
cu
la
te
d 
as
 w
ei
gh
t (
kg
) d
iv
id
ed
 b
y 
he
ig
ht
 s
qu
ar
ed
 (m

2 )
. D
ia
be
te
s 
w
as
 d
ef
in
ed
 a
s 
a 
m
ea
su
re
d 

fa
st

in
g 

bl
oo

d 
gl

uc
os

e 
le

ve
l o

f >
12
5 
m
g/
dl
 o
r c
ur
re
nt
 u
se
 o
f g
lu
co
se
-lo
w
er
in
g 
pr
es
cr
ip
tio
n 
m
ed
ic
at
io
n.
 H
yp
er
te
ns
io
n 
w
as
 d
ef
in
ed
 a
s 
a 
m
ea
su
re
d 
sy
st
ol
ic
 b
lo
od
 p
re
ss
ur
e 
(B
P)
 ≥
14
0 
m
m
 H
g 
or
 d
ia
st
ol
ic
 B
P 

≥9
0 
m
m
 H
g 
or
 u
se
 o
f a
nt
ih
yp
er
te
ns
iv
e 
pr
es
cr
ip
tio
n 
m
ed
ic
at
io
n.
 C
an
ce
r w
as
 d
ef
in
ed
 a
s 
th
e 
oc
cu
rr
en
ce
 o
f a
ny
 ty
pe
 o
f c
an
ce
r e
xc
lu
di
ng
 n
on
-m
el
an
om
a 
sk
in
 c
an
ce
r.

a Th
e 

di
ab

et
es

 c
as

es
 in

 D
TR

 in
cl

ud
ed

 b
ot

h 
ty

pe
 I 

an
d 

ty
pe

 II
 d

ia
be

te
s.



8 of 22  |     HUAN et al.

and 0.77 for cancer death in FHS (reflecting the average values of 10-
fold cross-validation). We considered 12 clinical risk factors including 
BMI, smoking, alcohol consumption, physical activity, educational at-
tainment, and prevalent diseases including hypertension, CHD, heart 
failure, stroke, type 2 diabetes, and cancer. Among the 12 clinical risk 
factors, prevalent cancer status was the major contributor to predict-
ing cancer death. After excluding individuals with prevalent cancer 
at the time of blood draw for DNAm measurements (i.e., the start of 
follow-up), the C-index of the clinical risk factor model was 0.57 for 
cancer death. Finally, two clinical risk models were built using the opti-
mum parameters selecting by cross-validation (see Methods). The first 

one was trained using all FHS participants and included 10 risk factors 
selected by the Elastic-coxph method (to predict all-cause mortality 
and CVD death, Table S10), and the second was trained using FHS 
participants excluding those with prevalent cancer cases and including 
10 risk factors (to predict cancer death, Table S11). The correspond-
ing C-index of the clinical risk factor model was 0.75 for all-cause 
mortality (HR =  2.64 per SD in the risk score, 95% CI [2.21, 3.15], 
p = 4.4 × 10−27), 0.81 for CVD death (HR = 3.51, 95% CI [2.58, 4.79], 
p = 2.1 × 10−15), and 0.71 for cancer death (excluding prevalent cancer 
samples, HR = 2.35, 95% CI [1.74, 3.18], p = 2.3 × 10−8) in ARIC EA 
participants with follow-up truncated at 15 years (Table 3).

TA B L E  2 Transethnic replicated all-cause mortality-related CpGs

CpG Chr Position Gene

Meta-analysis EA cohorts Meta-analysis AA cohorts
Transethnic 
replication

HR (95% CI) p-value HR (95% CI) p-value
Bonferroni-
corrected P

Discovered in EA, and then replicated in AA

cg16743273 19 2076833 MOBKL2A 1.15 (1.1–1.21) 1.57E−09 1.24 (1.15–1.33) 1.28E−08 2.08E−06

cg18181703 17 76354621 SOCS3 0.83 (0.8–0.87) 6.15E−16 0.82 (0.77–0.88) 3.71E−08 6.05E−06

cg21393163 1 12217629 0.84 (0.8–0.88) 4.15E−12 0.84 (0.79–0.89) 7.48E−08 1.22E−05

cg15310871 8 20077936 ATP6V1B2 1.18 (1.12–1.25) 1.42E−08 1.19 (1.11–1.26) 1.80E−07 2.94E−05

cg25953130 10 63753550 ARID5B 0.87 (0.83–0.91) 4.67E−10 0.86 (0.81–0.91) 1.22E−06 1.98E−04

cg05438378 15 67383736 SMAD3 0.88 (0.84–0.92) 1.52E−08 0.85 (0.79–0.91) 3.68E−06 6.00E−04

cg26470501 19 45252955 BCL3 0.84 (0.79–0.88) 8.38E−12 0.81 (0.74–0.89) 1.48E−05 2.42E−03

cg06126421 6 30720080 0.8 (0.75–0.86) 2.48E−10 0.84 (0.78–0.91) 1.69E−05 2.75E−03

cg02003183 14 103415882 CDC42BPB 1.19 (1.13–1.26) 1.94E−11 1.16 (1.08–1.24) 2.00E−05 3.26E−03

cg10950251 1 204466432 0.86 (0.82–0.91) 4.05E−08 0.86 (0.8–0.92) 2.34E−05 3.81E−03

cg17501210 6 166970252 RPS6KA2 0.86 (0.81–0.9) 5.84E−09 0.87 (0.82–0.93) 2.71E−05 4.41E−03

cg23598089 1 203652079 ATP2B4 1.13 (1.08–1.18) 2.36E−08 1.14 (1.07–1.22) 4.19E−05 6.84E−03

cg21993290 2 233703120 GIGYF2 0.88 (0.84–0.92) 6.13E−08 0.87 (0.81–0.93) 4.94E−05 8.06E−03

cg04987734 14 103415873 CDC42BPB 1.2 (1.15–1.26) 2.53E−14 1.15 (1.07–1.23) 5.77E−05 9.41E−03

cg20813374 6 35657180 FKBP5 0.84 (0.78–0.89) 4.27E−08 0.84 (0.77–0.91) 7.19E−05 1.17E−02

cg11927233 5 170816542 NPM1 0.84 (0.8–0.89) 2.43E−09 0.89 (0.84–0.95) 2.41E−04 3.92E−02

cg24859433 6 30720203 0.85 (0.81–0.9) 7.15E−10 0.88 (0.82–0.94) 2.70E−04 4.40E−02

cg01445100 16 88103339 BANP 1.23 (1.15–1.32) 1.88E−09 1.24 (1.1–1.39) 2.76E−04 4.49E−02

Discovered in AA, and then replicated in EA

cg18181703 17 76354621 SOCS3 0.83 (0.8–0.87) 6.15E−16 0.82 (0.77–0.88) 3.71E−08 1.04E−14

cg21393163 1 12217629 0.84 (0.8–0.88) 4.15E−12 0.84 (0.79–0.89) 7.48E−08 7.05E−11

cg16743273 19 2076833 MOBKL2A 1.15 (1.1–1.21) 1.57E−09 1.24 (1.15–1.33) 1.28E−08 2.67E−08

cg25114611 6 35696870 FKBP5 0.86 (0.81–0.91) 7.50E−07 0.81 (0.75–0.87) 1.79E−08 1.28E−05

cg16411857 16 57023191 NLRC5 0.88 (0.84–0.93) 4.40E−06 0.79 (0.74–0.85) 2.40E−11 7.47E−05

cg16936953 17 57915665 TMEM49 0.91 (0.87–0.95) 7.05E−05 0.82 (0.77–0.88) 1.72E−08 1.20E−03

cg23570810 11 315102 IFITM1 0.86 (0.8–0.93) 9.75E−05 0.77 (0.72–0.83) 2.35E−11 1.66E−03

cg12054453 17 57915717 TMEM49 0.92 (0.88–0.96) 1.57E−04 0.84 (0.79–0.89) 2.93E−08 2.66E−03

cg18942579 17 57915773 TMEM49 0.91 (0.87–0.96) 3.53E−04 0.8 (0.74–0.86) 2.58E−09 6.01E−03

cg01041239 18 13222581 C18orf1 1.1 (1.04–1.16) 1.29E−03 1.22 (1.14–1.31) 1.04E−08 2.20E−02

cg03038262 11 315262 IFITM1 0.88 (0.82–0.96) 1.85E−03 0.72 (0.66–0.79) 5.14E−13 3.15E−02

cg24408769 6 15506085 JARID2 1.11 (1.04–1.18) 2.17E−03 1.27 (1.17–1.37) 1.29E−08 3.68E−02

Abbreviations: AA, African ancestry; CI, confidence interval; EA, European ancestry; HR, hazard ratio per standard deviation.
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2.5.2  |  DNAm predicts mortality independently of 
age and clinical risk factors

The models using all-cause mortality-related CpGs identified in the 
discovery cohorts as the sole input feature (the CpG model) were 
predictive of all-cause mortality, CVD death, and cancer death in 
the replication set. As shown in Fig. S3, when more discovery CpGs 
were added to the model, the prediction performance metrics did 
not always improve. In FHS, the models with discovery CpGs at 
p < 1 × 10−3 showed the best predictive performance for all-cause 
mortality (C-index = 0.77) and CVD death (C-index = 0.82), but the 
model with discovery CpGs at p < 1 × 10−5  showed the best pre-
dictive performance for cancer death (excluding prevalent cancer 
cases, [C-index = 0.65]). The final CpG models that were trained 

using all FHS participants are provided in Table S12 including 76 
CpGs to predict all-cause mortality and CVD death, and in Table S13 
including 56 CpGs to predict cancer death (excluding prevalent can-
cer cases). The C-index of the CpG models with the best predictive 
performance in ARIC were 0.72 for all-cause mortality (HR = 2.21, 
95% CI [1.86, 2.62], P = 2.0 × 10−20), 0.77 for CVD death (HR = 2.62, 
95% CI [1.96, 3.51], p = 9.9 × 10−11), and 0.73 for cancer death (HR = 
2.22, 95% CI [1.67, 2.95], p = 3.2 × 10−8, Table 3). The association of 
the mortality risk scores calculated by the CpG models with mortal-
ity outcomes remained significant after adjusting for age, sex, and 
clinical risk factors; for all-cause mortality (HR = 1.68, 95% CI [1.37, 
2.07], p = 9.8 × 10−7), CVD death (HR = 1.81, 95% CI [1.24, 2.64], 
p = 0.002), and cancer death (HR = 2.04, 95% CI [1.46, 2.86], P = 
3.0 × 10−5).

F I G U R E  2 Effect sizes (log hazards ratios) and 95% confidence intervals of CpGs related to mortality identified by meta-analysis, 
comparing the results for all-cause mortality, CVD death, and cancer death. (a) Results of meta-analysis of European ancestry (EA); (b) 
Results of meta-analysis of African ancestry (AA). These figures showed the CpGs associated with all-cause mortality identified by the meta-
analysis, which were also associated with either CVD death or cancer death passing Bonferroni-corrected threshold. Figure 1a shows 51 
CpGs in EA, including 41 CpGs associated with CVD death, 16 with cancer death, and 5 with both. Figure 1b shows 16 CpGs in AA, including 
15 CpGs associated with CVD death, 8 with cancer death, and 7 with both
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2.5.3  |  The integrative model (trained by 
CpGs and clinical risk factors) moderately improved 
upon the clinical risk factor model for all-cause 
mortality and CVD death, and substantially 
improved the prediction of cancer death

As shown in Table 3, the integrative models demonstrated robustness 
for predicting mortality outcomes, with a good C-index, HR, and low 

brier error rate. The final integrative models trained using data from all 
FHS participants are provided in Table S14 including nine clinical risk 
factors and 36 CpGs to predict all-cause mortality and CVD death, 
and in Table S15 including seven clinical risk factors and 42 CpGs to 
predict cancer death (excluding prevalent cancer cases). The C-index 
values of the integrative models were 0.80 (FHS, reflecting the aver-
age values of 10-fold cross-validation) and 0.77 (ARIC) for all-cause 
mortality; 0.83 (FHS) and 0.80 (ARIC) for CVD death; and 0.69 (FHS) 

F I G U R E  3 Kaplan–Meier estimates of mortality risk scores with respect to mortality outcomes in ARIC study. (a) Survival curves with 
respect to all-cause mortality; (b) survival curves with respect to CVD death; (c) survival curves with respect to cancer death. The results 
were obtained from ARIC European ancestry participants with follow-up truncated at 15 years. For cancer death, we excluded samples who 
had any type of cancer before blood drawn for DNA methylation measurements. The mortality risk scores for (a) and (b) were computed by 
the model (Table S10), and for (c) was computed by the model (Table S11)

(a)

(c)

(b)
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and 0.76 (ARIC) for cancer death. Kaplan–Meier survival curves for the 
mortality risk scores (split into high-, middle-, and low-risk groups) in 
the ARIC EA cohort (computed by the integrative models using clini-
cal risk factors and CpGs at discovery p < 1 × 10−6, Tables S14–S15) 
illustrate the higher death rate for those with a higher mortality risk 
score (log-rank p < 1 × 10−6, Figure 4). In comparison with the clinical 
risk factor models, the integrative models slightly improved prediction 
of all-cause mortality (0.7% increase in C-index with addition of CpGs 
in FHS and 2% increase in ARIC), and of CVD death (2% increase in 
C-index in FHS, but no increase in ARIC). We speculate that the reason 
for this minor increase is because the mortality-related CpGs capture 
the contributions of clinical risk factors for CVD death. For cancer 
death, however, the C-index of the integrative model revealed an 11% 
increase in FHS above and beyond the clinical risk factor model and a 
corresponding 5% increase in ARIC (C-index for the clinical risk factor 
model is 0.71 [0.67, 0.75], and for the integrative model is 0.76 [0.72, 
0.80], one-tailed t-test p = 0.036).

We also tested the mortality prediction models’ performance 
using the entire ARIC EA data (without truncation, Table S16). Due to 
the long follow-up time in this older cohort (mean age 59.8 at base-
line, with 20 ± 5.5 years follow-up), the integrative model exhibits 
very similar performance features as the model using age and sex as 
the sole input features for predicting all-cause mortality and CVD 
death. The integrative model improved prediction of cancer death 
with 2% increase in the C-index versus the clinical risk factor model.

We further tested all-cause mortality prediction models in the 
CARDIA study (baseline age 45 ± 3 years). The CARDIA study has 
12 years of follow-up, during which there were 27 deaths from all 
causes in 905 participants with DNA methylation. As shown in Table 
S17, the clinical risk factor model, the CpG model, and the integrative 
model each predicted all-cause mortality, and each outperformed 
the DNAm age models.

2.6  |  Comparing the mortality prediction model 
with DNAm age

We compared four DNAm age models (i.e., PhenoAge (Levine et al., 
2018), Horvath Age (Horvath, 2013), Hannum Age (Hannum et al., 
2013), and GrimAge (Lu et al., 2019)) with our mortality prediction 
models (CpG only models and integrative CpG plus 12 risk factor 
models) for all-cause mortality, CVD death, and cancer death in ARIC 
participants. The associations of mortality risk scores calculated by 
mortality prediction models with mortality outcomes were statistically 
significant, and the associations remained significant after adjusting for 
age and sex, and after additionally adjusting for the clinical risk factors. 
The four DNAm age models were significantly associated with mortal-
ity outcomes. After adjusting for age, sex, and clinical risk factors, how-
ever, only GrimAge remained associated with all-cause mortality, CVD 
death, and cancer death. None of the other three DNAm age predictors 

TA B L E  3 Performance robustness comparison of mortality predictors in FHS and ARIC cohorts

Model

FHSa ARICb

HR C-index IBS HR (95% CI) C-index IBS

All-cause mortality

Clinical risk factor model 3.37 0.80 0.07 2.64 (2.21–3.15) 0.75 0.04

CpG model 2.91 0.77 0.07 2.24 (1.89–2.66) 0.72 0.04

Integrative model 3.50 0.80 0.06 2.95 (2.45–3.55) 0.77 0.04

CVD death

Clinical risk factor model 3.74 0.81 0.02 3.51 (2.57–4.79) 0.81 0.02

CpG model 3.85 0.82 0.02 2.62 (1.56–3.91) 0.77 0.02

Integrative model 3.90 0.83 0.02 3.65 (2.63–5.05) 0.80 0.02

Cancer Death (excluding prevalent cancer cases)

Clinical risk factor model 1.25 0.57 0.01 2.35 (1.74–3.18) 0.71 0.02

CpG model 1.71 0.65 0.01 2.22 (1.64–2.89) 0.73 0.02

Integrative model 1.78 0.68 0.01 2.58 (1.90–3.50) 0.76 0.02

Abbreviation: HR, hazard ratio per standard deviation; IBS: Integrated brier score.
Note: The clinical risk factor models were trained by using clinical risk factors as the sole input features. The CpG Models were trained by using CpGs 
selecting in the discovery meta-analysis. The integrative model was trained by using both clinical risk factors and CpGs selecting in the discovery 
meta-analysis.
The Clinical Risk Factor Model used to predict all-cause mortality and CVD death was shown in Table S10, and to predict cancer death (trained in 
samples excluding prevalent cancer cases) was shown in Table S11. The CpG model used to predict all-cause mortality and CVD death was shown in 
Table S12, and to predict cancer death (trained in samples excluding prevalent cancer cases) was shown in Table S13. The integrative model used to 
predict all-cause mortality and CVD death was shown in Table S14, and to predict cancer death (trained in samples excluding prevalent cancer cases) 
was shown in Table S15.
aHR, C-index and IBS values in FHS reflect the average values of 10 times cross-validation.
bThe results were obtained from ARIC European ancestry participants with follow-up truncated at 15 years.
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was associated with mortality outcomes after additionally adjusting for 
clinical risk factors (Figure 4). The mortality prediction models (both the 
CpG only model and the integrative model that included the clinical 
risk factors and CpGs) outperformed the GrimAge model in prediction 
of mortality outcomes in terms of HRs and p values. The associations of 
mortality risk scores with mortality outcomes remained significant after 
adjusting for the four DNAm age terms (Table S18).

2.7  |  Associations of DNAm with genetic 
variants and Mendelian randomization analysis

Among the 177 all-cause mortality-related CpGs (union of EA and 
AA results at p < 1 × 10−7), 123 CpGs had significant associations 
with genetic variants (i.e., cis- or trans-meQTL variants). meQTL vari-
ants for 80 CpGs could be linked to 618 GWAS Catalog (Buniello 
et al., 2019) index SNPs associated with 432 complex traits or dis-
eases (Table S19).

We further performed multiple instrumental variable (IV) MR 
analysis for the 17 CpGs having ≥3 independent cis-meQTL SNPs 
(pruned by LD r2 < 0.01, as IVs, to model the causal relations of 
differential methylation at these CpGs (as the exposure) in rela-
tion to the various outcomes, including longevity (Deelen et al., 
2019), CVD, CVD risk factors, and cancer (Evangelou et al., 2018; 
Locke et al., 2015; Michailidou et al., 2017; Phelan et al., 2017; 
Schumacher et al., 2018; Scott et al., 2017; Wang et al., 2014; 
Willer et al., 2013). At pMR < 0.05, MR supported causal effects of 
15 CpGs on one or more outcome (Table S20), and 4 CpGs were 
statistically significant at pMR < 0.05/17, including cg06885782 
(within 1500 bases upstream of transcription start site [TSS1500] 
of KCNQ4) and cg04907244 (TSS1500 of SNORD93) in relation to 
prostate cancer (Schumacher et al., 2018; Beta = 1.2 and 2.1; and 
pMR = 4.1 × 10−4 and 0.003, respectively), cg07094298 (in the gene 
body of TNIP2) in relation to lung cancer (Wang et al., 2014; Beta = 
2.2, and pMR = 0.003), and cg18241337 (in the gene body of SSR3) 
in relation to total cholesterol (Willer et al., 2013; Beta = 0.5, and 
pMR = 0.003). cg06885782 (KCNQ4) also was associated with lon-
gevity (Deelen et al., 2019; Beta = −1.9, pMR = 0.02).

2.8  |  Associations of DNAm with gene 
expression and pathway analysis

For the 177 all-cause mortality-related CpGs at p  <  1  ×  10−7, we 
assessed associations of CpGs with nearby gene expression (i.e., 

cis gene expression; within ± 1 Mb) and identified 15 cis- DNAm-
mRNA associated pairs (13 CpGs and 15 mRNAs) at p < 3 × 10−10. 
The genes located at these CpGs or cis-eQTM mRNAs were not 
enriched for any biological processes or pathways. For the 719 all-
cause mortality-related CpGs at p < 1 × 10−5, genes located at CpG 
sites were enriched for multiple immune functions, cellular response 
to organic substance, and negative regulation of cell communica-
tion (Gene Ontology [GO] (Ashburner et al., 2000), FDR < 0.05), 
and pathways for multiple types of cancer (Kyoto Encyclopedia of 
Genes and Genomes [KEGG] pathway (Kanehisa & Goto, 2000), p 
< 0.05, Table S21). There were 79 cis-DNAm-mRNA pairs (63 CpGs 
and 67 mRNAs, Table S22).

3  |  DISCUSSION

By performing EWAS using whole blood-derived DNA from 15,013 
individuals from 15 cohorts with the accrual of 4314 deaths during a 
mean follow-up of more than 10 years, we identified robust DNAm 
signatures of all-cause and cause-specific mortality. We developed 
replicable mortality predictors by integrating mortality-related CpGs 
with traditional clinical risk factors. The integrative models that in-
cluded clinical risk factors and CpGs showed small improvements in 
prediction of all-cause mortality and CVD death, and a more sub-
stantial improvement in prediction of cancer death compared to the 
traditional risk factor model.

Our study is one of the largest EWAS of mortality to date 
(Colicino et al., 2020; Svane et al., 2018; Zhang et al., 2017), and it 
revealed many replicable DNAm signatures for all-cause mortality. 
Our results are consistent with those from previous EWAS of all-
cause mortality; the vast majority of CpGs (85% in our study, 84% 
in (Zhang et al., 2017), and 67% in (Colicino et al., 2020)) were in-
versely associated with mortality suggesting a greater mortality risk 
with lower CpG methylation. Our study identified more CpGs in EA 
cohorts (n = 163) than in AA cohorts (n = 17). As shown in Table 2, 
the effect sizes (i.e., HR) of mortality-related CpGs in EA and AA 
participants were quite similar. We speculate that our study identi-
fied many more CpGs in EA participants than AA participants due 
the greater statistical power of the larger EA sample size. Using dif-
ferent DNAm data normalization methods (such as Noob (Triche Jr 
et al., 2013), SWAN (Maksimovic et al., 2012), BMIQ (Teschendorff 
et al., 2013), and Dasen (Pidsley et al., 2013), see File S1) in different 
cohorts may also affect the reproducibility of the results. For the 
177 all-cause mortality-related CpGs (union of EA and AA results 
at p  <  1  ×  10−7), we examined their overlap with trait-associated 

F I G U R E  4 Hazard ratios per standard deviation increment with 95% confidence intervals for mortality. (a) With respect to all-cause 
mortality; (b) with respect to CVD death; and (c) with respect to cancer death. The results were obtained from ARIC European ancestry 
participants with follow-up truncated at 15 years. For cancer death, samples who had any type of cancer before blood drawn for DNA 
methylation measurements were excluded. Cox regression models were used to relate mortality outcomes to inversely transformed 
mortality risk scores computed by Integrative models (Tables S12–S13) and CpG models (Tables S10–S11), and inversely transformed DNAm 
age including GrimAge (Lu et al., 2019), PhenoAge (Levine et al., 2018), Horvath Age (Horvath, 2013), and Hannum Age (Hannum et al., 
2013). Adj age and sex indicated the association further adjusted for age and sex. Adj age, sex and risk factors indicated the association further 
adjusted for age, sex and the other clinical risk factors
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CpGs in the EWAS catalog (Table S23; Battram et al., 2021). We 
found that 172 CpGs (97%) have been reported to be associated 
with human age, 123 with smoking, 49 with alcohol consumption, 
42 with sex, and 140 with the other diseases or traits. Many CpGs 
were associated with multiple traits. For example, the top two 
CpGs, cg02583484 and cg18181703, were have been reported to 
be associated with smoking, alcohol consumption, prenatal smok-
ing, healthy diet, forced expiratory volume, C reactive protein, and 
many other traits. We speculate that many of the CpGs identified 
by EWAS reflect DNA methylation changes due to disease, human 
aging, lifestyle, and environmental influences. By linking CpGs with 
meQTLs and performing MR analysis, it is possible to further infer 
putatively causal CpGs. However, to identify definitely causal ef-
fects of CpGs on outcomes, functional studies are necessary.

Among the 177 all-cause mortality-related CpGs, 123 CpGs 
had significant associations with genetic variants (i.e., cis- or trans-
meQTL variants identified previously; Huan et al., 2019). For the 
remaining 44 CpGs, however, this does not mean that their methyl-
ation levels have nothing to do with genetic variation. It is possible 
that the previous meQTL study lacked sufficient statistical power 
to identify meQTLs for those CpGs. The mortality-related CpGs 
are linked to hundreds of human complex diseases/traits via their 
cis-meQTL SNPs, which coincide with 618 GWAS Catalog (Buniello 
et al., 2019) index SNPs. This leads us to hypothesize that many 
disease/phenotype-associated SNPs may contribute to disease 
processes via effects on mortality-related CpGs. In this way, the 
mortality-related CpGs may contribute causally to disease. To test 
this hypothesis, we conducted MR analyses that confirmed several 
putatively causal associations of mortality-related CpGs with lon-
gevity (Deelen et al., 2019), CVD (Nikpay et al., 2015), CVD risk fac-
tors, and several types of cancer (Evangelou et al., 2018; Locke et al., 
2015; Michailidou et al., 2017; Phelan et al., 2017; Schumacher et al., 
2018; Scott et al., 2017; Wang et al., 2014; Willer et al., 2013; Table 
S20). Among the four CpGs passing a Bonferroni-corrected thresh-
old in MR analyses, cg06885782 in KCNQ4 was reported to be as-
sociated with risk for prostate cancer (beta = 1.2, pMR = 4.1 × 10−4) 
and negatively associated with longevity (beta = −1.9, pMR = 0.02). 
KCNQ4 (potassium voltage-gated channel subfamily Q member 4) 
was previously reported to be associated with age-related hearing 
impairment (Van Eyken et al., 2006), and it contains genetic variants 
associated with all-cause mortality and survival free of major dis-
eases (Walter et al., 2011). cg07094298 in the gene body of TNIP2 
was previously identified as causal for lung cancer. A recent study 
reported TNIP2-ALK  fusion in lung adenocarcinoma (Feng et al., 
2019). cg04907244 (in TSS1500 of SNORD93) was identified as 
causal for prostate cancer by MR. SNORD93 and its methylation was 
reported to be associated with several cancer types including uveal 
melanoma (Gong et al., 2017), breast cancer (Patterson et al., 2017), 
and renal clear cell carcinoma (Zhao et al., 2020). Pathway analy-
sis further supported a role of mortality-related CpGs in relation to 
cancer risk. The intragenic CpGs were enriched for genes in cancer 
pathways, possibly as a consequence of the expression of nearby 
genes (cis-eQTMs analysis, Table S21) related to immune function.

The 14 clinical risk factors for mortality were chosen based on 
prior knowledge. In contrast, there are far fewer established risk 
factors for cancer death other than age, sex, BMI, smoking, and al-
cohol consumption. It is not a surprise that the clinical risk factors 
themselves accurately predicted all-cause mortality (C-index = 0.80 
in FHS, and 0.75 in ARIC) and CVD death (0.81 in FHS and 0.81 in 
ARIC), but not cancer death (0.57 in FHS and 0.71 in ARIC). Even 
though the clinical risk factors are important for stratifying CVD 
risk, clinical risk factors themselves are unable to reveal molecular 
mechanism and are thereby unable to highlight causal mechanisms 
or promising therapeutic targets. After integrating clinical risk fac-
tors with DNAm in the all-cause mortality prediction model, the C-
index only slightly increased (<2%) compared with the clinical risk 
factors model with regard to all-cause mortality and CVD death. As 
shown in Table S14, nine of the 14 clinical risk factors, including age, 
sex, physical activity, prevalent cancer, type II diabetes, hyperten-
sion, CHD, heart failure, and stroke, as well as 36 CpGs that were 
selected as the representative features. Compared with clinical risk 
factors, the individual coefficients of the CpGs are much smaller. 
The small increase in the C-index and the small coefficients of the 
CpGs suggest that the contribution of CpGs to the prediction of 
death may overlap with these clinical risk factors. We also found that 
the mortality-related CpGs as the sole input features were still able 
to predict mortality outcomes after adjusting for clinical risk factors. 
This suggests that mortality-related CpGs may identify novel mo-
lecular mechanisms contributing to CVD mortality that cannot be 
captured by existing clinical risk factors.

In contrast to CVD and CVD mortality, for which established 
risk factors are highly predictive of risk, the prediction of cancer and 
cancer mortality has proved much more challenging. Owing to the 
lower prediction using clinical risk factors alone (0.57 in FHS and 
0.71 in ARIC), the mortality-related CpGs improved risk prediction 
of cancer death over and above the clinical risk factor model with an 
11% increase in the C-index in FHS and a 5% increase in ARIC. We 
further tested whether the all-cause mortality prediction model can 
be used to predict mortality among all participants in the FHS with 
prevalent cancer (n = 389). During a mean follow-up of 9 years, there 
were 165 deaths in this group. The integrative mortality model pre-
dicted mortality risk among cancer cases (HR [95%CI]: 4.23 [2.63–
6.80], p = 2.9  ×  10−9). These results in conjunction with MR and 
pathway analysis show strong evidence of potential causal relations 
between mortality-related CpCs and pathways in cancer. Based on 
these results, we hypothesize that mortality-related CpGs can shed 
light on the epigenetic regulation of molecular interactions and help 
to identify novel therapeutic targets to reduce mortality risk for 
both CVD and cancer death.

Recent studies have used DNAm of multiple CpG sites to predict 
chronological age (i.e., DNAm age) and showed that DNAm age was 
associated with all-cause mortality. We explored the prediction pro-
vided by these DNAm age models and show that PhenoAge (Levine 
et al., 2018), Horvath Age (Horvath, 2013), Hannum Age (Hannum 
et al., 2013), and GrimAge (Lu et al., 2019) were associated with mor-
tality before accounting for risk factors. Only GrimAge, however, 
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remained associated with mortality after adjusting for clinical risk fac-
tors. In contrast, the other three DNAm age models were no longer 
associated with mortality (Figure 4). One possible explanation is that 
the three DNAm age predictors (i.e., PhenoAge, Horvath Age, and 
Hannum Age) identify CpGs associated with age, but are not specific 
for all-cause or cause-specific mortality risk. Of note, the CpGs that 
serve as DNAm mortality predictors and those that predict DNAm 
age in the three models do not overlap. Among the top CpGs (N = 177) 
associated with all-cause mortality in our EWAS, only cg00687674 
in TMEM84 is included in PhenoAge (Levine et al., 2018), and only 
cg19935065 in DNTT appears in Hannum Age (Hannum et al., 2013). 
GrimAge may have outperformed the other three DNAm age models 
in predicting mortality because the CpGs that it uses are associated 
with the levels of 80 CVD-related blood proteins, and with lifestyle 
and clinical risk factors (such as smoking), and mortality (Ho et al., 
2018; Shah et al., 2019; Yao et al., 2018). However, because the CpGs 
in the GrimAge model are not disclosed (i.e., they are proprietary), 
we were unable to determine whether any of the mortality-related 
CpGs in our study overlap with CpGs in the GrimAge model. Of note, 
our mortality prediction models (both the CpG only model and the 
integrative model that included CpGs and the clinical risk factors) out-
performed GrimAge in prediction of mortality outcomes.

We tested and compared four prediction methods including 
Elastic-coxph (Friedman et al., 2010), a regression-based method, and 
three machine learning methods (Ching et al., 2018; Ishwaran et al., 
2008; Katzman et al., 2018). The machine learning models did not out-
perform Elastic-coxph (Table S9 and Fig. S2). The clinical risk factor 
model trained by machine learning methods did not perform well in 
independent external replication. For example, the C-index of the clin-
ical risk factor model for all-cause mortality was 0.67 using RSF17 ver-
sus 0.75 using Elastic-coxph in ARIC participants. Based on this metric, 
the machine learning methods did not outperform the regression-
based methods when there were relatively few features as inputs.

The primary outcome of our study was all-cause mortality. We did 
not train prediction models for CVD death or cancer death, but we 
tested the prediction ability of the all-cause mortality predictor on 
CVD death and cancer death. The CpGs in the model were restricted 
to all-cause mortality-related CpGs. As shown in Figure 1, the top 
DNAm signatures for all-cause mortality showed the same direction of 
effect for CVD death and cancer death. It is possible that some CpGs 
show opposite directions in relation to CVD death and cancer death, 
but we did not train separate models for these outcomes. Therefore, 
developing separate prediction models for CVD death and cancer 
death with a very large sample size would be an important next step.

4  |  CONCLUSIONS

In conclusion, the ancestry-stratified epigenome-wide meta-analyses 
in 15 population-based cohorts identified replicable DNAm signa-
tures of all-cause and cause-specific mortality. The top mortality-
associated CpGs were linked with genes involved in immune-  and 
cancer-related pathways, and were reported to be associated with 

human longevity, CVD risk factors, and several types of cancer. We 
constructed and validated DNAm-based prediction models that pre-
dicted mortality risk independent of established clinical risk factors. 
The prediction model trained by integrating DNAm with clinical risk 
factors showed small improvement in prediction of all-cause mortal-
ity and CVD death, and a more substantial improvement in predic-
tion of cancer death, compared with the model trained by clinical 
risk factors alone. The mortality-related CpG sites and the DNAm-
based prediction models may serve as useful clinical tools for assess-
ing all-cause and cause-specific mortality risk and for developing 
new therapeutic strategies.

5  |  METHODS

5.1  |  Study population

This study included 15,013 participants from 15 population-
based cohorts. There were 11,684 European ancestry (EA) par-
ticipants from 12 cohorts, including the Atherosclerosis Risk in 
Communities (ARIC) Study, the Cardiovascular Health Study (CHS), 
the Danish Twin Register sample (DTR), the Epidemiologische 
Studie zu Chancen der Verhütung, Früherkennung und optimierten 
Therapie chronischer Erkrankungen in der älteren Bevölkerung 
(ESTHER), the Framingham Heart Study (FHS), the Invecchiare in 
Chianti (InCHIANTI) Study, the Cooperative Health Research in 
the Region of Augsburg (KORA F4), the Lothian Birth Cohorts of 
1921 (LBC1921) and 1936 (LBC1936), the Normative Aging Study 
(NAS), the Rotterdam Study (RS), and Women's Health Initiative 
(WHI); and 3329 Africa ancestry (AA) participants from 3 cohorts, 
including ARIC, CHS, and WHI. For each participant, we calculated 
the follow-up time between the date of the blood draw for DNAm 
measurements and the date at death or last follow-up. Mean follow-
up was less than 15 years (range 6.2–13.7) for most cohorts, except 
for ARIC (mean 20.0 for EA and 18.6 for AA). The protocol for each 
study was approved by the institutional review board of each co-
hort. Further details for each cohort were included in File S1.

5.2  |  Mortality ascertainment and 
clinical phenotypes

Outcomes including death from all causes, deaths from CVD, and 
deaths from cancer were prospectively ascertained in each co-
hort. Survival status and details of death were ascertained using 
multiple strategies, including routine contact with participants for 
health history updates, surveillance at the local hospital, review of 
obituaries in the local newspaper, and National Death Index que-
ries. Death certificates, hospital and nursing home records prior 
to death, and autopsy reports were requested and reviewed. Date 
and cause of death were determined separately for each cohort 
following review of all available medical records and /or were 
register-based.
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The clinical and lifestyle risk factors (referred to as clinical risk fac-
tors for simplicity thereafter) used as covariates in this study included 
age, sex, body mass index (BMI), smoking, alcohol consumption, phys-
ical activity, educational attainment, and prevalent diseases includ-
ing hypertension, coronary heart disease (CHD), heart failure, stroke, 
type II diabetes, and cancer. Fourteen clinical risk factors were chosen 
based on prior knowledge; most of these are key CVD risk factors. 
The clinical risk factors were ascertained at the time of blood draw 
for DNAm measurements. BMI was calculated as weight (kg) divided 
by height squared (m2). Educational attainment (years of educational 
schooling), physical activity (frequency, intensity, or the metabolic 
equivalent of task [MET] scores), smoking status (yes/no, or cigs/day), 
and alcohol consumption (drinks per day) were self-reported or ascer-
tained by an administered questionnaire at routine research clinic vis-
its. Diabetes was defined as a measured fasting blood glucose level of 
>125 mg/dl or current use of glucose-lowering prescription medica-
tion. Hypertension was defined as a measured systolic blood pressure 
(BP) ≥140 mm Hg or diastolic BP ≥90 mm Hg or use of antihyperten-
sive prescription medication. Cancer was defined as the occurrence of 
any type of cancer excluding non-melanoma skin cancer.

5.3  |  DNA methylation measurements and 
quality control

For each cohort, DNA was extracted from whole blood and bisulfite-
converted using a Zymo EZ DNA methylation kit. DNAm was meas-
ured using the Illumina Infinium HumanMethylation450 (450K) 
BeadChip platform (Illumina Inc., San Diego, CA). Each cohort 
conducted independent laboratory DNAm measurement, quality 
control (including sample-wise and probe-wise filtering, and probe 
intensity background correction; see File S1).

5.4  |  Cohort-specific epigenome-wide 
association analysis

The correction of methylation data for technical covariates was co-
hort specific. Each cohort performed an independent investigation to 
select an optimized set of technical covariates (e.g., batch, plate, chip, 
row, and column), using measured or imputed blood cell type fractions, 
surrogate variables, and/or principal components. Most cohorts had 
previous publications using the same dataset for EWAS of different 
traits, such as EWAS of alcohol drinking and smoking (Mendelson 
et al., 2017; Michailidou et al., 2017). In this study, those cohorts used 
the same strategies as they did previously for correcting for technical 
variables including batch (see File S1). To avoid false positives driven 
by single CpG extreme values, in each cohort, we first performed rank-
based inverse normal transformation (INT) of DNAm β-values (the ratio 
of methylated probe intensity divided by the sum of the methylation 
and unmethylated probe intensity). We then conducted time-to-event 
analyses using Cox proportional hazards models to test for associa-
tions between each CpG and mortality outcomes including all-cause 

mortality, CVD death, and cancer death using the coxph() function in 
the “survival” R library, adjusting for clinical risk factors (see Mortality 
ascertainment and clinical risk factors), technical confounders, and 
familial relatedness. Because ARIC cohorts had much longer follow-
up than the other cohorts, ARIC follow-up was truncated at 15 years 
and results were compared to those before truncation to determine 
whether results were impacted by duration of follow-up.

In this study, we performed INT of DNAm β-values to avoid 
false positives driven by extreme values of single CpGs. Using the 
FHS EWAS results as an example, Table S24  shows that the top 
CpGs associated with all-cause mortality (without INT) were no 
longer significant after performing INT. This finding suggests that 
if we directly use DNAm β-values, those extreme outlier values 
could lead to false-positive results. Clearly, the distribution of 
DNA β-values is non-normal, and for this reason, we believe that 
the conservative INT approach we took protected against false-
positive results.

5.5  |  Meta-analysis

The meta-analysis was performed for all-cause mortality, CVD 
death, and cancer death in EA (n = 11,684) and AA (n = 3329) partici-
pants, respectively, using inverse variance-weighted random-effects 
models implemented in metagen() function R packages (https://rdrr.
io/cran/meta/man/metag​en.html). We chose a random-effects 
model because of the heterogeneity in follow-up length and popula-
tion demographics in the different cohorts (Table S1). We excluded 
the EWAS results for a study with <20 deaths. We excluded probes 
mapping to multiple locations on the sex chromosomes or with an 
underlying SNP (MAF > 5% in 1000 Genome Project data) at the 
CpG site or within 10bp of the single base extension. In addition, the 
meta-analysis was constrained to methylation probes passing filter-
ing criteria in five or more cohorts (see File S1), which resulted in 
~400,000 CpGs that were included in the final analyses. The statisti-
cal significance threshold was p < 0.05/400,000 ≈ 1 × 10−7.

Three types of sensitivity analyses were performed including 
(1) correcting for λ values in each cohorts (Devlin et al., 2001), (2) 
excluding two cohorts with λ > 1.5 from the meta-analysis, and (3) 
excluding results of RS, because the cohort-specific analysis in RS 
having a strange distribution of top hits. There were 157 CpGs iden-
tified at p < 1e-7 in the RS cohort-specific analysis. The number is 
much more than the number of all-cause mortality-associated CpGs 
identified in the other cohorts.

5.6  |  Mortality prediction models

Mortality prediction models based on clinical risk factors and with the 
addition of DNAm were built and tested in EA cohorts. The analysis 
flowchart is shown in Figure 1. To ensure unbiased validation, we split 
the EA cohorts into discovery and replication sets. The discovery co-
horts consisted of 8288 participants from 10 cohorts, excluding FHS 

https://rdrr.io/cran/meta/man/metagen.html
https://rdrr.io/cran/meta/man/metagen.html
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(n = 2427) and ARIC (n = 969). Candidate CpGs as input features were 
selected by meta-analysis in the discovery cohorts. FHS was used to 
train prediction models. ARIC was used to validate models. To build 
and replicate a prediction model, the DNAm data were preprocessed 
utilizing the same strategy as in the EWAS analysis.

5.6.1  |  Input features

To evaluate the prediction performance of clinical risk factors and 
DNAm comprehensively, we tested 13 sets of features, Feature set 1 
(F1) included age (years), sex (male as 1 and female as 2), and 12 other 
clinical risk factors including BMI (kg/m2), smoking (current smoker 
as 1, and former and never smoker as 0), alcohol consumption (g/
day), physical activity (MET scores), educational attainment (educa-
tion years), and prevalent diseases (yes as 1 and no as 0) including 
hypertension, CHD, heart failure, stroke, type 2 diabetes, and can-
cer. F2-F7 were mortality-related CpGs selected by meta-analysis in 
the discovery cohorts by inverse variance-weighted random-effects 
models at a series of p value thresholds, including F2 CpGs at p < 1e-
7, F3 CpGs at p < 1e-6, F4 CpGs at p < 1e-5, F5 CpGs at p < 1e-4, 
F6 CpGs at p < 1e-3, and F7 CpGs at p < 0.05. F8-F13 are F1 (age, 
sex, and 12 clinical phenotypes) plus F2-F7, respectively. In doing so, 
we were able to evaluate the prediction performance based on the 
clinical risk factors (F1) and the DNAm (F2-F7), and test if the com-
bination of DNAm with clinical risk factors (F8-F13) could be able to 
improve the prediction performance by using clinical risk factors (F1) 
only and DNAm only (F2-F7).

5.6.2  | Model building

We compared four methods of building prediction models, including 
1) Elastic net - Cox proportional hazards method (Elastic-coxph, using 
glmnet, a R package) (Friedman et al., 2010); 2) Random survival forest 
(RSF, using randomForestSRC, a R package) (Ishwaran et al., 2008); 3) 
Cox-nnet (https://github.com/lanag​armir​e/cox-nnet, a Python pack-
age) (Ching et al., 2018); and 4) DeepSurv (https://github.com/jared​
leeka​tzman/​DeepSurv, a Python package) (Katzman et al., 2018). The 
first method is a penalized linear regression method, while the other 
three are non-linear machine learning methods.

Elastic-coxph is a Cox regression model regularized with elastic 
net penalty (Friedman et al., 2010). Performing this method requires 
to identify best values of two parameters, α and λ. We tuned each 
model by iterating over a number of α and λ values under cross-
validation. α indicated linearly combined penalties of the lasso (α=0) 
and ridge (α=1) regression. λ is the shrinkage parameter, when λ 
=0 indicated no shrinkage, and as λ increases, the coefficients are 
shrunk ever more strongly. Effectively this will shrink some coeffi-
cients close to 0 for optimizing a set of features. The α value was set 
to 0.5, and the λ value was set to lambda.min when training models.

RSF is an ensemble tree model that is based on the random forest 
method for survival analysis (Ishwaran et al., 2008). The optimized 

values of parameters in RSF models, including the number of trees 
(nTrees=100) and nodeSize =15, were chosen by iterating over 
a number of values which maximized the accuracy of RSF models 
tested in the replication sets under cross-validation. RSF can com-
pute feature importance scores for feature selection.

Cox-nnet is an artificial neural network-based method for sur-
vival analysis (Ching et al., 2018). Cox-nnet includes two layer neural 
network: one hidden layer and one output layer. The output layer 
was used to perform Cox regression based on the activation levels 
of the hidden layer. Cox-nnet could also compute feature impor-
tance scores for feature selection. For each model training, the L2 
regularization parameter is optimized using the L2CVProfile Python 
function by iterating over a number of values under cross-validation.

DeepSurv is a deep learning-based survival prediction method 
(Katzman et al., 2018). DeepSurv uses a multi-layer feed forward 
neural network, of which the hidden layers consist of a fully con-
nected layer of nodes, followed by a dropout layer, and the output 
is a single node with a linear activation which estimated the log-risk 
function in the Cox model, parameterized by the weight of the net-
work. The values of hyperparameters when using DeepSurv were L2 
regularization =0.8, dropout =0.4, learning rate =0.02, hidden layer 
size (4 layers with nodes 500, 200, 100 and 50), lr_decay =0.001, mo-
mentum =0.9 and the activation method (using Scaled Exponential 
Linear Units), which were optimized by iterating over a number of 
values each-by-each and under cross-validation. DeepSurv has not 
been used previously for selecting features.

The 2427 FHS participants were randomly split into 5 equal sets 
(n=485 or 486 in each set), and each set included approximately 
equal numbers of deaths. We then used 3 of the 5 sets (60%) for 
model training and the remaining 2 sets (40%) for model testing. In 
doing so, we obtained 10 combinations. In each training / testing 
combination, we constructed a model using the training data, and 
then used the model to generate a mortality risk score based on 
the testing data. We assessed associations of the predicted mortal-
ity risk score (after inversely normal transformation) with all-cause 
mortality, CVD death, and cancer death in the testing data using 
time-to-event proportional hazards models. This data partitioning 
and cross-validation strategy was only used to assess the robustness 
of prediction models when using different features and methods, 
and to select the optimized parameters for training models. The final 
models reported were built on all FHS participants using the opti-
mized parameters. We also repeated the same analysis steps using 
FHS participants without cancer at baseline (n=2038; 238 deaths 
from all causes, 70 from CVD, and 42 from cancer).

5.6.3  |  Validation

The prediction models built using all FHS participants were tested 
in ARIC EA participants for the prediction of mortality outcomes. 
We performed tests on all-cause mortality and CVD death on all 
ARIC EA participants truncated at 15 years of follow-up, and tests 
on cancer death after excluding prevalent cancer. We further tested 

https://github.com/lanagarmire/cox-nnet
https://github.com/jaredleekatzman/DeepSurv
https://github.com/jaredleekatzman/DeepSurv
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the all-cause mortality prediction model in the CARDIA study. The 
CARDIA study has 12 years of follow-up, during which there were 
27 deaths from all causes in 905 participants with DNA methylation.

5.6.4  |  Evaluation of model performance

We used four evaluation metrics to assess model performance, 
including the concordance index (C-index) (Harrell Jr et al., 1996), 
hazards ratio of predicted risk score (inversely transformed) for pre-
diction of mortality, the integrated brier score (IBS) (Brier, 1950), and 
Kaplan–Meier (KM) survival curves for high-, medium-, and low-risk 
groups (Kaplan & Meier, 1958). The C-index reflects the percent-
age of individuals whose predicted survival times are correctly 
ordered. A C-index of 0.50 reflects no improvement in prediction 
over chance. The brier score measures the mean of the difference 
between the observed and the estimated survival beyond a certain 
time. The brier score ranges between 0 and 1, and a larger score 
indicates higher inaccuracy. The integrated brier score is the brier 
score averaged over the entire time interval.

5.7  |  DNAm Age

We compared the prediction performance of DNAm age with our 
DNAm-based mortality prediction model in relation to all-cause 
mortality, CVD death, and cancer death in the ARIC EA cohort (trun-
cating follow-up at 15  years). Four measures of DNAm age were 
used in this study, including PhenoAge (Levine et al., 2018), Horvath 
age (Horvath, 2013), Hannum age (Hannum et al., 2013), and 
GrimAge (Lu et al., 2019). The Horvath Age is based on 353 CpGs, 
the Hannum age is based on 71 CpGs, and PhenoAge is based on 
513 CpGs. DNAm age was calculated as the sum of the beta values 
multiplied by the reported effect size. Due to the GrimAge model 
was not publicly available, the GrimAge was calculated by uploading 
the DNAm data to the website (http://dnama​ge.genet​ics.ucla.edu/). 
Proportional hazards regression models were used to test the as-
sociation between inversely rank transformed DNAm age (all 3 ap-
proaches) and mortality outcomes, adjusting for age, sex, and clinical 
covariates (see Mortality ascertainment and clinical phenotypes).

5.8  |  meQTLs

meQTLs (SNPs associated with DNA methylation) were identi-
fied from 4170 FHS participants as reported previously, including 
4.7 million cis-meQTLs and 630K trans-meQTLs at p < 2 × 10−11 for 
cis and p < 1.5 × 10−14 for trans (Huan et al., 2019). The genotypes 
were measured using Affymetrix SNP 500K mapping and Affymetrix 
50K gene-focused MIP arrays. Genotypes were imputed using the 
1000 Genomes Project panel phase 3 using MACH / Minimac soft-
ware. SNPs with MAF > 0.01 and imputation quality ratio >0.3 were 
retained. cis-meQTLs were defined as SNPs residing within 1 Mb 

upstream or downstream of a CpG site. The FHS meQTL data re-
source includes 3.5 times more cis-, and 10 times more trans-meQTL 
SNPs than the other published studies to date (https://ftp.ncbi.nlm.
nih.gov/eqtl/origi​nal_submi​ssion​s/FHS_meQTL​s/).

5.9  |  Mendelian randomization

Two-sample Mendelian randomization (MR) was used to identify pu-
tatively causal CpGs for human longevity, CVD and CVD risk factors, 
and cancer types using a multi-step strategy. Estimated associations 
and effect sizes between SNPs and traits were based on the latest 
published GWAS meta-analysis of human longevity (Deelen et al., 
2019), coronary heart disease (CHD) (Nikpay et al., 2015); myocardial 
infarction (MI) (Nikpay et al., 2015); type II diabetes (T2D) (Scott et al., 
2017); body mass index (BMI) (Locke et al., 2015); lipids traits includ-
ing high-density lipoprotein (HDL) cholesterol, low-density lipoprotein 
(LDL) cholesterol, total cholesterol (TC), and triglycerides (TG) (Willer 
et al., 2013); systolic blood pressure (SBP) and diastolic blood pres-
sure (DBP) (Evangelou et al., 2018), and cancer types including breast 
cancer (Michailidou et al., 2017), prostate cancer (Schumacher et al., 
2018), lung cancer (Wang et al., 2014) and ovarian cancer (Phelan 
et al., 2017). We were unable to include some other popular cancer 
types, because their GWAS data were not be accessible by us.

Instrumental variables (IVs) for each CpG site consisted of inde-
pendent cis-meQTLs pruned at linkage disequilibrium (LD) r2 < 0.01, 
retaining only one cis-meQTL variant with the lowest SNP-CpG p 
value in each LD block. LD proxies were defined using 1000  ge-
nomes imputation in EA. Inverse variance-weighted (IVW) MR tests 
were performed on CpGs with at least three independent cis-meQTL 
variants, which is the minimum number of IVs needed to perform 
multiple instruments MR. The multiple instruments improved the 
precision of IV estimates and allowed the examination of underlying 
IV assumption (Palmer et al., 2012). Among 177 all-cause mortality-
related CpGs at p < 1 × 10−7, MR tests were performed on 17 CpGs 
having ≥3 independent cis-meQTL SNPs. To test the validity of 
IVW-MR results, we performed heterogeneity and MR-EGGER plei-
otropy tests for all IVs. The statistical significance threshold for MR 
is pMR < 0.05/17, and both pheter and ppleio were required to be >0.05.

5.10  |  eQTMs

Association tests of DNAm and gene expression were performed in 
3684 FHS participants with available DNAm and gene expression 
data. mRNA was extracted from whole blood (collected in PAXgene 
tubes) and profiled using the Affymetrix Human Exon 1.0 ST 
GeneChip platform. Raw gene expression data were first normalized 
using the RMA (robust multi-array average) from Affymetrix Power 
Tools (APT, thermofisher.com/us/en/home/life-science/microarray-
analysis/affymetrix.html#1_2) with quantile normalization. Then, 
output expression values of 17,318 genes were extracted by APT 
based on NetAffx annotation version 31.

http://dnamage.genetics.ucla.edu/
https://ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_meQTLs/
https://ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_meQTLs/
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DNAm β values were adjusted for age, sex, predicted blood cell 
fraction, the two top PCs of DNAm, and 25 surrogate variables (SVs), 
with DNAm as a fixed effect, and batch as a random effect by fitting 
LME models. Residuals (DNAm_resid) were retained. The gene expres-
sion values were adjusted for age, sex, predicted blood cell fraction, 
a set of technical covariates, the two top PCs and 25 SVs, with gene 
expression as a fixed effect, and batch as a random effect by LME, and 
residuals (mRNA_resid) were retained. Then, linear regression models 
were used to assess pair-wise associations between DNAm_resid and 
mRNA_resid. SVs were calculated using the SVA package in R. A cis-
CpG-mRNA pair was defined as a CpG residing ± 1 Mb of the TSS of 
the corresponding gene encoding the mRNA (cis-eQTM). The annota-
tions of CpGs and transcripts were obtained from annotation files of 
the HumanMethylation450K BeadChip and the Affymetrix exon array 
S1.0 platforms. We estimated that there were 1.6 ×  108 potential 
cis- CpG-mRNA pairs. We only used cis-eQTMs in this study because 
trans-eQTMs were not replicated in independent external studies. The 
statistical significance threshold was p < 3 × 10−10 (0.05/1.6 × 108).

5.11  |  Gene ontology and pathway 
enrichment analysis

Gene ontology and pathway enrichment analyses were performed 
on the genes annotated in relation to the 177 all-cause mortality-
related CpGs at p < 1 × 10−7or p < 1 × 10−5 as well as the cis-eQTM 
genes associated with those CpGs. To improve focus in this study, 
we only used results of KEGG and Gene Ontology–biological pro-
cess (GO-BP) terms. Enrichment tests used gometh function in miss-
Methy R package, which can take into account two types of bias in 
DNA methylation study: (1) the differing number of probes per gene 
present on the array, and (2) CpGs that are annotated to multiple 
genes (Maksimovic et al., 2021).
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